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ABSTRACT

Multimodal representations of text and images have become popular in recent
years. Text however has inherent ambiguities when describing visual scenes, lead-
ing to the recent development of datasets with detailed graphical descriptions in
the form of scene graphs. We consider the task of joint representation of semanti-
cally precise scene graphs and images. We propose models for representing scene
graphs and aligning them with images. We investigate methods based on bag-
of-words, subpath representations, as well as neural networks. Our investigation
proposes and contrasts several models which can address this task and highlights
some unique challenges in both designing models and evaluation.

1 INTRODUCTION

With recent advances in perceptual tasks, attention in computer vision has been brought to problems
requiring greater levels of semantic interpretation of images. Joint modeling of text and vision has
led to great improvements in performance on caption generation, visual question answering, and
retrieval. Text, however, often has many inherent ambiguities and, for some tasks, connecting a
more precise description of image content to visual representation can be of great interest.

Compact representation of semantically precise descriptions of visual information are of great in-
terest and can be potentially used for a variety of downstream tasks from image retrieval, gener-
ation, and visual question answering. Until recently study of multimodal embeddings of images
has focused on connecting sentence level descriptions and images. One recently popular method of
describing the content of images is based on the scene graph, a detailed description of the underly-
ing image content. Recently, datasets with detailed scene graph annotations have become available
(Krishna et al.l 2016} |Antol et al.l 2015). In this work we make a first step to analyse the joint
embedding of images and scene graph into a shared latent space.

We investigate several strategies for performing the embedding scene graphs. We propose as a base-
line a bag of words embedding that only considers the scene objects and then consider a subpath
representation as well as a graph neural network which can take advantage of the structural infor-
mation within the scene, we find that, for the data we consider, subpath representations provide the
best results on a retrieval task.

Related to our work (Fisher et al.| 2011)) proposes efficient kernels for retrieving images based on a
scene graph. (Johnson et al.,|2015)) propose to use scene graphs for the task of image retrieval. Their
model uses a probabilistic inference framework in comparing graphs. (Lu et al.l 2016)) consider the
closely related problem of visual relationship detection. Most recently, (Teney et al.,[2016)), proposed
to graph structured models for visual question answering. Their work considers a model similar to
the Graph Neural networks (Li et al.| 2015) which we also consider. The problem addressed is
different as it involves graph matching instead of embedding a whole graph, furthermore visual
features are used as annotations, while we consider categorical annotations.
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2 JOINT REPRESENTATIONS OF SCENE GRAPHS AND IMAGES

A scene graph (Krishna et al.| 20165 Johnson et al.,|2015) is defined by its objects, their attributes,
and relationships. Consider a set of object classes, C, attributes A, and relationships R. Let a scene
graph G = (O, E) be a directed graph. For o € O, an object in an image I, o = (¢, A), where ¢ € C
is the class of the object and A C A. Fort € FE, a labeled directed edge t = (0, s,7) where r € R
and o, s € O. Define Nbr (o) as the set of all (s, ) such that (o, s,r) € E.

A joint representation of a scene graph, g, and image,x, should provide embedding functions, f;(x)
and f,(g) which produce continuous vector representations in RP for input images and scene
graphs, along with a similarity metric, s (commonly the inner product in the embedding space).
These vector representations should respect semantic similarities, such that for images x;, ; it will
be the case that s(x;, g) > s(x;, g) if the graph is semantically closer to the image x; than x,;. Here
we consider several possible choices for embedding the graph.

Bag of Words A bag of words model takes a frequency count of nodes in the scene graphs, and
does not consider the relationship information or the association of attributes. This is a natural
baseline and the analogue in the text domain has shown strong performance in many joint vision and
language tasks (Frome et al.l2013)). Here we take the vocabulary V' to be of size |C|. Let e, represent
the one hot encoding for object class o. The embedding is defined by the matrix W € RP>*V and

given simply as f4(g,) = Wy > e,. This is then rescaled to unit norm.
0€0

SubPath Representations We consider the use of a graph path representation (Swamidass et al.,
2005). Here we augment the count of node frequency by additionally considering subpaths up to
length [. This allows structural information to be used in the final embedding. The final embedding
is constructed as in the case of the bag of words Wy with V' now the size of all unique subpaths
in the dataset. Similar to the literature on text representations paths can be seen as an analog of
n-grams which can still provide strong baselines in text classification (Joulin et al.| [2016). In the
base case of order 1 paths that only consider the nodes it reduces to the bag of words model.

Graph Neural Network Another strategy is similar in spirit to recent work proposed in (Li et al.}
2015} Teney et al.,2016) which maintains a state vector for each node and uses a recurrent procedure
that updates each node state based on its neighbor, progressively propagating information. Below
the update sequence is defined per object.

h = Wye, hith = tanh | Woh! , + W, Yoo Vi,
(s,r)ENbr(o)

For each node we obtain its representation by performing an embedding and then updating the
representation by adding a term for the neighbors based on the maximum path between any 2 nodes.
In practice we will take a maximum of ¢ = 3 steps. V. is a separate term associated with each
relationship, we consider only the most common relationships and fold others into one category.
The final graph representation can be obtained by summing the node states and normalizing. In this
work we focus on the object and their interactions but attributes can additionally be incorporated as
edges in the graph.

Image embedding and loss function The image embedding we utilize are the VGG-19 fc7 10-
crop features,z, For the image embedding we use VGG-19 fc7 10-crop features, as in (Kiros et al.,
2014), denoted x, projected as fyw,, (x) = W, and normalized. If we let W describe all param-
eters of the encoding model given a set of images,x;, 2, ..., £y and corresponding scene graphs
g1,92, -..,gn, and the similarity measure s(x,g) = fw,, () - fw,(g) the following contrastive
loss function is used to align the image and scene graph

min Z max{0,a — s(xg, gr) + s(®r, gc)} + Z max{0,a — s(xg, gr) + s(xc, gr)}

Lk>9k:9c 9k Lk, Tc

Where a > 0 is a scalar defining the size of the margin of the two hinge losses.
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3 EVALUATING JOINT EMBEDDINGS

Evaluating joint embeddings can be challenging. A common approach in caption/image embedding
is the use of a retrieval task (Vendrov et al.|[2015) that involves ranking a large dataset of images by
relevance for a query. However, although posed as a retrieval task the score is often only known for
only one ground truth image. This problem is exacerbated for the case of highly detailed descriptions
such as a paragraphs or scene graphs. Given that scene graphs can become very large (some having
over 50 labeled objects) it becomes increasingly easy to match images simply based on object counts,
while at the same time there can be many images in the result set which are indeed very similar to
the ground truth. We thus take a different approach to the evaluation of scene graph to image
retrieval than shown in [Johnson et al.| (2015). Since images in the test set have associated scene
graphs our evaluation leverages existing graph similarity metrics to allow comparisons to all the
images in the retrieval set. For the case of scene graphs we can construct a metric based on the path
kernel (Borgwardt, [2007)). Using this similarity metric, we can compute the Normalized Discounted
Cumulative Gain (NDCG) (Wang et al., 2013) to evaluate the retrieval performance considering the
returned ranking of all images in the search space to their underlying graph similarity score.

We use a dataset of images and scene graphs from (Johnson et al., 2015; [Lu et al.} 2016). The data
consists of 5000 images with carefully curated scene graphs. We first perform a first level analysis,
described in the Appendix, to determine that our visual features can indeed discriminate structural
information in the scene graph.

We now evaluate the proposed joint representation approaches on the retrieval task. We use the 4000
train and 1000 test images from the splits specified in Johnson et al.| (2015). We use the objective
described previously with batches of size 500 and optimize using the ADAM optimizer (Kingma &
Ba, 2014)), {5 regularization, and o = 0.4.

For evaluation we compute the mean Normalized Discounted Cumulative Gain (NDCG) for each
test image using a path graph kernel of order 3 as our relevance metric. For each test graph we
embed the graph in the joint embedding space and look for the nearest matching image out of the
999 possible remaining.

Methods NDCG 5 | NDCG 10 | NDCG 20 | medRank Gr2im
PathRep 3(500 latent) 0.320 0.354 0.396 9
PathRep 2(500 latent) 0.300 0.338 0.381 9
BOW (500 latent) 0.281 0.317 0.362 9
PathRep 3 (100 latent) 0.305 0.338 0.378 10
PathRep 2 (100 latent) 0.290 0.327 0.372 10
BOW (100 latent) 0.276 0.310 0.355 10
Graph NN (100 latent) 0.249 0.280 0.321 15
SG obj |Johnson et al.[(2015) - - - 28
~ SG obj-attr-rel Johnson et al.|(2015) - - - 14

Table 1: Results for graph to image retrieval. NDCG is computed at the top 5,10, and 20 images.
Medium rank is computed for the ground truth image retrieval

We consider results using 500 and 100 dimensional latent spaces. We also consider path representa-
tions of order 2 and 3. We observe that the use of the graph neural network under-performs the more
simple linear embedding of the bag of words features. This is analogous to observations in several
text based tasks (Joulin et al., 2016) and highlights the difficulty in extracting semantic informa-
tion in this challenging scenario. However we can see that the path representations indeed improve
substantially the performance in terms of NDCG, highlighting that graph structural information is
indeed useful and can be leveraged in this task.

For reference, we also report results for the median rank of the ground truth image on the same task
from Johnson et al.| (2015), which uses a different model based on object detections. We note in
Johnson et al.| (2015) the label space is limited to the top occurring objects, which in our embedding
framework is not necessary and we utilize the full set of objects provided in the dataset. Notably the
results using bag of words and path representations can improve on those of Johnson et al.| (2015).
Additionally, it is possible to do image to graph retrieval with our model.
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A ADDITIONAL EXPERIMENTS

We perform a basic evaluation of whether structural information related to the scene graph is ex-
tractable from the image features (VGG fc7) we have selected to use. We consider the top occurring
edges and construct binary classification problems for each of the top edges attempting to predict
it’s presence or absence from the visual features. We use a random forest classifier and consider the
AUC. We find that 3 out of 10 have chance performance with the remaining classifiers obtaining an
average AUC of 55 & 0.5% . This first order analysis indicates that there is discernible structural in-
formation in the visual features used, although expectedly the rate is rather low. We note that a given
image may have a large number of interactions which can together give noticeable improvement on
tasks such as retrieval.
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