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Abstract

In contrast to the monolithic deep architectures used in deep learning today for1

computer vision, the visual cortex processes retinal images via two functionally2

distinct but interconnected networks: the ventral pathway for processing object-3

related information and the dorsal pathway for processing motion and transforma-4

tions [8]. Inspired by this cortical division of labor and properties of the magno-5

and parvocellular systems [5], we explore an unsupervised approach to feature6

learning that jointly learns object features and their transformations from natu-7

ral videos. We propose a new convolutional bilinear sparse coding model that8

(1) allows independent feature transformations and (2) is capable of processing9

large images. Our learning procedure leverages smooth motion in natural videos.10

Our results show that our model can learn groups of features and their transfor-11

mations directly from natural videos in a completely unsupervised manner. The12

learned "dynamic filters" exhibit certain equivariance properties, resemble corti-13

cal spatiotemporal filters, and capture the statistics of transitions between video14

frames. Our model can be viewed as one of the first approaches to demonstrate15

unsupervised learning of primary "capsules" (proposed by Hinton and colleagues16

for supervised learning) and has strong connections to the Lie group approach to17

visual perception.18

1 Motivation19

During early development, the brain learns a general-purpose internal representation of objects from20

unlabeled image sequences. This representation is compositional and leverages the decomposition21

of objects into parts, sub-parts, and features, along with their relative transformations. In contrast,22

modern object recognition systems based on deep learning require thousands of labeled examples23

and typically discard information about transformations (via pooling) in order to achieve invari-24

ance. Information about transformations is critical for tasks such as movement planning and spatial25

reasoning.26

Current unsupervised models produce representations that either lack interpretability or hierarchical27

depth. Variational autoencoders and generative adversarial networks (GANs) typically produce non-28

interpretable features that do not match the object/parts hierarchy inherent in natural visual scenes.29

Because they do not explicitly model transformations, these models have difficulty generalizing to30

the vast range of viewing conditions that objects can appear in. Sparse coding and its variants can31

learn interpretable features from unlabeled images: these features resemble the localized oriented32

(Gabor) receptive fields found in the primary visual cortex. However, these models again do not33

model transformations and have been difficult to generalize to deeper hierarchies due to the combi-34

natorial explosion of possible features.35
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We propose a new model for unsupervised learning motivated by the idea that the combinatorial36

explosion problem can be mitigated by a neural architecture that processes the identity (“what”) and37

the pose (“where”) of objects and their parts separately. Such an architecture acknowledges the ven-38

tral/dorsal processing dichotomy in the visual cortex: the first is mostly responsible for processing39

content and identity of objects while the latter is responsible for processing motion and transforma-40

tions.41

We introduce a new bilinear sparse coding model that builds on previous bilinear generative models42

by (1) allowing each feature to have its own transformation and (2) accommodating large images43

via transposed convolutions. Furthermore, emulating the slower response times of the parvo path-44

way compared to the magno pathway, we assume that at short time scales, object identities at each45

location will remain the same, modeling any fast changes as changes in object transformation val-46

ues. We demonstrate our model by using short natural video sequences to learn features and their47

transformations. The resulting collection of “steerable” filters can be viewed as dynamic features48

resembling the spatiotemporal receptive fields reported in the primary visual cortex. Our model is49

also one of the first to apply ideas from sparse coding to solve the problem of unsupervised learning50

of "primary capsules"1 previously proposed by Hinton and colleagues for supervised learning [4].51

2 Model52

2.1 Independent Bilinear Sparse Coding53

In bilinear sparse coding [3, 1], an image patch is modeled as a combination of features Bij with54

two sets of coefficients ri (object coefficients) and xj (transformation coefficients) that interact55

multiplicatively:56

I '
∑
i

∑
j

rixjBij (1)

Let
∑
j xjBij = Bi(x) where x represents the transformation vector consisting of xj’s. Then57

I '
∑
i riBi(x), which is the standard linear generative model used in sparse coding, PCA, ICA58

etc. The ri coefficients correspond to the degree to which each feature exists in the input. The59

xj coefficients linearly combine a set of similar features to produce a dynamic “steerable” feature60

Bi(x). The goal is for these dynamic features to capture an equivariance class centered around61

an underlying feature Bi. As a result, the r coefficients remain invariant regardless of the specific62

instantiation of the features, the variation being accounted for by x. To learn sparse part-like features63

of objects, sparsity is enforced on either r or both r and x via some appropriate sparsity penalty.64

Typically bilinear sparse coding models are trained using pairs of video frames It+1 and It, with r65

fixed and x inferred separately to account for the difference between frames:66

∆I = It+1 − It '
∑
i

ri
∑
j

(xt+1,j − xt,j)Bij =
∑
i

ri
∑
j

∆xt,jBij (2)

There is a strong connection to the Lie group approach to vision [2] where two consecutive frames67

are modelled as It+1 = T (∆x)It where T is a transformation operator. The first-order Taylor68

series approximation of the Lie model [7, 6] is given by: It+1 = It +
∑
j ∆xt,j∇xjIt which69

means that ∆I =
∑
j ∆xt,j∇xjIt. Suppose It '

∑
i riUi where Ui ∈ Rd×1 form an un-70

derlying feature set. Replacing ∇xj with the transformation matrix Gj ∈ Rd×d, we obtain:71

∆I '
∑
j ∆xt,jGj

∑
i riUi =

∑
i ri

∑
j ∆xt,jGjUi. Comparing with Equation 2 above, we see72

that Bij = GjUi.73

We build on this model by allowing features to have independent pose parameters xij so that features74

can transform independently from frame to frame. We also go beyond image patches to modeling75

large images by using transposed convolutions (∗T ), resulting in a new bilinear model for images:76

I '
∑
i

ri
∑
j

xij ∗T (GjUi) =
∑
i

ri ∗T Bi(xi) (3)

To distinguish our model from past models, we refer to traditional bilinear sparse coding as BSC77

and our independent bilinear sparse coding model as IBSC.78

1Primary capsules are capsules in the first layer of processing that convert the image into a collection of
activations and poses.
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2.2 Inference79

The reconstruction-based loss function for consecutive frames of a video is given by:80

L(r, xt) =
∑
t

‖It−
∑
i

∑
j

(rixijt)∗T P`2,1.0 (GjUi) ‖22 +γ|r|1 +λG
∑
j

‖Gj‖22 +λU
∑
i

‖Ui‖22

(4)
with r, x ≥ 0. The first term is the mean-squared reconstruction error. The other terms include a81

sparsity penalty on r and weight decay for G and U . To stabilize learning we project each Bij =82

GjUi to unit `2 norm (P`2,1.0).83

Inference for BSC is typically performed by initializing x to some canonical vector and then alter-84

natively optimizing r and x [3]. One of the issues with this approach is that the canonical vector85

might be a poor approximation to the true underlying pose parameters, especially in the case of86

independent features as in our model. We convolve each feature Bij with the image to produce a87

feature map αijt = Bij ∗ It. We then project onto some appropriately chosen norm ball to compute88

xijt = P`,ρ (αijt).2 Inference proceeds by alternatively optimizing r and x until convergence. To89

optimize r, we use iterative thresholding, while x is optimized by projected gradient descent. Both90

sets of coefficients are forced to be non-negative, using a rectifier for r and projecting on the positive91

part of the norm ball for x.92

3 Experiments93

For our experiments, we used 1920 × 1080 resolution YouTube videos converted to gray scale94

and scaled down to 236 × 176 pixels per frame. The frames were normalized using subtractive95

normalization3. We extracted sequences of 5 consecutive frames, with r assumed to be constant96

for each sequence during training. We excluded sequences in the largest 5% of Euclidean norm97

difference between frames to exclude sudden camera changes or changes between scenes. We used98

a stride of half the size of the kernel for transposed convolutions.99

Our model learns localized oriented Gabor-like features similar to those seen in sparse coding. Fig-100

ure 1 shows a subset of the learned 12 × 12 pixel features: each column shows Bi: corresponding101

to different transformed versions of the same underlying feature. Note that not only translations but102

other transformations are learned as well, e.g., rotations and warping. The learned bilinear features103

allow accurate reconstruction, as seen for an example input in Figures 2(a) and 2(b). All feature sets104

were 2×overcomplete.105

To test whether each Bi(xi) corresponds to a “steerable” filter, we visualize in Figures 3(a-e) a106

subset of the different instantiations (with different xi’s) of each feature across different inputs107

and image locations from our natural videos. Note that the model captures a wide range of such108

instantiations. To determine whether each Bi(xi) captures the progression of a single underlying109

feature across frames, we visualized the evolution of features across sequences of frames. As seen110

in Figure 4, the learned features evolve across frames in a manner similar to spatiotemporal filters111

in the visual cortex, e.g., direction-selective Gabor filters moving in a particular direction.112

4 Conclusion & Future Work113

We extend the bilinear sparse coding model to handle large images and independent feature transfor-114

mations. Our model learns to group similar features together, leveraging the smoothness of natural115

videos. Perhaps the most interesting direction for future work is that of extending this approach116

hierarchically.117

2This allows us to use the features themselves to derive a suitable pose vector. For the projection of x we
use the simplex Sρ :

∑
j |xj | ≤ ρ, |xj | ≥ 0; the radius ρ determines how sparse the coefficients will be.

3A Gaussian kernel is used to estimate the mean intensity around each pixel, which is then subtracted from
the pixel value.
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Figure 1: Independent Bilinear Sparse Coding for Natural Videos. 12×12 pixel featuresBij: each column
shows a feature i for different j’s.

(a) (b)

Figure 2: Example Frame Reconstruction. (a) Original image and (b) its reconstruction using the learned
bilinear features.
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Figure 3: Feature Equivariance Classes. (a,b,c,d,e,f) Feature equivariance classes (each plot shows different
transformations of the same underlying feature).

Figure 4: Learned Feature Dynamics. Feature dynamics between frames. Each column corresponds to a
distinct instance of a dynamic spatiotemporal filter, resembling cortical spatiotemporal filters.
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