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Abstract

A common challenge in the natural sciences is to disentangle distinct, unknown
sources from observations. Examples of this source separation task include de-
blending galaxies in a crowded field, distinguishing the activity of individual neu-
rons from overlapping signals, and separating seismic events from an ambient
background. Traditional analyses often rely on simplified source models that fail
to accurately reproduce the data. Recent advances have shown that diffusion mod-
els can directly learn complex prior distributions from noisy, incomplete data. In
this work, we show that diffusion models can solve the source separation prob-
lem without explicit assumptions about the source. Our method relies only on
multiple views, or the property that different sets of observations contain differ-
ent linear transformations of the unknown sources. We show that our method
succeeds even when no source is individually observed and the observations are
noisy, incomplete, and vary in resolution. The learned diffusion models enable
us to sample from the source priors, evaluate the probability of candidate sources,
and draw from the joint posterior of the source distribution given an observation.
We demonstrate the effectiveness of our method on a range of synthetic problems
as well as real-world galaxy observations.

1 Introduction

For scientific data, pristine, isolated observations are rare: images of galaxies come blended with
other luminous sources [1–3], electrodes measuring brain activity sum multiple neurons [4–6], and
seismometers registering earthquakes contend with a constant seismic background [7, 8]. Addi-
tionally, the observations are often incomplete and collected by a heterogeneous set of instruments,
each with unique resolutions. The corrupted data is rarely directly usable. Instead, leveraging these
datasets for scientific discovery requires solving a source separation problem to either learn the un-
known source prior [9, 10] or constrain the posteriors for individual sources given an observation [1,
6, 7]. In this work, we address the general challenge of multi-view source separation (MVSS).

Most source separation methods, including ICA-based methods [11–13], non-negative matrix fac-
torization methods [14–16], and template-fitting methods [17–19], require strong prior assumptions
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about the sources. Similarly, most deep-learning-based methods require access to samples from
the source priors to generate training sets [20–25]. When the source distributions are not well-
understood, this poses a degeneracy: isolating and measuring the source signals requires a source
prior, but constraining the source prior requires isolated measurements of the sources.

Alternatively, some source separation methods assume a known mixing process and thereby relax the
need for a source prior [26–29]. To break the degeneracies between the sources, these methods rely
on distinct collections of observations, or views, with each view offering a different linear mixture
of the underlying sources. These works focus on contrastive datasets, where the goal is to separate a
signal that is enriched in a target view compared to a background view. While relevant for a number
of scientific datasets, these source separation methods are either limited in their expressivity [28,
29] or are not designed for incomplete data [26]. Additionally, the contrastive assumption fails in
domains where no source is ever individually measured.

Recent work has shown that score-based diffusion models [30] can serve as expressive Bayesian
priors. Notably, once a diffusion model prior is trained, it enables effective posterior sampling for
Bayesian inverse problems [31–39]. In the setting of noisy, incomplete observations, embedding
diffusion models within an expectation-maximization framework can be used to learn an empirical
prior [40]. In this work, we extend the use of diffusion model priors to MVSS. By leveraging the
ability to sample joint diffusion posteriors over independent sources, our method directly learns a
prior for each source. The main contributions of our method are:

Generalist method for multi-view source separation: Our method is designed for any MVSS
problem that is identifiable and linear. We show experimentally that our method works even when
the data is incomplete, noisy, and varies in dimensionality. Additionally, our method does not require
contrastive examples and succeeds even if every source is present in every observation.

Source priors and posteriors: Our method results in independent diffusion models for each source.
This affords all of the sampling and probability density evaluation benefits of diffusion models.

State-of-the-art (SOTA) performance: Our method outperforms existing methods on the con-
trastive MVSS problem despite having a more generalist framework.

2 Problem Statement

Consider a noisy observation yα of view α ∈ {1, . . . , Nviews} which is composed of a linear mixture
of distinct sources xβ with β ∈ {1, . . . , Ns}. The exact mixture of each source is given by a matrix
Aαβ

iα
that depends on the view, α, the source, β, and the specific sample, iα. This model can be

formalized as:

yα
iα =

 Ns∑
β=1

Aαβ
iα

xβ
iα

+ ηαiα , (1)

where ηαiα ∼ N (0,Σα
iα
). The α subscript on the sample index i highlights that sample indices

between views are unrelated. Importantly, source draws are not shared between views.

Goal: Given samples of noisy observations in each view, we aim to infer the individual prior dis-
tributions p(xβ) of each source {xβ}Ns

β=1. Access to these source priors then allows us to perform
source separation by sampling from the joint posterior p({xβ}|yα

iα
,Aαβ

iα
).

Dimensionality: Unlike traditional source separation, the dimensionality of the observation is deter-
mined by the specific view: yα, ηα ∈ Rdα and Σα ∈ Rdα×dα . Similarly, the source dimensionality
can vary between sources, xβ ∈ Rdβ , leading to a mixing matrix whose dimensionality is deter-
mined by the view and source, Aαβ ∈ Rdα×dβ . No assumption is placed on the relative magnitude
of the dα and dβ values, although for many applications dβ ≥ dα ∀ α, β.

Source Independence: We assume that each source is conditionally independent of the other
sources, allowing us to factorize the prior distribution: p({xβ}Ns

β=1) =
∏Ns

β=1 p(x
β). Similarly, we

assume independence between the sources and mixing matrices: p(xβ |Aαβ′

i ) = p(xβ) ∀ β, β′, α.
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Mixing Matrix and Incomplete Data: In contrast to blind source separation, we will assume that
the mixing matrices, Aαβ

iα
, are known. However, while the dimensionality of the mixing matrices are

fixed for each view and source, the specific matrix can differ between samples iα. For the purposes
of this work, we will consider any non-invertible linear transformation to generate incomplete data.

Identifiability: Not all choices of mixing matrices and dimensionalities will lead to a unique so-
lution for the prior distributions. When a unique solution does not exist, any MVSS method will
converge to a set of source distributions that accurately describe the data but may not match the true
distributions. Therefore, we will assume identifiability throughout this work.

3 Related Works

Multi-view Source Separation: Research on MVSS problems has focused on the contrastive set-
ting. In this setting, there are two views, the background view that contains only the background
source and the target view that contains both the background source and the target source:

ybkg
i = xbkg

i + ηbkg
i ; ytarg

j = xbkg
j + xtarg

j + ηtarg
j . (2)

Contrastive latent variable models (CLVM; [28]) define two sets of latent distributions in a lower-
dimensional space, one for the background source and one for the target source. The latent variables
are mapped to the observed space either with a linear model (CLVM - Linear) or through a non-linear
transformation parameterized by a neural network (CLVM - VAE). The parameters controlling the
transformation from the low-dimensional latent space to the observation space are optimized through
an expectation-maximization or variational inference approach. The CLVM method can generate
posterior and prior samples for both sources, and it can be adapted to incomplete data.

Contrastive principal component analysis (CPCA; [27]), and its probabilistic extension (PCPCA;
[29]), attempt to find vectors that maximize the variance in the target view without explaining the
variance in the background view. They do so by introducing a pseudo-data covariance matrix C =
Ctarg − γCbkg, with γ a tunable hyperparameter. PCPCA can only sample from the target source
posterior and prior, but it can be adapted to incomplete data.

Contrastive variational autoencoder models (CVAE; [26]) are an alternative formulation of the
CLVM-VAE method2. In contrast to CLVM-VAE, CVAE uses two encoders shared across views:
one produces background latents and the other produces target latents. The concatenated latents are
fed to a shared decoder, with the target latents multiplied by zero for the background decoding task.
In the original formulation, the CVAE model never outputs the target source during training, only
the target observation. This allows for non-linear mixing of target and source, but makes extending
the model to incomplete data challenging when xbkg

j and xtarg
j do not share a mixing matrix.

Diffusion Models: Diffusion models [30, 41–44] seek to reverse a known corruption process in
order to be able to generate samples from a target distribution. In the continuous-time framing,
samples from the target distribution, x0 ∼ p(x0), are corrupted through a diffusion process governed
by the stochastic equation:

dxt = f(xt, t)dt+ g(t)dwt, (3)

where f(xt, t) is known as the drift coefficient, g(t) is known as the diffusion coefficient, and wt

is generated through a standard Wiener process. The time coefficient t ranges from 0 to 1, with x0

being the original samples and x1 being the fully diffused samples. This induces a conditional distri-
bution of the form p(xt|x0) = N (xt|αtx0,Σt), where αt and Σt can be derived from our drift and
diffusion coefficients [45]. The forward stochastic differential equation (SDE) has a corresponding
reverse SDE [46]:

dxt =
[
f(xt, t)− g(t)2∇xt

log p(xt)
]

dt+ g(t)dw̄t, (4)

where w̄ is the standard Wiener process with time reversed. This reverse SDE evolves a sample
from the fully diffused distribution p(x1) back to the original data distribution p(x0). Equation 4
requires access to the score function, ∇xt

log p(xt), which is approximated by a neural network

2We arbitrarily use CLVM-VAE versus CVAE to distinguish between Severson et al. [28] and Abid et al.
[26].
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trained via score matching on samples from the forward diffusion process [30, 47, 48]. Training
and sampling from a diffusion model requires selecting an SDE parameterization [30, 42, 44, 49], a
score matching objective [30, 42, 43, 45], and a sampling method for the reverse SDE [30, 42, 44,
45].

We adopt the variance exploding parameterization for the SDE [43], the denoiser parameterization
from Karras et al. [45] for the score matching approach, and the predictor-corrector (PC) algorithm
as our sampling method [30]. The denoiser parameterization approximates E[x0|xt] by minimizing
the objective:

L(θ) = Ep(xt|x0)

[
λ(t)∥dθ(xt, t)− x0∥22

]
. (5)

Here, dθ(xt, t) is our denoiser model with parameters θ. We use a loss weighting term, λ(t), to
ensure all time steps are equally prioritized. Note the denoiser returns the expectation value, which
can be directly converted to the score via Tweedie’s formula [50].

Posterior Sampling: Once trained, a diffusion model can be used as a Bayesian prior for condi-
tional posterior sampling [30]. Specifically, the score function in the reverse SDE is replaced by the
posterior score function:

∇xt log p(xt|y) = ∇xt log p(xt) +∇xt log p(y|xt), (6)

where y is our observation, and ∇xt
log p(y|xt) is the score of the likelihood. The prior score in

Equation 6 is given by the trained diffusion model, but evaluating the likelihood score with respect
to an arbitrary t requires solving:

p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0. (7)

Many methods have been proposed for evaluating the conditional score [51]. Of particular interest
are methods that propose an approximation to the right-most conditional distribution in Equation 7
[34, 36, 38–40]. In general, these methods use a multivariate Gaussian approximation:

p(x0|xt) ≈ N (x0|E[x0|xt],V[x0|xt]) . (8)

When the observation function is defined by the linear matrix A and the likelihood is Gaussian,
p(y|x0) = N (y|Ax0,Σy), this approximation yields an analytic solution for the likelihood score:

∇xt
log p(y|xt) ≈ ∇xt

E[x0|xt]
⊤A⊤ (

Σy +AV[x0|xt]A
⊤)−1

(y −AE[x0|xt]) . (9)

The moment matching posterior sampling (MMPS; [40]) approximation leads to the best sampling
when compared on linear inverse problems. The trick behind MMPS is to use Tweedie’s variance
formula:

V[x0|xt] = Σt∇⊤
xt
E[x0|xt]. (10)

While the Jacobian, ∇⊤
xt
E[x0|xt], in Equation 10 would be extremely costly to materialize, the

MMPS method avoids instantiating the matrix by the use of the vector-Jacobian product combined
with a conjugate gradient solver [52] for the inverse in Equation 9.

Expectation Maximization: Expectation-maximization (EM) is a framework for finding the max-
imum likelihood estimate for model parameters, θ, in the presence of hidden variables [53]. EM
builds a sequence of model parameters θ0, θ1, . . . , θK that monotonically improve the likelihood of
the data3. We adopt the Monte Carlo EM (MCEM) framework from [40]. We embed a diffusion
model prior into an MCEM framework where the hidden variables are the true signals, x, and the
observations are the noisy, linear transformations of the signal, y = Ax + η. The following two
steps of the framework are then repeated until convergence:

• Expectation (E): Given the current diffusion model parameters θk, sample from diffusion
posterior for each observation: xi ∼ qθk(xi|yi,Ai). Here qθk(xi|yi,Ai) is the distribution
given by sampling from the reverse SDE in Equation 4 while using the posterior score from
Equation 6 and the denoiser model dθk(xt, t).

• Maximization (M): Given the set of posterior samples for the full dataset, {xi}, maximize
the data likelihood with respect to the model parameters θ to get θk+1. In practice, since
the mixing matrix and noise covariance are fixed, the denoising score matching objective
(Equation 5) can be used as a surrogate.

3Note that the MCEM framework used in this work does not give this theoretical guarantee.
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4 Methods

Our goal is to learn the prior distribution p(xβ) of each source {xβ}Ns

β=1 given the observations,
{yα

iα
}, known mixing matrices, Aαβ

iα
, and known noise covariance Σα

iα
(see Section 2). The prior

distribution for each source β will be parameterized by a variational distribution qθβ (xβ), defined by
a denoiser diffusion model, dθβ (xβ

t , t) with parameters θβ . We use an EM framework to iteratively
maximize the likelihood of the set of diffusion model parameters Θk = {θβk}

Ns

β=1, where k indexes
the EM round. We summarize the full method, DDPRISM, in Algorithm 1 provided in Appendix A.
All of the code to reproduce our method and experiments has been made public4.

Maximization Step: For the M step we want to maximize the expected log-likelihood of the full set
of diffusion model parameters with respect to the data with u⊤

t =
[
(x1

t )
⊤, (x2

t )
⊤, . . . , (xNs

t )⊤
]
:

Θk+1 = argmax
Θ

Ep(yα,{Aαβ},u0)

[
log qΘ(u0,y

α, {Aαβ})
]

(11)

= argmax
Θ

Ep(yα,{Aαβ})EqΘk
(u0|yα,{Aαβ})

[
log qΘ(u0,y

α, {Aαβ})
]

(12)

= argmax
Θ

Ep(yα,{Aαβ})EqΘk
(u0|yα,{Aαβ})

[∑
β

log qθβ (xβ
0 )
]
, (13)

where qΘ(u0,y
α, {Aαβ}) is the full joint distribution of the observation, mixing matrices, and

sources under the diffusion model parameters. In getting from Equation 12 to Equation 13 we have
dropped all the terms independent of Θ and taken advantage of the independence of the sources.
Since each distribution qθβ (xβ) is independent of the others, Equation 13 reduces to optimizing
each diffusion model separately on the samples from its corresponding source. We can take an
expectation value over p(yα, {Aαβ}) by drawing examples from the dataset, so all that remains is
defining how to sample from the joint posterior distribution qΘk

({xβ}|yα, {Aαβ}) given the current
set of diffusion model parameters Θk.

Expectation Step: We want to sample from the joint distribution qΘk
({xβ}|yα,Aαβ). To do so we

need the joint posterior score:

∇ut log qΘk
(ut|yα, {Aαβ}) = ∇ut log qΘk

(ut) +∇ut log qΘk
(yα|ut, {Aαβ}). (14)

Because our sources are independent, the first term on the right-hand side of Equation 14 simplifies
to:

∇ut
log qΘk

(ut) =
∑
β

∇ut
log qθβ

k
(xβ

t ), (15)

which is simply the sum of the individual diffusion model scores. The remaining likelihood term in
Equation 14 is given by:

qΘk
(yα|ut, {Aαβ}) =

∫
· · ·

∫
p(yα|{xβ

0}, {Aαβ})
∏
β

qθk(x
β
0 |x

β
t ) dx

β
0 . (16)

To solve this we employ the MMPS approximation [40], wherein each conditional distribution
qθk(x

β
0 |x

β
t ) is approximated by its first and second moments. Since the conditional distributions

are now Gaussian, Equation 16 is simply Ns analytic Gaussian convolutions. The final likelihood
score approximation is then:

∇ut
log qΘk

(yα|ut, {Aαβ}) =

 ∇x1
t
E[x1

0|x1
t ]

⊤(Aα1)⊤

...
∇xNs

t
E[xNs

0 |x
Ns
t ]⊤(AαNs)⊤


×
(
Σα

iα +
∑
β

AαβV[xβ
0 |x

β
t ](A

αβ)⊤
)−1(

yα −
∑
β

AαβE[xβ
0 |x

β
t ]
)
.

(17)

4Code: https://github.com/swagnercarena/DDPRISM
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Posterior Prior

Method PQM ↑ FID ↓ PSNR ↑ SD ↓ PQM ↑ FID ↓ SD ↓

1D Manifold: Cont. 2 Sources
PCPCA [29] 0.0 – 9.35 7.69 0.0 – 7.91
CLVM - Linear [28] 0.0 – 9.58 5.80 0.0 – 5.86
CLVM - VAE [28] 0.0 – 17.15 1.81 0.0 – 2.91
DDPRISM-Gibbs [54] 0.0 – 12.66 3.96 0.0 – 3.92
DDPRISM-Joint [Ours] 0.26 – 38.27 0.35 0.01 – 0.37
1D Manifold: Cont. 3 Sources
PCPCA [29] 0.0 – 6.89 12.57 0.0 – 10.22
CLVM - Linear [28] 0.0 – 11.64 2.03 0.0 – 2.16
CLVM - VAE [28] 0.0 – 13.09 2.22 0.0 – 1.82
DDPRISM-Gibbs [54] 0.0 – 9.50 4.50 0.0 – 4.53
DDPRISM-Joint [Ours] 0.0 – 19.78 0.75 0.0 – 0.78
1D Manifold: Mix. (fmix = 0.1)
DDPRISM-Gibbs [54] 0.0 – 17.69 1.84 0.0 – 1.81
DDPRISM-Joint [Ours] 0.001 – 24.15 0.05 0.0 – 0.04

GMNIST: Cont. Full-Resolution
PCPCA [29] 0.0 22.3 18.99 – 0.0 176.0 –
CLVM - Linear [28] 0.0 101.3 13.30 – 0.0 139.9 –
CLVM - VAE [28] 0.0 18.87 14.56 – 0.0 57.67 –
DDPRISM-Joint [Ours] 1.00 1.57 25.60 – 0.20 20.10 –

GMNIST: Cont. Downsampled
PCPCA [29] 0.0 121.7 14.08 – 0.0 115.4 –
CLVM - Linear [28] 0.0 199.5 12.16 – 0.0 211.4 –
CLVM - VAE [28] 0.0 1008.0 8.48 – 0.0 737.0 –
DDPRISM-Joint [Ours] 0.94 2.36 19.73 – 0.06 12.63 –

Table 1: Comparison of metrics between our methods and baselines for all the experiments shown in
the paper. For each metric, the arrow indicates whether larger (↑) or smaller (↓) values are optimal.
Our method sets or matches the state-of-the-art for all combinations of experiments and baselines.
The posterior metrics are calculated using posterior samples and the true source signals. Since these
samples are not independent, it is possible to get large positive PQMass p-values.

Note that the computational cost of Equation 17 scales linearly with the number of sources. As with
regular MMPS, the Jacobian can be avoided through the use of the vector-Jacobian product, and the
gradient of the variance is ignored. We note that a similar joint posterior equation was concurrently
derived by Stevens et al. [25] for removing structured noise using diffusion models.

Gibbs Sampling: As an alternative to directly sampling the joint posterior, it is also possible to
use a Gibbs sampling method. We derive an extension of the Gibbs diffusion algorithm presented
in Heurtel-Depeiges et al. [54] for MVSS in Appendix B. We note that converging to the posterior
requires a large number of Gibbs sampling rounds for source distributions with complex structure,
thereby rendering the Gibbs sampling approach computationally infeasible for most problems.

Contrastive MVSS Simplification: For the contrastive MVSS problem, each new view introduces
one new source. In theory, this problem is solved by the generic EM method we have presented. In
practice, it can be useful to train the diffusion models sequentially, optimizing θ1 on observations
from view α = 1, optimizing θ2 on observations from view α = 2 with θ1 held fixed, and so on.
This limits the computational cost by reducing the number of source models in the joint sampling for
all but the final view. However, it discards the information about source β present in views α > β.
We summarize this simplified method in Appendix A.
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Figure 1: Comparison of posterior samples for
our joint sampling method and the Gibbs sam-
pling method [54] on the 1D manifold problem.
Both methods are equivalent for the first source.
The plots show the evolution of the marginals for
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source distribution. The last EM lap for sources
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Figure 2: Comparison of the mean Sinkhorn di-
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pling method with eight times as many compu-
tations per EM lap and our method when fmix =

1.0 and Aαβ
iα

depends on β. Even for large mix-
ing fractions, our method can accurately learn the
two distinct underlying source distributions.

5 Results

We present five experimental setups that demonstrate the effectiveness of our method. The first four
experiments are variations of two synthetic problems previously explored in the literature [26–28,
40]. The final experiment is on the real-world scientific task of separating galaxy light from random
light, demonstrating the viability of our method on complex scientific data. Timing comparisons for
all experiments can be found in Appendix G.

5.1 One-Dimensional Manifold Experiments

In this pair of experiments, our sources, xβ , are drawn from distinct, one-dimensional manifolds
embedded in R5. Our observations, yα, lie in R3 and are generated by a random linear projection,
Aαβ ∈ R3×5, whose rows are drawn from the unit sphere, S4. In addition, we add isotropic Gaussian
noise with standard deviation σy = 0.01 for all views. This setup follows previous work [40],
although we now add multiple sources to our observations.

Contrastive MVSS: For the contrastive experiment, each view introduces a new source, and the
mixing matrix is shared among all the sources: Aαβ

iα
= Aiαc

αβ with cαβ = 1 if β ≤ α and cαβ = 0

otherwise. We set Nview = Ns = 3 and generate a dataset of size 216 for each view.

For our joint diffusion sampling approach, we train three denoiser models, dθβ (xβ
t , t), each consist-

ing of a multi-layer perceptron. We employ the simplified contrastive MVSS algorithm described
in Section 4. We train the β = 1, 2, 3 diffusion models for 16, 32, 64 EM laps respectively. For
the sampling we use the PC algorithm with 16,384 predictor steps, each with one corrector step
(PC step). The initial posterior samples are drawn using a Gaussian prior whose parameters are
optimized through a short EM loop. We also train the Gibbs sampling approach with the same de-
noiser architecture and the same number of EM laps. To keep the computational costs (compute5)
on par with our joint diffusion approach, we do 64 Gibbs rounds per expectation step and reduce the
number of PC steps to 256. Because the Gibbs approach performs poorly, we only run it up to the
second view. We also compare to PCPCA, CLVM-Linear, and CLVM-VAE. We provide additional

5We approximate compute by the number of denoiser and vector-Jacobian product evaluations required.
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experimental details on the diffusion parameters, generation of the random manifolds, and baselines
in Appendix C.

As shown in Figure 1, our method learns the first two source distributions nearly perfectly despite
the linear projection to a lower dimension and the presence of noise. The third source distribution
is also learned, although the final posterior samples are not as sharp. This is to be expected: later
sources are only observed together with all the previous sources, making them harder to sample. We
compare the Sinkhorn divergence [55], PQMass p-value [56], and peak signal-to-noise ratio (PSNR)
for our method and the baselines in Table 1. Our method compares favorably, outperforming all the
baselines on both source distributions across all the metrics.

Mixed MVSS: For the mixed experiment, each source is present in every view. The mixing matrix
is given by: Aαβ

iα
= Aiαc

αβ with cαβ = 1 if β = α and cαβ = fmix otherwise. We set Nviews =

Ns = 2 and generate a dataset of size 216 for each view. We consider four different mixing fractions
fmix ∈ {0.0, 0.1, 0.5, 0.9}6. When fmix = 1.0 the problem is fully degenerate and therefore not
identifiable (see Appendix C). For comparison, we also present a mixed experiment with Aαβ

iα
drawn

separately, meaning that every source is fully present in every view but with a different mixing.

For the joint sampling and Gibbs sampling approach, we use the same denoiser models and initial-
ization procedure as the Contrastive MVSS problem. However, because the Gibbs sampling was not
able to learn either source distribution with equivalent compute, we instead used 64 Gibbs rounds
and 2048 PC steps. This means that each EM lap for the Gibbs sampling is eight times as expensive.
We provide additional experimental details in Appendix C.

In Figure 2 we compare the Sinkhorn divergence averaged over both source distributions as a func-
tion of EM laps. We find that our method can learn the underlying source distributions with high
accuracy up to fmix = 0.5. For fmix = 0.9 our method continues to improve its estimate of the
source distributions as the EM laps progress, but it does not converge. If the mixing matrix varies
between the sources, we can reconstruct the source distributions even with fmix = 1.0. By compar-
ison, Gibbs sampling for fmix = 0.1 converges much more slowly despite requiring eight times as
much compute per EM lap.

5.2 Grassy MNIST Experiments

For this pair of experiments, we use the Grassy MNIST dataset first presented in [27]. The dataset
is a contrastive MVSS problem which consists of two views: the first containing random 28 × 28
crops of grass images from ImageNet [57], and the second containing a linear combination of grass
images with 0 and 1 MNIST digits [58]. In addition, we add a small amount of Gaussian noise to
each observation (σy = 0.01). For both experiments, we generate 32,768 observations for the grass
view and 13,824 for the linear combination of digits and grass.

Full-Resolution: In the full-resolution experiment, we set A11
i1

= A21
i2

= I for β = 1 (grass)
and A12

i1
= 0, A22

i2
= 0.5 × I for β = 2 (MNIST). Two example observations can be seen in

Figure 3. For our denoiser models, dθβ (xβ
t , t), we use a U-Net architecture [42, 59] with attention

blocks [60] and adaLN-Zero norm modulation [61]. We employ the simplified contrastive MVSS
algorithm described in Section 4, and we initialize our posterior samples using a Gaussian prior
whose parameters are optimized through 32 EM laps. We train the grass and MNIST diffusion
models for 64 EM laps. For the sampling we use the PC algorithm with 256 PC steps. We compare
to PCPCA, CLVM-Linear, and CLVM-VAE but omit Gibbs sampling since its computational cost
makes it impractical for this problem. We provide additional experimental details in Appendix D.

In Table 1 we compare the FID scores [62], the PSNR, and the PQMass p-value on the posterior
MNIST digit samples across the entire dataset of the MNIST + grass view. For the FID score, we
use a trained MNIST classifier in place of the Inception-v3 network. We also report the FID score
and PQMass p-value on samples from the learned priors. In addition, in left-hand side of Figure 3
we show example posterior draws for our method, PCPCA, and CLVM-VAE.

Our method visually returns the closest posterior samples to the ground truth, and outperforms the
baselines across all the metrics. The prior samples also outperform the baselines on both PQMass p-
value and FID. To better understand the source of this improvement, we run ablation studies over the

6For fmix = 0.0 we no longer have a source separation problem, but we include this setup as a limiting case.
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Observation DDPRISM

No
Posterior

PCPCA CLVM-VAE Truth CLVM-VAE

No
Posterior

PCPCA DDPRISM Observation
Full-Resolution Downsampled

No
Posterior

No
Posterior

Figure 3: Comparison of posterior samples for two example observations in Grassy MNIST exper-
iment. The observations are on the far left and right, the true input sources are in the middle, and
a draw from DDPRISM [ours], CLVM-VAE [28], and PCPCA [29] for both the full-resolution and
downsampled case is shown in between. PCPCA cannot sample the grass posterior, and CLVM-
Linear is omitted for brevity. Our joint diffusion model returns the best reconstruction of both
sources, with near-perfect posterior samples in the full-resolution case.

model architecture, the number of EM laps, the number of initialization laps for the Gaussian prior,
the dataset size, and the number of sampling steps. The full ablation study details and results can be
found in Appendix H. Overall, the method is fairly insensitive to changes in these hyperparameters.
Only extreme choices, such as replacing the U-Net with a small MLP (FID=49.03), conducting
only 2 laps of EM (FID=96.85), removing the Gaussian prior initialization entirely (FID=10.41), or
using only 16 PC sampling steps (FID=5.41) appear to meaningfully reduce performance across our
metrics. The one exception is reductions in the dataset size, where using 1/4th, 1/16th, and 1/64th
of the dataset leads to an FID of 4.64, 10.19, and 38.34 respectively.

Downsampled: In the downsampling experiment, one third of our observations are at full-
resolution, one third are 2x downsampled, and one third are 4x downsampled. Otherwise the dataset
size and underlying source distributions are kept the same. An example observation can be seen in
Figure 3. We compare to PCPCA, CLVM-Linear, and CLVM-VAE, and use the same configurations
as the full-resolution experiment for all four methods. We provide additional details in Appendix D.

In Figure 3 we show example posteriors for 2x downsampling, and in Table 1 we report the FID
score, the PSNR, and the PQMass p-value for the posterior samples across the dataset. We also
report the FID score and PQMass p-value of draws from the prior distribution. As with the full-
resolution dataset, our method visually returns the closest posterior samples to the ground truth for
both sources and is SOTA across the baselines. Notably, while both of the CLVM methods and
PCPCA struggle with the downsampled images, our method returns visually plausible digits and
comparable metric performance to the full-resolution experiment.

5.3 Galaxy Images

In astronomical images, instrumental noise, cosmic rays, and random foreground and background
objects along the line of sight contaminate observations (“random” light). Separating the flux of
these contaminants from the target object is a contrastive MVSS problem. There are two source
populations: random light and galaxies. We also get two views: random sightlines that are uncor-
related with galaxies, and targeted sightlines built from a catalog. The targeted sightlines contain
both the galaxy and random light. To build our views we use archival Hubble Space Telescope ob-
servations of the COSMOS survey [63]. For the galaxy view, we select targets using the Galaxy
Zoo Hubble object catalog [64], and for the random view we make cutouts at random locations in
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Figure 4: Observations of galaxy images along with posterior samples for the random and galaxy
source using our method. Images are split into high-contrast (upper region) and low-contrast (lower
region) colormaps to highlight the range of features. The galaxy source captures the central light
while the small-scale fluctuations and the uncorrelated light is separated into the random source.

the COSMOS field. Each cutout is 128 × 128 pixels. For our denoiser models, dθβ (xβ
t , t), we use

the same U-Net architecture as for Grassy MNIST, but change the model depth and size to model
the larger images. We employ the simplified contrastive MVSS algorithm, and we train the random
diffusion model for 32 EM laps and the galaxy diffusion model for 16 EM laps. For the sampling we
use the PC algorithm with 256 PC steps. We provide additional experimental details in Appendix E.

In Figure 4 we show sample galaxy observations along with a random and galaxy source posterior
sample for each observation. While we do not have access to the ground truth, a visual inspection of
the source posteriors samples show that our model is effectively identifying the central galaxy light
and separating it from the random light. Notably, the background around the galaxy light appears
to be nearly flat at zero. We make the full dataset of 79k pristine galaxy images publicly available7.
Generating the full dataset required 34 hours on four NVIDIA H100 GPUs.

6 Discussion and Limitations

We present DDPRISM, a data-driven framework for tackling general MVSS problems using diffu-
sion model priors. To our knowledge, it is the first method to provide a unified solution for linear
MVSS problems, achieving state-of-the-art performance across diverse experiments. We further
demonstrate that DDPRISM delivers high-quality source separation on a complex real-world astro-
physical dataset.

Despite these advances, the framework has important limitations. First, it is restricted to linear
source combinations, which excludes nonlinear generative processes like occlusion. The Gaussian
noise assumption can be relaxed through the inclusion of an additional “noise” source, but only if
an extra view is available. We also assume exact knowledge of the mixing matrix, whereas scientific
applications often involve probabilistic rather than deterministic mixing. These assumptions limit
our generality and motivate extensions that relax linearity, Gaussianity, and deterministic mixing.

Computationally, our method requires expensive sampling that is compounded by the EM-style
training. This places limits on the resolution, dataset size, and number of sources that can be feasi-
bly modeled. Our baselines are far cheaper, albeit at the cost of sample quality. Performance also
degrades with smaller datasets, creating a tension between the benefits of large datasets and the com-
putational demands of the method. Replacing our initialization method with random initializations
degrades sample quality, suggesting that clever initialization methods may improve convergence and
alleviate computational bottlenecks. Nevertheless, DDPRISM establishes diffusion-based MVSS as
a promising tool for disentangling structured signals across scientific domains.

7https://doi.org/10.5281/zenodo.17159988
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? Answer: [Yes]

Justification: The method is tested in several different settings. Performance is compared
against multiple previous works.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6 for a discussion of limitations. Main points include the assump-
tions of a linear observation model, deterministic mixing, and Gaussian noise model, and
the high computational cost of the method.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: While we include a number of equations in the paper, there are no formal
theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Datasets used for the experiments are either previously established (1D Man-
ifolds, Grassy MNIST), or in the galaxy images case, are made public. The methods are
described in sufficient detail to be reproduced, and the source code has been made public.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code, for both the method and for simulating / querying the datasets, is pub-
licly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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Algorithm 1: MVSS WITH JOINT DIFFUSION

Input: Dataset D =
{
yα
iα
, {Aαβ

iα
}Ns

β=1,Σ
α
iα

}Nviews

α=1
, number of sources Ns, number of views

Nviews, initial denoiser parameters Θ0 = {θβ0 }
Ns

β=1, number of EM rounds K
Output: Trained diffusion model priors with denoiser parameters ΘK

for k ← 0 to K − 1 do
foreach

(
yα
iα
, {Aαβ

iα
},Σα

iα

)
∈ D do{

xβ
iα

}Ns

β=1
∼ qΘk

(
{xβ}|yα

iα
, {Aαβ

iα
}
)
// E step using equation 14

end
Θk+1 = argmaxΘ

[∑
iα

∑
β log qθβ (xβ

iα
)
]
// M step using equation 5

end
return ΘK

Algorithm 2: SIMPLIFIED CONTRASTIVE MVSS WITH JOINT DIFFUSION

Input: Dataset D =
{
yα
iα
, {Aαβ

iα
}Ns

β=1,Σ
α
iα

}Nviews

α=1
, Aαβ

iα
= 0 if β > α, number of sources Ns,

number of views Nviews = Ns, initial denoiser parameters Θ0 = {θβ0 }
Ns

β=1, number of
EM rounds K

Output: Trained diffusion model priors with denoiser parameters ΘK

for a← 1 to Nviews do
for k ← 0 to K − 1 do

foreach
(
yα
iα
, {Aαβ

iα
},Σα

iα

)
∈ D with α = a do{

xβ
iα

}a

β=1
∼ q{θβ

k}
a
β=1

(
{xβ}|yα

iα
, {Aαβ

iα
}
)
// E step using equation 14

end
θak+1 = argmaxθa

[∑
iα

log qθa(xa
iα
)
]
// M step for only source a

end
end
return ΘK

A Joint Sampling Algorithms

In Algorithm 1 we present an algorithmic summary of our MVSS method using joint sampling.
This method conducts a joint EM training for all sources simultaneously. In Algorithm 2 we present
a summary of the contrastive MVSS simplification. This method trains each source sequentially
under the assumption that view α = 1 only contains source β = 1, view α = 2 only contains
sources β ∈ {1, 2}, and so on (see Section 4). While Algorithm 2 discards the information about
source β for views α ̸= β, it reduces the computational complexity.

B Gibbs Sampling

Gibbs sampling with diffusion models, originally proposed for blind denoising [54], can be easily
extended to the full MVSS problem. We start by selecting a source βg . Given the t = 0 source
realizations for {xβ′

0 }β′ ̸=βg , an observation yα, a set of known mixing matrices {Aαβ}Ns

β=1, and the
noise covariance Σα, then the posterior score for the remaining source becomes:

∇
x
βg
t

log p(x
βg

t |yα, {Aαβ}Ns

β=1, {x
β′

0 }β′ ̸=βg
) =∇

x
βg
t

log p(x
βg

t ) +

∇
x
βg
t

log p(yα|xβg

t , {Aαβ}Ns

β=1, {x
β′

0 }β′ ̸=βg ).

(18)
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For conciseness, we can introduce the observation residual rα = yα −
∑

β′ ̸=βg
Aαβ′

xβ′

0 . We can
then write the remaining likelihood term in Equation 18 as:

p(yα|xβg

t , {Aαβ}Ns

β=1, {x
β′
}β′ ̸=βg

) =

∫
p(rα|xβg

0 )p(x
βg

0 |x
βg

t )dxβg

0 , (19)

which is identical to Equation 7 with the observation replaced by the residual. Since Gibbs sampling
fixes all but one source at a time, the posterior evaluation reduces to traditional posterior sampling
with a diffusion prior with the observation replaced by the residual. An implementation of the Gibbs
sampling procedure for MVSS can be found in the provided code.

C One-Dimensional Manifold Experiment Details

We generate random one-dimensional manifolds following the steps outlined in [65]. In all experi-
ments in Section 5.1, the smoothness parameters for the manifolds corresponding to the first, second,
and third source distributions are set to 3, 4, and 5 respectively. Similarly, we use the same denoiser
architecture for each source and each experiment. The denoiser is a multi-layer perceptron (MLP)
composed of 3 hidden layers with 256 neurons and SiLU activation function [66], followed by a
layer normalization function [67]. The denoiser is conditioned on noise and noise embeddings are
generated with the sinusoidal positional encoding method [60].

For the metrics, we use 16384 samples for the Sinkhorn divergence evaluation, 1024 samples for the
PQMass evaluation, and 16384 samples for the PSNR evaluation. Note that we use the same number
of samples from the true distribution and the prior / posterior distribution for all metrics. Metrics
on the posterior samples are calculated by comparing to the true source value for the corresponding
observation. For the PQMass evaluation, we use 1000 tessellations and otherwise keep the default
parameters.

C.1 Contrastive MVSS

In the contrastive MVSS experiment, we use the simplified contrastive MVSS algorithm to train the
denoiser models. We train the β = 1, 2, 3 denoiser models for 16, 32, and 64 EM laps respectively.
Following Rozet et al. [40], we reinitialize the optimizer and learning rate after each EM lap while
keeping the current denoiser parameters. The MLP takes as input a concatenated vector of the
diffused sample at time t and the corresponding noise embedding. We summarize other training
hyperparameters in Table 2.

For the Gibbs sampling approach we use the same dataset (up to β = 2), denoiser architectures
and training hyperparameters as for the joint posterior sampling approach. The posterior sampling
parameters are set to 64 Gibbs rounds with 256 PC steps, and we maintain one corrector step per
predictor step. The number of PC steps is lowered so that the number of denoiser and vector-
Jacobian product evaluations per EM lap are roughly equivalent for Gibbs and joint sampling.

For both the Gibbs and joint sampling approaches, the denoisers are initialized using samples from
a Gaussian prior. Since we are using our contrastive algorithm, only the diffusion model for the
current source, β, is replaced by the Gaussian prior, and the remaining diffusion models for sources
β′ < β are kept to the optimum from the previous views (see Algorithm 2). The posterior is then
sampled as usual. To optimize the parameters of this Gaussian prior, we use the same EM procedure
as for the diffusion model. The final Gaussian prior is used to generate an initial set of posterior
samples which are used to train the initial diffusion model, dθβ

0
(xt, t).

For the baselines, we use modified implementations built for incomplete data. For PCPCA, we
minimize a loss function defined across our two views, β = bkg, targ:

L(W, µ) = −1

2

Ntarg∑
i=1

log det(Ci) +
(
ytarg
i −Atarg

i µ
)⊤

C−1
i

(
ytarg
i −Atarg

i µ
)

+
γ

2

Nbkg∑
j=1

log det(Dj) +
(
ybkg
j −Abkg

j µ
)⊤

D−1
j

(
ybkg
j −Abkg

j µ
) ,

(20)
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Parameter Contrastive MVSS Mixed MVSS

MLP Parameters
Activation SiLU SiLU
Time Embedding Features 64 128

Training Parameters
Optimizer Adam Adam
Scheduler Linear Linear
Initial Learning Rate 10−3 10−4

Final Learning Rate 10−6 10−5

Gradient Norm Clipping 1.0 1.0
Optimization Steps per EM Lap 65,536 65,536
Batch Size 1024 1024
Gaussian Initialization EM Laps 16 8192

Sampling Parameters
Noise Minimum 10−3 5× 10−3

Noise Maximum 101 1.5× 101

Conjugate Gradient Denominator Minimum 0.0 10−3

Conjugate Gradient Regularization 0.0 10−3

Predictor-Corrector (PC) Steps 16,384 16,384
Corrections per PC Step 1 1
PC τ 10−1 8× 10−2

Table 2: Hyperparameters for denoiser training and sampling on the one-dimensional manifold
experiments.

where µ is the learnable mean parameter for the target source. The views, ybkg
j ,ytarg

i , are the same as
those defined in Section 3 but with the mixing matrix Abkg

j applied to the sources underlying ybkg
j and

the mixing matrix Atarg
i applied to the sources underlying ytarg

i . Here, γ is a tunable parameter that
controls the relative importance of the variations in the background and target data. The dependence
on the weights, W, comes from the two covariance matrices given by:

Ci = Atarg
i WW⊤ (

Atarg
i

)⊤
+ σ2

i I (21)

Dj = Abkg
j WW⊤

(
Abkg

j

)⊤
+ σ2

j I, (22)

where σi is the standard deviation of the observation noise. Note that we only optimize the weights
and the mean, since the noise is known. We initialize the weights using the empirical covariance
derived from source values given by multiplying the observations with the pseudo-inverse of the
mixing matrix. We find that this smart initialization considerably improves the performance of
PCPCA on incomplete data.

For CLVM-Linear and CLVM-VAE, we explicitly account for the mixing matrix in both the encod-
ing and decoding steps. For CLVM-Linear, the encoded distribution is given by a small modification
to the original equations for the latent variable distributions:

Σbkg
j =

1

σ2
j

(
σ2
j I+ S⊤S

)
(23)

µbkg
j =

1

σ2
j

Σbkg
j S⊤(ybkg

j − µbkg) (24)

Σjoint
i =

1

σ2
i

(
σ2
i I+M⊤M

)
(25)

µjoint
i =

1

σ2
i

Σjoint
i M⊤(yjoint

i − µjoint), (26)

where Σbkg
j and µbkg

j are the covariance and mean for the latents of ybkg
j . The covariance and mean

Σjoint
i and µjoint

i correspond to the joint latents (zbkg, ztarg) for (yjoint
i )⊤ = [(ybkg

i )⊤, (ytarg
i )⊤]. The
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Parameter Grassy MNIST Galaxy

U-Net Parameters
Channels per Level (32, 64, 128) (64, 128, 256, 256, 512)
Residual Blocks per Level (2, 2, 2) (2, 2, 2, 2, 2)
Attention Heads per Level (0, 0, 4) (0, 0, 4, 8, 16)
Dropout Rate 0.1 0.1
Activation SiLU SiLU

Training Parameters
Optimizer Adam Adam
Scheduler Cosine Decay Cosine Decay
Initial learning rate 10−3 10−5

Gradient Norm Clipping 1.0 1.0
Optimization Steps per EM Lap 4096 4096
Batch size 1920 64
Gaussian Initialization EM laps 32 4

Sampling Parameters
Noise Minimum 10−4 10−2

Noise Maximum 102 101

Conjugate Gradient Denominator Minimum 10−2 10−3

Conjugate Gradient Regularization 10−6 10−2

Conjugate Gradient Error Threshold 5× 10−2 101

Predictor-Corrector (PC) Steps 256 64
Corrections per PC Step 1 1
PC τ 10−2 10−1

EMA decay 0.999 0.995
Table 3: Hyperparameters for denoiser training and sampling for the Grassy MNIST experiments
and the Galaxy experiment. During sampling, conjugate gradient calculations whose total residuals
exceed the conjugate gradient error threshold are recalculated using the denominator minimum and
regularization.

matrices S,W are the background and target factor loading matrix in CLVM, and M is the con-
catenated factor loading matrix, M⊤ = [S⊤,W⊤]. For CLVM-VAE, the encoded distribution is
calculated by explicitly passing in the mixing matrix to the encoder network. For both CLVM-
Linear and CLVM-VAE, the decoder outputs the complete source signal and the variational loss is
calculated by first transforming the sources using the known mixing matrices. The optimization is
done by maximizing the evidence lower bound as described in [28].

For PCPCA, CLVM-Linear, and CLVM-VAE, we optimize the hyperparameters using a 100 point
sweep with the default Bayesian optimization used in optuna [68]. The results are reported using the
best hyperparameters for each method on the posterior Sinkhorn divergence for three sources. For
PCPCA this is γ = 0.3 and 5 latent dimensions using a linear learning rate from 10−3 to 0.0 over 10
epochs8. For CLVM-Linear, this was a dimensionality of 4 for the background latents and 5 for the
source latents, with a batch size of 1024, a cosine learning rate initialized to 10−4, and 1024 epochs
of training. For CLVM-VAE, the encoder architecture were multi-layer perceptrons composed of 3
hidden layers with 256 neurons and a dropout rate of 0.1 followed by a SiLU activation function
and a layer normalization function. The decoders follow the same structure. The CLVM-VAE was
trained with a batch size of 1024, a cosine learning rate initialized to 5× 10−4, and 1024 epochs of
training.

C.2 Mixed MVSS

In the mixed MVSS experiment, we use Algorithm 1 to train the diffusion models. We train for 70
EM laps and reinitialize the optimizer and learning rate after each EM lap while keeping the current

8More iterations hampered performance in the hyperparameter sweep.
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Encoder Decoder FID

MLP MLP 18.87
U-Net (full-depth) MLP 20.14
U-Net (1 hidden channel) MLP 45.37
U-Net (full-depth) U-Net (full-depth) 388.26
U-Net (1 hidden channel) U-Net (1 hidden channel) 390.27

Table 4: Evaluation of different CLVM-VAE encoder-decoder architectures for MVSS trained on
Grassy MNIST.

denoiser parameters. To condition on the time embedding, the output of each dense layer is passed
through a FiLM layer [69]. We summarize other training hyperparameters in Table 2.

For the Gibbs sampling, only the sampling parameters are changed. To improve performance, the
number of Gaussian EM laps is reduced to 16, and we use 512 Gibbs rounds with 256 PC steps. As
a result, each EM lap of the Gibbs model is eight times as expensive as the joint sampling laps, so
we only run 13 laps of EM.

For both the Gibbs and joint sampling approaches, the denoisers are initialized using samples from a
Gaussian prior. Unlike for the contrastive algorithm, all of the diffusion models are replaced by the
Gaussian prior for initialization. The posterior is then sampled as usual. To optimize the parameters
of these Gaussian priors, we use the same EM procedure as for the diffusion model. Note that the
resulting Gaussian prior will differ by source. The final Gaussian priors are used to generate an
initial set of posterior samples which are used to train the initial diffusion models, dθβ

0
(xt, t) for all

β.

C.2.1 Identifiability

In the case where ffrac = 1, the mixed MVSS problem cannot be solved. Consider the vector
z1 = x1 + x2 and the trivial vector z2 = 0. Then, for any observation iα, we can write:

yα
iα = Aiα

(
x1
iα + x2

iα

)
+ ηαiα (27)

= Aiα

(
z1iα + z2iα

)
+ ηαiα . (28)

However, p(z2) = δ(z2). Since we have constructed x1 and x2 to lie on 1D manifolds, we know
p(z2) ̸= p(x1) and p(z2) ̸= p(x2). We have found two new sources that match our observations
even though one of the sources is guaranteed to not have the same distribution as either of the original
sources. Therefore, there is not a unique solution to the source priors when ffrac = 1.

D Grassy MNIST Experiments

The MNIST dataset is available under a CC BY-SA 3.0 license [58]. The ImageNet dataset is made
available for non-commercial purposes [57]. We generate our grass images by taking random 28×28
pixel crops from ImageNet images with the grass label. We use a different set of random crops for
each view. For our digits, we use images with the 0 and 1 label. For both the grass and MNIST
images, we normalize the pixel values to the range [0, 1].

We use the same U-Net denoiser architecture for each source and each experiment. The denoiser and
training parameters are presented in Table 3. For sampling, we use an exponential moving average
of the model weights. The full sampling and U-Net code is provided with out codebase. For the
initialization, we use a Gaussian prior optimized via EM as described in Appendix C.

For the metrics, we use 8192 for the FID evaluation, 512 samples for the PQMass evaluation, and
8192 samples for the PSNR evaluation. We use the same number of samples from the true dis-
tribution and the prior / posterior distribution for all metrics. Metrics on the posterior samples are
calculated by comparing to the true source value for the corresponding observation. For the PQMass
evaluation, we use 1000 tessellations and otherwise keep the default parameters.

26



EM
 L

ap
 1

EM
 L

ap
 2

EM
 L

ap
 4

EM
 L

ap
 8

EM
 L

ap
 1

6

Figure 5: Random samples of galaxy posteriors across EM iterations in the galaxy–image experi-
ment. Early iterations fail to isolate galaxy light and show strong small-scale fluctuations. By iter-
ation 4, small-scale fluctuations are separated but residual uncorrelated light remains. By iteration
16, the uncorrelated light is assigned to the random posterior component, leaving nearly noiseless,
isolated galaxy posteriors. As in Figure 4, images are split into high-contrast and low-contrast col-
ormaps to highlight the range of features.

D.1 Grassy MNIST Baselines

We optimize the PCPCA, CLVM-Linear, and CLVM-VAE hyperparameters using a 100 point sweep
with the default Bayesian optimization used in optuna. The results we present are using the best
hyperparameters on the FID for the full-resolution experiment.

For PCPCA, we use the traditional algorithm on the full-resolution experiment. On the downsampled
experiment we fit the PCPCA parameters on the full-resolution subset and then sample using the
equation for incomplete data. The PCPCA tunable parameter is set to γ = 0.39 and we use 5 latent
dimensions.

For CLVM-Linear and CLVM-VAE, we use the traditional algorithm on the full-resolution exper-
iment. On the downsampled experiment we follow the same procedure outlined in Appendix C.1.
For CLVM-Linear, we set the dimensionality of the background latents to 265 and the dimensional-
ity of the target latents to 6. We use a cosine learning rate with initial value 1.2× 10−5 trained over
batches of 1920 images for 214 steps. For CLVM-VAE, we set the dimensionality of the background
latents to 380 and the dimensionality of the target latents to 15. The cosine learning rate is used
again, but now with an initial value of 2× 10−4, a batch size of 256, and a total of 214 steps.

The CLVM-VAE method uses an MLP with three hidden layers of size 70 for the encoder and
decoder. The number of hidden layers was optimized during the hyperparameter sweep, but the
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Training Time Inference Time / Sample

1D GMNIST Galaxy 1D GMNIST Galaxy
Method Manifold Full Res. Images Manifold Full Res. Images

PCPCA [29] 5 s 1 m – < 0.1 ms 1.5 ms –
CLVM - Linear [28] 1.5 m 10 m – < 0.1 ms 1 ms –
CLVM - VAE [28] 18 m 33 m – < 0.1 ms 1 ms –
DDPRISM-Joint [Ours] 32 h 68 h 48 h 22 ms 90 ms 1.5 s

Table 5: Comparison of computational costs for our method and baselines for three experiments
shown in the paper: contrastive 1D manifold experiment with 2 source distributions, full-resolution
Grassy MNIST experiment, and the galaxy experiment. Training time refers to the amount of time
each method takes to train its corresponding model. Inference time per sample is the time a method
takes to obtain a single posterior sample for an observation, given a trained model. 1D Manifold and
Grassy MNIST experiments were run on A100 GPUs, and Galaxy Image experiments were run on
H100 GPUs.

encoder and decoder architectures were selected as part of a separate ablation study whose results
are summarized in Table 4. In the ablation study, we compared three encoder choices:

• A fully connected MLP.

• A full-depth U-Net identical to the “downsampling” half of U-Net used for our diffusion
models without skip connections.

• A convolutional neural network equivalent to our U-Net implementation with 1 hidden
channel (no downsampling).

We also compared two decoder choices:

• A fully connected MLP.

• A convolutional neural network equivalent to our U-Net implementation with 1 hidden
channel (no upsampling)

We found that more complex architectures negatively impacted performance, and that the best per-
formance was achieved with a simple MLP decoder and encoder.

E Galaxy Images Experiment

We query data hosted by the Mikulski Archive for Space Telescopes (MAST), which is available in
the public domain. We retrieve data files using the astroquery package, which has a 3-clause BSD
style license. We generate our galaxy images by querying 128 × 128 pixel cutouts centered on the
Galaxy Zoo Hubble Catalog [64]. We generate our random fields by making 128 × 128 cutouts at
random coordinates within the larger COSMOS exposures. This results in 78,707 galaxy images
and 257,219 random images. We apply three normalizations in this order: (1) we pass the images
through an arcsinh transform with a scaling of 0.1, (2) we scale the data by a factor of 0.2, and (3)
we clip the maximum absolute pixel value to 2.0. These three transformations help preserve the
morphological features in the brightest sources while stabilizing the diffusion model training.

We use the same U-Net denoiser architecture for the galaxy and random source. The denoiser and
training parameters are presented in Table 3. For sampling, we use an exponential moving average
of the model weights. For initialization, we use a Gaussian prior optimized via EM as described in
Appendix C.1. All of the code required to reproduce this experiment can be found in the DDPRISM
codebase. For completeness, in Figure 5 we show the evolution of the galaxy posterior samples as a
function of EM laps.
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Posterior Prior

GMNIST Full Res. PQM ↑ FID ↓ PSNR ↑ PQM ↑ FID ↓

Model Architecture
MLP 0.05 49.03 17.93 0. 215.36
U-Net, small 1.00 2.47 25.28 0.06 15.38
U-Net (default) 1.00 1.57 25.60 0.20 20.10

Training Length (EM laps)
2 0. 96.85 16.62 0. 199.70
8 1.00 0.04 27.15 0.14 17.35
32 1.00 2.26 25.66 0.08 27.96
64 (default) 1.00 1.57 25.60 0.20 20.10

Initialization Laps
0 (random initialization) 0.97 10.41 23.35 0.01 22.22
4 1.00 0.00 26.80 0.15 24.33
16 1.00 0.00 27.02 0.21 6.31
32 (default) 1.00 1.57 25.60 0.20 20.10

Dataset Size
Full Dataset (default) 1.00 1.57 25.60 0.20 20.10
1/4th Dataset 1.00 4.64 23.67 0.14 21.36
1/16th Dataset 0.99 10.19 20.97 0.07 15.16
1/64th Dataset 0.0 38.34 15.34 0.0 36.55

Sampling Steps
16 0.87 5.41 21.01 0. 30.20
64 1.00 0.88 25.02 0.24 3.58
256 (default) 1.00 1.57 25.60 0.20 20.10
1024 1.00 0.59 26.50 0.08 7.18

Table 6: Ablation study of individual components and parameters of our method on the full-
resolution grassy MNIST experiment. For each metric, the arrow indicates whether larger (↑) or
smaller (↓) values are optimal. The values used for the Grassy MNIST (GMNIST) experiment in
Section 5.2 are denoted as default values. While most of the default values correspond to the optimal
performance, we find that decreasing the length of the training and using fewer rounds of Gaussian
EM improve the overall performance of the method.

F Additional Diffusion Model Details

For our diffusion models, we use the preconditioning strategy from Karras et al. [45]. Our variance
exploding noise schedule is given by:

σ(t) = exp[log(σmin) + (log(σmax)− log(σmin)) ∗ t], (29)

with minimum noise σmin and maximum noise σmax. During training, we sample the time parameter
t from a beta distribution with parameters α = 3, β = 3.

G Runtime and Computational Cost

We provide a detailed comparison of the computational costs between our method and baselines in
Table 5. All timing was done on NVIDIA A100 GPUs with the exception of the galaxy images
experiment that was run on H100s. Both 1D manifold experiments used one A100 (40GB) GPU,
both Grassy MNIST experiments used four A100 (40GB) GPUs, and the Galaxy Image experiments
used four H100 (80GB) GPUs. Our method is more computationally expensive than the baselines,
almost entirely due to the cost of sampling from the diffusion model. However, this computational
cost comes with significant improvements in performance and sample quality.
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H Ablation Studies

In order to clarify the importance of the individual components of our method, we conduct a series
of ablation studies which are summarized in Table 6. We explored the effect of varying the following
components on the performance of the method:

• Diffusion model architecture: We find the model architecture to be important for perfor-
mance: using an MLP-based architecture (5 hidden layers with 2048 hidden features per
layer) gives poor results across all metrics. However, scaling down the UNet model (chan-
nels per level: (32,64,128)→(16,32), residual blocks per level: (2,2,2)→(2,2), embedding
features: 64→16, attention head moved up one level) does not degrade performance appre-
ciably.

• Training length: We observe that the model achieves good performance after as few as 8
EM iterations and that longer training leads to a slight degradation in performance.

• Initialization strategy: The number of Gaussian EM laps used to generate the initial sam-
ples (and train the initial diffusion model) has minimal impact on performance. Only start-
ing from a randomly initialized model considerably reduces the performance of the method.

• Training dataset size: We train our method using 1/4th, 1/16th, and 1/64th of the origi-
nal grass and grass+MNIST datasets. The 1/16th and 1/64th runs are given 1/4th as many
EM laps as the original training to account for the smaller dataset, but all other hyper-
parameters are unchanged. There is a clear degradation in performance as the grass and
MNIST datasets are reduced in size. However, even with 1/16th of the original dataset
(2048 grass images, 512 MNIST digits) our method still outperforms the baselines run on
the full dataset. We note that there exists a few strategies for improving diffusion model
performance in the low-data regime [45, 70–73].

• Sampling steps: Increasing the number of predictor steps used to sample from the posterior
generally improves the performance of our method. However, we find that the method
performs well even with the number of sampling steps reduced to 64.

The overall robustness of our method to most ablation highlights that its effectiveness is driven by
the ability to directly sample from the posterior given our current diffusion model prior. Because
the likelihood is often constraining, this enables us to return high-quality posterior samples even
when the prior specified by our diffusion model is not an optimal fit to the empirical distribution. As
evidence for this point, we note the large gap in performance between posterior and prior samples
on the Grassy MNIST experiments (see Table 1).
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