
Published as a conference paper at ICLR 2020

BAYESIAN META SAMPLING FOR FAST UNCERTAINTY
ADAPTION

Zhenyi Wang 1, Yang Zhao 1, Ping Yu 1, Ruiyi Zhang 2, Changyou Chen 1

1 State University of New York at Buffalo 2 Duke University
1 {zhenyiwa, yzhao63, pingyu, changyou}@buffalo.edu
2 ryzhang@cs.duke.edu

ABSTRACT

Meta learning has been making impressive progress for fast model adaptation. How-
ever, limited work has been done on learning fast uncertainty adaption for Bayesian
modeling. In this paper, we propose to achieve the goal by placing meta learning on
the space of probability measures, inducing the concept of meta sampling for fast
uncertainty adaption. Specifically, we propose a Bayesian meta sampling frame-
work consisting of two main components: a meta sampler and a sample adapter.
The meta sampler is constructed by adopting a neural-inverse-autoregressive-flow
(NIAF) structure, a variant of the recently proposed neural autoregressive flows, to
efficiently generate meta samples to be adapted. The sample adapter then pushes
meta samples to task-specific samples, based on a newly proposed and general
Bayesian sampling technique, called optimal-transport Bayesian sampling. The
combination of the two components allows a simple learning procedure for the
meta sampler to be developed, which can be efficiently optimized via standard
back-propagation. Extensive experimental results demonstrate the efficiency and
effectiveness of the proposed framework, obtaining better sample quality and faster
uncertainty adaption compared to related methods.

1 INTRODUCTION

Meta learning (Schmidhuber, 1987; Andrychowicz et al., 2016) is an important topic in modern
machine learning. The goal is to learn some abstract concepts from different but related tasks, which
can then be adapted and generalized to new tasks and environments that have never been encountered
during training. There has been lots of research on this topic. A recent review classifies the methods
as metric-based, model-based and optimization-based methods (Weng, 2018). Among these methods,
learning-to-learn seeks to learn a meta optimizer that can be applied to different models, with some
task-specific information such as current gradients as input (Andrychowicz et al., 2016). Model
agnostic meta learning (MAML) aims to learn a meta parameter/model from a set of training tasks
such that it can quickly adapt to models for new tasks (Finn et al., 2017). Many follow-up works
have been proposed recently, including but not limited to the meta network (Munkhdalai & Yu, 2017),
the meta learner (Ravi & Larochelle, 2017), the Reptile model (Nichol et al., 2018), and the lately
extensions to an online setting (Finn et al., 2019), to model hierarchical relation (Yao et al., 2019)
and sequential strategies (Ortega et al., 2019), and to its stable version Antoniou et al. (2019) and to
some theoretical analysis (Khodak et al., 2019).

It is worth noting that all the aforementioned models are designed from an optimization perspective.
Bayesian modeling, in parallel with optimization, has also been gaining increasing attention and
found various applications in deep learning. Recent research has extended the above meta-learning
methods to a Bayesian setting. For example, Bayesian MAML (BMAML) replaces the stochastic-
gradient-descent (SGD) step with Stein variational gradient descent (SVGD) for posterior sampling
(Yoon et al., 2018). Probabilistic MAML (PMAML) extends standard MAML by incorporating a
parameter distribution of the adapted model trained via a variational lower bound (Finn et al., 2018).
Amortized Bayesian Meta Learning extends the idea of MAML to amortized variational inference
(Ravi & Beatson, 2019; Choi et al., 2019). VERSA (Gordon et al., 2019) uses an amortization
network to approximate the posterior predictive distributions. Meta particle flow (Chen et al., 2019)
realizes Bayes’s rule based on ODE neural operator that can be trained in a meta-learning framework.

1

Published as a conference paper at ICLR 2020

Though methodologically elegant with many interesting applications, the above methods lack the
ability to uncertainty propagation/adaption, in the sense that uncertainty is either not considered
(e.g., in MAML) or only considered in the specific task level (e.g., BMAML). Uncertainty modeling
is critical when considering especially in few labeled data setting. Lacking of such modeling, the
prediction uncertainty would be inaccurate. Model prediction uncertainty is considered and calibrated
in Ananya Kumar (2019).

To tackle this problem, we propose to perform meta learning on the space of probability measures,
i.e., instead of adapting parameters to a new task, one adapts a meta distribution to new tasks. When
implementing distribution adaption in algorithms where distributions are approximated by samples,
our distribution-adaptation framework becomes sample-to-sample adaption. In other words, the meta
parameter in standard MAML becomes meta samples in our method, where uncertainty can be well
encoded. For this reason, we call our framework Bayesian meta sampling.

Specifically, we propose a mathematically elegant framework for Bayesian meta sampling based
on the theory of Wasserstein gradient flows (WGF) (Ambrosio et al., 2005). Our goal is to learn a
meta sampler whose samples can be fast adapted to new tasks. Our framework contains two main
components: a meta sampler and a sample adapter. For the meta sampler, we adopt the state-of-
the-art flow-based method to learn to transport noise samples to meta samples. Our meta sampler is
parameterized by a neural inverse-autoregressive flow (NIAF), an extension of the recently developed
neural autoregressive flows (NAFs) (Huang et al., 2018). The NIAF consists of a meta-sample
generator and an autoregressive conditioner model, which outputs the parameters of the meta-sample
generator. The NIAF takes some task-specific information (such as gradients of target distributions)
and random noise as input and outputs meta samples from its generator. These meta samples are then
quickly adapted to task-specific samples of target distributions by feeding them to the sample adapter.
To ensure efficient and accurate adaptations to new task distributions, a novel optimal-transport
Bayesian sampling (OT-sampling) scheme, based on Wasserstein gradient flows, is proposed as the
adaptation mechanism of the sample adapter. The OT-sampling is general and can ensure samples
to be adapted in a way that makes the sample density evolve to a target distribution optimally, thus
endowing the property of fast uncertainty adaption. Finally, when one aims to perform specific tasks
such as Bayesian classification with a task network, these samples are used to encode uncertainty into
modeling. To this end, we further develop an efficient learning algorithm to optimize the task network
based on variational inference. Extensive experiments are conducted to test the advantages of the
proposed meta-sampling framework, ranging from synthetic-distribution to posterior-distribution
adaption and to k-shot learning in Bayesian neural networks and reinforcement learning. Our results
demonstrate a better performance of the proposed model compared to related methods.

2 NEURAL INVERSE-AUTOREGRESSIVE BAYESIAN META SAMPLING

Our model combines ideas from Bayesian sampling, Wasserstein gradient flows and inverse-
autoregressive flows. A detailed review of these techniques is provided in Section A of the Appendix.

2.1 THE BASIC SETUP AND OVERALL IDEA

Meta Sampler

task

noise meta sample

Sample Adapter

task

task-specific
samples

Figure 1: Overall idea of the proposed meta-sampling frame-
work. The task is denoted with τ . The two components and
specific inputs will be described in details.

In meta sampling, one is given a set
of related distributions, e.g., posterior
distributions of the weights of a set
of Bayesian neural networks (BNNs),
each of which is used for classifica-
tion on a different but related dataset.
With our notation, each of the network
and the related dataset is called a task,
which is denoted as τ . Meta sampling aims to learn a meta sampler based on a set of training tasks so
that samples from the meta sampler can be fast adapted to samples for an unseen new task.

For each task, the dataset Dτ is divided into two sets Dtr
τ , {Xtr

τ , y
tr
τ } and Dval

τ , {Xval
τ , yvalτ }.

Our model builds on the MAML framework Finn et al. (2017), consisting of meta initialization and
task adaptation. The difference is that instead of adapting parameters as in MAML, we adapt the
distribution of parameters in terms of samples. Following Grant et al. (2018), the probabilistic view

2

Published as a conference paper at ICLR 2020

of our model can be formulated as a hierarchical Bayes model in equation 1, where W0 denotes
the meta initialization of network parameters, Wτ denotes the network parameters for task τ , and
adapting from P (W0 |Dtr

T) to P (Wτ |Dtr
τ) for a specific task τ is denoted as P (Wτ |Dtr

τ ,W0):

P (yvalT |Xval
T , Dtr

T) = E
W0∼P (W0 |DtrT)

∏
τ∈T

∫
P (yvalτ |Wτ , X

val
τ)P (Wτ |Dtr

τ ,W0)dWτ . (1)

Our overall idea to solve the problem is to mimic a hierarchical-sampling procedure but in a much
more efficient way. Specifically, we propose to decompose meta sampling into two components: a
meta sampler and a sample adapter. The meta sampler is responsible for generating meta samples that
characterize common statistics of different tasks, i.e., approximating P (W0 |Dtr

T) on all the training
tasks T with meta samples; The sample adapter is designed for fast adaptation of meta samples to
task-specific target distributions, i.e., adapt the distribution from P (W0 |Dtr

T) to P (Wτ |Dtr
τ) in

terms of samples for a task τ . The meta sampler is parameterized as a conditional generator, and
aggregates all local losses of different tasks to form a final loss for optimization based on optimal-
transport theory. Our method allows gradients to be directly backpropagated for meta-sampler updates.
The overall idea is illustrated in Figure 1.

Comparisons with related works We distinguish our model with two mostly related works: the
meta NNSGHMC (Gong et al., 2019) and the probabilistic MAML (PMAML) (Finn et al., 2018).
The main differences lie in two aspects: meta representation and model architecture. In terms
of meta-model representation, our model adopts data/parameter samples, instead of determinstic
parameters, as meta representation, and thus can be considered as a sample-to-sample adaption. Meta
NNSGHMC uses samples on different tasks, there is no concept of meta samples. Finally, PMAML
fully relies on variational inference whose representation power could be restricted. In terms of model
architecture, our model adopts the state-of-the-art autoregressive architectures, which can generate
high-quality meta samples. Furthermore, our model adopts a simpler way to define the objective
function, which allows gradients to directly flow back for meta-sampler optimization. It is worth
noting that our framework reduces to MAML when only one meta sample is considered for sample
adaption. Since our methods aim for Bayesian sampling, it is more similar to meta NNSGHMC
(Gong et al., 2019); whereas MAML aims for point estimation of a model. Finally, we note that
the recently proposed neural process (Garnelo et al., 2018) might also be used for meta-learning
“few-shot function regression” as stated in the original paper. However, to our knowledge, no specific
work has been done for this purpose.

2.2 THE BAYESIAN META SAMPLER

G

!"

#" G

!$

#$ G

!%

#%

Γ Γ Γ

One meta sample
0 = [#", #$, #%]

Task network 5(⋅;9)

NIAF

Figure 2: Roll-out architecture of the proposed NIAF as a
meta sampler, consisting of a generator G and an autore-
gressive conditional model T (·;ψψψ). The meta samples are
then fed to a task network C(·;W) to encode uncertainty
into specific tasks such as classification. Please see detailed
descriptions in the text.

This section aims to design a meta
sampler for efficiently generating
meta samples. One idea is to use a
nonparametric model to generate meta
samples such as standard stochas-
tic gradient MCMC (SG-MCMC)
(Welling & Teh, 2011; Ma et al., 2015)
and the Stein variational gradient de-
scent (SVGD) (Liu & Wang, 2016a),
where no parameters are consider in
the model. However, methods under
this setting are typically slow, and the
generated samples are usually highly
correlated. Most importantly, it would
be hard to design nonparametric sam-
plers that can share information be-
tween different tasks. As a result,
we propose to learn the meta sampler
with a parametric model, which is also
denoted as a generator.

3

Published as a conference paper at ICLR 2020

2.2.1 LEARNING PARAMETERIZED META SAMPLERS WITH NIAFS

There are two popular options to parameterize the meta sampler: with an explicit generator or with an
implicit generator. An explicit generator parameterizes the output (i.e., meta samples) as samples from
an explicit distribution with a known density form such as Gaussian, thus limiting the representation
power. In the following, we propose to adopt an implicit generator for the meta sampler based
on neural inverse-autoregressive flows (NIAF), an inverse extension of the recently proposed NAF
(Huang et al., 2018) used for density estimation. As will be seen, NIAF can incorporate task-specific
information into an implicit generator and generates samples in an autoregressive manner efficiently.
Finally, meta samples are used in a task network to encode uncertainty for specific tasks such as
Bayesian classification. The architecture of the meta sampler is illustrated in Figure 2. Note the idea
of using NIAF to generate network parameter is similar to the hypernetwork (Ha et al., 2016; Krueger
et al., 2017). As an extention, Pradier et al. (2018) perform inference on a lower dimensional latent
space. Using hypernetworks to model posterior distributions have also been studied in (Pawlowski
et al., 2017; Sheikh et al., 2017).

Neural inverse-autoregressive flows Directly adopting the NAF for sample generation is inap-
propriate as it was originally designed for density evaluation. To this end, we propose the NIAF
for effective meta-sample generation. Specifically, let zk denote the k-th element of a sample z to
be generated; z̃ denotes a sample from last round; Γ denotes the task-specific information. In our
case, we set Γ , (z̃,∇z̃ log p(z̃)) with p(·) denoting the target distribution (with possible hidden
parameters). NIAF generates the sample z = (z1, · · · , zk, · · ·) via an autoregressive manner, as:

zk = G(εk,Γ;φφφ = T (ε1:k−1,Γ;ψψψ)) , (2)

where {εk} are noise samples; G(·, ·;φφφ) is an invertible function (generator) parameterized by φφφ and
implemented as a DNN; and T is an autoregressive conditioner model parameterized byψψψ to generate
the parameters of the generator G at each step k, which is itself implemented as a deep sigmoidal
flow or a deep dense sigmoidal flow as in (Huang et al., 2018). According to Huang et al. (2018),
using strictly positive weights and strictly monotonic activation functions for G is sufficient for the
entire network to be strictly monotonic, thus invertible.

Remark 1 The original NAFs are not designed for drawing samples, as one needs the inverse
function G−1, which is not analytically solvable when G is implemented as a neural network.
Although it is stated in (Huang et al., 2018) that G−1 can be approximated numerically, one needs
repeated approximations, making it computationally prohibited. Our proposed NIAF is designed
specifically for sample generation by directly transforming the noise with a flow-based network G.

The task network In addition to the NIAF, a task network might be necessary for processing
specific learning tasks. In particular, if one is only interested in generating samples from some target
distribution, a task network is not necessary as the meta samples will be used to adapt to task-specific
samples. However, if one wants to do classification with uncertainty, the task network should be
defined as a classification network such as an MLP or CNN. In this case, denoting the weights of the
task network as W, we consider the task network as a Bayesian neural network, and propose two
ways of parameterization to encode uncertainty of meta samples into the task network:

• Sample parameterization: A sample of the weights of the task network is directly rep-
resented by a meta sample from our meta sampler, i.e., W = (z1, z2, · · · , zp) with p the
parameter dimensionality.
• Multiplicative parameterization: Adopting the idea of multiplicative normalizing flows

(Louizos & Welling, 2017a), we define an inference network for the weights as the multipli-
cation of z and a Gaussian variational distribution for W, i.e., the variational distribution
is defined as the following semi-implicit distribution to approximate the true posterior
distribution for W:

z = NIAF({εk},Γ), q(W | z) =
∏
i

∏
j

N (Wij ; ziµij , σ
2
ij) . (3)

Here and in the following, we consider the task network parameterized as a one-layer MLP
for notation simplicity, although our method applies to other network structures; and we
have used NIAF({εk},Γ) to denote the output of meta samples from the NIAF.

4

Published as a conference paper at ICLR 2020

Comparing the two parameterizations, sample parameterization directly generates weights of the
task network from the meta sampler, thus is more flexible in uncertainty modeling. However, when
the task network grows larger to deal with more complex data, this way of parameterization quickly
becomes unstable or even intractable due to the high dimentionality of meta samples. Multiplicative
parameterization overcomes this issue by associating each element of a meta sample with one
node of the task network, reducing the meta-sample dimensionality from O(Nin ×Nout) to O(Nin)
with Nin and Nout being the input and output sizes of the task network. As a result, we adopt the
multiplicative parameterization when dealing with high dimensional problems in our experiments.
Efficient inference for these two cases will be described in Section 2.4. Note a recent work on NAF
inference proposes to first sample from a mean-field approximating distribution, which are then
transformed by an NAF to a more expressive distribution (Webb et al., 2019). However, the approach
is hard to scale to very high dimensional problems, e.g., posterior distributions of network parameters.

2.3 THE SAMPLE ADAPTER

The output of the meta sampler contains shared (meta) information of all the tasks. Task-specific
samples are expected to be adapted fast from these meta samples. This procedure is called sample
adaption. Since there are potentially a large number of tasks, learning task-wise parametric models for
sample adaption is impractical. Instead of using standard nonparametric samplers such as SG-MCMC
or SVGD, we propose a general Bayesian sampling framework based on optimal-transport theory
(Villani, 2008) for new task-sample adaption, where back-propagation can be directly applied.

A general Bayesian sampling framework based on optimal transport Let a task-specific target
distribution be pτ (z), indexed by τ . A standard way is to adapt the samples based on a Markov
chain whose stationary distribution equals pτ , e.g., via SG-MCMC. However, Markov-chain-based
methods might not be efficient enough in practice due to the potentially highly-correlated samples
(Chen et al., 2018b). Furthermore, it is not obvious how to apply backpropagation (BP) in most of
sampling algorithms. To deal with these problems, we follow Chen et al. (2018b) and view Bayesian
sampling from the Wasserstein-gradient-flow perspective (discussed in Section A.2), i.e., instead of
evolving samples, we explicitly evolve the underlying sample density functions. We will see that
such a solution allows us to train the proposed meta sampler efficiently via standard BP.

Considering our meta-learning setting. Since we aim to adapt meta samples to new tasks, it is
reasonable to define the adaptation via task-wise WGFs, i.e., for each task, there is a WGF with
a specific functional energy and the corresponding first variation, denoted respectively as Eτ and
Fτ , δEτ

δρ with the task index τ . Here ρ denotes the underlying density of the samples. Consequently,
ρ will evolve with a variant of the PDE by replacing E with Eτ in equation 9 for each task. To solve
the corresponding PDE, we prove Theorem 1 based on a discrete approximation of ρ with the evolved
meta samples, which is termed optimal-transport Bayesian sampling (OT-Bayesian sampling).

Theorem 1 (Optimal-Transport Bayesian Sampling) Let ρt at time t be approximated by parti-
cles, i.e., ρt(z) ≈ 1

M

∑M
i=1 δz(i)

t
(z), where {z(i)t } at time t = 0 are a set of meta samples from the

meta generator∗; the delta-function δa(b) = 1 if a = b and 0 otherwise. Then sample adaption for
task τ can be described with the following differential equations:

d z
(i)
t = ∇zFτ (z

(i)
t)dt, for ∀i . (4)

Based on Theorem 1, particle updates for sampling can be obtained by solving equation 4 numerically,
e.g., via the Euler scheme, as

z
(i)
k+1 = z

(i)
k +h∇zFτ (z

(i)
k) , (5)

where h is the stepsize. Here with a little abuse of notation but for conciseness, we use z
(i)
k to denote

the numerical solution of z(i)t at time t = hk with k being the iteration. Theorem 1 and equation 5
indicate that the derivative of Eτ w.r.t. z(i)k can be considered as ∂Eτ

∂ z
(i)
k

= ∇
z
(i)
k

Fτ (z
(i)
k). This is a

useful result to derive a learning algorithm for the meta sampler described in Section 2.4.

∗We use the bold letter z(i)t (or z(i)k) to denote the i-th meta sample evolved with equation 4 at time t (or
equation 5 at iteration k). This should be distinguished from the normal unbold letter zk defined in Section 2.2.1,
which denotes the k-th element of z.

5

Published as a conference paper at ICLR 2020

Energy functional design Choosing an appropriate energy function Eτ is important for efficient
sample adaptation. To achieve this, the following conditions should be satisfied: i) Eτ (ρ) should be
convex w.r.t.ρ; ii) The first variation Fτ could be calculated conveniently. A general and convenient
functional family is the f -divergence, which is defined, with our notation and a convex function
f : R → R such that f(1) = 0, as: Efτ , Df (ρ‖pτ) =

∫
pτ (z)f

(
ρ(z)
pτ (z)

)
d z. The f -divergence

is a general family of divergence metric. With different functions f , it corresponds to different
divergences including the popular KL divergence, inverse-KL divergences, and the Jensen-Shannon
divergence. For more details, please refer to (Nowozin et al., 2016). A nice property of f -divergence
is that its first variation endows a convenient form as stated in Proposition 2.
Proposition 2 Let r(z) , ρ(z)

pτ (z)
. The first variation of the f -divergence endows the following form:

F fτ ,
δEfτ
δρ

(ρ) = f ′(r) .

In our experiments, we focus on the KL-divergence, which corresponds to f(r) = r log r. In this
case, ∇zF

f
τ (z) = ∇z log pτ (z) − ∇z log ρ(z). Since the density ρ(z) required in evaluating r is

not readily available due to its implicit distribution, we follow Chen et al. (2018b) and use the meta
samples {z(i)k } at the k-th step for approximation, resulting in

∇zF
f
τ (z) = ∇z log pτ (z)−

M∑
i=1

∇
z
(i)
k

κ(z, z
(i)
k)/

∑
j

κ(z
(i)
k , z

(j)
k)−

M∑
i=1

∇
z
(i)
k

κ(z, z
(i)
k)/

∑
j=1

κ(z, z
(j)
k) (6)

where κ(·, ·) is a kernel function. The number of adaptation steps k should be set based on problems.
For tasks that vary significantly, a larger k should be chosen to ensure the quality of adapted samples.
To further improve the accuracy, inspired by Chen et al. (2018b), we combine equation 6 with the
first variation of SVGD, resulting in the following form at iteration k:

∇zFτ (z) ,
1

M

M∑
i=1

[
∇

z
(i)
k

log pτ (z
(i)
k)κ(z, z

(i)
k) +∇

z
(i)
k

κ(z, z
(i)
k)
]

+ λ∇zF
f
τ (z) , (7)

where λ ≥ 0 is a hyperparameter to balance the two terms.

2.4 MODEL TRAINING AND SAMPLE GENERATION

We first describe how to train the proposed model under the two kinds of parameterization of the task
network defined in Section 2.2.1.

Training in the sample-parameterization setting In this case, one only needs to optimize the
conditional model T (·;ψψψ) as all parameters of other networks are directly generated. Specifically,
because the energy functionals for each task τ are designed so that the minima correspond to the
target distributions, the objective thus can be defined over the whole task distribution p(τ) as:

minL , Eτ∼p(τ) [Eτ (ρ)] .

For notation simplicity, we will not distinguish among the adapted samples (i.e., z(i)k) for different
tasks. Since the only parameter is ψψψ in the autoregressive conditioner model T (see Figure 2, and
note the parameters φφφ and W for the meta generator and task network do not need to be learned as
they are the outputs of T and G, respectively), its gradient can be directly calculated using chain rule:

∂L
∂ψψψ

= Eτ∼p(τ)

∑
i

(
∂ z

(i)
k

∂ψψψ

)T
∂Eτ

∂ z
(i)
k

 (∗)
= Eτ∼p(τ)

∑
i

(
∂ z

(i)
k

∂ψψψ

)T
∇

z
(i)
k

Fτ (z
(i)
k)

 , (8)

where “
(∗)
=” follows by the results from Section 2.3 and ∇

z
(i)
k

Fτ (z
(i)
k) is readily calculated with

equation 7; the term ∂ z
(i)
k

∂ψψψ can be calculated by standard BP over the meta-sampler network (NIAF).

Training in the multiplicative-parameterization setting In this case, two sets of parameters are
to be learned, ψψψ and W. For ψψψ, one can optimize ψψψ by adopting the same update equation as in the
sample-parameterization setting. For W, we follow Louizos & Welling (2017a) and adopt variational

6

Published as a conference paper at ICLR 2020

inference. Specifically, we first augment the task network with an auxiliary network with a conditional
likelihood rθ(z |W) ,

∏
kN (zk|µ̃k, σ̃2

k), parameterized by θ , {µ̃k, σ̃k}. Based on Ranganath
et al. (2016); Louizos & Welling (2017a); Touati et al. (2019), with the inference network defined in
(3), and writing the implicit distribution of z as q̃ψψψ(z) and the Gaussian prior distribution of W as
p(W), we arrive at the following ELBO:

L(θ,φφφ,ψψψ) , Eqφφφ(z,W) [log p(y|x,W, z) + log p(W) + log rθ(z |W)− log qφφφ(W | z)− log q̃ψψψ(z)]

Different from Louizos & Welling (2017a), we only update (θ,φφφ) by optimizing the above ELBO;
while leave the update of ψψψ with the gradient calculated in equation 8, which reflects gradients of
samples from the NIAF. Note also that in the meta learning setting, the task network needs to be
adapted for new tasks. This can be done by standard MAML with the above ELBO as the new-task
objective. The meta training and testing algorithms are illustrated in the Appendix B. A similar ideas
of multiplicative parametrization was proposed recently in (Kristiadi & Fischer, 2019), which used a
compound density network to quantify the predictive uncertainty.

New-task sample generation After training, samples for a new task can be directly generated by
feeding the task information Γ and some noise to the meta sampler depicted in Figure 1. Typically,
one needs to run a few numbers of sample-adaption steps to generate good samples for new tasks.
Notably, the number of sample-adaption steps required to obtain good accuracy will be shown much
less than simply starting a sampler from scratch in the experiments.

3 EXPERIMENTS

We conduct a series of experiments to evaluate the efficiency and effectiveness of our model, and
compare it with related Bayesian sampling algorithms such as SGLD, SVGD and SGHMC. The main
compared algorithms for meta learning include the PMAML (Finn et al., 2018), Amortized Bayesian
Meta-Learning (ABML) (Ravi & Beatson, 2019), and NNSGHMC (Gong et al., 2019), a recently
proposed meta SG-MCMC algorithm. Inspired by Finn et al. (2017), we denote our algorithm
distribution agnostic meta sampling (DAMS). Implementation details are given in Appendix E. Our
code is made available at: https://github.com/zheshiyige/meta-sampling.git.

3.1 EVALUATIONS OF OT-BAYESIAN SAMPLING Table 1: Accuracy of BLR with different
samplers.

Australian German Heart

SVGD 88.7 74.5 78.7
SGLD 88.4 75.2 81.5
SGHMC 88.7 77.0 88.6
DAMS with MLP 85.5 75.0 87.0
DAMS with IAF 87.0 75.5 88.9
DAMS with NIAF 89.1 77.5 90.7

We first demonstrate our proposed NIAF-based sampler is
able to generate more effective samples compared to the
popular Bayesian algorithms such as SVGD, SGLD and
SGHMC, in a non-meta-sampling setting. To this end, we
apply standard Bayesian Logistic Regression (BLR) on
several real datasets from the UCI repository: Australian
(15 features, 690 samples), German (25 features, 1000
samples), Heart (14 features, 270 samples). We perform
posterior sampling for BLR using our proposed sampler, as well as SVGD, SGLD, SGHMC. For a
more detailed investigation of different components in our model, we also test the generator with
different architectures, including generators with MLP (DAMS with MLP), IAF (DAMS with IAF),
and NIAF (DAMS with NIAF). We follow Liu & Wang (2016a) and apply Gaussian priors for the
parameters p0(w|α) = N (w;0, α−1 I) with p0(α) = Gamma(α, 1, 0.01). A random selection of
80% data are used for training and the remaining for testing. The testing accuracies are shown in
Table 1. It is observed that DAMS with NIAF achieves the best performance in terms of accuracy.
The results also indicate the effectiveness and expressiveness of the proposed NIAF architecture in
the OT-Bayesian sampling framework.

3.2 EVALUATIONS OF META-SAMPLE ADAPTABILITY

In this set of experiments, we aim to demonstrate the excellent meta-sample adaptability of our
meta-sampling framework in different tasks. An additional synthetic experiment on meta posterior
adaption is presented in Section D.3 of the Appendix.

Gaussian mixture model We first conduct experiments to meta-sample several challenging Gaus-
sian mixture distributions. We consider mixtures of 4, 6 and 20 Gaussians. Detailed distributional
forms are given in the Appendix. To setup a meta sampling scenario, we use 2, 3 and 14 Gaussian
components with different means and covariance, respectively, for meta-training of the meta sampler.

7

https://github.com/zheshiyige/meta-sampling.git

Published as a conference paper at ICLR 2020

Figure 3: Convergence of meta-sampling different Gaussian mixture models. SGLD-m and SVGD-m
are SGLD and SVGD with the same initialization as DAMS. Other samplers are initialized randomly.

After training, meta samples are adapted to samples from a target Gaussian mixture by following
the new-task-sample-generation procedure described in Section 2.4. We plot the convergence of
1000 meta samples to a target distribution versus a number of particle (sample) updates (iterations),
measured with the maximum mean discrepancy (MMD) evaluated by samples. For a fair comparison,
we use the same number of samples (particles) to evaluation the MMD. The results are shown in
Figure 3. It is clear that our proposed meta sampler DAMS converges much faster and better than
other sampling algorithms, especially on the most complicated mixture of 20-Gaussians. The reason
for the fast convergence (adaption) is partially due to the learned meta sampler, which provides good
initialization for sample adaption. This is further verified by inspecting how samples in the adaption
process evolve, which are plotted in Figure 10, 11 and 12 in the Appendix.

Meta Sampling for Bayesian Neural Networks Finally, we test the proposed DAMS for meta
sampling of BNNs on MNIST and CIFAR-10 (Krizhevsky, 2009). We follow the experimental setting
in (Gong et al., 2019), and split the MNIST and CIFAR10 dataset into two parts for meta training and
testing (sample adaption), respectively. As we focus on fast adaptation, we show the accuracy within
200 iterations. To deal with the high-dimensionality issue, we adopt the method of multiplicative
parameterization proposed in Section 2.2.1.

We randomly pick 5 classes for training, and the remaining classes for testing. A BNN is trained
only on the training data for meta sample (weights of the BNN) generation, with each sample
corresponding to a meta BNN. In testing, the meta BNNs are adapted based on the testing data. For
the MNIST dataset, we parameterize a BNN as a CNN with two convolutional layers followed by a
fully connected layer with 100 hidden units. The kernel and filter sizes of the two conv layers are 3
and 16, respectively. A similar architecture is applied for the CIFAR10 dataset, but with 16 and 50
filters whose kernel sizes are 7 and 5 for the two convolutional layers, respectively. The hidden units
of the fully connected layer is 300.

a) Adaptation efficiency: For this purpose, we compare our model with NNSGHMC (Gong et al.,
2019), as well as with a non-meta-learning method to train from scratch. To demonstrate the
effectiveness of our NIAF structure for adaptive posterior sampling, we also compare it with the
simple conditional version of MNF (Louizos & Welling, 2017a). Figure 4 plots the learning curves
of testing accuracy versus the number of iterations. It is clearly seen that our DAMS adapts the
fastest to new tasks, and is able to achieve the highest classification accuracy on all cases due to
the effectiveness of uncertainty adaption. To further demonstrate the superiority of DAMS over
NNSGHMC, we list the test accuracy at different adaptation steps in Table 2. The results clearly
show faster adaption and higher accuracy of the proposed DAMS compared to NNSGHMC. It is also
interesting to see that MNF with adaptation, performs better than NNSGHMC; while our method
performs better than both, demonstrating the effectiveness of the proposed NIAF architecture.

b) Sample efficiency: To demonstrate sample efficiency of our framework, we compare it with both
NNSGHMC and the standard Bayesian learning of DNNs with SGHMC. To this end, we use the
first five classes of image on CIFAR10 as training data to learn the meta sampler and we randomly
select 5%, 20%, 30% of the training data in the remaining image classes of the test task to adapt the
meta sampler. Figure 5 shows the corresponding test accuracies for different settings. It is observed

8

Published as a conference paper at ICLR 2020

Table 2: Accuracy (%) for adaptation efficiency.

Approach CIFAR MNIST

20 steps NNSGHMC 23.8 28.6
20 steps MNF 42.3 59.4
20 steps DAMS-NIAF 42.7 60.7
50 steps NNSGHMC 47.2 63.6
50 steps MNF 59.8 75.5
50 steps DAMS-NIAF 61.9 78.5
100 steps NNSGHMC 58.1 80.1
100 steps MNF 67.2 85.8
100 steps DAMS-NIAF 69.5 88.0
200 steps NNSGHMC 71.7 88.6
200 steps MNF 72.7 90.8
200 steps DAMS-NIAF 75.2 92.6

Table 3: Uncertainty adaptation evaluation of
Bayesian meta sampling for BNNs in terms of
negative log-likelihood.

Approach accuracy NLL/100

20 steps SGHMC 32.3 79.22
20 steps DAMS-NIAF 42.7 68.98
50 steps SGHMC 39.2 75.34
50 steps DAMS-NIAF 61.9 57.82
100 steps SGHMC 46.5 67.95
100 steps DAMS-NIAF 69.5 46.49
200 steps SGHMC 59.1 51.79
200 steps DAMS-NIAF 75.2 36.53

Figure 4: Adaptation efficiency in terms of testing accuracy on CIFAR10 (left) and MNIST (right).

Figure 5: Sample efficiency evaluation with 5%, 20%, 30% of training data on CIFAR10. (see text).

0.0 0.5 1.0 1.5 2.0 2.5
Entropy

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

DAMS
SGHMC
NNSGHMC

Figure 6: Testing accuracy (left, CIFAR10), uncertainty adaptation evaluation in terms of negative
log-likelihood (middle, CIFAR10) and entropy of out-of-distribution prediction (right) on notMNIST.

that ours, the adaptation-based methods, obtain higher accuracies than the non-adaptive method of
SGHMC. Furthermore, our method achieves the best sample efficiency among others.

c) Uncertainty evaluation: Finally, we ablate study the uncertainty estimation of our, the standard
SGHMC and NNSGHMC models in terms of negative log-likelihood, also show the corresponding test
accuracy. The results on the CIFAR10 dataset are shown in Figure 6 and Table 3. We follow Louizos
& Welling (2017a) to evaluate uncertainty via entropy of out-of-sample predictive distributions
(Figure 6 (right)). We observe that uncertainty estimates with DAMS are better than others, since the
probability of low entropy prediction is much lower than others. Details are given in Section D.4 of
the Appendix.

9

Published as a conference paper at ICLR 2020

Table 4: Testing accuracy of Mini-
ImageNet Few Shot Classification.
“N/A” means results not reported.

Mini-Imagenet 5-way Few Shot Classification

Approach Accuracy
1-shot 5-shot

MAML 48.70± 1.84 % 63.11± 0.92 %
PMAML 50.13 ± 1.86 % N/A
ABML 45.0 ± 0.60 % N/A

MAML-SGHMC 50.18 ± 0.50 % 65.94 ± 0.48 %
MAML-SGLD 50.14 ± 0.51 % 65.12 ± 0.47 %
DAMS-SGLD 50.86 ± 0.48 % 66.23 ± 0.45 %
DAMS-NIAF 51.43 ± 0.49 % 66.84 ± 0.45 %

Figure 7: Learning curves of 5-way 1-shot classification.

3.3 META SAMPLING FOR BAYESIAN FEW-SHOT LEARNING

DAMS for few-shot image classification We apply our method on two popular few-shot image-
classification tasks on the Mini-Imagenet dataset, consisting of 64, 16, and 20 classes for training,
validation and testing, respectively. We compare our method with MAML and its variants with
uncertainty modeling, including the Amortized Bayesian Meta-Learning (ABML) (Ravi & Beatson,
2019) and Probabilistic MAML (PMAML) (Finn et al., 2018). To get a better understanding of
each component of our framework, we also conduct an ablation study with three variants of our
model: MAML-SGLD, MAML-SGHMC and DAMS-SGLD. MAML-SGLD and MAML-SGHMC
correspond to the variants where SGLD and SGHMC are used to sample the parameters of the
classifier, respectively; and DAMS-SGLD replaces the WGF component of DAMS-NIAF with SGLD.
Follow the setting in (Finn et al., 2017; 2018), the network architecture includes a stacked 4-layer
convolutional feature extractor, followed by a meta classifier with one single fully-connected layer
using the multiplicative parameterization. Testing results are presented in Table 4. With our method,
we observe significant improvement of the classification accuracy at an early stage compared with
MAML. The learning curves are plotted in Figure 7, further demonstrating the superiority of our
method, which can provide an elegant initialization for the classification network. Finally, from
the ablation study, the results suggest both the NIAF and the WGF components contribute to the
performance gain obtained by our method.

Figure 8: Locomotion comparison results for goal velocity task
(left) and goal direction task (right).

Meta sampling for reinforce-
ment learning We next adapt
our method for meta reinforce-
ment learning. We test and com-
pare the models on the same Mu-
JoCo continuous control tasks
(Todorov et al., 2012) as used in
(Finn et al., 2017), including the
goal velocity task and goal direc-
tion task for cheetah robots. For
a fair comparison, we leverage
the TRPO-RL (Schulman et al.,
2015) framework for meta updat-
ing following MAML method. Specifically, we implement the policy network with two hidden layers
with ReLu activation followed by a linear layer to produce the mean value of the Gaussian policy.
The first hidden layer is a fully connected layer, and we adopt the multiplicative parameterization for
the second hidden layer. As shown in Figure 8, our method obtains higher rewards compared with
MAML on both tasks, indicating the importance of effective uncertainty adaptation in RL.

4 CONCLUSION

We present a Bayesian meta-sampling framework, called DAMS, consisting of a meta sampler and
a sample adapter for effective uncertainty adaption. Our model is based on the recently proposed
neural autoregressive flows and related theory from optimal transport, enabling a simple yet effective
training procedure. To make the proposed model scalable, an efficient uncertainty parameterization is
proposed for the task network, which is trained by variational inference. DAMS is general and can be
applied to different scenarios with an ability for fast uncertainty adaptation. Experiments on a series
of tasks demonstrate the advantages of the proposed framework over other methods including the
recently proposed meta SG-MCMC, in terms of both sample efficiency and fast uncertainty adaption.

10

Published as a conference paper at ICLR 2020

REFERENCES

L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics ETH Zürich, 2005.

Tengyu Ma Ananya Kumar, Percy Liang. Verified uncertainty calibration. In Advances in Neural
Information Processing Systems, 2019.

Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, pp. 3981–3989. 2016.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In International
Conference on Learning Representations, 2019.

Yaroslav Bulatov. Not mnist dataset. 2011. URL http://yaroslavvb.blogspot.com/
2011/09/notmnist-dataset.html.

C. Chen, C. Li, L. Chen, W. Wang, Y. Pu, and L. Carin. Continuous-time flows for deep generative
models. In International Conference on Machine Learning, 2018a.

C. Chen, R. Zhang, W. Wang, B. Li, and L. Chen. A unified particle-optimization framework for
scalable Bayesian sampling. In Conference on Uncertainty in Artificial Intelligence, 2018b.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational lossy autoencoder. In International Conference on
Learning Representations, 2017.

Xinshi Chen, Hanjun Dai, and Le Song. Meta Particle Flow for Sequential Bayesian Inference. arXiv
e-prints, art. arXiv:1902.00640, Feb 2019.

Kristy Choi, Mike Wu, Noah Goodman, and Stefano Ermon. Meta-amortized variational inference
and learning. CoRR, abs/1902.01950, 2019. URL http://arxiv.org/abs/1902.01950.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

Y. Feng, D. Wang, and Q. Liu. Learning to draw samples with amortized stein variational gradient
descent. In Conference on Uncertainty in Artificial Intelligence, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems. 2018.

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In
International Conference on Machine Learning, 2019.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional neural processes.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1704–1713,
2018.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman and Hall/CRC, 2nd ed. edition, 2004.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, 2015.

Wenbo Gong, Yingzhen Li, and Josë Miguel Hernändez-Lobato. Meta-learning for stochastic gradient
mcmc. In International Conference on Learning Representations, 2019.

11

http://yaroslavvb.blogspot.com/2011/09/ notmnist-dataset.html.
http://yaroslavvb.blogspot.com/2011/09/ notmnist-dataset.html.
http://arxiv.org/abs/1902.01950

Published as a conference paper at ICLR 2020

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E. Turner.
Meta-learning probabilistic inference for prediction. In International Conference on Learning
Representations, 2019.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. In International Conference on Learning Representa-
tions, 2018.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In https://arxiv.org/abs/1609.09106, 2016.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, 2018.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Provable guarantees for gradient-based
meta-learning. In International Conference on Machine Learning, 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proving variational inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems, 2016.

Agustinus Kristiadi and Asja Fischer. Predictive uncertainty quantification with compound density
networks. In https://arxiv.org/abs/1902.01080, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, 2009.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. In https://arxiv.org/abs/1710.04759, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, 2017.

Y. Li, J. Hernández-Lobato, and R. E. Turner. Stochastic expectation propagation. In Advances in
Neural Information Processing Systems, 2015.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, and Jun Zhu. Understand and accelerate
particle-based variational inference. In International Conference on Machine Learning, 2019a.

Chang Liu, Jingwei Zhuo, and Jun Zhu. Understanding MCMC dynamics as flows on the wasserstein
space. In International Conference on Machine Learning, 2019b.

Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. In Advances in Neural Information Processing Systems, 2016a.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In Advances in Neural Information Processing Systems, 2016b.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
International Conference on Machine Learning, pp. 2218–2227, 2017a.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural
networks. In International Conference on Machine Learning, 2017b.

Y. A. Ma, T. Chen, and E. Fox. A complete recipe for stochastic gradient MCMC. In Advances in
Neural Information Processing Systems, 2015.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Conference on Machine
Learning, 2017.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. 2018.

12

Published as a conference paper at ICLR 2020

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in Neural Information Processing Systems,
2016.

Pedro A. Ortega, Jane X. Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan Pascanu,
Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, Siddhant M. Jayakumar, Tom
McGrath, Kevin Miller, Mohammad Azar, Ian Osband, Neil Rabinowitz, Andras Gyorgy, Silvia
Chiappa, Simon Osindero, Yee Whye Teh, Hado van Hasselt, Nando de Freitas, Matthew Botvinick,
, and Shane Legg. Meta-learning of sequential strategies. Technical Report arXiv:1905.03030,
DeepMind, May 2019.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, 2017.

Nick Pawlowski, Andrew Brock, Matthew C.H. Lee, Martin Rajchl, and Ben Glocker. Implicit weight
uncertainty in neural networks. In https://arxiv.org/abs/1711.01297, 2017.

Melanie F. Pradier, Weiwei Pan, Jiayu Yao, Soumya Ghosh, and Finale Doshi-velez. Projected bnns:
Avoiding weight-space pathologies by learning latent representations of neural network weights.
In https://arxiv.org/pdf/1811.07006.pdf, 2018.

Rajesh Ranganath, Dustin Tran, and David M. Blei. Hierarchical variational models. In International
Conference on Machine Learning, 2016.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14 May
1987. URL http://www.idsia.ch/~juergen/diploma.html.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

Abdul-Saboor Sheikh, Kashif Rasul, Andreas Merentitis, and Urs Bergmann. Stochastic maximum
likelihood optimization via hypernetworks. In Advances in Neural Information Processing Systems
Workshop on Bayesian Deep Learning, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, and Pascal Vincent. Randomized
value functions via multiplicative normalizing flows. In Conference on Uncertainty in Artificial
Intelligence, 2019.

C. Villani. Optimal transport: old and new. Springer Science & Business Media, 2008.

Stefan Webb, Jonathan P. Chen, Martin Jankowiak, and Noah Goodman. Improving automated
variational inference with normalizing flows. In 6th ICML Workshop on Automated Machine
Learning, 2019.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
International Conference on Machine Learning, 2011.

Lilian Weng. Meta-learning: Learning to learn fast. Technical Report https://lilianweng.github.io/lil-
log/2018/11/30/meta-learning.html, 2018.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning. In
International Conference on Machine Learning, 2019.

13

http://www.idsia.ch/~juergen/diploma.html

Published as a conference paper at ICLR 2020

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems.
2018.

R. Zhang, C. Chen, C. Li, and L. Carin. Policy optimization as wasserstein gradient flows. In
International Conference on Machine Learning, 2018.

14

Published as a conference paper at ICLR 2020

A BACKGROUND

This section provides a review of background on Bayesian sampling, Wasserstein gradient flows and
autoregressive flows.

A.1 BAYESIAN SAMPLING

Bayesian sampling has been a long-standing tool in Bayesian modeling, with a wide range of
applications such as uncertainty modeling (Li et al., 2015), data generation (Feng et al., 2017;
Chen et al., 2018a) and reinforcement learning (Zhang et al., 2018). Traditional algorithms include
but are not limited to Metropolis–Hastings algorithm, importance sampling and Gibbs sampling
(Gelman et al., 2004). Modern machine learning and deep learning have been pushing forward the
development of large-scale Bayesian sampling. Popular algorithms in this line of research include the
family of stochastic gradient MCMC (SG-MCMC) (Welling & Teh, 2011; Ma et al., 2015) and the
Stein variational gradient descent (SVGD) (Liu & Wang, 2016a). Recently, a particle-optimization
sampling framework that unifies SG-MCMC and SVGD has also been proposed (Chen et al., 2018b),
followed by some recent developments (Liu et al., 2019b;a). Generally speaking, all these methods
target at sampling from some particular distributions such as the posterior distribution of the weights
of a Bayesian neural network (BNN).

On the other hand, meta learning is a recently developed concept that tries to learn some abstract
information from a set of different but related tasks. A natural question by considering these two is:
can we design meta sampling algorithms that learns to generate meta samples, which can be adapted
to samples of a new task-specific distribution quickly? This paper bridges this gap by proposing a
mathematically sound framework for Bayesian meta sampling.

A.2 OPTIMAL TRANSPORT AND WASSERSTEIN GRADIENT FLOWS

In optimal transport, a density function, ρt, evolves along time t to a target distribution optimally,
i.e., along the shortest path on the space of probability measures P(Ω), with Ω being a subset of Rd.
The optimality is measured in the sense that ρt moves along the geodesic of a Riemannian manifold
induced by a functional energy, E : P(Ω)→ R, under the 2-Wasserstein distance metric. Formally,
the trajectory of ρt is described by the following partial differential equation (PDE):

∂tρt = ∇z ·
(
ρt∇z(

δE

δρt
(ρt))

)
, ∇z · (ρt∇zF) , (9)

where∇z · f ,
∑
i
∂
∂ zi

f is the divergence operator; and F , δE
δρt

(ρt) is called the first variation of
E at ρt (functional derivative on a manifold in P(Ω)). To ensure ρt to converge to a target distribution
p such as the posterior distribution of the model parameters, one must design an appropriate E such
that p = argρ minE(ρ). A common choice is the popular KL-divergence, KL(ρ, p). We will consider
a more general setting in our framework presented later. Note the WGF framework equation 9 allows
to view Bayesian sampling from a density-optimization perspective. For example, recent works (Chen
et al., 2018b; Liu et al., 2019b;a) consider approximating ρt with samples and evolve the samples
according to equation 9. Parts of our model will follow this sampling setting.

A.3 AUTOREGRESSIVE FLOWS AND VARIANTS

Our model relies on the concept of autoregressive flows for meta-sampler design. We review some
key concepts here. More detailed comparisons are provided in the Appendix.

A normalizing flow defines an invertible transformation from one random variable ε to another z. A
flexible way to implement this is to define it via implicit distributions, meaning sample generation
is implemented as: εi ∼ q0(εi), zi = G(εi;φφφ), where i indexes elements of ε and z; G represents a
deep neural network (generator) parameterized by φφφ.

The autoregressive flow (AF) parameterizes a Gaussian conditional distribution for each zi, e.g.,
p(zi| z1:i−1) = N (zi|µi, exp(αi)), where µi = gµi(z1:i−1) and αi = gαi(z1:i−1) are outputs of
two neural networks gµi and gαi . The sample generation process is: zi = εi exp(αi) + µi, with
µi = gµi(z1:i−1), αi = gαi(z1:i−1) and εi ∼ N (0, 1). Instances of autoregressive flows include the

15

Published as a conference paper at ICLR 2020

Autoregressive Flow (AF) (Chen et al., 2017) and Masked Autoregressive Flow (MAF) (Papamakarios
et al., 2017). The inverse autoregressive flow (IAF) (Kingma et al., 2016) is an instance of normalizing
flow that uses MADE (Germain et al., 2015), whose samples are generated as: zi = εi exp(αi) + µi,
with µi = gµi(ε1:i−1), αi = gαi(ε1:i−1) and εi ∼ N (0, 1).

The neural autoregressive flow (NAF) (Huang et al., 2018) replaces the affine transformation used in
the above flows with a deep neural network (DNN), i.e., εt = f(zt,φφφ = T (z1:t−1)), where f is a
DNN transforming a complex sample distribution, p(z), to a simple latent representation q0(ε). In
NAF, q0 is considered as a simple prior, and f is an invertible function represented by a DNN, whose
weights are generated by T , an autoregressive conditional model. Let the induced distribution of ε by
f be pf (ε). f is learned by minimizing the KL-divergence between pf (ε) and q0(ε).

A.4 COMPARISONS BETWEEN DIFFERENT FLOWS

Note the µi and αi are computed differently for AF and IAF, i.e., previous variables z1:i−1 are
used for AF and previous random noise ε1:i−1 are used for IAF. AF can be used for calculating
the density p(z) of any sample z in one pass of the network. However, drawing samples requires
performing D sequential passes (D is the dimensionality of z). Thus if D is large, drawing samples
will be computationally prohibited. IAF, by contrast, can draw samples and estimate densities of
the generated samples with only one pass of the network. However, calculating the sample density
p(z) requires D passes to find the corresponding noise ε. The advantage of NAF is that the mapping
function f is much more expressive, and density evaluation is efficient. However, drawing samples is
much more computationally expensive. To adopt the NAF framework for sampling, we propose the
neural inverse-autoregressive flow (NIAF) in Section 2.2.1.

B DAMS WITH ELBO AS THE OBJECTIVE

Our training algorithm in the multiplicative-parameterization setting includes updating the flow
parameter and learning the task network with variational inference, which is described in Algorithm 1
and testing setting in Algorithm 2.

Algorithm 1 Meta training, MAML with ELBO.

Require: p(T): distribution over tasks;
Require: α, β step size hyperparameter;

randomly initialize θ,φφφ,ψψψ.
while not done do

Sample batch of tasks Ti ∼ p(T)
for all Ti do

Sample K datapoints Dτ for each task τ in Ti
Evaluate ∇(θ,φφφ)L(θ,φφφ,ψψψ) using ELBO and∇ψψψL(θ,φφφ,ψψψ) with Equation 8
Compute adapted parameters with gradient descent:
(θ′i,φφφ

′
i) = (θ,φφφ)− α∇(θ,φφφ)LTi(θ,φφφ,ψψψ)

ψψψ′i = ψψψ − α∇ψψψLTi(θ,φφφ,ψψψ)
Sample datapoints D′τ for each task τ in Ti for the meta-update

end for
Update (θ,φφφ,ψψψ) = (θ,φφφ,ψψψ)− β∇θ,φφφ,ψψψ

∑
Ti∼p(T) L(θ′i,φφφ

′
i,ψψψ
′
i)

end while

Algorithm 2 Meta testing, MAML with ELBO.

Require: Training data Dtrτ for task τ ;
Require: Meta learned initialization of θ,φφφ,ψψψ.

Evaluate∇(θ,φφφ)L(θ,φφφ,ψψψ) using ELBO and∇ψψψL(θ,φφφ,ψψψ) with Equation 8
Compute adapted parameters with gradient descent:
(θ′i,φφφ

′
i) = (θ,φφφ)− α∇(θ,φφφ)L(θ,φφφ,ψψψ)

ψψψ′i = ψψψ − α∇ψψψL(θ,φφφ,ψψψ)

16

Published as a conference paper at ICLR 2020

C PROOF OF THEOREM 1 AND PROPOSITION 2

Proof For each task τ , we first write out the corresponding WGF as

∂tρt = ∇z · (ρt∇zF) . (10)

Note the WGF is defined in the sense of distributions Ambrosio et al. (2005), meaning that for any
smooth real functions u(z) with compact support, equation 10 indicates∫ T

0

∫
Rd
∂tu(z, t)ρtdtd z =

∫ T

0

∫
Rd
∇zu(z) · (∇zFρt)dtd z ,

or equivilently,

d

dt

∫
ρtu(z)d z =

∫
∇zu(z) · ∇zFρtd z

⇒ d

dt
Eρt [u(z)] = Eρt [∇zu(z) · ∇zF] . (11)

Taking ρ(t) = 1
M

∑M
i=1 δ(z(i)

t)
(z), and for each particle letting u(z) = z, equation 11 then reduces

to the following differential equation for each particle:

d z
(i)
t

dt
= ∇

z
(i)
t
F (z

(i)
t) ,

which is the particle evolution equation we need to solve.

Proof [Proof of Proposition 2] First, we introduce the following result from Ambrosio et al. (2005)
[page 120]:

Lemma 3 Let F(ρ) ,
∫
f̃(ρ(x))dx, then the first variation of F w.r.t.ρ is

δF
δρ

(ρ) = f̃ ′(ρ) .

In the f-divergence case, this corresponds to f̃(ρ) = pτf(ρ
pτ

). Applying Lemma 3 and using the
chain rule, we have

δEfτ
δρ

(ρ) =

(
pτf(

ρ

pτ
)

)′
= pτ

d

dρ

(
ρ

pτ

)
f ′(

ρ

pτ
) = f ′(

ρ

pτ
) = f ′(r) ,

which completes the proof.

D EXTRA EXPERIMENTAL RESULTS

This section provides extra experimental results to demonstrate the effectiveness of our proposed
method.

D.1 SYNTHETIC DISTRIBUTIONS

Analytic forms of synthetic distributions are provided below.

Mog4:

p(z) =

4∑
i=1

N (z |µi,σ2)/4

17

Published as a conference paper at ICLR 2020

Figure 9: Densities of three Gaussian mixtures.

where z ∈ R2,µ1 = −µ2 = [3, 0],µ3 = −µ4 = [0, 3],σ = [1, 1].

Mog6:

p(z) =

6∑
i=1

N (z |µi,σ2)/6

where z ∈ R2,µi = [4 cos(iπ/3), 4 sin(iπ/3)],σ = [1, 1].

Mog20:

p(z) =

20∑
i=1

N (z |µi,σ2)/20

where z ∈ R2,µ = meshgrid(x, y), x = linspace(−6, 6, 2), y = linspace(−8, 8, 4),σ = [1, 1].

The distributions are plotted in Figure 9

D.2 EXTRA EXPERIMENTAL RESULTS ON GAUSSIAN MIXTURE MODELS

For the Gaussian mixture models, we provide extra experimental results showing how samples are
evolved in the adaptation process, as illustrated in Figure 10, 11 and 12.

D.3 META POSTERIOR ADAPTION

Figure 13: Meta sampling Bayesian regression for two test tasks (top
and bottom). Each row plots posteriors after meta training (left), meta
testing (middle, 0.8K (top) and 0.9K (bottom) iterations) and re-training
(right, 0.8K (top) and 0.9K (bottom) iterations).

We apply our DAMS for
fast adaptive sampling on
regression tasks. We fol-
low Huang et al. (2018)
and apply DAMS to sam-
ple the posterior distribu-
tion of the frequency pa-
rameter of a sine-wave
function, given only three
data points. The sine-
wave function is defined as
y(t) = sin(2πft), with
a uniform prior U([0, 2])
and a Gaussian likelihood
N (yi; yf (ti), 0.125).

We design a meta-sampling
setting to adapt the pos-
terior distributions, p(f |D)
on the training data, to that on new test data. Specifically, meta training data

18

Published as a conference paper at ICLR 2020

Figure 10: Comparison among different samplers on adapting to Mixture of 4-Gaussian. Top to
Bottom row: DAMS, SGLD-m, SVGD-m, SVGD, SGLD and NNSGHMC

19

Published as a conference paper at ICLR 2020

Figure 11: Comparison among different samplers on adapting to Mixture of 20-Gaussian. Top to
Bottom row: DAMS, SVGD, SGLD and NNSGHMC

(t, y) are {(0, 0), (2/5, 0), (4/5, 0)}. For the first setting, meta testing consists of
data {(0, 0), (3/5, 0), (6/5, 0)}. For the second setting, meta testing consists of data
{(0, 0), (4/5, 0), (8/5, 0)}. Meta training data corresponds to a posterior with two modes of
f ∈ {0.0, 5/4}. For the first setting, the test data corresponds to a posterior with three
modes f ∈ {0.0, 5/6, 5/3}. For the second setting, the test data corresponds to four modes
f ∈ {0.0, 5/8, 5/4, 15/8}. We compare our DAMS with the result of re-training from scratch
with the test data. Empirical distribution with samples and kernel density estimation are plotted in
Figure 13. The first setting takes about 3.4K iterations to find the three modes in the posterior with
re-training, while it takes about 0.8K iterations with meta adaptation. For the second setting, it takes
more than 3.6K iterations to find the four modes with training from scratch, while it is about 0.9K
iterations with meta adaptation. For both test tasks, the sampler with re-training miss at least one
mode compared with the meta sampler adaptation with the same number of iterations. We can see
that DAMS can adapt the training posterior to the test posterior much faster than re-training from
scratch due to effective uncertainty adaption, obtaining more than 3X speedups.

20

Published as a conference paper at ICLR 2020

Figure 12: Comparison among different samplers on adapting to Mixture of 6-Gaussian. Top to
Bottom row: DAMS, SVGD, SGLD and NNSGHMC

D.4 UNCERTAINTY EVALUATION VIA ENTROPY OF OUT-OF-SAMPLE PREDICTIVE
DISTRIBUTIONS

We show the predictive uncertainty of DAMS compared to SGHMC and NNSGHMC by exploring
the posterior of neural parameters, we estimate the uncertainty for out-of-distribution data samples
Lakshminarayanan et al. (2017). We train different algorithms on the MNIST dataset, and estimate the
entropy of the predictive distribution on the notMNIST dataset Bulatov (2011). We follow Louizos
& Welling (2017a) and use the empirical CDF of entropy to evaluate the uncertainty. Since the
probability of observing a high confidence prediction is low, curves that are nearer to the bottom right
of the figure estimates uncertainty better. The predictive distribution of the trained model is expected
to be uniform over the notMNIST digits as the samples from the dataset are from unseen classes. The
BNN is a CNN with 16 and 50 filters whose kernel sizes are 5 and 5 for the two convolutional layers,
respectively. The hidden units of the fully connected layer is 300. The uncertainty evaluation results
are shown in the right plot of Figure 6.

21

Published as a conference paper at ICLR 2020

E IMPLEMENTATION DETAILS

For all the experiments, we follow Liu & Wang (2016b) and use RBF kernel, whose the bandwidth is
calculated as h = med2/logn with med the median of the pairwise distance between all the samples.

E.1 SYNTHETIC DISTRIBUTIONS

The NIAF is fixed with two layers of deep sigmoidal flows (Huang et al., 2018). A small neural
network of 1 hidden layers with 16 sigmoid units is used. The model is trained with Adam (Kingma
& Ba, 2015) with a learning rate of 0.005. We use 1000 particles to approximate the distribution. We
set the weight λ in the WGF to be 1e-4. The meta sampler is trained for 1000 iterations. After that,
the meta sampler is adapted to the target distribution for 500 iterations. The models are trained in the
sample-parameterization setting.

E.2 BAYESIAN LOGISTIC REGRESSION

For all the three UCI datasets, the NIAF is fixed with two layers of deep sigmoidal flows Huang et al.
(2018). The model is trained with Adam Kingma & Ba (2015). We set the batch size to be 100,
learning rate to be 0.005. We use 100 particles to approximate the distribution. We set the weight λ
in the WGF to be 1e-4. The hidden layer of each MADE has 64 hidden unit. We use use small neural
network of 1 hidden layers with 16 sigmoid units. The accuracy is selected as the best results. The
models are trained in the sample-parameterization setting.

E.3 CIFAR AND MNIST

The NIAF is fixed with two layers of deep dense sigmoidal flow (Huang et al., 2018). The model is
trained with Adam (Kingma & Ba, 2015). We set the batch size to be 128, and the learning rate to be
0.002. We set the weight λ in the WGF to be 1e-4. The hidden layer of each MADE has 64 hidden
unit. We use use a small neural network of 1 hidden layers with 16 sigmoid units. For the auxiliary
network, we follow Louizos & Welling (2017b) and use the stable updates of masked RealNVP Dinh
et al. (2017) in Inverse Autoregressive Flow (IAF) Kingma et al. (2016) with 50 hidden units of
length two to parametrize rθ(z |W). The meta sampler is trained for 10 epochs. After that, the meta
sampler is adapted to unseen image classes for 200 iterations. For NNSGHMC and our DAMS, 20
meta samples are used for testing evaluation.

E.4 FEW SHOT LEARNING

For few shot learning, we adopt the open-source Pytorch MAML implementation https://
github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch. We incorporate the
proposed DAMS-NIAF as a meta classifier. The whole training procedure consists of two steps:
1) Train the model to reach the highest validation accuracy. As shown in Figure 7, a fast adaptive
classifier that interacts well with the overall model is acquired. 2) Keep all the flow parameters fixed
and continue training until 100 epochs.

E.5 META REINFORCEMENT LEARNING

We evaluate our method on goal velocity task and goal direction task for cheetah robots. We leverage
HalfCheetahDir-v1 environment. We set the fast learning rate (learning rate for the inner loop 1-step
gradient update of MAML) to be 0.1, max-kl (maximum value for the KL constraint in TRPO) to be
0.001, task batch size (batch size for each individual task) to be 20, meta batch size (number of tasks
per batch) to be 40. For policy network, we have two layers, the first layer is fully connected layer
and the second layer is multiplicative parametrization layer following a relu activation function.

22

https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch

	Introduction
	Neural Inverse-Autoregressive Bayesian Meta Sampling
	The Basic Setup and Overall Idea
	The Bayesian Meta Sampler
	Learning parameterized meta samplers with NIAFs

	The Sample Adapter
	Model Training and Sample Generation

	Experiments
	Evaluations of OT-Bayesian Sampling
	Evaluations of Meta-Sample Adaptability
	Meta sampling for Bayesian few-shot learning

	Conclusion
	Background
	Bayesian Sampling
	Optimal Transport and Wasserstein Gradient Flows
	Autoregressive Flows and Variants
	Comparisons between different flows

	DAMS with ELBO as the objective
	Proof of Theorem 1 and Proposition 2
	Extra Experimental Results
	Synthetic distributions
	Extra experimental results on Gaussian mixture models
	Meta posterior adaption
	Uncertainty evaluation via entropy of out-of-sample predictive distributions

	Implementation details
	Synthetic distributions
	Bayesian logistic regression
	CIFAR and MNIST
	Few shot learning
	Meta reinforcement learning

