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Abstract

In multi-turn dialog understanding, semantic001
frames are constructed by detecting intents and002
slots within each user utterance. However, re-003
cent works lack the capability of modeling004
multi-turn dynamics within a dialog where the005
contexts are mostly adopted for updating di-006
alog states instead of capturing overall intent007
semantic flows in spoken language understand-008
ing (SLU). Moreover, humans rely on common-009
sense knowledge to better illustrate slot seman-010
tics revealed from word connotations, which011
many works only considered for end-to-end re-012
sponse generation. In this paper, we propose to013
amend the research gap by equipping a BERT-014
based SLU framework with knowledge and015
context attention modules. We propose three016
attention mechanisms to induce both global and017
local attention on knowledge triples. Experi-018
mental results in two complicated multi-turn019
dialog datasets have demonstrated significant020
improvements of our proposed framework by021
mutually modeling two SLU tasks with com-022
monsense knowledge and dialog contexts. At-023
tention visualization also provides nice inter-024
pretability of how our modules leverage knowl-025
edge across the utterance.026

1 Introduction027

In conventional task oriented dialog systems, spo-028

ken language understanding (SLU) modules aim029

to transform utterances into meaningful seman-030

tic representations for dialog management (Weld031

et al., 2021; Zhang et al., 2020). It mainly de-032

tects associated dialog acts or intents and extracts033

key slot information as so-called ‘semantic frames’034

(Abbeduto, 1983), shown in Table 1. In order to035

understand an utterance, besides intra-sentence se-036

mantics, humans usually manipulate commonsense037

knowledge to associate previous contexts with cur-038

rent relevant objects. In Table 1, knowledge triples039

representing background experiences and act rela-040

tions such as ‘Inform’ may follow ‘Request’ acts041

Speaker Utterance

1. User Is there something that’s
maybe a good intelligent comedy?

Act & Slots: Request (genre: comedy)

Knowledge:
(intelligent; related to; well_informed)
(comedy; related to; comic)
(comedy; is a; drama)

2. System
Whiskey Tango Foxtrot is the only
Adult comedy I see playing in your
area. Would you like to try that?

Act & Slots:

Inform (movie: Whiskey Tango Foxtrot)
Inform (genre: Adult comedy)
Inform (distance limits: in your area)
Confirm_question

Knowledge:

(foxtrot; related to; dance)
(foxtrot; related to; rhythm)
(adult; capable of; work)
(area; is a; region)

Table 1: Excerpt of a single turn within a dialog with
corresponding dialog acts, slots and knowledge samples
that are related to keywords in the utterance.

may benefit the prediction of overall intent seman- 042

tics and slot values. 043

However such intuition has usually not been em- 044

phasized when automating SLU tasks. In early 045

attempts of SLU systems, utterances were isolated 046

and analyzed separately for user intents and se- 047

mantic slots (Raymond and Riccardi, 2007; Liu 048

et al., 2017). Models that maximize the joint dis- 049

tribution likelihood were then proposed to allow 050

transitions between two tasks (Liu and Lane, 2016; 051

Wang et al., 2018; Wu et al., 2021a; Li et al., 2018a). 052

Some works also tackled utterances with multiple 053

intents (Qin et al., 2019; Rashmi Gangadharaiah, 054

2019; Qin et al., 2020). While driven by large 055

pretrained corpus, these methods still fall short of 056

employing complete dynamic interactions within 057

dialogs. Some works have then integrated previous 058

dialog contexts for more robust SLU (Wang et al., 059

2019; Gupta et al., 2019; Su et al., 2021; Wu et al., 060

2021c). However, many of them cannot capture 061

dialog flows well with RNN encoders. 062

Despite considering contexts, relying simply on 063

1



training dialog corpus may limit the machine to064

fully explore the relations between contexts and065

slots without external commonsense knowledge.066

Much efforts have pushed forward the progress067

in knowledge grounded dialog generation (Wang068

et al., 2021b; Zhao et al., 2020; Zheng et al., 2021),069

where relevant documents or a knowledge base aux-070

iliarily guide the language autoregressive progress.071

Term-level denoising (Zheng et al., 2021) or fil-072

tering techniques (Wang et al., 2021b) refine the073

adopted knowledge for better semantic considera-074

tions. However, construction of semantic frames075

may also require knowledge induction in more com-076

plex dialogs. Wang et al. (2019) has proposed to077

adopt knowledge attention for joint tasks. However,078

it adopts a single LSTM layer to couple all knowl-079

edge and contexts without filtering, which cannot080

model complex interactions well and is ambiguous081

in how these two components affect each other.082

To solve the above concerns, we propose a083

Global and Local Knowledge Attention Frame-084

work (GLKA) to amend the research gap in joint085

SLU tasks by effectively incorporating dialog086

history and external knowledge. We propose087

three different attention modules that consider lo-088

cal and global awareness of knowledge at token089

and utterance levels respectively. After obtaining090

knowledge-enriched vectors, we predict intents and091

slots coherently with two LSTM decoders with dif-092

ferent fused inputs. Experiment results have shown093

superior performances of our methods in manipu-094

lating contexts and knowledge and beat all compet-095

itive baselines. Our contributions are as follows:096

1. We propose GLKA framework to fill the void of097

exploring relations between commonsense knowl-098

edge and dialog history in recent SLU works. It099

dynamically selects knowledge with contexts for100

multiple dialog act and slot filling detection.101

2. We demonstrate the benefits of knowledge and102

context induction in the low resource setting and103

non-alphabetic slots.104

3. Experimental and attention visualization re-105

sults show that our model achieves superior per-106

formances over several competitive baselines and107

provides good interpretability of how our model108

utilizes the knowledge.109

2 Problem Formulation110

For each utterance xn = {wn
1 , w

n
2 , . . . , w

n
T } in a111

task-oriented dialog X with N utterances, given112

the domain ontology of a dialog act set A and a113

slot set S, we aim to find one or more acts {ani } 114
1 and a sequence of slot tags {sn1 , sn2 , . . . , snT } to 115

construct a semantic frame. Namely, we hope to 116

maximize the joint log likelihood of A and S in 117

Eq. 1 given a parametrized model θ, its context 118

Cn = {x1, . . . , xn−1} and associated knowledge 119

Kn = ϕ(KG, xn) for the current utterance xn. We 120

deem KG as an external large knowledge base with 121

knowledge triples and ϕ(·) helps to extract related 122

knowledge pairs for xn. It will be critical to match 123

correct knowledge based on current dialog history 124

and the utterance for better dialog understanding. 125

L(A,S) ≜
∑
n

log P (An, Sn | xn,Cn,Kn; θ)

(1) 126

3 Methodology 127

3.1 Context Attention 128

Our overall framework is illustrated in Figure. 1. 129

To allow information flow across the dialog, we 130

first encode the entire dialog with a token-level 131

BERT (Devlin et al., 2019) encoder and a turn- 132

level context-aware transformer encoder. Instead 133

of concatenating all sentences which may cause 134

an extreme sequence length, we first generate the 135

token-level representations H = {h1, h2, . . . , hN} 136

for each utterance xn in a dialog X by taking vec- 137

tors from each [CLS] token. During testing at turn 138

n, we may directly reuse these calculated represen- 139

tations {h1, h2, . . . , hn−1} until turn n− 1. 140

In contrast with other contextual SLU (Wang 141

et al., 2019; Gupta et al., 2019) with hierarchical 142

structures, we succinctly introduce a unidirectional 143

transformer encoder with the hidden size Ha to 144

encode H ∈ RN×Hb , which may allow mutual at- 145

tention flow between dialog contexts. It consists L 146

layers of masked multi-head self-attention (MHA), 147

point-wise feed forward network (FFN), residual 148

sublayer and layer normalization. The future time 149

steps are masked for training since we will not 150

have access to future utterances during testing. We 151

will send H as the first layer input C1 and itera- 152

tively encode it with two sublayers in Eq. 2. Each 153

head Ci ∈ RN×(Ha/h) will be first mapped into a 154

query CQ, a key CK and a value CV which partic- 155

ipate in the multi-head self-attention. Here f(·) is 156

softmax function. Finally, we will obtain the final 157

1Here we refer the intent detection problem in dialogs as
predicting the dialog acts for each utterance.
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Figure 1: Illustration of our proposed framework for joint dialog act detection and slot filling in multi-turn dialogs.
It consists of context and knowledge attention modules, and two LSTM-based decoders. The utterance-level
representations will be encoded with the context attention module and token-level representations will interact with
their corresponding knowledge in three proposed awareness submodules.

contextual dialog representations CL.158

Cl = FFN(MHA(Cl−1,Cl−1,Cl−1))

(2)

159

MHA(CQ
i ,CK

i ,CV
i ) = f(

CQ
i (CK

i )T√
Hb

)CV
i

(3)

160

FFN(x) = max(0, xW1 + b1)W2 + b2
(4)

161

3.2 Knowledge Attention162

Human could naturally associate words and con-163

texts with commonsense knowledge to predict se-164

mantics. Intuitively, some knowledge relations for165

a particular word may allude its tendency to some166

slots and intents. Hence we introduce three atten-167

tion mechanisms to delineate such human heuris-168

tics and obtain the final knowledge-aware vectors169

VK in Figure. 2. We first purpose Local aware-170

ness of knowledge where we select the top |K|171

knowledge relations of each word when predicting172

its corresponding slot locally. However, semantic173

slots (BIO scheme) may be expressed as phrases in-174

stead of individual words where knowledge should175

be possibly shared across words. Therefore, we176

introduce Global awareness to share all knowl-177

edge gathered from each word for global atten-178

tion directly. Eventually, such treatment is on the179

contrary opaque on how knowledge is related to180

slot decision of word individuals and some out-of-181

vocabulary (OOV) words may not have relevant182

knowledge in data base, which requires knowledge183

from other words in proximity. We then purpose184

Global-Local awareness to predict each slot along 185

with entire gathered knowledge. 186

3.2.1 Knowledge extraction 187

The first step lies in gathering knowledge 188

for attention at the current utterance xn = 189

{wn
1 , w

n
2 , . . . , w

n
T }. For each word wn

i , we first re- 190

trieve a list of relations of the exactly same head en- 191

tity being the word wn
i from a knowledge base KG. 192

If no head entities are matched, we instead seek 193

entities that has a substring of wn
i . Based on the 194

weights of relations provided in KG, we select top 195

|K| related triples γ = {h, r, t} as the final knowl- 196

edge kni for wn
i . We will finally obtain a T length 197

knowledge sequence Kn = {kn1 , kn2 , . . . , knT } gath- 198

ered from each word wn
i . In case of non-alphabetic 199

or OOV words with no match in KG, we instead 200

replace their Kn as zero vectors to represent agnos- 201

ticism of knowledge. 202

3.2.2 Local awareness 203

Locally, we obtain the local knowledge-aware vec- 204

tor vni for each word wn
i only based on its cor- 205

responding knowledge kni (i.e. |K| triples γ = 206

{h, r, t}) with the following attention mechanism. 207

vni =

M∑
j=1

αij [r
n
ij ; t

n
ij ] (5) 208

αij = exp(βij)/
M∑

m=1

exp(βim) (6) 209

βij = (hni W
H)(tanh(rnijW

R + tnijW
T))T (7) 210

rnij , tnij are relation and tail entity vectors. 211

WH,WR,WT are learnable matrices during 212
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Figure 2: Three submodules to induce knowledge awareness. (a) Local awareness performs attention at token-level
with intra-word knowledge. (b) Global awareness takes all knowledge related to the utterance for context-based
attention. (c) Global-Local awareness performs attention at token-level but with all inter-word knowledge.

training. M is the number of knowledge triples.213

[; ] is the concatenation of two vectors. Given the214

token-level representations for each word hni in the215

utterance xn, attention weights are assigned to re-216

veal the relevance of each knowledge triple under217

current contexts.218

3.2.3 Global awareness219

The above mechanism may be restricted in rely-220

ing on intra-word knowledge to form token-level221

knowledge vectors. In real case, some phrases may222

have continuous words where knowledge should223

be shared globally. Therefore, instead of attending224

knowledge locally, we aggregate the knowledge225

triples from all words Kn = {kni } into a dense226

matrix and directly find the attention weights for227

our utterance-level contexts cLn to form a global228

knowledge-aware vector vn instead.229

vn =
T∑
t=1

M∑
j=1

αtj [r
n
tj ; t

n
tj ] (8)230

αtj = exp(βtj)/

T∑
t=1

M∑
m=1

exp(βtm) (9)231

βtj = (cLnW
H)(tanh(rntjW

R + tntjW
T))T

(10)
232

3.2.4 Global-Local awareness233

At last, we combine the view of global and lo-234

cal awareness by generating the local knowledge-235

aware vector vni but with the global knowledge Kn.236

We could avert the circumstances where some OOV237

words may not have relevant knowledge by consid-238

ering knowledge from other word neighbors. Here239

the knowledge-aware vector vni will be obtained by240

weighted summing all knowledge in the sentence 241

xn: 242

vni =
T∑
t=1

M∑
j=1

αtj [r
n
tj ; t

n
tj ] (11) 243

where T is the number of words in the sentence xn. 244

3.3 Semantic Decoder 245

After obtaining the knowledge-enriched represen- 246

tations VK = {vni } (§3.2.2, 3.2.4) or vn (§3.2.3) 247

along with contextual dialog representations CL 248

and the initial token-level representations H, we 249

adopt two BiLSTM to predict multiple dialog acts 250

and slot filling. 251

Hslot = BiLSTM([H;VK],CL) (12) 252

Hact = BiLSTM([CL;VK]) (13) 253

For slot filling, VK will be first concatenated with 254

H and serve as the inputs of BiLSTM with CL 255

as initial hidden states, where contexts will assist 256

the slot prediction at each knowledge-enhanced 257

time step. At the same time, VK will also be 258

concatenated with dialog contexts CL to serve as 259

inputs for another BiLSTM. Finally, we can gen- 260

erate logits ŷact = σ(HactWact) by transform- 261

ing Hact with Wact ∈ RHL×|Ya| and a sigmoid 262

function σ. HL is LSTM hidden size and |Ya| is 263

the size of dialog act set. Likewise, we compute 264

ŷslot = softmax(HslotWslot). Total loss will be 265

the combination between the binary cross entropy 266

loss based on ŷact and the cross entropy loss based 267

on ŷslot as shown in Eq. 14, 15. Finally, the joint 268
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objective is formulated as the sum of La and Ls.269

La ≜ −
N∑

n=1

|Ya|∑
a=1

(yna log(ŷ
n
a )270

+(1− yna )log(1− (ŷna )) (14)271

Ls ≜ −
N∑

n=1

T∑
t=1

|Ys|∑
s=1

(y(n,t)s log(ŷ(n,t)s )) (15)272

4 Experiment Setting273

4.1 Experimental setup274

We evaluate our proposed framework on two large-275

scale dialog datasets, i.e. Microsoft Dialog Chal-276

lenge dataset (MDC) (Li et al., 2018b) and Schema-277

Guided Dialog dataset (SGD) (Rastogi et al., 2019).278

MDC contains human-annotated conversations in279

three task-completion domains (movie, restaurant,280

taxi) with total 11 dialog acts and 50 slots. SGD281

entails large-scale task-oriented dialogs over 20 do-282

mains ranging from travel, weather to banks, etc. It283

has total 18 dialog acts and 89 slots. We randomly284

select 1k dialogs for each domain in MDC and two285

domains (restaurant, flights) from SGD for total286

5k dialogs in 7:3 training and testing ratio. Each287

utterance is labeled with one or more dialog acts288

and several slots.289

4.2 Baselines290

We compare our models with several competitive291

baselines which sequentially include more features292

for better semantic considerations:293

1) MID-SF (Rashmi Gangadharaiah, 2019) which294

first considers joint multi-intent and slot detection295

in use of BiLSTMs.296

2) ECA (Chauhan A., 2020) which encodes the297

dialog context with LSTM for joint task prediction.298

3) KASLUM (Wang et al., 2019) which extracts299

knowledge from the knowledge base and incorpo-300

rates dialog history for joint tasks.301

4) CASA (Gupta et al., 2019) which encodes the302

context with DiSAN and sentence2token where we303

replace DiSAN with BERT for better comparison.304

We also denote several variations of our proposed305

framework with the following detailed descriptions.306

1) LKAAF (Wang et al., 2021b): we replace only307

Local awareness part (§ 3.2.2) with the attention-308

based filter (AF) in (Wang et al., 2021b) to compare309

different knowledge attention.310

2) LKA: local awareness version of our model.311

3) GKA: global awareness version of our model.312

4) GLKAT : we replace the semantic decoder part313

(§ 3.3) with a single transformer decoder to both 314

predict dialog acts and slots. 315

5) GLKA: global-local awareness version of our 316

model. 317

4.3 Implementation details 318

We adopt the pretrained BERTbase (Devlin et al., 319

2019) as our utterance encoder. Context attention 320

transformer has L = 6-layer attention blocks with 321

768 head size and 4 attention heads. The max 322

sequence length is 60. We use ConceptNet knowl- 323

edge base (Speer et al., 2018) to obtain relevant 324

knowledge for attention. Then, TransE (Bordes 325

et al., 2013) is adopted to represent head, relation 326

and tail as pretrained 100-dim vectors. We retrieve 327

|K| = 5 most related knowledge from each word 328

based on weights assigned on the edges. Both 329

LSTMs have 256 hidden units. We use the batch 330

size of 4 dialogs for MDC and 2 for SGD. In all 331

training, we use Adam optimizer with learning rate 332

as 5e-5. The best performance on validation set is 333

obtained after training 60 epochs on each model. 334

For metrics, we report the dialog act accuracy and 335

slot filling F1 score. Here we only consider a true 336

positive when all BIO values for a slot is correct 337

and forfeit ‘O’ tags. 338

5 Main Results 339

5.1 Main results 340

Table. 2 shows our main results on the joint task 341

performances. MID-SF with only LSTMs has rel- 342

atively inferior performances on both datasets es- 343

pecially in SGD. ECA by taking dialog contexts 344

into consideration has much greater increase in 345

SGD than in MDC and further knowledge induc- 346

tion gives 3.5 % increase in KASLUM. Leverag- 347

ing BERT-based encoder seems to substantially 348

increase semantic visibility in CASA and our 349

proposed frameworks. Eventually, all of our 350

knowledge-enhanced models beat all baselines 351

both in MDC and substantially in SGD, by more 352

efficiently incorporating external knowledge and 353

dialog contexts with the proposed mutual atten- 354

tion mechanism. We first see our purposed knowl- 355

edge attention in LKA has better effectiveness than 356

LKAAF . And GLKA almost beats every baseline 357

to demonstrate the advantage of sharing knowledge 358

globally while maintaining local attention on each 359

word. Finally, we see a single transformer decoder 360

may still entangle the act and slot information while 361

updating gradients simultaneously, where separate 362
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Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model MDA SL MDA SL MDA SL MDA SL MDA SL
MID-SF (Rashmi Gangadharaiah, 2019) 76.56 67.56 77.35 65.77 85.03 70.03 74.26 81.38 84.74 84.48
ECA (Chauhan A., 2020) 77.10 69.72 77.56 66.85 86.61 71.28 87.98 84.87 95.16 87.91
KASLUM (Wang et al., 2019) 81.86 73.32 80.76 68.36 88.31 74.07 86.81 87.82 92.87 90.05
CASA (Gupta et al., 2019) 84.22 79.59 83.17 74.89 90.00 78.54 92.54 94.20 95.00 91.79

LKA†
AF (Wang et al., 2021b) 85.25 79.46 83.27 74.89 90.05 79.59 96.84 94.61 97.17 91.14

LKA† (ours) 85.59 80.21 83.48 75.30 90.01 79.14 98.25 94.57 98.00 92.31
GKA† (ours) 85.94 80.56 83.64 75.94 90.28 79.08 98.44 94.75 98.74 91.71
GLKA†

T (ours) 85.98 79.94 83.27 75.19 90.40 78.33 97.35 94.34 98.20 91.95
GLKA† (ours) 86.09 80.58 84.01 75.27 90.80 79.60 98.47 94.86 99.22 92.67

Table 2: Experimental Results on several SLU models including our proposed frameworks which are specified in
percentage (%). MDA indicates the dialog act detection accuracy by counting corrects when all acts are predicted
correctly. SL indicates the slot filling F1 score. † denotes models related to our proposed structures.

Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model MDA SL MDA SL MDA SL MDA SL MDA SL
GLKA 86.09 80.58 84.01 75.27 90.80 79.60 98.47 94.86 99.22 92.67

w/ KGV 85.63 80.26 83.43 75.76 89.77 80.03 98.38 94.31 98.93 91.99
w/o KG 86.01 79.92 83.53 74.76 90.56 78.29 97.53 94.83 97.73 92.23
w/o CA 84.87 79.79 81.33 74.68 89.00 78.50 95.88 94.36 97.17 91.94
w/o LSTM 84.57 79.14 82.70 74.35 89.65 79.00 90.96 93.64 94.80 91.33

Table 3: Ablation Results of joint tasks (%) by removing some key components of our proposed frameworks GLKA.

LSTMs perform better in our case. To note, the363

word matching accuracies in the knowledge base364

are 78.12% (MDC) and 80.97% (SGD), which in-365

dicate that there is still about 20% of zero vectors366

introduced as redundant noises.367

5.2 Ablation analysis368

To better estimate the effectiveness of each module369

of our best model: GLKA, we conduct ablation370

experiments in Table. 3. We sequentially ablate371

each component from GLKA to observe the perfor-372

mance drops. We first replace the top |K| knowl-373

edge vectors with those ranked within |K| ∼ 2|K|374

behind to compare the effect of knowledge qual-375

ity (w/ KGV ). We could see an overall perfor-376

mance drop except slot accuracy may increase in377

some domains, which indicates that the selection378

of knowledge may play a critical role in how model379

leverages the relations. By removing the entire380

knowledge attention module, we can see more ob-381

vious reduction in slot filling tasks denoting the382

necessity of external knowledge in enriching the383

current word representations. By substituting a uni-384

directional LSTM on top of BERT for our context385

attention module (CA), we obtain poorer perfor-386

mance in dialog act detection instead. Finally, we387

see dialog contexts are more crucial in SGD where388

drop seems significant by removing all context fu-389

sion modules. Overall, we observe dialog act detec-390

tion relies more on contexts while slot filling tasks 391

may concentrate on inter-utterance relations where 392

external knowledge benefits more instead. 393

5.3 Further Discussion 394

Could knowledge amend the data scarcity? We 395

also study how knowledge could contribute to the 396

joint tasks when resources are scarce. Figure. 3 397

shows the performance changes with different num- 398

bers of training data. We found that inducing the 399

knowledge will have the positive effect on both 400

tasks. In the few-shot setting, we see the perfor- 401

mance difference enlarges where knowledge be- 402

comes beneficial to enrich the external informa- 403

tion aside from data itself. However, knowledge 404

becomes less useful when we have extreme low 405

dataset particularly for slot detection. 406

Does global knowledge helps non-alphabetic 407

slots? We are interested if knowledge for other 408

words would also help with the slot prediction of 409

the non-alphabetic words. Table. 4 shows the re- 410

sults for each non-alphabetic slot for our local and 411

global attention models. Since there is no knowl- 412

edge for the non-alphabetic words, we observe an 413

overall 2% increase by inducing global attention. 414

Contexts are beneficial especially for slots associ- 415

ated with rating, money and address, which should 416

be likely inferred by other keywords near them. 417

However, time and zip code are rather independent 418
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Figure 3: SLU performance by training GLKA with
a subsample (%) of the original training data of two
datasets: MDC and SGD. We show the results with or
without the knowledge induced.

to contexts which may be disturbed by introducing419

more irrelevant noises.420

5.4 Knowledge Attention421

In Figure. 4, we visualize the attention heatmap422

of tokens with their slot labels vs. all knowledge423

triples from each token. First, we focus on the424

rows of the heat map. Without attached knowledge425

for the words like numbers or punctuations, their426

attention weights are perceived blank across all to-427

kens in the utterance. Second, for valid attention428

weights, we found the knowledge corresponding429

to keywords like ‘you’, ‘with’, ‘restaurant’ and430

‘antioch’ are most adopted for overall knowledge431

representations across all the utterance. It reck-432

ons that the model will mostly grasp knowledge in433

words especially tagged as valued slots (non-O tag)434

for overall semantic understanding. Interestingly,435

this collection of knowledge is more emphasized436

on predicting a word to be non-valued than those437

words with valued slots. For the columns, we could438

see for non-valued words, they will accentuate on439

knowledge of valued words like ‘restaurant’ and440

‘antioch’, than the knowledge related to itself. It441

substantiates the belief that the overall semantics of442

the utterance may be driven by these valued words.443

Slot GLKA (%) LKA (%) ∆ (%)
address 17.39 0.00 +17.39
price 66.67 50.00 +16.67
critic_rating 34.48 23.08 +11.41
dress_code 50.00 44.44 +5.56
rating 52.17 49.32 +2.86
cost 95.54 95.29 +0.26
numberofpeople 95.63 95.51 +0.12
date 86.96 86.99 -0.02
pricing 42.55 43.14 -0.58
starttime 76.80 77.68 -0.88
numberofkids 73.68 77.78 -4.09
mpaa_rating 76.92 83.33 -6.41
zip_code 77.65 84.44 -6.80
pickup_time 75.19 82.29 -7.09
total 65.83 63.80 +2.03

Table 4: F1 scores for GLKA and LKA of non-
alphabetic slots in overall MGD dataset.

In Table. 5, we further show an utterance 444

example with some highlighted words including 445

‘you’, ‘restaurant’ and ‘Antioch’ with their ex- 446

tracted knowledge and weights for semantic detec- 447

tion. We take the average of all attention weights 448

across all tokens for that knowledge triple; then nor- 449

malized across the knowledge triples in the same 450

word (head). We could see ‘you’ as an object is 451

most adopted to clarify the user being offered and 452

informed counts. Then we observe that the knowl- 453

edge triple (restaurant, atl, city) where restaurant 454

is at a location of the city is most recognized to 455

illustrate the relations of restaurant and city tags. 456

Finally, knowledge for ‘Antioch’ keyword is mostly 457

relevant to a country which is conducive when the 458

system seldom sees this word during training. But 459

without further contexts, our model believes ‘Anti- 460

och’ is more of a part of Turkey. 461

6 Related Work 462

Intent detection and slot filling are two main SLU 463

tasks (Weld et al., 2021). Many classification-based 464

approaches (Sarikaya et al., 2011; Raymond and 465

Riccardi, 2007; Liu et al., 2017) had been proposed 466

to solve single intent detection problems. How- 467

ever, treating two tasks separately may experience 468

error propagation. Liu and Lane (2016) first pro- 469

posed an attention-based LSTM network to model 470

the correlations between intents and slots. Li et al. 471

(2018a) proposed the gating mechanism for bet- 472

ter self-attention on joint tasks. However simply 473

relying on the gate function is not ideal for long 474

sequences. Wang et al. (2018) instead proposed 475

the bi-model to directly model the cross impacts 476

and Zhang et al. (2019) utilized capsule neural net- 477
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Figure 4: Attention visualization of a single utterance
example with respect to all knowledge related to each
word. We denote an utterance with tokens followed by
their predicted tag in x-axis. For y-axis, each word will
have five knowledge triples with each as a single tick.
The blank area is where attention weights are zero.

works. Memory networks are also popular choices478

to model long-range dependency (Wu et al., 2021a).479

However, a single utterance may have many intents.480

Rychalska et al. (2018) first proposed hierarchical481

structures to explore multiple intents. Qin et al.482

(2019) proposed a stack-propagation networks to483

predict intents on each token. Rashmi Gangadhara-484

iah (2019) and (Qin et al., 2020) considered the485

dynamic interactions between two tasks by jointly486

detecting multiple intents. Wu et al. (2021b) ex-487

tended the multiple intent scenario with zero-shot488

cases. These methods nevertheless restrict their489

resources to current utterances for prediction.490

Contexts and knowledge With respect to di-491

alogs, contexts are also critical for semantic under-492

standing. Bertomeu et al. (2006) first studied the493

contextual phenomena in words. Bhargava et al.494

(2013) and Shi et al. (2015) then introduced con-495

textual signals to the joint intent-slot tasks. Ad-496

vanced hierarchical structures are also emphasized497

to encode multi-turn dialog contexts efficiently498

(Chauhan A., 2020; Wang et al., 2019; Gupta et al.,499

2019; Wu et al., 2021c). Knowledge is also another500

Utterance Example in Figure 4

Utterance
I found 2 places that may interest you.
Starting with Celia’s Mexican restaurant
located in Antioch.

Dialog acts Offer, Inform Count

Slots O O O O O O O O O O B-res I-res I-res
O O B-city

Keyword Knowledge

you (hc, noun) (0.29), (hc, object) (0.7)
(rel, guys) (6e-4), (hc, object) (8e-5)

restaurant (isa, establishment) (8e-9), (atl, hotel) (0.2)
(atl, town) (0.14), (atl, city) (0.65)

Antioch (rel, orontes) (4e-5), (rel, swiss) (2e-2)
(rel, usa) (5e-2), (ptof, turkey) (0.9)

Table 5: The utterance example in Figure 4 for joint task
prediction. Knowledge (Relation, Tail) related to three
keywords as head are presented with their attention
weights (number after the knowledge). We only show
the top four knowledge adopted for each keyword based
on the attention weights. ‘hc’ represents ‘has context’,
‘rel’ represents ‘related to’, ‘atl’ represents ‘at location’
and ‘ptof’ represents ‘part of’.

important resource to induce commonsense for un- 501

derstanding. In task-oriented dialogs, Main empha- 502

sis lies in the interaction with task-related knowl- 503

edge bases (Madotto et al., 2020; Yang et al., 2020). 504

Most of works also focus on open-domain dialog 505

response generation (Zhao et al., 2020; Wang et al., 506

2021b; Rashkin et al., 2021; Zheng et al., 2021) or 507

task-specific responses (Wang et al., 2021a). Wang 508

et al. (2019) also tried to apply knowledge in SLU 509

but it is not suitable for complex dialog modeling. 510

To amend the gap in modeling knowledge and con- 511

text interactions of SLU, we follow these previous 512

works’ paradigms and explore the mechanisms of 513

characterizing their mutual effects in details. 514

7 Conclusion 515

In this paper, we propose a novel BERT-based 516

knowledge augmented network to consider dialog 517

history and external knowledge in the joint SLU 518

tasks. We propose three approaches of inducing 519

knowledge awareness, which are capable of select- 520

ing relevant knowledge triples for useful knowl- 521

edge representation. We found that our best model 522

(GLKA) combines the benefits both from local and 523

global awareness, whose effectiveness is verified in 524

two complex multi-turn dialog datasets. We visual- 525

ize how our models adopt word knowledge spread- 526

ing in an utterance to provide better interpretability 527

for decision making. These knowledge fusion vec- 528

tors could be easily applied to downstream dialog 529

state tracking or management tasks. 530
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