Efficiently Learning Fourier Sparse Set Functions

Andisheh Amrollahi * Amir Zandieh * Michael Kapralov'
ETH Zurich EPFL EPFL
Zurich, Switzerland Lausanne, Switzerland Lausanne, Switzerland
amrollaa@ethz.ch amir.zandieh@epfl.ch michael.kapralov@epfl.ch

Andreas Krause
ETH Zurich
Zurich, Switzerland
krausea@ethz.ch

Abstract

Learning set functions is a key challenge arising in many domains, ranging from
sketching graphs to black-box optimization with discrete parameters. In this paper
we consider the problem of efficiently learning set functions that are defined over a
ground set of size n and that are sparse (say k-sparse) in the Fourier domain. This
is a wide class, that includes graph and hypergraph cut functions, decision trees and
more. Our central contribution is the first algorithm that allows learning functions
whose Fourier support only contains low degree (say degree d = o(n)) polynomials
using O(kdlogn) sample complexity and runtime O(kn log® k log nlog d). This
implies that sparse graphs with k edges can, for the first time, be learned from
O(klogn) observations of cut values and in linear time in the number of vertices.
Our algorithm can also efficiently learn (sums of) decision trees of small depth.
The algorithm exploits techniques from the sparse Fourier transform literature and
is easily implementable. Lastly, we also develop an efficient robust version of
our algorithm and prove ¢5 /{5 approximation guarantees without any statistical
assumptions on the noise.

1 Introduction

How can we learn the structure of a graph by observing the values of a small number of cuts? Can we
learn a decision tree efficiently by observing its evaluation on a few samples? Both of these important
applications are instances of the more general problem of learning set functions.

Consider a set function which maps subsets of a ground set V' of size n to real numbers, z : 2V — R.
Set functions that arise in applications often exhibit structure, which can be effectively captured in
the Fourier (also called Walsh-Hadamard) basis. One common studied structure for set functions
is Fourier sparsity [2]]. A k-Fourier-sparse set function contains no more than k nonzero Fourier
coefficients. A natural example for k-Fourier-sparse set functions are cut functions of graphs with
k edges or evaluations of a decision tree of depth d [7, |8, [12]. The cut function of a graph only
contains polynomials of degree at most two in the Fourier basis and in the general case, the cut
function of a hypergraph of degree d only contains polynomials of degree at most d in the Fourier
basis [[12]. Intuitively this means that these set functions can be written as sums of terms where each
term depends on at most d elements in the ground set. Also a decision tree of depth d only contains
polynomials of degree at most d in the Fourier basis [7]][8]. Learning such functions has recently

*The first two authors contributed equally
"Supported by ERC Starting Grant SUBLINEAR.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

found applications in neural network hyper-parameter optimization [5]. Therefore, the family of
Fourier sparse set functions whose Fourier support only contains low order terms is a natural and
important class of functions to consider.

Related work One approach for learning Fourier sparse functions uses Compressive Sensing
(CS) methods [[12]. Suppose we know that the Fourier transform of our function Z is k-sparse i.e.
|supp(Z)| < k, and supp(z) C P for some known set P of size p. In [12] it is shown that recovery
of Z is possible (with high probability) by observing the value of z on O(k log4 p) subsets chosen
independently and uniformly at random. They utilize results from [[10, [13] which prove that picking
O(k log* p) rows of the Walsh-Hadamard matrix independently and uniformly at random results in
a matrix satisfying the RIP which is required for recovery. For the case of graphs p = (g) = 0(n?)
and one can essentially learn the underlying graph with O(k log* n) samples. In fact this result can be
further improved, and O(k log? k log n) samples suffice [4]]. Computationally, for the CS approach,
one may use matching pursuit which takes Q(kp) time and thus results in runtime of Q(kn?) for
k Fourier sparse functions of order d. This equals €2(kn?) for graphs, where d = 2. In [12],
proximal methods are used to optimize the Lagrangian form of the £; norm minimization problem.
Optimization is performed on p variables which results in (n?) runtime for graphs and Q(n?) time
for the general order d sparse recovery case. Hence, these algorithms scale exponentially with d and
have at least quadratic dependence on n even in the simple case of learning graph cut functions.

There is another line of work on this problem in the sparse Fourier transform literature. [[11] provides a
non-robust version of the sparse Walsh Hadamard Transform (WHT). This algorithm makes restrictive
assumptions on the signal, namely that the k£ non-zero Fourier coefficients are chosen uniformly
at random from the Fourier domain. This is a strong assumption that does not hold for the case
of cut functions or decision trees. This work is extended in [4] to a robust sparse WHT called
SPRIGHT. In addition to the the random uniform support assumption, [4] further presumes that the
Fourier coefficients are finite valued and the noise is Gaussian. Furthermore, all existing sparse WHT
algorithms are unable to exploit low-degree Fourier structure.

Qur results We build on techniques from the sparse Fourier transform literature [3l 16l 2] and
develop an algorithm to compute the Walsh-Hadamard transform (WHT) of a k-Fourier-sparse signal
whose Fourier support is constrained to low degree frequencies (low degree polynomials). For
recovering frequencies with low degree, we utilize ideas that are related to compressive sensing over
finite fields [1]. We show that if the frequencies present in the support of T are of low order then there
exists an algorithm that computes WHT in O(kn log® k log nlog d) time using O(kd logn) samples.
As opposed to [11], we avoid distributional assumptions on the support using hashing schemes. Our
approach is the first one to achieve the sampling complexity of O(kd logn). Moreover its running
time scales linearly in n and there is no exponential dependence on d. For the important special case
of graphs, where d = 2, our sampling complexity is near optimally O(k logn) and our runtime is
O(knlog® klogn) which is strictly better than CS methods which take at least quadratic time in n.
This allows us to learn sparse graphs which have in the range of 800 vertices in ~ 2 seconds whereas
the previous methods [[12] were constrained to the range of 100 for similar runtimes.

For the case where 7 is not exactly k-sparse, we provide novel robust algorithms that recover
the & dominant Fourier coefficients with provable ¢5/¢> approximation guarantees. We provide
a robust algorithm using appropriate hashing schemes and a novel analysis. We further de-
velop a robust recovery algorithm that uses O(kdlognlog(dlogn)) samples and runs in time

O (nklog® k + nklog” klogn log(dlogn) log d).

2 Problem Statement

Here we define the problem of learning set functions. Consider a set function which maps subsets of
agroundset V = {1,...,n} = [n] of size n to real numbers, z : 2V — R. We assume oracle access
to this function, that is, we can observe the function value 2:(A) for any subset A that we desire. The
goal is to learn the function, that is to be able to evaluate it for all subsets B C V. A problem which
has received considerable interest is learning cut functions of sparse (in terms of edges) graphs [12].
Given a weighted undirected graph G = (V, E, w), the cut function associated to G is defined as
z(A) = X senreviaw(s,t), forevery AC V.

Note that we can equivalently represent each subset A C V' by a vector ¢ € Fy which is the indicator
of set A. Here F; = {0, 1} denotes the finite field with 2 elements. Hence the set function can be
viewed as x : 5 — R. We denote the Walsh-Hadamard transform of z : F3 — Rby z : F§ — R. It

is defined as:)
Br=—= Y w- (-)YI feFp
\/Ntng,

The inner product (f, ¢) throughout the paper is performed modulo 2.

The Fourier transform of the graph cut function Z is the following,

%Zs,te\/ UJ(Sﬂf) lf.f = (0,,0)
0 otherwise

It is clear that the Fourier support of the cut function for graph G contains only |E| + 1 nonzero
elements (and hence it is sparse). Furthermore, the nonzero Fourier coefficients correspond to
frequencies with hamming weights at most 2.

One of the classes of set functions that we consider is that of exactly low order Fourier sparse
functions. Under this model we address the following problem:
Input: oracle access to x : F; — R
such that ||Z]|o < k and | f| < d for all f € support(T) (1)
Output: nonzero coefficients of Z and their corresponding frequencies

where | f| denotes the Hamming weight of f.

We also consider the robust version of problem (I)) where we only have access to noisy measurements
of the input set function. We make no assumption about the noise, which can be chosen adversarially.
Equivalently one can think of a general set function whose spectrum is well approximated by a low
order sparse function which we refer to as head. Head of T is just the top k Fourier coefficients
such that the frequency has low Hamming weight | f| < d. We refer to the noise spectrum as fail.

Definition 1 (Head and Tail norm). For all integers n, d, and k we define the head of T : F§ — R as,
Thead := arg y:IFn;"iER 1z —yll2-
llyllo<k
|71 <d for all jEsupp(y)

The tail norm of 7 is defined as, Err(Z, k, d) := ||T — Zheadl|3-

Since the set function to be learned is only approximately in the low order Fourier sparse model,
it makes sense to consider the approximate version of problem (I). We use the well known £ /{5
approximation to formally define the robust version of problem (1)) as follows,
Input: oracle access to x : Fy — R
Output: function ¥ : F5 — R
such that ||Y — 2|3 < (1 + 0)Err(Z, k, d),
|f| < dforall f € support(X)

2

Note that no assumptions are made about the function x and it can be any general set function.

3 Algorithm and Analysis

In this section we present our algorithm and analysis. We use techniques from the sparse FFT
literature [31 16} 2]]. Our main technical novelty is a new primitive for estimating a low order frequency,
i.e., | f| < d, efficiently using an optimal number of samples O(dlogn) given in Section This
primitive relies heavily on the fact that a low order frequency is constrained on a subset of size (Z) as
opposed to the whole universe of size 2. We show that problem (T)) can be solved quickly and using

a few samples from the function = by proving the following theorem,

Theorem 2. For any integers n, k, and d, the procedure EXACTSHT solves problem (1) with
probability 9/10. Moreover the runtime of this algorithm is O (kn log? klog nlog d) and the sample
complexity of this procedure is O (kdlogn).

We also show that problem (2)) can be solved efficiently by proving the following theorem in the full
version of this paper,

Theorem 3. For any integers n, k, and d, the procedure ROBUSTSHT solves
problem @) with probability 9/10. Moreover the runtime of this procedure is
0] (nk log® k + nklog® klogn log(dlogn)log d) and the sample complexity of the procedure is
O (kdlognlog(dlogn)).

Remark: This theorem proves that for any arbitrary input signal, we are able to achieve the ¢ /{5
guarantee using O (kd - logn - log(dlogn)) samples. Using the techniques of [9]] one can prove that
the sample complexity is optimal up to log(d logn) factor. Note that it is impossible to achieve this
sample complexity without exploiting the low degree structure of the Fourier support.

3.1 Low order frequency recovery

In this section we provide a novel method for recovering a frequency f € Fy with bounded Hamming
weight | f| < d, from measurements (m;, f) @ € [s] for some s = O(dlogn). The goal of this
section is to design a measurement matrix A/ € F5*" with small s, such that for any f € F} with
|f| < d the following system of constraints, with constant probability, has a unique solution j = f
and has an efficient solver,

Mj=Mf

il < d

To design an efficient solver for the above problem with optimal s, we first need an optimal algorithm
for recovering frequencies with weight one |f| < 1. In this case, we can locate the index of the
nonzero coordinate of f optimally via binary search using O(log n) measurements and runtime.

J € F3 such that {

Definition 4 (Binary search vectors). For any integer n, the ensemble of vectors {v'} [fogz "l CFp
corresponding to binary search on n elements is defined as follows. Let v = {1}" (the all ones

vector). Forevery I € {1,-- -, [log,n]} and every j € [n], v} = {(Jg}i?iml)J

Lemma 5. There exists a set of measurements {m;}5_, for s = [logyn] + 1 together with an

algorithm such that for every [€ F% with | f| < 1 the algorithm can recover f from the measurements
(f,m;) in time O(log, n).

To recover a frequency f with Hamming weight d, we hash the coordinates of f randomly into O(d)
buckets. In expectation, a constant fraction of nonzero elements of f get isolated in buckets, and
hence the problem reduces to the weight one recovery. We know how to solve this using binary search
as shown in Lemmal3]in time O(log n) and with sample complexity O(log n). We recover a constant
fraction of the nonzero indices of f and then we subtract those from f and recurse on the residual.
The pseudocode of the recovery procedure is presented in Algorithm|[I}

Lemma 6. For any integers n and d , any power of two integer D > 128d, and any frequency
[€ Fy with | f| < d, the procedure RECOVERFREQUENCY given in Algorithm |l|outputs f with
probability at least 7/8, if we have access to the following,

1. Foreveryr = 0,1, -- ,log, D, a hash function h, : [n] — [D/2"] which is an instance
from a pairwise independent hash family.

2. Foreveryl =0,1,--- ,[logyn| and everyr = 0,1,--- ,log, D, the measurements ¢l (i)
that are equal to ¢.(i) = Djen=twy fi vl for everyi € [D/2"].

Moreover, the runtime of this procedure is O(D log D logn) and the number of measurements is
O(Dlogn).

Proof. The proof is by induction on the iteration number r = 0,1, --- , 7. We denote by &, the event
If — fM) < % , that is the sparsity goes down by a factor of 4 in every iteration up to " iteration.

The inductive hypothesis is Pr[&,41|,] > 1 — 155

Algorithm 1 RECOVERFREQUENCY
input: power of two integer D, hash functions A, : [n] — [D/2"] for every r € {0,1,--- ,log, D},

measurement vectors ¢, € IFQD/? foreveryl =0,1,--- [logyn] and every r = 0,1,--- ,log, D
output: recovered frequency f.
1 {v'}]2821 « binary search vectors on n elements (Definition , T « log, D, f© « {0}
. for r = 0 to T do
3 w <« {0}
4 fori =1to D/2" do
5 if 99(1) = Y ep-1(py Jy v = 1 then
6: index < {0}1°821 a [log, n] bits pointer.
7 for I = 1to [log, n] do
3 if 6L(6) = Xjeniiy £y - v = 1 then
9: [index]; < 1, set [*" bit of index to 1.
10: w(index) + 1, set the coordinate of w positioned at index to 1.
1 fUD e fO o,
12: return f(T+D),

Conditioning on &, we have that |f — f()] < L. Por every i € [D/2"] and every | €
{0,1,---, [logy n]} it follows from the definition of ¢.. that,
- 3 i0w= X (6-07)
jehz (i) j€h (i)

Let us denote by S the support of vector f — f("), namely let S = supp (f—f (T)).

From the pairwise independence of the hash function h,. the following holds for every a € S,

S| 1 1
< 2" < .
D — % 128-4r — 12827

This shows that for every a € S, with probability 1 — 128 5= the bucket h,.(a) contains no other

element of S. Because the vector f — f(") restricted to the elements in bucket 2 ' (h,.(a)) has
Hamming weight one, for every a € S,

' { <f - f(r_l))h:l(hr(a» B

If the above condition holds, then it is possible to find the index of the nonzero element via binary
search as in Lemma Bl The for loop in line [7] of Algorithm [T]implements this. Therefore with
probability 1 — ;=== 2T by Markov’s inequality a 1 — 1/8 fraction of the support elements, S, gets
recovered correctly and at most 1/8 fraction of elements remain unrecovered and possibly result
in false positive. Since the algorithm recovers at most one element per bucket, the total number
of falsely recovered indices is no more than the number of non-isolated buckets which is at most
1/8 - |S|. Therefore with probability 1 — 16 5+, the residual at the end of rth iteration has sparsity

1/8-1S|+1/8-|S| =1/4-]5|,i.e. ’f - f(”“)‘ < ‘%l < %+ This proves the inductive step.

Prih,(a) € hy(S\ {a})] <2"-

1l>1- .
] 128 - 2

It follows from the event Ep for T' = log, D that f (T) = f, where f is the output of Algorithm
l The inductive hypothesw along with union bound implies that Pr [] < Zr . Pr [5 |Er— 1] +

Pr [50] <ZT 0 162T S 1/8

Runtime: the algorithm has three nested loops and the total number of repetitions of all loops
together is O(Dlogn). The recovered frequency f(") always has at most O(D) nonzero entries
therefore the time to calculate 37, —1 ;) f;ril) - v} for a fixed and a fixed [and all i € [D/2"] is
O(D). Therefore the total runtime is O(D log D logn).

Number of measurements: the number of measurements is the total size of the measurement
vectors ¢!, which is O(D logn). O

3.2 Signal reduction

We now develop the main tool for estimating the frequencies of a sparse signal, namely the
HASH2BINS primitive. If we hash the frequencies of a k-sparse signal into O(k) buckets, we
expect most buckets to contain at most one of the elements of the support of our signal. The next
definition shows how we compute the hashing of a signal in the time domain.

Definition 7. For every n,b € N, every a € F3, and every o € FSXZ’ and every x : Fy — R, we

define the hashing of Z as ug : F3 — R, where ul(t) = /25 - Zo1+a, for every ¢ € F5.

We denote by B = 2° the number of buckets of the hash function. In the next claim we show that the
Fourier transform of u% corresponds to hashing into B buckets.

Claim 8. For every j € TS, 19(5) = ZfeIFg:an:j Ty (—1)fD),

Let h(f) £ o " f. Forevery j € F3, 4% is the sum of Z - (—1)(%/) for all frequencies f € F3 such
that h(f) = j, hence h(f) can be thought of as the bucket that f is hashed into. If the matrix o is
chosen uniformly at random then the hash function A(+) is pairwise independent.

Claim 9. For any n,b € N, if the hash function h : F} — T is defined as h(-) = o ' (-), where
o e F}> Y is a random matrix whose entries are distributed independently and uniformly at random

on Fy, then for any f # f' € Fy it holds that Pr[h(f) = h(f')] = %, where the probability is over
picking n - b random bits of o.

Algorithm 2 HASH2BINS

input: signal x € R2", signal y € R2", integer b, binary matrix o € FSXb, shift vector a € F5.
output: hashed signal u%.

1: Compute u?% = FHT (w / 22—2 . :cg(,)_m). > FHT is the fast Hadamard transform algorithm

2: 0e(j) + u(j) — ZfeF;l:an:j Xy - (—=1){@F) for every j € FS.
3: return uZ.

The HASH2BINS primitive computes the Fourier coefficients of the residue signal that are hashed to
each of the buckets. We denote by X the estimate of 7 in each iteration. As we will see in Section|3.3]
the recovery algorithm is iterative in the sense that we iterate over 7 — X (the residue) whose sparsity
is guaranteed to decrease by a constant factor in each step.

Claim 10. For any signal z,X : F} — R, integer b, matrix o € F;Xb, and vector a € FY§
the procedure HASH2BINS(z, X, b, 0, a) given in Algorithmcomputes the following using O(B)
samples from x in time O(Bnlog B + ||X|lo - nlog B)

BH = Y @ (D,

feFp:oT f=j

3.3 Exact Fourier recovery

In this section, we present our algorithm for solving the exact low order Fourier sparse problem
defined in (T) and prove Theorem[2| Let S £ supp(Z). Problem (T)) assumes that | S| < k and also
forevery f € S, |f| < d. The recovery algorithm hashes the frequencies into B = 2° buckets using
Algorithm[2] Every frequency in the support f € S is recoverable, with constant probability, if no
other frequency from the support collides with it in the hashed signal. The collision event is formally
defined below,

Definition 11 (Collision). For any frequency f € F% and every sparse signal z with support
S = supp(2), the collision event E..;;(f) corresponding to the hash function i(f) = o T f holds iff

h(f) € h(S\{[})-

Claim 12 (Probability of collision). For every f € F3, if the hash function h : FY — T is defined
as h(-) = o' (-), where o € ng}’ is a random matrix whose entries are distributed independently

and uniformly at random on Fy then Pr[Eco(f)] < % (see Definition . The probability is over
the randomness of matrix o.

If the hash function h(-) = o' (-) is such that the collision event E..;(f) does not occur for a
frequency f, then it follows from Claim [8|and Definition[TT]that for every a € F3,

i (h(f) = 3 - (1),

Therefore, under this condition, the problem reduces to d-sparse recovery. If a = {0}" then,

uZ(h(f)) = &y. Hence for any m € 73, one can learn the inner product (m, f) by comparing the

sign of @7 (h(f)) = 2y - (=1)™F and ©2(h(f)). If the signs are the same then (—1){"™/) = 1
meaning that (m, f) = 0 and if the signs are different then (m, f) = 1. In Section [3.1| we gave
an algorithm for learning a low order frequency |f| < d from measurements of the form (m, f).
So putting these together gives the inner subroutine for our sparse fast Hadamard transform, which
performs one round of hashing, presented in Algorithm 3]

Algorithm 3 SHTINNER

input: signal z € R?", signal ¥ € R?", failure probability p, integer b, integer d.
output: recovered signal X'.

1: Let {v ﬂog"‘ "l pe binary search vectors on n elements (Deﬁnmon@

2: D+ smallest power of two integer s.t. D > 128d, R < [2log,(1/p)].

3: Forevery r € {0,1,--- ,log, D} and every s € [R], let h? : [n] — [D/2"] be an independent
copy of a pairwise independent hash function.

4: For every r € {0,1,--- ,log, D}, every s € [R], and every j € [D/2"] let wj , € F% be the
binary indicator vector of the set h(j) L

5: For every s € [R], every r € {0, 1, -- log4 D} andeveryl € {0,1,- -, [log, n]} and every

j € [D/27], add wi , - v' to set A,.

Leto € IFSXZ’ be a random matrix. Each entry is independent and uniform on Fs.

For every a € Uyc[r)As compute 4y = HASH2BINS(x, X, b, 0, a).

for j = 1to B do

9: Let L be an empty multi-set.

10: for s € [R] do

PR

11: for every r € {0,--- ,log, D}, every i € [D/2"],and every [€ {0,--- , [log, n]} do
12: ifus(j) #0, where ¢ ={0}" then
’Ul

13: if 5< (5) and Gy "*"" (j) have same sign then ¢l.(i) < 0. else ¢L(i) « 1.

[logy n]
14: f + RECOVERFREQUENCY (D {hs}iB2 P {{¢l Jloga D }z =)

=0
15: Append f to multi-set L.

16: f + majority(L)
17: X7 < u(j), where c = {0}".

18: return Y.

Lemma 13. For all integers b and d, every signals x,X € R*" such that |¢| < d for every
£ € Supp(;l: —X), and nd any parameter p > 0, Algorithm Eoutputs a signal X' € R?" such that

|supp(X)| < \supp(m — X)| and also for every frequency [€ supp(x — X), if the collision event
Ecou(f) does not happen then,

Pr[R=@—X)y] 2 1-»
Moreover the sample complexity of this procedure is O(Bdlogn log]%) and also its time complexity
is O (B log B(n + dlognlog %) +nB lognlogdlog% + |IXllo - n(log B + log nlog dlog %))

Lemma 14. For any parameter p > 0, all integers k, d, and b > logy(k/p), every signal
2, € R2" such that |z — x|o < k and |£| < d for every € € supp(x/;\), the output of

SHTINNER(z, X, p, b, d), X satisfies the following with probability at least 1 — 32p,

17 =X = X'llo < k/8.

Our sparse Hadamard transform algorithm iteratively calls the primitive SHTINNER to reduce the
sparsity of the residual signal by a constant factor in every iteration. Hence, it terminates in O(log k)
iterations. See Algorithm[4]

Algorithm 4 EXACTSHT
input: signal z € R?", failure probability ¢, sparsity k, integer d.
output: estimate ¥ € R?".
1: pM /32,6 « [log, %W,w(o) «—{0}?",T < [logg k7.
2: forr=1to T do
3: X < SHTINNER(z, w1 p) () d)
4: w — wlr=1 4 ¥,
50 pUrth) « p() g plrtl) « p() _ 9,
6: x «— w™.
7: return .

Proof of Theorem [2: The proof is by induction. We denote by &, the event corresponding to
2 — w®o < sﬁ The inductive hypothesis is Pr[€,|€,_1] > 1 — 16p("). Conditioned on

E,—1 we have that |z — w1 llo < W%. The number of buckets in iteration 7 of the algorithm

is B = 20" > fi‘f_q. Hence, it follows from Lemma that with probability 1 — 32p("),

[|Z — w(™||o < &. This proves the inductive step.

Runtime and Sample complexity: In iteration 7 € [[logg k1], the size of the bucket B(") =

20" = l?i’f: and the error probability p(") = L. Moreover at most), B(") elements are added

to ¥, hence we can assume that ||x]jo < 122%. From Lemma 13|t follows that the total runtime is
q

O (kzn log? klog nlog d).

The sample complexity of iteration r is O (% log nlog 2T) hence the total sample complexity is
dominated by the sample complexity of the first iteration which is equal to O (kdlogn). O

4 Experiments

We test our EXACTSHT algorithm for graph sketching on a real world data set. We utilize the
autonomous systems dataset from the SNAP data collection In order to compare our methods with
[12] we reproduce their experimental setup. The dataset consists of 9 snapshots of an autonomous
system in Oregon on 9 different dates. The goal is detect which edges are added and removed when
comparing the system on two different dates. As a pre-processing step, we find the common vertices
that exist on all dates and look at the induced subgraphs on these vertices. We take the symmetric
differences (over the edges) of dates 7 and 9. Results for other date combinations can be found in the
supplementary material. This results in a sparse graph (sparse in the number of edges). Recall that
the running time of our algorithm is O (kn log? k log n log d) which reduces to O(nk log? klogn)
for the case of cut functions where d = 2.

4.1 Sample and time complexities as number of vertices varies

In the first experiment depicted in Figure [Ib] we order the vertices of the graph by their degree and
look at the induced subgraph on the n largest vertices in terms of degree where n varies. For each n
we pick e = 50 edges uniformly at random. The goal is to learn the underlying graph by observing
the values of cuts. We choose parameters of our algorithm such that the probability of success is at
least 0.9. The parameters tuned in our algorithm to reach this error probability are the initial number

3snap.stanford.edu/data/

Runtime in seconds

date 7 to date 9 fixed n=100

10

Runtime in seconds

Number of edges

(a) Avg. time vs. no. edges

7 to 9 fixed e=50

100 200 300 400 500 600 700
Number of vertices

(b) Avg. time vs. no. vertices

Table 1: Sampling and computational complexity

CS method

Our method

No. of vertices

Runtime Samples Runtime Samples

70 1.14 767 0.85 6428
90 1.88 812 0.92 6490
110 3.00 850 0.82 6491
130 431 880 1.01 7549
150 5.34 905 1.16 7942
170 6.13 927 1.22 7942
190 7.36 947 1.18 7271
210 8.24 965 1.28 7271
230 * * 1.38 7942
250 * * 1.38 7271
300 * * 1.66 8051
400 * * 2.06 8794
500 * * 242 8794
600 * * 3.10 9646
700 * * 3.35 9646
800 * * 3.60 9646

of buckets the frequencies are hashed to and the ratio at which they reduce in each iteration. We plot
running times as n varies. We compare our algorithm with that of [12]] which utilizes a CS approach.
We fine-tune their algorithm by tuning the sampling complexity. Both algorithms are run in a way
such that each sample (each observation of a cut value) takes the same time. As one can see our
algorithm scales linearly with n (up to log factors) whereas the CS approach scales quadratically.
Our algorithm continues to work in a reasonable amount of time for vertex sizes as much as 900 in
under 2 seconds. Error bars depict standard deviations.

In Table [T] we include both sampling complexities (number of observed cuts) and running times
as n varies. Our sampling complexity is equal to O(klogn). In practice they perform around a
constant factor of 10 worse than the compressive sensing method, which are not provably optimal (see
Section[I)) but perform well in practice. In terms of computational cost, however, the CS approach
quickly becomes intractable, taking large amounts of time on instance sizes around 200 and larger
[12]. Asterisks in Table[I]refer to experiments that have taken too long to be feasible to run.

4.2 Time complexities as number of edges varies

Here we fix the number of vertices to n = 100 and consider the induced subgraph on these vertices.
We randomly pick e edges to include in the graph. We plot computational complexities. Our running
time provably scales linearly in the number of edges as can be seen in Figure

References

[1] Abhik Kumar Das and Sriram Vishwanath. On finite alphabet compressive sensing. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5890-5894.
IEEE, 2013.

[2] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25-32.
ACM, 1989.

[3] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse fourier
transform. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 563-578. ACM, 2012.

[4] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier matrices.
In Geometric Aspects of Functional Analysis, pages 163—179. Springer, 2017.

[5] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: a spectral approach.
In International Conference on Learning Representations, 2018.

[6] Piotr Indyk, Michael Kapralov, and Eric Price. (nearly) sample-optimal sparse fourier transform.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
480-499. Society for Industrial and Applied Mathematics, 2014.

[7] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. SIAM
Journal on Computing, 22(6):1331-1348, 1993.

[8] Yishay Mansour. Learning boolean functions via the fourier transform. In Theoretical advances
in neural computation and learning, pages 391-424. Springer, 1994.

[9] Eric Price and David P. Woodruff. (1 + eps)-approximate sparse recovery. In Proceedings of the
2011 IEEE 52Nd Annual Symposium on Foundations of Computer Science, FOCS 11, pages
295-304, Washington, DC, USA, 2011. IEEE Computer Society.

[10] Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian
measurements. Communications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, 61(8):1025-1045, 2008.

[11] Robin Scheibler, Saeid Haghighatshoar, and Martin Vetterli. A fast hadamard transform for
signals with sublinear sparsity in the transform domain. IEEE Transactions on Information
Theory, 61(4):2115-2132, 2015.

[12] Peter Stobbe and Andreas Krause. Learning fourier sparse set functions. In Artificial Intelligence
and Statistics, pages 1125-1133, 2012.

[13] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
e-prints, page arXiv:1011.3027, Nov 2010.

10

	Introduction
	Problem Statement
	Algorithm and Analysis
	Low order frequency recovery
	Signal reduction
	Exact Fourier recovery

	Experiments
	Sample and time complexities as number of vertices varies
	Time complexities as number of edges varies

