
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEVERAGING VARIABLE SPARSITY TO REFINE PARETO
STATIONARITY IN MULTI-OBJECTIVE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based multi-objective optimization (MOO) is essential in modern ma-
chine learning, with applications in e.g., multi-task learning, federated learning,
algorithmic fairness and reinforcement learning. In this work, we first reveal some
limitations of Pareto stationarity, a widely accepted first-order condition for Pareto
optimality, in the presence of sparse function-variable structures. Next, to account
for such sparsity, we propose a novel solution concept termed Refined Pareto Sta-
tionarity (RPS), which we prove is always sandwiched between Pareto optimality
and Pareto stationarity. We give an efficient partitioning algorithm to automatically
mine the function-variable dependency and substantially trim non-optimal Pareto
stationary solutions. Then, we show that gradient-based descent algorithms in
MOO can be enhanced with our refined partitioning. In particular, we propose
Multiple Gradient Descent Algorithm with Refined Partition (RP-MGDA) as an
example method that converges to RPS, while still enjoying a similar per-step
complexity and convergence rate. Lastly, we validate our approach through ex-
periments on both synthetic examples and realistic application scenarios where
distinct function-variable dependency structures appear. Our results highlight the
importance of exploiting function-variable structure in gradient-based MOO, and
provide a seamless enhancement to existing approaches.

1 INTRODUCTION

Multi-objective optimization (MOO) aims to optimize several objective functions simultaneously
over shared parameters, seeking solutions where no objective can be improved without worsening
another. Many modern machine learning applications naturally involve multiple objectives. For
example, in fair machine learning, one needs to balance model utility with various fairness notions,
while in multi-task learning, models are trained across different tasks with shared representations.
Similarly, federated learning and reinforcement learning often involve optimizing the performance of
multiple agents or entities distributed across environments. The solutions to such problems are known
as Pareto optimal (PO) solutions, representing a balance across the competing objectives. However,
finding PO solutions becomes challenging in complex (e.g. high-dimensional) problems.

Among various approaches for solving MOO problems, one that has gained significant attention
recently is the Multiple Gradient Descent Algorithm (MGDA) (Mukai 1980; Fliege and Svaiter
2000; Désidéri 2012). MGDA extends classical gradient descent to optimize multiple objectives
simultaneously. Unlike traditional linear scalarization, which requires predetermined weights for
each objective, MGDA directly optimizes the vector-valued problem without such weighting. At
each iteration, MGDA identifies a common descent direction that improves all objectives, a feature
not guaranteed by scalarization methods. MGDA’s ability to converge to a Pareto stationary solution,
which serves as a first-order necessary condition for Pareto optimality, has made it widely applicable
in areas like multi-task learning (Sener and Koltun 2018), federated learning (Hu et al. 2022), and
generative modeling (Albuquerque et al. 2019). While Pareto stationarity provides a solid theoretical
foundation (as shown in Lemma 1 below), it can fall short in complex, especially sparse settings,
creating room for a more refined approach, as we illustrate in Section 4.

In this work, we reveal that Pareto stationarity (PS), while necessary for Pareto optimality, is often
insufficient. Even in convex settings, PS can frequently lead to sub-optimal PO solutions, especially
when sparse function-variable dependencies cause strict convexity to fail. To address this, we propose

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

w1 w2 w3 w4 w5

f1 *

f2 * *

f3 * * *

f4 * *

f5 * *
f5

f4

f3

f2

f1 w1

w2

w3

w4

w5 f5

f4

f3

f2

f1 w1

w2

w3

w4

w5

w1 w2 (w3, w4, w5)

f1 *

f2 * *

f3 * *

f4 *

f5 *

Figure 1: A simple illustration of our main idea. From left to right: adjacency matrix showing the
function-variable dependency structure; the underlying bipartite graph with a cycle highlighted in red;
merging the variables in the cycle to a subset and contracting the graph; adjacency matrix showing
the new dependency structure. The process is iterated until the graph becomes acyclic.

Refined Pareto Stationarity (RPS), which leverages sparsity to identify a valid partition of variables
and refines PS with respect to this partition. We prove that RPS is (strictly) sandwiched between PS
and Pareto optimality (PO), making it a more useful and practical goal. Additionally, under partial
strict convexity, we prove RPS reduces exactly to Pareto optimality, whereas the widely-used PS does
not. These advantages are illustrated through intuitive examples and validated experimentally.

Since RPS is defined with respect to a refined partition, we propose an efficient partitioning procedure
(REFINED_PARTITION) to automatically discover, if needed, the correct refined partition of variables,
based on an input adjacency matrix encoding function-variable dependencies. Figure 1 illustrates our
main idea through a simple example. More importantly, our results enable practitioners to enhance
existing gradient-based descent algorithms for MOO by incorporating this partitioning routine and
the refined stationary condition RPS. Specifically, we introduce Multiple Gradient Descent Algorithm
with Refined Partition (RP-MGDA) to exploit these advances and we formally prove its convergence.

We summarize our contributions below, with further context provided in the next section:

• We present illustrative examples to reveal some limitations of Pareto stationarity, and motivate the
need for a valid partitioning of variables when function-variable dependency is sparse.

• We propose RPS, a novel solution concept that refines Pareto stationarity, together with an efficient
partitioning procedure REFINED_PARTITION to automatically discover the refined partition.

• We introduce RP-MGDA, an example of enhancing gradient-based descent algorithms in MOO by
incorporating refined partitioning. We establish the convergence and complexity of RP-MGDA.

• We validate the effectiveness of our approach through experiments on synthetic and benchmark
datasets, showcasing its application to ML scenarios with diverse dependency structures.

2 RELATED WORKS

Multi-objective optimization (MOO) and Pareto solution have been extensively studied, with tradi-
tional approaches such as evolutionary algorithms (Deb et al. 2002). However, these techniques face
challenges when applied to modern machine learning problems, which are often better addressed by
gradient-based methods. Consequently, in this work we focus on gradient-based MOO.

Gradient-based MOO. Gradient-based MOO involves optimizing multiple objectives using gradient
information. A foundational algorithm in this regard is MGDA (Mukai 1980; Fliege and Svaiter
2000; Désidéri 2012), which computes a common descent direction for all objectives by solving for
the minimum-norm vector in the convex hull of gradients. Fliege et al. (2019) offered a detailed
convergence analysis of MGDA, while subsequent works have also extended classical single-objective
methods to the multi-objective setting, including Newton’s method (Fliege et al. 2009), (accelerated)
proximal gradient (Tanabe et al. 2019; Tanabe et al. 2023), conditional gradient (Assunção et al.
2021), and subgradient method (O. Montonen and Mäkelä 2018), among others. Another important
line of research focuses on stochastic variants of MGDA, e.g. Mercier et al. (2018), due to their
practical relevance in machine learning, particularly for mini-batch training of deep neural networks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Liu and Vicente (2021) introduced SMG as a direct stochastic counterpart of MGDA, albeit with
a biased estimate of the common descent direction. Subsequent works of Zhou et al. (2022) and
Fernando et al. (2023) track historical information to reduce bias, while Chen et al. (2023) and Xiao
et al. (2023) propose unbiased estimate of the update direction through double sampling.

MOO in Multi-task Learning (MTL). MTL aims to train a common model that can solve multiple,
potentially related tasks. Sener and Koltun (2018) first framed MTL as a multi-objective optimization
problem and addressed it using MGDA. Since then, numerous works in MTL have approached this
problem within the general MOO framework, treating task losses as objectives and proposing novel
gradient aggregation schemes to mitigate task conflicts while addressing various aspects of MTL
(e.g., Lin et al. 2019). PCGrad (Yu et al. 2020) projects each gradient onto the normal plane of
other conflicting gradients and aggregates them. CAGrad (Liu et al. 2021a) balances minimizing the
average task loss and improving the worst-performing objective by constraining the search region for
the common direction in MGDA. Nash-MTL (Navon et al. 2022) formulates MTL as a bargaining
game to weigh the gradients. I-MTL (Liu et al. 2021b) separately searches for the magnitude and
direction of the common gradient. FairGrad (Ban and Ji 2024) proposes a new gradient aggregation
scheme to ensure α-fairness in MTL.

MOO in Fair machine learning (FML). FML is inherently a multi-objective problem, due to the
trade-off between utility and various notions of fairness that need not be compatible with each other
(Kleinberg et al. 2017). A common strategy in FML is to linearly combine the multiple objectives
through scalar weights (Kamishima et al. 2011), corresponding to the well-known scalarization
technique in MOO, while later work, such as Padh et al. (2021), applies MGDA to handle these
competing objectives more directly.

The works mentioned above either 1) adopt the general MOO formulation that treats all learnable
parameters as a single variable w ∈ Rd, thereby disregarding any underlying function-variable
structure, or 2) are confined to the MTL setting presented in Sener and Koltun (2018), whose variable
partition scheme can be viewed as a special case of our more general framework. To our best
knowledge, our work is the first to systematically investigate and refine Pareto stationary solutions
in gradient-based MOO, by taking into account the function-variable structure. Our results are
complementary to the above approaches and potentially integrable with many of them.

3 PRELIMINARIES

In this section, we briefly review the concepts of Pareto optimality and Pareto stationarity in multi-
objective optimization. We then introduce the widely used MGDA method.

3.1 MULTI-OBJECTIVE MINIMIZATION (MOO)

In mathematical terms, a Multi-Objective Minimization (MOO) problem can be written as1

min
w∈Rd

f(w), where f(w) := (f1(w), f2(w), . . . , fm(w)) (1)

and the minimum is defined w.r.t. the partial ordering2 :

f(w) ≤ f(z) ⇐⇒ ∀i = 1, . . . ,m, fi(w) ≤ fi(z). (2)

Unlike single objective optimization, with multiple objectives it is possible that

f(w) ̸≤ f(z) and f(z) ̸≤ f(w), (3)

in which case we say w and z are not comparable. As a result, there is usually a set of solutions that
are all optimal (a.k.a. Pareto Optimal) for a given MOO problem, whose objective values form the
Pareto front.

1We focus on minimization in this work, while maximization can be treated similarly.
2We remind that algebraic operations such as ≤ and +, when applied to a vector with another vector or

scalar, are always performed component-wise.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 PARETO OPTIMALITY AND PARETO STATIONARITY

Definition 1 (Pareto Optimality). We call w∗ a Pareto optimal solution of (1) if its objective value
f(w∗) is a minimum element w.r.t. the partial ordering in (2); equivalently,

∀w, f(w) ≤ f(w∗) =⇒ f(w) = f(w∗). (4)

In other words, it is not possible to improve any component objective in f(w∗) without compromising
some other objective.
Definition 2 (Weakly Pareto Optimality). We call w∗ a weakly Pareto optimal solution if there does
not exist any w such that f(w) < f(w∗), i.e., it is not possible to improve all component objectives
in f(w∗) simultaneously.

Clearly, any Pareto optimal solution is also weakly Pareto optimal but the converse may not hold.

Next, we recall the concept of Pareto Sationarity (also referred to as Pareto Criticality), which is the
first order necessary condition for Pareto optimality.
Definition 3 (Pareto Stationarity). We call w∗ Pareto stationary iff

0 ∈ conv{∇f1(w∗), · · · ,∇fm(w∗)}, (5)
i.e., there exists some λ ≥ 0 such that

∑
i λi = 1 and

∑
i λi∇fi(w∗) = 0.

The relevance of Pareto stationarity is captured in the following lemma:
Lemma 1 (e.g., Mukai 1980, Theorem 1). Any Pareto optimal solution is Pareto stationary. Con-
versely, if all functions are convex (resp., strictly convex), then any Pareto stationary solution is
weakly Pareto optimal (resp., Pareto optimal).

3.3 MULTIPLE GRADIENT DESCENT ALGORITHM (MGDA)

MGDA has been independently proposed by Mukai (1980) and Fliege and Svaiter (2000) and Désidéri
(2012) as a gradient-based method to find Pareto stationary solutions of an MOO problem. It has
gained notable attention in machine learning in recent years, largely because of its gradient-based
nature, in contrast to traditional MOO techniques. Compared with the scalarization technique (i.e.,
linearly combining different objectives), MGDA removes the need to pre-determine any weight
vector. More importantly, MGDA is guaranteed to improve all objectives of any starting solution
while scalarization cannot (Mukai 1980).

In each iteration, MGDA seeks a new solution that minimizes the maximum change among all
objectives, i.e.,

w̃t+1 = argmin
w

max
λ∈∆

λ⊤(f(w)− f(wt)), (6)

where ∆ is the standard simplex. Next, we upper bound f(w) by the usual quadratic approximation:

min
w

max
λ∈∆

λ⊤J⊤
f (wt)(w −wt) + 1

2η∥w −wt∥2. (7)

where Jf = [∇f1, . . . ,∇fm] ∈ Rd×m is the Jacobian and η > 0 is the step size. This approximation
(7) is (strongly) convex in w (even for nonconvex f) and concave in λ, and hence strong duality holds.
Swapping min with max in (7) and setting the derivative w.r.t. w to 0, we deduce the following
“minimum-norm” direction:

dt = Jf (w
t)λt

∗, where λt
∗ = argmin

λ∈∆
∥Jf (wt)λ∥2. (8)

MGDA then performs the update along the direction dt:
wt+1 = wt − ηdt. (9)

Common stopping criteria include ∥dt∥ ≤ tol for some tolerance tol or by capping at a maximum
number of iterations.

When the step size η is sufficiently small (so that (7) is indeed an upper bound on (6)), the MGDA
update (9) simultaneously decreases all objectives (seen easily by the feasible choice w = wt in
(7)). It is clear that the fixed points of MGDA are exactly Pareto stationary solutions. In fact, Fliege
et al. (2019) proved that the minimum norm ∥dt∥ converges to 0 at rate O(1/

√
t), matching the

well-known result in single objective optimization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

w0 w1 w2 w3

f1 * *

f2 * *

f3 * *
f3

f2

f1

w0

w1

w2

w3

w1 w2

f1 * *

f2 * * f2

f1 w1

w2

Figure 2: Illustration of Example 1 and Example 2. Left: function-variable dependency structure of
Example 1. There is no cycle in the underlying bipartite graph so our method partitions each variable
into its own block. Right: function-variable dependency structure of Example 2. There is a cycle
(highlighted in red) in the underlying bipartite graph so our method merges both variables into a
single block. In both examples, MGDA treats all variables as a single block.

4 ILLUSTRATIVE EXAMPLES

We construct two examples that illustrate the various definitions above and reveal some subtle issues
about Pareto stationarity and the (coordinate-wise) MGDA update.
Example 1. Let f1(w) = w2

0 + w2
1 , f2(w) = w2

0 + w2
2 and f3(w) = w2

0 + w2
3 . Clearly, all

component functions are convex. There is a unique Pareto optimal solution w⋆ = (0, 0, 0, 0), but
there are infinitely many Pareto stationary (in fact, weakly Pareto optimal) solutions:

{(0, 0, w, z), (0, w, 0, z), (0, w, z, 0) : w, z ∈ R}. (10)

It is clear the MGDA update (8)-(9) could get trapped at any of the Pareto stationary solutions.
However, if we update the variables separately, the coordinate-wise MGDA converges to the unique
Pareto optimal solution. See Figure 2 for a pictorial illustration.

We note that Example 1 does not contradict Lemma 1, since none of the component functions is
strictly convex. In general, strict convexity, or even convexity, is rarely satisfied in deep learning.

It is then tempting to always partition the variables and update them separately using MGDA (i.e., a
coordinate-wise MGDA). However, the following example shows this idea may also lead us astray.
Example 2. Let f1(w) = (w1 − w2)

2 + w2
1 and f2(w) = (w1 − w2)

2 + w2
2 . Clearly, both

functions are strictly convex. There is a unique Pareto stationary (and hence Pareto optimal) solution
w⋆ = (0, 0). However, if we apply MGDA to each variable separately, it may converge to any point
on the diagonal {(w,w) : w ∈ R}. On the other hand, the vanilla MGDA (treating both variables as
a whole) converges to the unique Pareto stationary solution. See Figure 2 for a pictorial illustration.

In the next section, by leveraging on the (sparse) function-variable dependency structure, we prove
that it is possible to identify a valid partition of variables and define refined Pareto stationary solutions
that are sandwiched by Pareto optimal solutions and Pareto stationary solutions.

5 REFINED PARETO STATIONARY SOLUTIONS

Motivated by the aforementioned examples, we now consider partitioning the variables in the MOO
problem (1). Let P = {P1, . . . , Pk} be a partition of [d] := {1, . . . , d}. For a subset P of variables,
we use fP to denote the set of functions fi that depend on some variable in P .
Definition 4 (Generalized Pareto Stationarity). We call w∗ Pareto stationary w.r.t. the partition P iff

0 ∈
k∏

j=1

conv{∇wPj
fPj (w∗)} (the Cartesian product), (11)

i.e., for all j ∈ [k], there exists λj ∈ ∆ such that
∑

i λ
j
i∇wPj

fi(w
∗) = 0 and λj

i = 0 if fi does not
depend on the variables in Pj .

When P = [d] is the trivial partition, our definition reduces to Pareto stationarity in Definition 3. The
following lemma slightly generalizes one direction of Lemma 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lemma 2. Any Pareto optimal solution is Pareto stationary w.r.t. any partition.

(All proofs can be found in Appendix A.) However, the converse part of Lemma 2 under (strict)
convexity is harder to extend: we need to find the right partition first. Indeed, Example 2 already
showed Pareto stationarity w.r.t. the finest partition is not equal to Pareto optimality, or put it slightly
differently, Pareto stationary w.r.t. an arbitrary finer partition does not necessarily imply Pareto
stationary w.r.t. a coarser partition3.

Consider the adjacency matrix A ∈ {0, 1}m×d of a bipartite graph, with

Aij =

{
1, if fi depends on wj

0, otherwise
. (12)

Our next goal is to find the (finest) partition P of variables (i.e., columns of A) so that Pareto
stationary w.r.t. P is also Pareto stationary (w.r.t. the trivial partition). This is particularly useful when
the dependency matrix A is sparse, since it enables us to largely reduce the set of Pareto stationary
solutions (without missing any Pareto optimal ones); see Example 1.

The main idea is to find cycles in the underlying bipartite graph, merge and contract the resulting
variables, and repeat until the graph becomes acyclic; see Figure 1 for an illustration and Appendix A.1
for pseudo-code. We recall from Cormen et al. (2009, Exercise 22.4-3, p. 615) that detecting a cycle
in an undirected graph using depth-first search costs O(m+d) (the number of nodes) for our bipartite
graph. Since merging the variables in a cycle reduces the graph size by at least 1, the process can
repeat at most O(d) times. Therefore, the entire process, which we denote as REFINED_PARTITION
(A), costs O(d(m+ d)) to output a partition P := {P1, . . . , Pd} of the variables.

We formally justify the above partition procedure in:
Theorem 1. Let P = REFINED_PARTITION(A) where A is defined in (12). Then, any w∗ that is
Pareto stationary w.r.t. P , which we call refined Pareto stationary from now, is Pareto stationary.

We are finally ready to provide a converse of Lemma 2, under (partial) strict convexity.
Theorem 2. Let P = {P1, . . . , Pk} be returned by REFINED_PARTITION. Suppose each fi is strictly
convex in wIi where Ii ⊆ P is the set of blocks of variables that fi depends on. Then, any refined
Pareto stationary solution (w.r.t. P) is Pareto optimal.

Figure 3: Euler diagram for Pareto Optimal (PO),
Refined Pareto Stationary (RPS) and Pareto Sta-
tionary (PS).

To summarize, refined Pareto stationarity (based
on our partition procedure) is sandwiched be-
tween Pareto optimality and Pareto stationarity;
Figure 3 illustrates the relationships between
these concepts. In particular, we have identi-
fied a valid partition to sharpen Lemma 1 in its
full extent. Importantly, applying our refined
Pareto stationarity to Example 1 and Example 2
successfully identifies the unique Pareto opti-
mal solution while eliminating infinitely many
spurious Pareto stationary solutions.

6 IMPROVING EXISTING ALGORITHMS WITH THE REFINED PARTITION

The refined Pareto stationarity introduced in the previous section is a solution concept. Broadly, it
can be used to enhance existing gradient-based descent algorithms for MOO. Indeed, we can simply
cycle through or randomly pick the blocks of variables identified by REFINED_PARTITION, and
update each block with a chosen gradient-based descent algorithm in turn. The resulting algorithm is
guaranteed to be descending, i.e., it improves all objectives in each step.

Interestingly, for certain MOO algorithms we can even afford to update all blocks simultaneously. We
demonstrate this possibility and its practical value by modifying and analyzing the MGDA algorithm
from Section 3.3, enabling it to converge to a refined Pareto stationary solution. The full algorithm,
which we call RP-MGDA, is summarized in Algorithm 1. The algorithm again terminates when
∥d∥2 < tol, or when a maximum number of iterations is achieved.

3The subtlety lies on the requirement that each λj ∈ ∆, i.e., we cannot set any of them to 0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Multiple Gradient Descent Algorithm with Refined Partition (RP-MGDA)

Input: function-variable dependency structure A, functions f , initializer w ∈ Rd, learning rate η
1 (P1, . . . , Pk) = REFINED_PARTITION(A) // partition variables based on A
2 for t = 1, 2, . . . do
3 parfor j = 1, 2, . . . , k do // in parallel
4 Jj(w)← ∇wPj

fPj (w) // compute gradients

5 λj ← argminλ∈∆ ∥Jj(w)λ∥2 // solve the dual subproblem
6 dt

Pj
← Jj(w)λj // minimum-norm direction in Pj

7 wPj
← wPj

− ηj · dt
Pj

// update

Output: final weights w

Following Fliege et al. (2019) we prove that the direction d in RP-MGDA (Algorithm 1) converges
to 0 at the rate O(1/

√
t), and hence matching the usual result for single objective optimization.

Theorem 3. Suppose the functions fi are bounded from below and Lipschitz smooth with constant
Li. Set ηj ≡ η ≤ mini

1
Li

. Then, min1≤t≤T ∥dt∥ ≤ O(1√
T
).

Combining Theorem 1 and Theorem 3 we immediately have the following result:
Corollary 1. Assuming RP-MGDA converges, then it converges to a Pareto stationary solution at the
rate O(1/

√
t).

A few remarks regarding RP-MGDA are in order: 1) When the sublevel set {w : f(w) ≤ f(w1)} is
compact, RP-MGDA admits a limit point that is refined Pareto stationary and hence Pareto stationary,
thanks to its descending property. 2) In practice we do not need to know the Lipschitz constants Li: a
standard line search procedure on η to test the quadratic upper bound (7) suffices to achieve the same
convergence rate. 3) Theorem 1 and hence Corollary 1 continue to hold if we replace the partition P
with any coarser partition (such as the trivial partition [d]). Thus, our results strictly generalize those
about MGDA (e.g., Fliege et al. 2019).

Complexity. We emphasize the inner loop of Algorithm 1 is executed in parallel, as they correspond
to updating different blocks of w simultaneously. We have analyzed the complexity of the subroutine
REFINED_PARTITION in the previous section, and we note that this one-time cost can often be
avoided if one knows the domain application well, see our experiments in Section 7 for examples.
Barring the one-time overhead in line 1, Algorithm 1 is theoretically cheaper than the vanilla MGDA,
since the most costly step in line 5 (solving the dual subproblem) often has superlinear dependence on
m (the number of objectives) and hence dividing it into blocks of smaller sizes reduces the runtime.

7 EXPERIMENTS

In this section, we present experiments comparing RP-MGDA and MGDA across both synthetic
examples and realistic benchmark datasets. These experiments explore varying variable dependency
structures and convexity assumptions, demonstrating RP-MGDA’s effectiveness and versatility. More
experimental details and discussions can be found in Appendix B.

7.1 SYNTHETIC EXAMPLES

We examine two settings. First, quadratic MOO problems with randomly generated adjacency
matrices, focusing on the behaviour of REFINED_PARTITION and the effectiveness of RP-MGDA.
Second, in Appendix B.1, we consider a two-objective convex problem, where we visualize and
compare solution fronts, observing how often MGDA converges to sub-optimal PS solutions.

Randomly generated sparse adjacency matrix. We randomly generate m× d adjacency matrices
with varying degrees of sparsity to set up the function-variable dependency structures of quadratic
MOO problems with m objectives and d input variables. The sparsity of function-variable depen-
dencies is controlled by a ‘density’ parameter, which determines the percentage of non-zero entries
in the adjacency matrix. We use our proposed REFINED_PARTITION procedure to automatically

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Experiments on randomly generated sparse adjacency matrices. Left: [20× 100 matrix].
The bar chart compares the solution from MGDA with that post-processed by RP-MGDA. Red bars
indicate the magnitude by which RP-MGDA outperforms MGDA in objective value, while green bars
(if any) indicate the opposite. Right: [100× 100 matrices]. The impact of adjacency matrix density
on variable merging in REFINED_PARTITION, where y-axis shows the final number of variable blocks
returned. A value of 1 indicates all variables are merged into a single block, and a value of 100
(represented as 10 on the square root scale) indicates that all variables are fully separated.

w0 w1 w2 w3 w4

f1 * *

f2 * *

f3 * *

f4 * *

w1 w2 w3

f1 *

f2 * *

f3 * * *

w1 w2 w3

f1 *

f2 * *

f3 * *

f4 *

Figure 5: Different function-variable dependency structures for experiments on benchmark datasets.
Left: Personalized federated learning; Middle: Hierarchical classification; Right: Multi-objective
learning with partial information.

generate refined partitions, especially for larger adjacency matrices (e.g. 100× 100) where manual
partitioning becomes cumbersome. Details of the setup can be found in Appendix B.2.

Results. From Figure 4 (Left) we observe that by post-processing the outputs of MGDA, i.e., using
them to initialize RP-MGDA, we can improve the solutions to Pareto dominate the original ones.
Conversely, we point out that MGDA cannot improve the stationary solutions of RP-MGDA, due to
Theorem 1. In the demonstration with 100× 100 matrix (Figure 4, Right), we note that the number
of final blocks returned by REFINED_PARTITION decreases as the density increases, starting at 1.5%,
where all variables are separated, and eventually merging all variables into a single block when the
density reaches 7%. We also empirically verified Theorem 3 in Appendix B.2.

7.2 ML BENCHMARK DATASETS

We examine three problems with different function-variable dependency structures derived from
real-world application scenarios. These examples also serve as a ‘proof of concept’ for applying
refined partitioning to realistic ML problems. The structures and their corresponding refined partitions
are illustrated in Figure 5.

7.2.1 PERSONALIZED FEDERATED LEARNING (‘MTL’ STRUCTURE)

Setup. We consider a personalized federated learning setting with m = 4 clients, each holding
distinct non-i.i.d. data Di sampled from the training dataset (MNIST/CIFAR-10). The objectives
fi are defined as empirical cross-entropy losses over the clients’ data distributions. As in standard
federated learning, we have a shared global model with learnable parameters w0. To handle data
heterogeneity and enable personalization, instead of directly feeding inputs (e.g., images) into the
global model w0, each client i has a local personalized network, parameterized by wi, which extracts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Radar graph of final cross-entropy losses fi in the personalized federated learning setting,
using MGDA and RP-MGDA respectively. Lower is better.

client-specific representations. These representations are then forwarded to the global model for
prediction (e.g., Liang et al. 2020). Formally, fi(w0,wi) = Ex∼Di

[ℓ(NN(NN(x;wi);w0))], thus
having the dependency structure illustrated in Figure 5 (Left), which is also commonly seen in
multi-task learning (MTL), see e.g., Sener and Koltun (2018).

Refined Partition. For this ‘MTL’ dependency structure, the optimal refined partition is
{{w0}, {w1}, . . . , {wm}}. Consequently, at each iteration, RP-MGDA updates w0 by descending
along the minimum-norm direction, while wi (for i ∈ [m]) is updated with gradient descent simulta-
neously. This partitioning (a) simplifies the dual sub-problem by reducing its dimensionality and (b)
allows for more flexible updates to the personalized networks.

Results. As shown in Figure 6 and Appendix B.3.2, we observe that RP-MGDA converges faster and
reaches better solutions than MGDA, particularly for f2, f3 and f4, while for f1, the performances
are similar. Further details are provided in Appendix B.3.

7.2.2 HIERARCHICAL CLASSIFICATION (‘LADDER’ STRUCTURE)

Setup. We consider a multi-objective hierarchical classification problem with m = 3 levels of
objectives that predict image categories, from coarse to fine labels, on the CIFAR-10 dataset, using
a network structure similar to Branch-CNN (Zhu and Bain 2017). Here, w1,w2 and w3 represent
the network weights of feature extraction layers 1, 2 and 3, respectively. The three objectives, f1, f2
and f3, are all cross-entropy losses but defined for different prediction tasks. The first task is binary
classification, categorizing images as ‘living’ or ‘non-living,’ using only the representations from
feature extraction layer 1, and thus depending solely on w1.4 The second task classifies images into
four categories: ‘ground vehicle,’ ‘non-ground vehicle,’ ‘land animal,’ or ‘non-land animal,’ using
representations from layers 1 and 2, and thus depending on w1 and w2. The third task classifies
images into the original CIFAR-10 categories, using representations from all three layers, and thus
depending on w1, w2, and w3. This hierarchical structure allows for progressively more complex
predictions as we move from coarse to fine labels.

Refined Partition. The corresponding dependency structure in Figure 5 (Middle) features an optimal
refined partition of {{w1 w2} , {w3}}, where RP-MGDA optimizes w3 using gradient descent and
the block {w1 w2} using MGDA. This partitioning should be advantageous for Objective 3, as it
allows for more flexible updates to w3 compared to MGDA.

Results. Indeed, we observe that the training loss curves for Objectives 1 and 2 are nearly indis-
tinguishable; however, RP-MGDA demonstrates faster and better convergence for Objective 3, as
illustrated in Figure 7.

4After ‘branching out,’ an additional linear classification layer is used for the final prediction, which can
either be fixed or updated separately. We omit these ‘off-ramps’ from the discussion, as they do not affect the
dependency structure of the feature extraction layers, which is the focus here.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Loss curves of MGDA and RP-MGDA for the three objectives in hierarchical classification.

7.2.3 MULTI-OBJECTIVE LEARNING WITH PARTIAL INFORMATION (‘CHAIN’ STRUCTURE)

Setup. We simulate a scenario inspired by vertical federated learning (Liu et al. 2024) where each
party holds different feature sets for the same instances, akin to multiple institutions possessing
various attributes for the same users. In particular, we explore the setting where each party only has
access to consecutive variables, e.g., a company in a supply chain having only adjacent upstream
and downstream data. In this context, clients with heterogeneous data collaborate to learn a stronger
model without directly sharing sensitive user data. Specifically, we consider an m = 4-objective
learning problem on the California housing dataset (Pace and Barry 1997), where we employ a linear
model to predict the median house value. The original 8 features are grouped into 3 sets5, each
associated with linear regression weights w1,w2,w3. The objectives fi represent the mean-squared
error (MSE) for different parties, all trained on the same dataset but with each objective depending
on different subsets of features, as illustrated in Figure 5 (Right).

Refined Partition. For this ‘chain’ dependency structure, the optimal refined partition is
{{w1}, {w2}, {w3}}, allowing RP-MGDA to apply block-wise MGDA to w1,w2 and w3 sep-
arately. This results in simpler dual sub-problems and improved convergence.

Results. As shown in Figure 8, RP-MGDA demonstrates greater stability and lower average losses
across the 20 trials. We also observe that the stationary solutions of MGDA can be improved by
post-processing with RP-MGDA, in 18 out of 20 trials. Additionally, the conditions of Theorem 2 are
met in this setup, ensuring that RP-MGDA achieves Pareto optimality.

Figure 8: We calculate the mean and standard deviation of the 4 losses across 20 ramdom trials (dif-
ferent seeds) for both MGDA and RP-MGDA, and plot the means, with shaded regions representing
the standard deviation.

8 CONCLUSION AND DISCUSSION

In this work, we introduced Refined Pareto Stationarity (RPS) with an efficient partitioning procedure
(REFINED_PARTITION) to address limitations of Pareto stationarity in multi-objective optimization
(MOO). We proposed RP-MGDA, a novel MOO algorithm based on refined partitioning that con-
verges to RPS, supported by both theoretical and empirical justification. Future work may explore
applying our idea to other MOO algorithms and demonstrate the superior performance on other real
problems with (sparse) dependency structures.

5Details on feature grouping are provided in Appendix B.5.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Albuquerque, I., J. Monteiro, T. Doan, B. Considine, T. Falk, and I. Mitliagkas (2019). “Multi-
objective training of Generative Adversarial Networks with multiple discriminators”. In: Proceed-
ings of the 36th International Conference on Machine Learning.

Assunção, P., O. P. Ferreira, and L. Prudente (2021). “Conditional gradient method for multiobjective
optimization”. Computational Optimization and Applications, vol. 78, no. 3, pp. 741–768.

Ban, H. and K. Ji (2024). “Fair Resource Allocation in Multi-Task Learning”. In: Proceedings of the
41st International Conference on Machine Learning, pp. 2715–2731.

Chen, L., H. Fernando, Y. Ying, and T. Chen (2023). “Three-Way Trade-Off in Multi-Objective Learn-
ing: Optimization, Generalization and Conflict-Avoidance”. In: Advances in Neural Information
Processing Systems, pp. 70045–70093.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009). “Introduction to Algorithms”. 3rd.
The MIT Press.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002). “A fast and elitist multiobjective genetic
algorithm: NSGA-II”. IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197.

Désidéri, J.-A. (2012). “Multiple-gradient descent algorithm (MGDA) for multiobjective optimiza-
tion”. Comptes Rendus Mathematique, vol. 350, no. 5, pp. 313–318.

Fernando, H. D., H. Shen, M. Liu, S. Chaudhury, K. Murugesan, and T. Chen (2023). “Mitigating
Gradient Bias in Multi-objective Learning: A Provably Convergent Approach”. In: International
Conference on Learning Representations.

Fliege, J., L. G. Drummond, and B. F. Svaiter (2009). “Newton’s method for multiobjective optimiza-
tion”. SIAM Journal on Optimization, vol. 20, no. 2, pp. 602–626.

Fliege, J. and B. F. Svaiter (2000). “Steepest descent methods for multicriteria optimization”. Mathe-
matical Methods of Operations Research, vol. 51, no. 3, pp. 479–494.

Fliege, J., A. I. F. Vaz, and L. N. Vicente (2019). “Complexity of gradient descent for multiobjective
optimization”. Optimization Methods and Software, vol. 34, no. 5, pp. 949–959.

Hu, Z., K. Shaloudegi, G. Zhang, and Y. Yu (2022). “Federated learning meets multi-objective
optimization”. IEEE Transactions on Network Science and Engineering, vol. 9, no. 4, pp. 2039–
2051.

Kamishima, T., S. Akaho, and J. Sakuma (2011). “Fairness-aware Learning through Regularization
Approach”. In: IEEE 11th International Conference on Data Mining Workshops, pp. 643–650.

Kleinberg, J., S. Mullainathan, and M. Raghavan (2017). “Inherent trade-offs in the fair determination
of risk scores”. In: Innovations in Theoretical Computer Science (ITCS), 43:1–43:23.

Liang, P. P., T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent, R. Salakhutdinov, and L.-P.
Morency (2020). “Think locally, act globally: Federated learning with local and global representa-
tions”. In: NeurIPS Workshop on Federated Learning.

Lin, X., H.-L. Zhen, Z. Li, Q.-F. Zhang, and S. Kwong (2019). “Pareto Multi-Task Learning”. In:
Advances in Neural Information Processing Systems.

Liu, B., X. Liu, X. Jin, P. Stone, and Q. Liu (2021a). “Conflict-averse gradient descent for multi-task
learning”. In: Advances in Neural Information Processing Systems, pp. 18878–18890.

Liu, L., Y. Li, Z. Kuang, J.-H. Xue, Y. Chen, W. Yang, Q. Liao, and W. Zhang (2021b). “Towards
Impartial Multi-task Learning”. In: International Conference on Learning Representations.

11

http://proceedings.mlr.press/v97/albuquerque19a/albuquerque19a.pdf
http://proceedings.mlr.press/v97/albuquerque19a/albuquerque19a.pdf
https://doi.org/10.1007/s10589-020-00260-5
https://doi.org/10.1007/s10589-020-00260-5
https://proceedings.mlr.press/v235/ban24a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/ddcf34623ca2d63823b6d40e4d980580-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ddcf34623ca2d63823b6d40e4d980580-Paper-Conference.pdf
https://mitpress.mit.edu/9780262533058/introduction-to-algorithms/
https://ieeexplore.ieee.org/document/996017
https://ieeexplore.ieee.org/document/996017
https://doi.org/10.1016/j.crma.2012.03.014
https://doi.org/10.1016/j.crma.2012.03.014
https://openreview.net/forum?id=dLAYGdKTi2
https://openreview.net/forum?id=dLAYGdKTi2
https://doi.org/10.1137/08071692
https://doi.org/10.1137/08071692
https://doi.org/10.1007/s001860000043
https://doi.org/10.1080/10556788.2018.1510928
https://doi.org/10.1080/10556788.2018.1510928
https://ieeexplore.ieee.org/document/9762229
https://ieeexplore.ieee.org/document/9762229
https://ieeexplore.ieee.org/document/6137441
https://ieeexplore.ieee.org/document/6137441
http://drops.dagstuhl.de/opus/volltexte/2017/8156/pdf/LIPIcs-ITCS-2017-43.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/8156/pdf/LIPIcs-ITCS-2017-43.pdf
https://arxiv.org/abs/2001.01523
https://arxiv.org/abs/2001.01523
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9d27fdf2477ffbff837d73ef7ae23db9-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9d27fdf2477ffbff837d73ef7ae23db9-Paper.pdf
https://openreview.net/forum?id=IMPnRXEWpvr
https://openreview.net/forum?id=IMPnRXEWpvr

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liu, S. and L. N. Vicente (2021). “The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning”. Annals of Operations Research,
vol. 339, pp. 1119–1148.

Liu, Y., Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang, and Q. Yang (2024). “Vertical
federated learning: Concepts, advances, and challenges”. IEEE Transactions on Knowledge and
Data Engineering, vol. 36, no. 7, pp. 3615–3634.

McMahan, B., E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas (2017). “Communication-
Efficient Learning of Deep Networks from Decentralized Data”. In: Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282.

Mercier, Q., F. Poirion, and J.-A. Désidéri (2018). “A stochastic multiple gradient descent algorithm”.
European Journal of Operational Research, vol. 271, no. 3, pp. 808–817.

Mukai, H. (1980). “Algorithms for multicriterion optimization”. IEEE Transactions on Automatic
Control, vol. 25, no. 2, pp. 177–186.

Navon, A., A. Shamsian, I. Achituve, H. Maron, K. Kawaguchi, G. Chechik, and E. Fetaya (2022).
“Multi-Task Learning as a Bargaining Game”. In: Proceedings of the 39th International Conference
on Machine Learning.

Nesterov, Y. (2018). “Lectures on Convex Optimization”. 2nd. Springer.

O. Montonen, N. K. and M. M. Mäkelä (2018). “Multiple subgradient descent bundle method for
convex nonsmooth multiobjective optimization”. Optimization, vol. 67, no. 1, pp. 139–158.

Pace, R. K. and R. Barry (1997). “California Housing Dataset”. Accessed through scikit-learn library.

Padh, K., D. Antognini, E. Lejal-Glaude, B. Faltings, and C. Musat (2021). “Addressing fairness
in classification with a model-agnostic multi-objective algorithm”. In: Uncertainty in Artificial
Intelligence, pp. 600–609.

Sener, O. and V. Koltun (2018). “Multi-Task Learning as Multi-Objective Optimization”. In: Advances
in Neural Information Processing Systems.

Tanabe, H., E. H. Fukuda, and N. Yamashita (2019). “Proximal gradient methods for multiobjective
optimization and their applications”. Computational Optimization and Applications, vol. 72,
pp. 339–361.

– (2023). “An accelerated proximal gradient method for multiobjective optimization”. Computational
Optimization and Applications, vol. 86, pp. 421–455.

Xiao, P., H. Ban, and K. Ji (2023). “Direction-oriented Multi-objective Learning: Simple and Provable
Stochastic Algorithms”. In: Advances in Neural Information Processing Systems, pp. 4509–4533.

Yu, T., S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn (2020). “Gradient surgery for
multi-task learning”. In: Advances in Neural Information Processing Systems, pp. 5824–5836.

Zhou, S., W. Zhang, J. Jiang, W. Zhong, J. GU, and W. Zhu (2022). “On the Convergence of Stochas-
tic Multi-Objective Gradient Manipulation and Beyond”. In: Advances in Neural Information
Processing Systems.

Zhu, X. and M. Bain (2017). “B-CNN: branch convolutional neural network for hierarchical classifi-
cation”.

12

https://link.springer.com/article/10.1007/s10479-021-04033-z
https://link.springer.com/article/10.1007/s10479-021-04033-z
https://doi.org/10.1109/TKDE.2024.3352628
https://doi.org/10.1109/TKDE.2024.3352628
http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
https://doi.org/10.1016/j.ejor.2018.05.064
https://ieeexplore.ieee.org/document/1102298
https://proceedings.mlr.press/v162/navon22a.html
https://link.springer.com/book/10.1007/978-3-319-91578-4
https://doi.org/10.1080/02331934.2017.1387259
https://doi.org/10.1080/02331934.2017.1387259
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://proceedings.mlr.press/v161/padh21a/padh21a.pdf
https://proceedings.mlr.press/v161/padh21a/padh21a.pdf
https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
https://doi.org/10.1007/s10589-018-0043-x
https://doi.org/10.1007/s10589-018-0043-x
https://doi.org/10.1007/s10589-023-00497-w
https://proceedings.neurips.cc/paper_files/paper/2023/file/0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://openreview.net/forum?id=ScwfQ7hdwyP
https://openreview.net/forum?id=ScwfQ7hdwyP
https://arxiv.org/pdf/1709.09890
https://arxiv.org/pdf/1709.09890

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS AND PSEUDO-CODE OMITTED FROM THE MAIN TEXT

Lemma 2. Any Pareto optimal solution is Pareto stationary w.r.t. any partition.

Proof. Let w∗ be Pareto optimal w.r.t. f . Consider the function g(z) := fP1(z,w∗
P2
, . . . ,w∗

Pk
).

Clearly, w∗
P1

is Pareto optimal w.r.t. g. Applying Lemma 1 we know 0 ∈ conv{∇g(w∗
P1
)} =

conv{∇wP1
fP1(w∗)}. Iterating the argument proves (11).

Theorem 1. Let P = REFINED_PARTITION(A) where A is defined in (12). Then, any w∗ that is
Pareto stationary w.r.t. P , which we call refined Pareto stationary from now, is Pareto stationary.

Proof. For each j ∈ [k], let us define

Fj := {i ∈ [m] : fi is connected to Pj in the final graph}, (13)

namely, the set of functions that the variable set Pj “sees.” We claim that for all j ̸= l,

|Fj ∩ Fl| ≤ 1. (14)

Suppose not, let a ̸= b ∈ Fj ∩ Fl. Then, in our final graph, fa and fb are connected to both Pj and
Pl, creating a cycle of 4 and hence contradicting to the fact that Pj and Pl were not merged.

Since w∗ is Pareto stationary w.r.t. P , for each j ∈ [k] there exists λj ∈ ∆ such that

∇wPj
f(w∗) · λj = 0, where λj

i = 0 if i ̸∈ Fj . (15)

Our goal is to construct λ ∈ ∆ (independent of the index j) such that ∇f(w∗) · λ = 0, i.e., w∗ is
Pareto stationary.

W.l.o.g. we make the following assumptions:

1. The graph is connected, as we can consider each connected component separately.

2. The variable sets are rearranged according to their distance to P1 (ties broken arbitrarily).

3. (positivity) λj
i = 0 if and only if i ̸∈ Fj ; we will see how to reduce to this case later.

For each j ∈ [k], consider any n ≥ j +1 such that there exists a (unique) in ∈ Fj ∩Fn, and perform
the rescaling

λn ← λn ·
λj
in

λn
in

, (16)

where we note that λn
in
̸= 0 due to the positivity assumption. Importantly, rescaling (by a positive

number) does not affect any of the stationary conditions in (15), other than the normalization constraint
1⊤λj = 1, which we will take care of at the end.

We claim that each λn is rescaled at most once. Suppose not so there exist j1 < j2 < n and
ij1 ∈ Fj1 ∩ Fn and ij2 ∈ Fj2 ∩ Fn, i.e., we have the edges shown on Figure 9 (left). Due to their
appearance order, we must have

dist(Pj1 , P1) ≤ dist(Pj2 , P1) ≤ dist(Pn, P1). (17)

Noting the edges from ij1 to Pj1 and Pn and from ij2 to Pj2 and Pn, we must have

dist(Pj1 , P1) = dist(Pj2 , P1) < dist(Pn, P1), (18)

for otherwise there will be a cycle (due to a back edge, see Cormen et al. 2009). We can now trace
back the ancestors of Pj1 and Pj2 until we finally arrive at the same variable set P (since only P1 has
0 distance to P1) that intersects both P ′

j1
and P ′

j2
(here prime denotes the final ancestor pair). But

this creates a cycle (see Figure 9, right), contradiction.

Lastly, we take component-wise maximum to construct

λ = ∨kj=1λ
j . (19)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

ij2

ij1 Pj1

Pj2

Pn

ij2

ij1

i′j1

i′j2

...

ia

ib

...

Pj1

Pj2

Pn

P ′
j1

P ′
j2

P

Figure 9: Illustration of the claim that each λn is rescaled at most once.

Clearly, λ ̸= 0 so we may normalize it so that λ ∈ ∆. Since each λj is re-scaled at most once (and
nonzero entries of different λj and λn intersect at most once, see (14)), for any j and λj

i ̸= 0, we
have

λi = λj
i . (20)

Since (15) holds for any j (other than the normalization constraint), it follows that ∇f(w∗) · λ = 0.

We are left to justify the positivity assumption. Consider the “adjacency” matrix

Λ =
[
λ1 λ2 · · · λk

]
, (21)

where we put an edge between fi and Pj if the corresponding λj
i value is nonzero. Suppose λj

i = 0
for some i ∈ Fj . Then, for all variable subsets Pl, other than Pj , that can be reached by fi, we set
their λl = 0 (namely entire columns in Λ) and Fl = ∅. Note that we do not change λj (for if we can
reach Pj from i but not through the edge {i, Pj}, we will have a cycle) so Λ remains nonzero after
our operation. Moreover, the stationary conditions (15), other than the normalization constraint, are
maintained. Thus, we may repeat this process until the positivity assumption holds.

The proof is now complete.

Remark 1. We point out that REFINED_PARTITION(A) returns a unique solution (irrespective of the
order of the cycles we contract). Indeed, when we merge the variables and contract the graph, any
existing cycle (other than the one we are contracting) will remain as a cycle. Another way to see this
is to think of contracting a cycle as replacing it with a complete bipartite subgraph.
Remark 2. We note that Theorem 1 continues to hold if we replace P by any of its coarser partition
Q (i.e., for any P ∈ P there exists Q ∈ Q such that P ⊆ Q). In particular, setting Q = [d] we
recover Pareto stationarity in Definition 3.

We will need the following elementary result:
Lemma 3. If g(w,u) and h(w,v) are both strictly convex in (w,u) and (w,v), respectively, then
f(w,u,v) := g(w,u) + h(w,v) is strictly convex in (w,u,v).

Proof. Indeed, consider (w0,u0,v0) ̸= (w1,u1,v1). For any λ ∈ (0, 1), denote wλ := (1 −
λ)w0 + λw1 and similarly for uλ and vλ, we have

g(wλ,uλ) ≤ (1− λ)g(w0,u0) + λg(w1,u1) (22)
h(wλ,vλ) ≤ (1− λ)h(w0,v0) + λh(w1,v1), (23)

where at least one of the inequalities is strict. Thus, f(wλ,uλ,vλ) < (1 − λ)f(w0,u0,v0) +
λf(w1,u1,v1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Theorem 2. Let P = {P1, . . . , Pk} be returned by REFINED_PARTITION. Suppose each fi is strictly
convex in wIi where Ii ⊆ P is the set of blocks of variables that fi depends on. Then, any refined
Pareto stationary solution (w.r.t. P) is Pareto optimal.

Proof. Let w∗ be an arbitrary refined Pareto stationary solution w.r.t. P . For the sake of contradiction,
consider any Pareto optimal solution z that dominates w∗, i.e., f(z) ⪇ f(w∗).

Applying Theorem 1 we know w∗ is Pareto stationary, i.e., there exists some λ ∈ ∆ such that∑
i

λi∇fi(w∗) = 0. (24)

Restricting to the subset F+ := {i : λi ̸= 0} ≠ ∅, we know from Lemma 3 that the function
h(w) :=

∑
i∈F+ λifi(w) is strictly convex in wIh that it depends on (where Ih ⊆ P). Since

h(z) ≤ h(w∗), we necessarily have

z∪Ih = w∗
∪Ih

. (25)

We are now ready to reduce. We fix w∗
∪Ih

and remove all blocks of variables in Ih (and the
corresponding edges in our bipartite graph). Clearly, the bipartite graph remains acyclic and w∗

P\Ih
remains to be refined Pareto stationary w.r.t. the reduced problem. Iterating the argument in the
previous paragraph, we deduce that z agrees with w∗ in at least one more block of variables. Since
there are only k blocks in total, after at most k iterations we must have z = w∗, which contradicts to
the assumption f(z) ⪇ f(w∗). Thus, w∗ is Pareto optimal and the proof is complete.

Remark 3. Since Theorem 1 also holds for any partition Q that is coarser than P , the same is
true for Theorem 2. In particular, choosing Q = [m], refined Pareto stationarity reduces to Pareto
stationarity and Theorem 2 reduces to the well-known result in MOO (see Lemma 1).

Example 3 (Personalized federated learning). Let us give an example where Theorem 2 strictly
improves Lemma 1. Consider the personalized federated learning setting with fi(w0,wi), i ∈ [m].
It is clear that none of the functions fi is strictly convex w.r.t. (w0,w1, . . . ,wm). Thus, Lemma 1 is
not applicable and not every Pareto stationary solution is Pareto optimal.

On the other hand, REFINED_PARTITION returns P = {{w0}, {w1}, . . . , {wm}} and it is possible
for each function fi to be strictly convex w.r.t. the (blocks of) variables (w0,wi) that it depends on.
(This can also be achieved by regularizing each function fi.) Therefore, Theorem 2 is applicable. In
fact, we can apply Theorem 2 to both our Example 1 and Example 2 in the main text and conclude
that the refined Pareto stationary solution indeed coincides with the unique Pareto optimal solution.

To be more concrete, consider

f1(w0, w1, w2, w3) = w2
0 + w2

1 (26)

f2(w0, w1, w2, w3) = (w0 − 1)2 + w2
2 (27)

f3(w0, w1, w2, w3) = (w0 − 2)2 + w2
3. (28)

We run simulations with step size η = 0.01 and 1000 iterations. With initialization w1 =
(1.5, 1, 0.1, 0.1), MGDA converges to w1000 = (1.5, 1, 0, 0) with function values f(w1000) =
(134 , 1

4 ,
1
4), which is not Pareto optimal since it is dominated by f∗ = (94 ,

1
4 ,

1
4), achieved at

w∗ = (1.5, 0, 0, 0). In contrast, under the same setting, RP-MGDA converges to the Pareto op-
timal solution w∗ = (1.5, 0, 0, 0).

From Theorem 2, we also see how MGDA fails to reach the Pareto optimal solution in this example.
When MGDA converges to w1000 = (1.5, 1, 0, 0), the corresponding λ1 = 0 while∇w1f1(w

∗
0 , w

∗
1) ̸=

0, which means MGDA stops even though there is a descent direction along w1.

Theorem 3. Suppose the functions fi are bounded from below and Lipschitz smooth with constant
Li. Set ηj ≡ η ≤ mini

1
Li

. Then, min1≤t≤T ∥dt∥ ≤ O(1√
T
).

Proof. Denote

Ii := {j : fi depends on Pj} (29)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and apply smoothness to upper bound the i-th objective as (for step size η ≤ 1
Li

, Li being the
Lipschitz constant of∇fi):

fi(w
t+1) ≤ fi(w

t) +∇fi(wt) · (wt+1 −wt) +
1

2η
∥wt+1 −wt∥2Ii (30)

= fi(w
t) +

∑
j∈Ii

η ·
[
∇Pj

fi(w
t) · dt

Pj
+ 1

2∥d
t
Pj
∥22
]

(31)

≤ fi(w
t)−

∑
j∈Ii

η
2 · ∥d

t
Pj
∥22, (32)

where the last inequality follows from the definition of dt
Pj

:

dt
Pj

= argmin
dPj

max
i∈Fj

[
∇Pjfi(w

t) · dPj +
1
2∥dPj∥22

]
. (33)

Indeed, we note that the objective above is 1-strongly convex in dPj
, so setting dPj

= 0 and
dPj = dt

Pj
we obtain from e.g. Nesterov (2018, Corollary 3.2.3, p. 210):

0 ≥ max
i∈Fj

[
∇Pj

fi(w
t) · dt

Pj
+ 1

2∥d
t
Pj
∥22
]
+ 1

2∥0− dt
Pj
∥22. (34)

Rearranging and summing over t we obtain:
T∑

t=1

∑
j∈Ii

∥dt
Pj
∥22 ≤ 2

η [fi(w
1)− fi(w

T+1)]. (35)

Dividing both sides by T we obtain:

min
1≤t≤T

∑
j∈Ii

∥dt
Pj
∥22 ≤

1

T

T∑
t=1

∑
j∈Ii

∥dt
Pj
∥22 ≤ 2

ηT [fi(w
1)− fi(w

T+1)]. (36)

Finally, we sum over any subset F (e.g., F = [m]) of functions that together depend on all variables:

2

η

∑
i∈F

[fi(w
1)− fi(w

T+1)] ≥
T∑

t=1

∑
i∈F

∑
j∈Ii

∥dt
Pj
∥22 ≥

T∑
t=1

k∑
j=1

∥dt
Pj
∥22 =

T∑
t=1

∥dt∥22. (37)

Dividing both sides by T we obtain:

2

ηT

∑
i∈F

[fi(w
1)− fi(w

T+1)] ≥ 1

T

T∑
t=1

∥dt∥22 ≥ min
t
∥dt∥22. (38)

Since all functions are assumed to be bounded from below, the claim is proved.

A.1 PSEUDO-CODE FOR REFINED_PARTITION

In the pseudocode below, a cycle C is a collection of column indices (i.e. variable indices) of the
adjacency matrix A ∈ Rm×d. We can use depth-first search (DFS) or networkx for detect_cycle.
The loop can continue for at most d iterations, with each iteration costing O(m+ d).

Algorithm 2: REFINED_PARTITION

Input: Adjacency matrix A representing the function-variable dependencies (bipartite graph)
Output: Refined partition P of variables

1 Initialize P ← {{w1}, {w2}, . . . , {wd}} // each variable in its own group
2 while there exists a cycle do
3 C ← detect_cycle(A) // e.g., use networkx package or DFS
4 P ← ∪j∈CPj // merge variables in the cycle
5 a←

∨
j∈C A:j // update the edges

6 A:C ← [], A← [A,a] // contract the graph
7 PC ← [], P ← P ∪ {P} // update the partition

8 return P

16

https://networkx.org

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B EXPERIMENT DETAILS

B.1 SYNTHETIC EXAMPLES

0.0 0.5 1.0 1.5 2.0
f1

0.0

0.5

1.0

1.5

2.0

2.5

f 2

MGDA

0.0 0.5 1.0 1.5 2.0
f1

0.0

0.5

1.0

1.5

2.0

2.5 RP-MGDA

0.0 0.5 1.0 1.5 2.0
f1

0.0

0.5

1.0

1.5

2.0

2.5 MGDA

0.0 0.5 1.0 1.5 2.0
f1

0.0

0.5

1.0

1.5

2.0

2.5 RP-MGDA

Figure 10: Comparisons of stationary solution fronts generated by MGDA and RPMGDA. (1) and (2)
for the quadratic example, (3) and (4) for the non-strictly convex example.

Two-objective toy examples. We examine two examples with the same underlying function-variable
dependency structure but different convexity conditions. The quadratic one is given by: f1(w) =
w2

1 + w2
2 , f2(w) = (w2 − 1)2 + (w3 − 1)2. The non-strictly convex one is: f1(w) = w2

1 + |w2|,
f2(w) = |w2 − 1| + (w3 − 1)2. Initialized with a grid search over [−1, 1]3, we plot the solution
fronts in terms of function values [f1(w∗), f2(w

∗)] for MGDA and RP-MGDA in Figure 10.

We observe that RP-MGDA always reaches Pareto optimal solutions regardless of initialization,
while MGDA may converge to sub-optimal PS solutions (i.e., those with f1 = 0, f2 > 1 and
f1 > 1, f2 = 0).6 Moreover, by post-processing the sub-optimal solutions of MGDA with RP-
MGDA, we can refine these solutions and bring them to the Pareto front.

Adding regularization to induce strict convexity. We have discussed in Section 4 the importance
of joint strict convexity for the performance of Pareto stationary solutions, particularly as highlighted
in the second part of Lemma 1. We note that the functions in the two-objective toy example setting
in Appendix B.1 are not strictly convex w.r.t. w, though they are strictly convex with respect to
their dependent variables (in the quadratic case). One natural attempt is to add regularization to
the objectives to induce strict (indeed strong) convexity. For the two-objective toy example setting
in Appendix B.1, we regularize the objectives with L2-norm on w = (w1, w2, w3) with different
magnitudes of regularization γ, and examine the new stationary solution fronts generated by MGDA.
Specifically, we consider fγ

1 (w) := w2
1 +w2

2 + γ∥w∥22, fγ
2 (w) = (w2 − 1)2 + (w3 − 1)2 + γ∥w∥22.

We observe in Figure 11 that bigger regularization yields solutions that are further away from Pareto
front; while smaller regularization gradually recover the previous (undesired) stationary solution
set of MGDA (as in Figure 10), thus still having those inferior weakly Pareto solutions (i.e., those
on the tails). To summarize, adding a regularization term, whether large or small, to induce strong
convexity, does not alleviate the issues with MGDA, further highlighting the effectiveness of our
refined partitioning for MGDA.

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.5

1.0

1.5

2.0

2.5

f 2

γ=1
MGDA
Pareto front

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.5

1.0

1.5

2.0

2.5

γ=0.1
MGDA
Pareto front

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
f1

0

1

2

3

4

γ=0.01
MGDA
Pareto front

Figure 11: Stationary solution fronts of MGDA with regularized objectives, compared to the true
Pareto front (red). From left to right: regularization magnitude γ = 1, 0.1 and 0.01.

6For MGDA, 372/512 initializations converge to sub-optimal PS solutions in the strictly convex example.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 RANDOMLY GENERATED SPARSE ADJACENCY MATRIX

Setup. The problem is formulated by first generating a random sparse adjacency matrix of m× d,
with density ρ. In detail, we do this by randomly assigning mdρ (rounded to integer) non-zero entries
to a zero m × d matrix. Afterwards, we define our objectives fi =

∑
wj∈v(fi)

(wj − i)2, i ∈ [m],
where v(fi) is the set of variables that fi depends on.

More results. We compare the solution of MGDA and RP-MGDA with the same random
initialization w0 (see Figure 12 Left), and notice that RP-MGDA outperforms MGDA in most
objectives. Although RP-MGDA is theoretically superior, their different update rules can lead to
incomparable solutions, even when the solution of RP-MGDA is Pareto optimal and MGDA is not.

We track the norm ∥dt∥ of RP-MGDA and MGDA during optimization, and observe that both
converge to zero. Note that the gradient norm ∥dt∥ of RP-MGDA is much larger than MGDA in the
beginning, which is not surprising since MGDA finds the overall min-norm element. Moreover, a
descent direction dt with a larger norm generally indicates a greater improvement for each update.

Figure 12: Left: compare MGDA and RP-MGDA solution, with same random initialization w0.
Right: The norm of dt over time converges to zero, empirically verifying Theorem 3.

We also present a 5× 5 toy example below, which maybe useful for readers.

Toy 5× 5 dependency matrix. Here we consider the quadratic objectives: fi =
∑

wj∈v(fi)
(wj −

i)2, i ∈ [5], where v(fi) is the set of variables that fi depends on. The variable dependency structure
is given in Figure 32, Appendix B.7. The refined partition for this problem is {w1, w2, [w3 w4 w5]},
where RP-MGDA is performing (8) w.r.t. w′ = (w3, w4, w5) and gradient descent w.r.t w1 and w2.
We observe from Figure 13 that the solutions of RP-MGDA dominate those of MGDA, although all
being Pareto stationary (with corresponding convex combination coefficients plotted).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

f1 f2 f3 f4 f5

0

5

10

15

20

25

30

lo
ss

RP-MGDA
MGDA

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

ps
on

di
ng

 la
m
bd

a

MGDA
RP-MGDA

f1 f2 f3 f4 f5

0

5

10

15

20

25

lo
ss

RP-MGDA
MGDA

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

ps
on

di
ng

 la
m
bd

a

MGDA
RP-MGDA

f1 f2 f3 f4 f5

0

2

4

6

8

10

12

14

16

lo
ss

RP-MGDA
MGDA

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

ps
on

di
ng

 la
m
bd

a

MGDA
RP-MGDA

f1 f2 f3 f4 f5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
ss

RP-MGDA
MGDA

0.0

0.2

0.4

0.6

0.8

1.0

co
rre

ps
on

di
ng

 la
m
bd

a

MGDA
RP-MGDA

Figure 13: Comparison of MGDA and RP-MGDA solutions, with different initializations. (i) Colored
lines connect the final objective values of each fi, where blue represents RP-MGDA, and orange
represents MGDA. (ii) Red markers (with values on the right y-axis) are the corresponding dual
coefficients λi of the solutions, showing the differences of solutions from a dual perspective.

B.3 PERSONALIZED FEDERATED LEARNING (THE ‘MTL’ STRUCTURE)

In this section, we present detailed experiment setup and more results regarding the personalized
federated learning (PFL) experiments.

B.3.1 DETAILED EXPERIMENT SETUP

Data. For the PFL setting, we conducted experiments on both MNIST and CIFAR-10 dataset. In
order to create a non-i.i.d. dataset, we follow a similar sampling procedure as in McMahan et al.
(2017): First we sort all data points according to their classes. Then, they are split consecutively into
shards (300 shards for MNIST, 250 shards for CIFAR-10), with 200 images per shard, each shard
contains images from only one class. Each client is randomly assigned 10 different shards, totaling
2000 instances per client. The data distribution for each client varies, with each having access to
different subsets of class labels. For example, client 1’s data includes class labels [‘0’ ‘2’ ‘4’ ‘6’ ‘7’
‘8’ ‘9’], while lacking data from class labels ‘1’,‘3’ and ‘5’.

Model. For MNIST, we use Multi-Layer Perceptrons (MLP) for both the lower personalized networks
and the top global network. For CIFAR-10, the lower personalized networks are Convolutional Neural
Networks (CNNs), while the top global network remains an MLP. Input data first passes through the
lower personalized networks, and the resulting representations are then forwarded to the top global
model for predictions. See Table 1 and 2 for configurations.

Misc. We adopt a warmstart procedure by first running RP-MGDA for 50 epochs on a given random
initialization, using the resulting weights as the starting point for both MGDA and RP-MGDA training.
This approach helps improve stability in some cases while still ensuring a fair comparison. We also
employ a periodic exponential decay learning rate scheme for the CIFAR-10 experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 1: Network architecture for PFL MNIST experiments.

Network Input Dim Hidden Dim Output Dim

Lower Personalized MLP img_size 256 128

Top Global MLP 128 128 10

Table 2: Network architecture for PFL CIFAR-10 experiments.

Layer Type Configuration Activation

Lower Personalized CNN Network
Conv2D 3× 32, kernel size 5 ReLU

BatchNorm2D 32 channels -

MaxPool2D kernel size 2, stride 2 -

Conv2D 32× 32, kernel size 5 ReLU

BatchNorm2D 32 channels -

MaxPool2D kernel size 2, stride 2 -

Fully Connected 32× 5× 5→ 384 ReLU

Top Global MLP Network
Fully Connected 384→ 192 ReLU

Fully Connected 192→ 10 -

B.3.2 MORE RESULTS

Figure 14: Personalized federated learning problem on MNIST. Comparing 4 objectives using RP-
MGDA and MGDA. Random seed 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 15: Personalized federated learning problem on MNIST. Comparing 4 objectives using RP-
MGDA and MGDA. Random seed 2.

Figure 16: Personalized federated learning problem on CIFAR10. Comparing 4 objectives using
RP-MGDA and MGDA. First random seed.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 17: Personalized federated learning problem on CIFAR10. Comparing 4 objectives using
RP-MGDA and MGDA. Random seed 2.

B.3.3 ELU ACTIVATION

The purpose of these experiments is to verify whether replacing ReLU with differentiable ELU
activations yields similar results and conclusions. We observed that the performance of both RP-
MGDA and MGDA remains consistent with their performance when using ReLU, with RP-MGDA
still outperforming MGDA.

Figure 18: With ELU activation. Radar graph of final cross-entropy losses fi in the personalized
federated learning setting, using MGDA and RP-MGDA respectively. Lower is better.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 19: Personalized federated learning problem on MNIST. Comparing 4 objectives using RP-
MGDA and MGDA. ELU activation.

Figure 20: Personalized federated learning problem on CIFAR-10. Comparing 4 objectives using
RP-MGDA and MGDA. ELU activation.

B.3.4 STOCHASTIC GRADIENTS

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We evaluate both RP-MGDA and MGDA in the stochastic setting, where only stochastic gradients
are available due to mini-batch training. The experiments are run for 500 epochs, with each epoch
corresponding to a full pass through the dataset. Mini-batch size= 200. For each epoch, we report the
loss at the start of the epoch. For radar graph, we report the loss averaged across mini-batches of the
last epoch.

We observe that RP-MGDA continues to outperform MGDA in performance. However, neither
algorithm guarantees descent in every iteration, and the performance of both methods drops slightly,
potentially due to bias in the descent direction.

Figure 21: Stochastic gradients. Radar graph of final cross-entropy losses fi in the personalized
federated learning setting, using MGDA and RP-MGDA respectively. Lower is better.

Figure 22: Personalized federated learning problem on MNIST. Comparing 4 objectives using
stochastic RP-MGDA and stochastic MGDA. Report loss at the start of each epoch.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 23: Personalized federated learning problem on MNIST. Comparing 4 objectives using
stochastic RP-MGDA and stochastic MGDA. Report loss at the start of each epoch.

B.3.5 PCGRAD+ AND RP-PCGRAD+

In this section, we further validate the effectiveness of Refined-Partitioning (RP) by conducting
experiments on the PCGrad+ algorithm, both with and without RP, in the PFL setting. PCGrad+
is a looped version of the PCGrad algorithm (Yu et al. 2020), where the iterative projection and
correction step (Lines 4-7 in Algorithm 1 of (Yu et al. 2020)) is repeated until the ‘surgery’ gradient
gPC
i achieves a non-negative inner product with all other gradients. This modification ensures that
PCGrad+ is a common descent algorithm for all objectives even when m ≥ 3.

For MNIST, we run 1000 epochs with lr=0.1 for both algorithms; for CIFAR-10, we run 5000 epochs
with lr=0.05 and a step decay of 0.9 every 200 epochs for both algorithms. Other settings follow
those of MGDA and RP-MGDA. We observe that RP-PCGrad+ outperforms PCGrad+.

Figure 24: Radar graph of final cross-entropy losses fi in the personalized federated learning setting,
using PCGrad+ and RP-PCGrad+ respectively. Lower is better.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 25: Personalized federated learning problem on MNIST. Comparing 4 objectives using RP-
PCGrad+ and PCGrad+.

Figure 26: Personalized federated learning problem on CIFAR-10. Comparing 4 objectives using
RP-PCGrad+ and PCGrad+.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B.4 HIERARCHICAL CLASSIFICATION (THE ‘LADDER’ STRUCTURE)

In this section, we present detailed experiment setup.

Data. In addition to the original 10 classes in the CIFAR-10 dataset, we define broader categories
with binary labels: [‘non-living’, ‘living’], as well as mid-level categories: [‘ground-vehicle’, ‘non-
ground-vehicle’, ‘land-animal’, ‘non-land-animal’]. These serve as coarser labels for the original
classes, which include [‘plane’, ‘car’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’].
Consequently, each image instance in the dataset with an original label is also assigned a binary
label and a mid-level label for the tasks of binary classification (f1) and four-class classification (f2),
respectively. For instance, a ‘plane’ is labeled as ‘non-living’ ‘non-ground-vehicle’, while a ’deer’ is
labeled as ‘living’ ‘land-animal’. We take a smaller subset of the original CIFAR-10 dataset as our
training set.

Model. We employ a CNN architecture similar in spirit to Branch-CNN (Zhu and Bain 2017),
featuring three layers for feature extraction and three ’off-ramp’ linear classifiers that branch out after
the first, second, and third feature extraction layers, respectively. The first task, f1, processes input
through the shared feature extraction layer 1 followed by classifier 1. The second task, f2, processes
input through the shared feature extraction layers 1 and 2, followed by classifier 2. The third task,
f3, processes input through the shared feature extraction layers 1 and 2, then through the non-shared
feature extraction layer 3, and finally classifier 3. See Table 3.

Misc. We adopt a warmstart procedure similar to the previous section by first running RP-MGDA for
5 epochs. We also employ a periodic exponential decay learning rate scheme for the experiments.

Table 3: Network architecture for hierarchical classification experiments.

Layer Type Configuration Activation

First Feature Extraction Layer
Conv2D 3× 32, kernel size 5 ReLU

BatchNorm2D 32 channels -

MaxPool2D Kernel size 2, stride 2 -

Conv2D 32× 32, kernel size 5 ReLU

BatchNorm2D 32 channels -

MaxPool2D Kernel size 2, stride 2 -

Second Feature Extraction Layer
Fully Connected (FC) 32× 5× 5→ 384 ReLU

Third Feature Extraction Layer
Fully Connected (FC) 384→ 192 ReLU

First Classifier
Fully Connected (FC) 32× 5× 5→ 2 -

Second Classifier
Fully Connected (FC) 384→ 4 -

Third Classifier
Fully Connected (FC) 192→ 10 -

B.5 MULTI-OBJECTIVE LEARNING WITH PARTIAL INFORMATION (THE ‘CHAIN’ STRUCTURE)

In this section, we present detailed experiment setup.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Data. We conduct experiments on the California housing dataset, which consists of 20,640 sam-
ples from the 1990 U.S. Census, aiming to predict median house values. The dataset includes 8
features, [‘Longitude’, ‘Latitude’, ‘AveOccup’, ‘Population’, ‘MedInc’, ‘HouseAge’, ‘AveRooms’,
‘AveBedrms’]. We group ‘Longitude’ and ‘Latitude’ as w1; ‘AveOccup’, ‘Population’ and ‘MedInc’
as w2; ‘HouseAge’, ‘AveRooms’ and ‘AveBedrms’ as w3. To implement the function-variable
dependency structure, we use feature masks on X during training.

Model. We consider a linear model with 8 weights, each corresponding to one of the 8 features in the
dataset. We set the bias b to be the mean of Y train.

Misc. We standardize each feature to have zero mean and unit variance to improve training.

Figure 27: We calculate the mean and standard deviation of the 4 losses across the 20 trials (different
seeds) for both MGDA and RP-MGDA, and plot the means, with shaded regions representing the
standard deviations. Although the solution of RP-MGDA for a single trial does not dominate MGDA’s.
RP-MGDA achieves lower average losses for all 4 objectives and has much smaller deviations.

B.6 JACOBI VS. GAUSS-SEIDEL UPDATE

In Section 6, we discussed the approach of cycling through the blocks of variable identified by
REFINED_PARTITION for updates, also known as the ‘Gauss-Seidel’ update. The main RP-MGDA
algorithm presented in Algorithm 1, which updates all blocks simultaneously, is referred to as the
‘Jacobi’ update.

In this section we empirically compare the Jacobi (default) and Gauss-Seidel versions of RP-MGDA
updates, using a refined partition of 5 blocks for the PFL setting on both the MNIST and CIFAR-10
dataset. We find no significant difference overall when the number of variable updates is kept the
same.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 28: A look at the first 100 epochs. Gauss-Seidel update exhibits some ’zig-zags’ and converges
slower in terms of pure number of epochs. CIFAR-10 dataset.

Figure 29: Overall convergence trends are similar if we plot the loss of Gauss-Seidel update every 5
epochs instead, to ensure the total number of variable updates are the same for Jacobi and Gauss-
Seidel at each time stamp in the plot. CIFAR-10 dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 30: A look at the first 100 epochs. MNIST dataset, PFL setting.

Figure 31: Overall convergence in 1000 epochs, with Gauss-Seidel update plotted every 5 epochs to
ensure the total number of variable updates are the same. MNIST dataset, PFL setting.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

B.7 MISC

θ1 θ2 θ3

f1 ✓ ✓

f2 ✓ ✓

θ1 θ2 θ3 θ4 θ5

f1 ✓

f2 ✓ ✓

f3 ✓ ✓

f4 ✓ ✓ ✓

f5 ✓ ✓

Figure 32: Variable dependency structures of synthetic toy examples in §B.1 and §B.2.

31

	Introduction
	Related Works
	Preliminaries
	Multi-Objective Minimization (MOO)
	Pareto Optimality and Pareto Stationarity
	Multiple Gradient Descent Algorithm (MGDA)

	Illustrative examples
	Refined Pareto Stationary Solutions
	Improving Existing Algorithms with the Refined Partition
	Experiments
	Synthetic Examples
	ML Benchmark datasets
	Personalized Federated Learning (`MTL' Structure)
	Hierarchical classification (`Ladder' Structure)
	Multi-objective learning with partial information (`Chain' Structure)

	Conclusion and Discussion
	Proofs and pseudo-code omitted from the main text
	purple Pseudo-code for Refined_Partition

	Experiment details
	Synthetic Examples
	Randomly generated sparse adjacency matrix
	Personalized Federated Learning (the `MTL' structure)
	Detailed experiment setup
	More results
	ELU activation
	Stochastic gradients
	PCGrad+ and RP-PCGrad+

	Hierarchical Classification (the `Ladder' structure)
	Multi-Objective Learning with Partial Information (the `Chain' structure)
	Jacobi vs. Gauss-Seidel Update
	Misc

