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POLISH: Adaptive Online Cross-Modal Hashing
for Class Incremental Data

Anonymous Author(s)

ABSTRACT
In recent years, hashing-based online cross-modal retrieval has
garnered growing attention. This trend is motivated by the fact
that web data is increasingly delivered in a streaming manner as
opposed to batch processing. Simultaneously, the sheer scale of web
data sometimes makes it impractical to fully load for the training
of hashing models. Despite the evolution of online cross-modal
hashing techniques, several challenges remain: 1) Most existing
methods learn hash codes by considering the relevance among
newly arriving data or between new data and the existing data, often
disregarding valuable global semantic information. 2) A common
but limiting assumption in many methods is that the label space
remains constant, implying that all class labels should be provided
within the first data chunk. This assumption does not hold in real-
world scenarios, and the presence of new labels in incoming data
chunks can severely degrade or even break these methods.

To tackle these issues, we introduce a novel supervised on-
line cross-modal hashing method named adaPtive Online cLass-
Incremental haSHing (POLISH). Leveraging insights from language
models, POLISH generates representations for new class label from
multiple angles.Meanwhile, POLISH treats label embeddings, which
remain unchanged once learned, as stable global information to
produce high-quality hash codes. POLISH also puts forward an
efficient optimization algorithm for hash code learning. Extensive
experiments on two real-world benchmark datasets show the effec-
tiveness of the proposed POLISH for class incremental data in the
cross-modal hashing domain.
ACM Reference Format:
Anonymous Author(s). 2018. POLISH: Adaptive Online Cross-Modal Hash-
ing for Class Incremental Data. In Proceedings of The Web Conference (Con-
ference acronym ’XX). ACM, New York, NY, USA, 10 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Due to the explosive growth of heterogeneous modalities web data,
the task of cross-modal search in large datasets has evolved into
a significant challenge. Traditional search methods are no longer
the optimal choice in these scenarios due to time and storage com-
plexities. To address this challenge, approximate nearest-neighbor
(ANN) search methods, particularly those based on learning to hash
[5, 23, 29–31], have gained substantial attention in recent years. By
performing bitwise XOR operations in the Hamming space of hash
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codes, these methods enable efficient searches within the binary
encodings. Moreover, the short binary codes generated from map-
ping high-dimensional data still retain the underlying similarity
between samples in the original space [37].

Cross-modal hashing methods have achieved significant perfor-
mance [7, 24, 34], thanks to large datasets and substantial memory
resources. However, this poses significant challenges for the appli-
cation of intelligent agents, as we need to learn new knowledge
from continuously arriving training samples under resource con-
straints. When new data appears, batch-based cross-modal hashing
requires accumulating both new and old data to form a new data-
base and retraining mapping functions. This approach not only
incurs computational costs but also poses storage challenges as
data streams. Consequently, the challenging scenario of learning
from online multi-modal data streams is introduced [26, 39]. Af-
ter completing one round of learning, online cross-modal hashing
typically removes the data of this round from memory, making
it unavailable for future access. This strategy allows the online
methods to efficiently accommodate continuously incoming data
chunks. However, there are still some issues to consider. 1) A no-
table challenge lies in effectively leveraging label information to
enhance the encoding capacity of binary hash codes. Current cross-
modal online methods typically update hash functions based on
the relevance between newly arrived data or new data and existing
data, often overlooking global information. Even the one paper [13]
considers using co-occurrence correlation to capture label inter de-
pendencies, but it fails to account for the rich semantic information
inherent in labels. 2) How to enhance the adaptability of the model
to accommodate incremental label space. Thus far, the majority of
existing online methods implicitly assume that the label space is
static, meaning all class labels should be provided in the initial data
chunk. In practice, this assumption might be unrealistic. When new
labels surface in newly arriving data chunks, these methods may
struggle to effectively update their hash functions.

To address the aforementioned challenges, we introduce a novel
supervised cross-modal online hashing method in this paper, named
adaPtive Online cLass-Incremental haSHing (POLISH). Although
online cross-modal retrieval has achieved satisfactory performance,
it encounters difficulties in effectively handling the issue of incre-
mental class labels that emerge with the arrival of new data. Conse-
quently, POLISH offers an adaptive approach, capable of seamless
integration with existing online cross-modal hashing methods to
dynamically accommodate the expansion of label spaces. As shown
in Figure 1, POLISH leverages category correlation and semantic in-
formation obtained by language models to generate representations
for new class label. It incorporates hash code characteristics into
label embeddings using Hadamard matrices. Simultaneously, POL-
ISH employs label embeddings as globally invariant information
to guide the generation of high-quality hash codes for new data
chunks. Additionally, POLISH introduces an efficient optimization
algorithm for discrete learning of hash codes and label embeddings.
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Figure 1: The framework of the proposed POLISH. POLISH
leverages category correlation and semantic information ob-
tained by language models to generate embeddings for new
class labels. Simultaneously, it incorporates hash code char-
acteristics into label embeddings using Hadamard matrices.

The contributions of this paper are summarized as follows:
• We introduce a novel adaptive supervised online cross-

modal hashing method. By leveraging the multi-faceted
information provided by language models, we learn label
embeddings, which represent global information. Mean-
while, these embeddings guide the learning process, en-
abling POLISH to generate more accurate hash codes.

• To the best of our knowledge, this is the first explicit attempt
to design a method capable of accommodating incremental
label space in the domain of online cross-modal hashing.

• We propose a discrete online optimization algorithm that
allows for the discrete learning of binary codes while main-
taining binary constraints.

• We conduct extensive experiments on widely-used bench-
mark datasets, which demonstrate the superiority of the
proposed POLISH for class incremental data in the online
cross-modal hashing domain. Besides, We will release the
code for POLISH soon and hope that it could facilitate other
researchers and the community.

2 RELATEDWORK
2.1 Online Cross-Modal Hashing
Existing cross-modal hashing can be broadly categorized into two
main classes: unsupervised and supervised methods. In unsuper-
vised methods, cross-modal correlations between heterogeneous
data are explored within their original space, without leveraging
any supervised information. Representative unsupervised methods
include Collective Matrix Factorization Hashing (CMFH) [4], Com-
posite Correlation Quantization (CCQ) [22], and others. Conversely,
supervised methods incorporate semantic information to guide
the learning of hash codes, thereby enhancing performance. No-
table supervised methods encompass Discrete Cross-modal Hash-
ing (DCH) [38], Label Consistent Matrix Factorization Hashing
(LCMFH) [32], and Scalable Discrete Matrix Factorization Hash-
ing (SCRATCH) [14], among others. In recent times, numerous

end-to-end deep cross-modal hashing methods have emerged, like
Deep Cross-Modal Hashing (DCMH) [11] and Self-Supervised Ad-
versarial Hashing (SSAH) [15]. These methods integrate feature
extraction and hash code learning within a single framework.

While current cross-modal hashing approaches have demon-
strated commendable performance, most of them are designed for
batch processing, which entails learning mapping functions using
fixed, non-expanding datasets. In real-world scenarios, however,
multiple modal data often arrives in a streaming fashion. This can
pose several challenges for computational and memory costs. Thus,
the need for online cross-modal hashing is increasing [6, 9, 18].
Online cross-modal hashing methods can be classified into two
main categories: unsupervised hashing and supervised hashing.
Unsupervised online cross-modal methods, such as Online Col-
lective Matrix Factorization Hashing (OCMFH) [33], learn hash
codes and functions by capitalizing on inherent data properties.
Supervised online cross-modal hashing takes advantage of label
information to guide the learning process [16, 20, 40]. For instance,
Online Latent Semantic Hashing (OLSH) [39] maps discrete labels
into a continuous latent semantic concept space, using this space
to steer hash-code learning. Online Cross-Modal Scene Retrieval
(OCMSR) [26] constructs a semantic graph by mapping text and
images to a graph and assesses the similarity between hash codes
of different modalities using cosine metrics. Label Embedding On-
line Hashing (LEMON) [35] updates hash functions based on the
correlation between newly arriving data and existing data. Discrete
Online Cross-modal Hashing (DOCH) [44] is based on a discrete
latent factor model that directly measures the similarity between
new and old data in the Hamming space. It also introduces an
efficient optimization algorithm for discrete hash code learning.
Label-Semantic-Enhanced Online Hashing (LSE-OH) [13] captures
the similarity between samples and the underlying dependency
between labels and utilizes them to learn discrete hash codes. How-
ever, these methods all assume a fixed label space. If new labels
arrive with new data, they may perform poorly or even fail to work.

2.2 Hashing Methods with Language Model
In recent years, there have been significant advancements in the
field of vision and language models, particularly in the context of
multi-modal tasks. Cross-modal hashing methods are designed to
facilitate cross-modal retrieval services for data in the image and
text modalities. These methods seamlessly integrate with state-of-
the-art visual and semantic models, such as CLIP. Consequently,
some researchers have leveraged CLIP to enhance cross-modal
hashing. The specific strategies employed include: 1) Harnessing
CLIP’s powerful representational capabilities to generate features
for both image and text data [36, 41]. 2) Utilizing CLIP’s knowledge
to facilitate alignment between image and text modalities [47].

In recent months, there has been a surge of interest and atten-
tion directed towards large-scale language models. These models
have demonstrated exceptional performance and robust generaliza-
tion capabilities. They can effectively tackle a wide range of tasks
and data distributions, even those that extend beyond the specific
data they were trained on. In this work, we use the prior knowl-
edge extracted from language models to address class-incremental
challenges, thereby enhancing the performance of retrieval tasks.

2
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3 POLISH
In this section, we briefly introduce our method. First, we generate
the representation for each class label with the help of language
models and theHadamardmatrix. Then, we use learned label embed-
ding to generate high-quality hash codes of samples. The following
is a detailed description of each module.

3.1 Notations and Problem Description
3.1.1 Notations. In this paper, we use mathematical notation con-
ventions as follows: Boldface lowercase letters, e.g., a, represent
vectors, while boldface uppercase letters, e.g., A, represent ma-
trices. A𝑖 denotes the 𝑖-th column of matrix A. The transpose of
A is denoted as A⊤, and its inverse is represented as A−1. The
Frobenius norm of a vector or matrix is denoted as ∥ · ∥𝐹 , where
∥ A ∥2

𝐹
= 𝑇𝑟 (A⊤A), with 𝑇𝑟 (·) signifying the trace of a square

matrix. We also use I for the identity matrix, 1 for an all-one matrix,
and 0 for an all-zero matrix.

Now, considering the scenario of streaming training data com-
posed of 𝑀 modalities, we introduce the notations. At the 𝑡-th
round, a new data chunk ®X(𝑡 )

𝑚 ∈ R𝑑𝑚×𝑛𝑡 is added to the train-
ing set, along with class labels ®L(𝑡 ) ∈ {0, 1} (𝐶𝑡−1+𝑐𝑡 )×𝑛𝑡 , where
𝑚 = 1, ..., 𝑀 indicates the modality index, 𝑛𝑡 represents the size of
the new data chunk, 𝑑𝑚 is the dimensionality of features in the
𝑚-th modality, and 𝑐𝑡 is the number of newly introduced labels at
the 𝑡-th round. 𝐶𝑡−1 =

∑𝑡−1
𝑖=1 𝑐𝑖 is the count of existing classes up

to round 𝑡 − 1.
It is essential to highlight that we explicitly define 𝑐𝑡 and𝐶𝑡−1 to

illustrate that our proposed method does not make an assumption
that the label space is static, meaning not all class labels need to be
provided in the initial data chunk. In Section 3.2, we will discuss
how to manage situations where new labels appear in subsequent
data chunks. Correspondingly, the existing data accumulated prior
to round 𝑡 is denoted as X̃(𝑡 )

𝑚 ∈ R𝑑𝑚×𝑁𝑡−1 , with𝑁𝑡−1 =
∑𝑡−1
𝑖=1 𝑛𝑖 rep-

resenting the size of this existing dataset. The corresponding label
matrix for this existing data is denoted as L̃(𝑡 ) ∈ {0, 1}𝐶𝑡−1×𝑁𝑡−1 .

3.1.2 Problem Description. When a new data chunk arrives in
round 𝑡 , the hash code representing the entire data chunk is denoted
as [B̃(𝑡 )

, ®B(𝑡 ) ] ∈ {−1, 1}𝑟×𝑁𝑡 , where 𝑟 signifies the length of the
hash code, B̃(𝑡 ) ∈ {−1, 1}𝑟×𝑁𝑡−1 represents the hash code for the
previously existing data. ®B(𝑡 ) ∈ {−1, 1}𝑟×𝑛𝑡 is the hash code for
the newly introduced data.

The primary objectives of our method are as follows: 1) Training
the model effectively in a scenario where new classes may continu-
ously emerge alongside new data chunks. 2) Generating 𝑟 -bit binary
codes ®B(𝑡 ) to represent the newly arriving data while keeping the
hash codes of the existing data, denoted as B̃(𝑡 ) , unchanged.

3.2 Label Embedding with Language Model
Language models are normally pretrained through self-supervised
learning on large-scale text corpora. During this process, the model
is tasked with predicting the next word or a segment of text given a
context. This forces the language model to learn the semantics and

contextual information of the text. Thanks to its robust generaliza-
tion and contextual comprehension abilities, it has demonstrated
impressive performance in various applications such as text classi-
fication, text generation, cross-modal tasks, and more. In this paper,
we utilize it to assist us in generating learnable embeddings for
labels, serving as global guidance for the model. Specifically, we
utilize widely-used language models, e.g., Word2Vec[25], BERT[3],
CLIP[27], and BLOOM [28], to transform label words into embed-
dings, referred to as E ∈ R𝑑𝑒×𝑐 . Nevertheless, these embeddings
cannot be employed directly for hash code learning for two primary
reasons. 1) The dimensionality of these embeddings does not align
with that of hash codes. 2) Embeddings lack learnability and do
not meet the characteristics of hash codes, including bit balance
and maximal information entropy. Consequently, we utilize E to
generate fresh embeddings for label words, focusing on two as-
pects: preserving category correlation relationships and upholding
category semantic information.

3.2.1 Preserving Label Correlation Relationships. Maintaining cor-
relation relationships among categories is crucial for retrieval tasks.
This practice helps cluster similar multi-modal data points together,
ultimately improving retrieval efficiency. Furthermore, the preser-
vation of correlation relationships among categories enhances the
model’s ability to generalize to streaming data effectively. When
multi-modal samples of the same category maintain similarities in
feature space, the method can more easily generalize to newly in-
coming multi-modal samples. Inspired by the most commonly used
terms in the hashing domain for embedding pairwise similarity of
data, i.e., ∥𝑟S − B𝑇B∥2

𝐹
, we design the following loss to learn the

embedding of class labels R. More specifically, at the first round,
R(1) is embedded in the following loss,

min
H(1)

∥ 𝑟A(1) − R(1)⊤R(1) ∥2𝐹 , (1)

where R(1) ∈ R𝑟×𝐶1 is the real-valued embedding of class labels at
the first round.A(1) ∈ R𝐶1×𝐶1 is the pairwise correlation among𝐶1
labels at the first round. It is computed by A(1) = 𝑐𝑜𝑠 (E(1) ,E(1) ),
where 𝑐𝑜𝑠 () is the Cosine Similarity.

We further emphasize that our method is explicitly designed to
tackle the challenging scenario of learning from online data streams,
even when never-seen-before classes are encountered. Thus, when
the 𝑡-th new data chunk arrives, two possible situations may arise.
In the first situation, there are no new classes introduced, indicated
by 𝑐𝑡 = 0 and 𝐶𝑡+1 = 𝐶𝑡 . In this case, all embeddings of existing
labels already have been learned, and we set R(𝑡−1) = R(𝑡 ) . The
second situation occurs when 𝑐𝑡 new classes are introduced. In
such a situation, we proceed to learn label embeddings for these
new classes, which can be formulated as ®R(𝑡 ) ∈ R𝑟×𝑐𝑡 . It is worth
noting that the label embeddings learned in previous rounds remain
unchanged, that is, R̃(𝑡 )

= [R̃(𝑡−1)
, ®R(𝑡−1) ], where R̃(𝑡 ) ∈ R𝑟×𝐶𝑡−1

denotes label embeddings of the existing labels in the 𝑡-th round.
To generate label embeddings for new classes, we first extend the
formulation of A(𝑡 ) in round t,

A(𝑡 ) =

[
A(𝑡 )
𝑜𝑜 A(𝑡 )

𝑜𝑛

A(𝑡 )
𝑛𝑜 A(𝑡 )

𝑛𝑛

]
, (2)

3
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where,

A(𝑡 )
𝑜𝑜 = 𝑐𝑜𝑠 ( ˜E(𝑡 ) , ˜E(𝑡 ) ) A(𝑡 )

𝑜𝑛 = 𝑐𝑜𝑠 ( ˜E(𝑡 ) , ®E(𝑡 ) )

A(𝑡 )
𝑛𝑜 = 𝑐𝑜𝑠 ( ®E(𝑡 ) , ˜E(𝑡 ) ) A(𝑡 )

𝑛𝑛 = 𝑐𝑜𝑠 ( ®E(𝑡 ) , ®E(𝑡 ) )
(3)

˜E(𝑡 ) ∈ R𝑑𝑒×𝐶𝑡−1 = E(𝑡−1) is the embeddings of old classes gen-
erated by language models, ®E(𝑡 ) ∈ R𝑑𝑒×𝑐𝑡 is the embeddings of
new classes (classes which first appear at the 𝑡-th round) generated
by language models, and 𝑐𝑜𝑠 () is the Cosine Similarity. Then, by
substituting A(𝑡 ) and [R̃(𝑡 )

, ®R(𝑡 ) ] into Eq.(1), the following loss
function is given,

min
®R(𝑡 )

∥ 𝑟A(𝑡 )
𝑜𝑛 − R̃(𝑡 )⊤ ®R(𝑡 ) ∥2𝐹 + ∥ 𝑟A(𝑡 )

𝑛𝑛 − ®R(𝑡 )⊤ ®R(𝑡 ) ∥2𝐹 , (4)

where constant terms are already omitted.
By Eq.(4), the proposed method is designed to be adaptable to

class-incremental scenarios, where learning the label embeddings
for new classes ®R(𝑡 )

, while the embeddings for old existing classes
R̃(𝑡 ) remain unchanged. However, one issue that needs to be further
considered is how to make the learned category representations
better align with the characteristics of hash codes. To tackle this,
we turn to the Hadamard matrix for assistance.

In general, the Hadamard matrix is a binary square matrix of
order 2𝑘 , where its entries are either −1 or +1. Additionally, its row
vectors and column vectors are pairwise orthogonal. Following the
approach in [19], we denote the size of the Hadamard matrix as 𝑔
and set 𝑔 as follows,

𝑔 = min{𝑙 |𝑙 = 2𝑘 , 𝑙 ≥ 𝑟, 𝑙 ≥ 𝐶𝑡 , 𝑘 = 1, 2, 3, ...}, (5)

where 𝑟 represents the length of hash codes, and 𝐶𝑡 is the number
of old class labels at the 𝑡-th round. We proceed to construct the
Hadamard matrix by defining the entry in the 𝑖-th row and the
𝑗-th column as (−1) (𝑖−1)×( 𝑗−1) . In cases where the length of hash
codes does not match the Hadamard matrix, meaning 𝑟 ≠ 𝑔, we
apply a strategy similar to that in [19], utilizing a random Gaussian
matrix to address this disparity. Consequently, we obtain Hadamard
representation for all class labels, denoted as H(𝑡 ) .

Then, we replace one R(𝑡 ) with Hadamard representation H(𝑡 )

in Eq.(1) and Eq.(4), which is effective to let embedding of class
labels meet the characteristics of hash codes. Therefore, we have
the final objective function as follows,

min
R(1)

∥ 𝑟A(1) −H(1)⊤R(1) ∥2𝐹 + ∥ H(1) − R(1) ∥2𝐹 , (6)

min
®R(𝑡 )

∥ 𝑟A(𝑡 )
𝑜𝑛 − H̃(𝑡 )⊤ ®R(𝑡 ) ∥2𝐹 + ∥ 𝑟A(𝑡 )

𝑛𝑛 − ®H(𝑡 )⊤ ®R(𝑡 ) ∥2𝐹

+ ∥ ®H(𝑡 ) − ®R(𝑡 ) ∥2𝐹 ,
(7)

In these two formulas, the reasons for replacing R(𝑡 ) withH(𝑡 ) are:
1) Transforming the properties of the Hadamard matrix to R(𝑡 ) .
The Hadamard matrix, except for the first row and first column,
consists of elements that are half +1 and half −1. This imparts the
property of bit balance to R(𝑡 ) . Additionally, the rows and columns
of the Hadamard matrix are mutually orthogonal, endowing R(𝑡 )

with maximal information entropy. 2) Avoiding the complex opti-
mization of R(𝑡 ) in Eq.(6) and Eq.(7).

In the online hashing domain, several Hadamard matrix-based
methods have been introduced, including HCOH [19], HMOH [17],
and Adaptive Online Multi-modal Hashing via Hadamard Matrix
[42]. However, as far as our knowledge extends, none of these
approaches fall within the scope of online cross-modal hashing. In
this paper, while we drew some inspiration from Hadamard matrix-
based hashing techniques and integrated the Hadamard matrix
into our learning process, our proposed method is fundamentally
distinct from all existing Hadamard matrix-based hashing methods.

3.2.2 Preserving Label Semantic Information. When learning label
representations, it is crucial to consider not just the correlation re-
lationships between categories but also their semantic information.
Category semantics encompass additional contextual and mean-
ingful details pertaining to the categories, encompassing features,
attributes, and more. The inclusion of semantic information assists
the model in accurately defining boundaries between categories
and improve the retrieval performance. For example, considering
the semantic aspect of an aircraft, like “flying” can facilitate its
differentiation from other modes of transportation. Thanks to the
capabilities of robust language models, semantic information can
be seamlessly incorporated into embeddings. Consequently, we
introduce embeddings acquired through language models into our
learning process. The loss is as follows,

min
®R(𝑡 )

∥ Ẽ(𝑡 ) − R̃(𝑡 )⊤W(𝑡 ) ∥2𝐹 + ∥ ®E(𝑡 ) − ®R(𝑡 )⊤
W(𝑡 ) ∥2𝐹 , (8)

where ˜E(𝑡 ) is the embeddings of old classes generated by language
models, ®E(𝑡 ) is the embeddings of new classes generated by lan-
guage models, and W(𝑡 ) is a mapping matrix. Based on the online
hashing settings, the newly arrived data and the old accumulated
data should be both considered to generate ®R(𝑡 )

.
Jointly considering Eq.(8) and Eq.(7), we have the following ob-

jective function to learn the embedding of labels,

min
®R(𝑡 )

∥ 𝑟A(𝑡 )
𝑜𝑛 − H̃(𝑡 )⊤ ®R(𝑡 ) ∥2𝐹 + ∥ 𝑟A(𝑡 )

𝑛𝑛 − ®H(𝑡 )⊤ ®R(𝑡 ) ∥2𝐹

+ ∥ ®H(𝑡 ) − ®R(𝑡 ) ∥2𝐹 +𝛼 ∥ Ẽ(𝑡 ) − R̃(𝑡 )⊤W(𝑡 ) ∥2𝐹
+ 𝛼 ∥ ®E(𝑡 ) − ®R(𝑡 )⊤

W(𝑡 ) ∥2𝐹 ,

(9)

where 𝛼 is the trade-off parameter. Apparently, the above loss inte-
grates the two key components, i.e., Label Correlation Relationships
and Label Semantic Information. The strategy of learning class rep-
resentations ®R(𝑡 )

and using them as globally invariant information
to guide hash code learning has been proven effective [17, 19, 43, 46].
Since the representations based on Hadamard ®H(𝑡 ) and embeddings
generated by language models E(𝑡 ) are non-learnable, we prefer
to utilize them as auxiliary tools. Unlike H(𝑡 ) and E(𝑡 ) , class label
embeddings R(𝑡 ) are semantically dependent and trainable. This
implies they can capture and leverage more information. To the
best of our knowledge, it is the first attempt to explicitly design the
model to accommodate incremental labels in the online cross-modal
hashing domain.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

POLISH: Adaptive Online Cross-Modal Hashing
for Class Incremental Data Conference acronym ’XX, May 13-17, 2024, Singapore, SG

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.3 Hash-Code Learning
After the first step of our method, we have acquired label embed-
dings. In certain Hadamard matrix-based approaches [17, 19], the
Hadamard matrix is directly applied to learn hash functions. In con-
trast, our method employs the learned label embeddings to generate
hash codes for the 𝑡-th round of training samples. In the context of
online scenarios, when new data arrives, the online cross-modal
hashing methods focus on generating new hash codes for these
data while maintaining the binary codes of previously observed
streaming data unchanged. However, there are two key challenges:
1) The distribution of newly arriving data can change, particularly
with the emergence of new classes. Solely learning from new data
may result in catastrophic forgetting. 2) The quality of incoming
data is uncertain, and poor-quality data might negatively impact
hash code learning. To address these challenges, we introduce glob-
ally invariant information, the learned label embeddings. These
embeddings contain semantic information and class correlation and
can serve as guidance for producing hash codes of new data. Unlike
the feature space, the label space undergoes minimal changes with
the influx of streaming data. We generate embeddings for funda-
mentally invariant labels and transfer information from the original
data blocks to the new ones by measuring the similarity between
the hash codes of samples and label embeddings. Consequently, we
further define the following optimization problem,

min
®B(𝑡 )

𝛽 ∥ 𝑟 ®L(𝑡 ) − R(𝑡 )⊤ ®B(𝑡 ) ∥2𝐹 +ℒ( ®B(𝑡 ) ), 𝑠 .𝑡 . ®B(𝑡 ) ∈ {−1, 1}𝑟×𝑛𝑡 .

(10)

Our approach serves as a plug-in to enhance the performance of
the original method, whereℒ( ®B(𝑡 ) ) represents the loss function
used by the original method to learn ®B(𝑡 ) . Furthermore, once the
hash codes are learned, our method does not delve into the learning
of hash functions. Our approach directly employs the learning
methods described in the original text to obtain hash functions and
uses them to generate hash codes for out-of-sample data.

3.4 Optimization Algorithm
3.4.1 Optimization for the Label Embedding. In this step
of our method, we aim to learn label embeddings by optimizing
Eq.(9). Concretely, we propose the following two-stage iterative
optimization to solve ®R(𝑡 )

and W(𝑡 ) . In each stage, one variable is
updated with others fixed.

Update ®R(𝑡 )
. By setting the derivative of Eq.(9) w.r.t. ®R(𝑡 )

to
zero, we can update it by,

®R(𝑡 )
= (H̃(𝑡 )H̃(𝑡 )⊤ + ®H(𝑡 ) ®H(𝑡 )⊤ + I + 𝛼W(𝑡 )W(𝑡 )⊤)−1

· (𝑟H̃(𝑡 )A(𝑡 )
𝑛𝑜 + 𝑟 ®H(𝑡 )

A(𝑡 )
𝑛𝑛 + 𝛼 ®H(𝑡 ) + 𝛼W(𝑡 ) ®E(𝑡 )⊤),

(11)

where I ∈ R𝑟×𝑟 is the identity matrix.
Update W(𝑡 ) . With ®H(𝑡 ) fixed, we could directly take the deriv-

ative of Eq.(8) w.r.t. W(𝑡 ) to zero and the solution for W(𝑡 ) can be
obtained as shown below,

W(𝑡 ) =
(
R̃(𝑡 ) R̃(𝑡 )⊤ + ®R(𝑡 ) ®R(𝑡 )⊤)−1 (

R̃(𝑡 ) Ẽ(𝑡 )⊤ + ®R(𝑡 ) ®E(𝑡 )⊤)
.

(12)

3.4.2 Optimization for Hash Code Learning. In this step of
our method, we only need to learn one variable ®B(𝑡 ) at round t.

Update ®B(𝑡 )
. By matrix operations and omitting constant terms

in Eq. (10), we can get the following formula to learn ®B(𝑡 ) ,

max
®B(𝑡 )

𝑡𝑟

(
𝛽 (𝑟R(𝑡 ) ®L(𝑡 ) ) ®B(𝑡 )⊤) +ℒ( ®B(𝑡 ) ), (13)

For Eq.(13), it is easy to find its closed-form solution,

®B(𝑡 )
= 𝑠𝑖𝑔𝑛(𝛽𝜆𝑟R(𝑡 ) ®L(𝑡 ) + ®B(𝑡 )

𝑜 ), (14)

where ®B(𝑡 )
𝑜 represents the hash codes optimized using the loss func-

tion described in the original paper. To enhance the adaptability
of POLISH and combine it with other methods, we introduced a
parameter 𝜆, which aims to balance the magnitude of the loss func-
tion. Specifically, 𝜆 is set to 𝑠𝑢𝑚(𝑎𝑏𝑠 (𝑟R(𝑡 ) ®L(𝑡 ) ))/𝑠𝑢𝑚(𝑎𝑏𝑠 ( ®B(𝑡 )

𝑜 )).
Then, 𝛽 is a balancing parameter that measures the importance of
POLISH relative to the original methods.

3.4.3 Discussions. We give the computational complexity analy-
sis of our method. We can find that the size of A(𝑡 ) , R(𝑡 ) , andH(𝑡 )

is 𝐶𝑡 × 𝐶𝑡 , 𝑟 × 𝐶𝑡 , and 𝑟 × 𝐶𝑡 , respectively. Thus, the complexity
of Eq.(8) is irrelevant to the size of the new data chunk, i.e., 𝑛𝑡 .
Specifically, at round 𝑡 , the computational complexity of updat-
ing R(𝑡 ) is 𝑂 ((𝑐𝑡𝑟2 + 𝐶𝑡𝑟

2 + 𝑑𝑒𝑟
2 + 𝐶𝑡𝑐𝑡𝑟 + 𝑐2𝑡 𝑟 + 𝑟3 + 𝑟𝑑𝑒𝑐𝑡 )𝑖𝑡𝑒𝑟 ).

Updating W(𝑡 ) requires 𝑂 ((𝑐𝑡𝑟2 +𝐶𝑡𝑟2 +𝐶𝑡𝑑𝑒𝑟 + 𝑐𝑡𝑑𝑒𝑟 + 𝑟3)𝑖𝑡𝑒𝑟 ).
The computational complexity of updating ®B(𝑡 ) is 𝑂 (𝑐𝑡𝑟𝑛𝑡 ). Here,
𝑖𝑡𝑒𝑟 stands for the number of iterations. It can be observed that the
computational complexity of our method is linearly related to the
size of new data 𝑛𝑡 , demonstrating the scalability of our method.

4 EXPERIMENT
To evaluate the performance of POLISH, we carried out compre-
hensive experiments on two real-world datasets with the aim of
addressing the following questions: 1) How well does POLISH per-
form when confronted with the introduction of new classes? 2)
Does POLISH effectively work, and if so, why? In this section, we
first introduce the dataset and experimental settings. Subsequently,
we present the experimental results and provide an analysis for
each of the aforementioned research questions.

4.1 Datasets
We conducted extensive experiments on two widely-used bench-
mark datasets: MIRFlickr [10] and NUS-WIDE [2].

MIRFlickr comprises 25, 000 images sourced from Flickr. Each
image is associated with 1, 386 user-provided tags and is catego-
rized into 24 classes. Similar to [12], tags appearing fewer than 20
times are eliminated, leaving 20, 015 instances. NUS-WIDE is a
substantial dataset containing 269, 648 images, sourced from Flickr
by the Lab for Media Search at the National University of Singapore.
For our experiments, we selected the 21 most frequent labels, re-
sulting in 195, 834images, each associated with a 1, 000-dimensional
binary tagging vector. In both datasets, we employed the 4, 096-
dimensional output of the pre-trained VGG-F modal [1], which is
initially trained on the ImageNet dataset, to represent images.
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Table 1: Cross-modal retrieval for class incremental data in online scenarios. The MAP results of various methods on MIRFlickr
and NUS-WIDE at the last chunk. The best MAP values of each case are shown in boldface.

Dataset Method
Image-to-Text Text-to-Image

32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits

MIRFlickr

DCH [38] 0.7239 0.7511 0.7478 0.7700 0.7097 0.7507 0.7462 0.7703
LCMFH [32] 0.7859 0.7990 0.7957 0.8055 0.7562 0.7655 0.7650 0.7749

SCRATCH [14] 0.7884 0.8040 0.8038 0.8084 0.7141 0.7135 0.7165 0.7170
LFMH [45] 0.7312 0.7502 0.7756 0.7979 0.7067 0.7325 0.7589 0.7761
TASPH [8] 0.7993 0.8143 0.8272 0.8325 0.7433 0.7549 0.7623 0.7529
OCMFH [33] 0.5191 0.5334 0.5192 0.5217 0.5182 0.5349 0.5185 0.5220
LEMON [35] 0.7906 0.7922 0.7991 0.7954 0.6981 0.7130 0.7163 0.7200

LEMON+POLISH 0.8492 0.8389 0.8622 0.8295 0.8247 0.8282 0.8440 0.8090
DOCH [44] 0.8269 0.8535 0.8565 0.8540 0.7788 0.8020 0.8044 0.8220

DOCH+POLISH 0.8343 0.8680 0.8768 0.8592 0.8012 0.8278 0.8400 0.8382
LSE-OH [13] 0.7906 0.7922 0.7991 0.7954 0.6981 0.7130 0.7190 0.7391

LSE-OH+POLISH 0.8379 0.8512 0.8639 0.8438 0.7398 0.7540 0.7701 0.7498

NUS-WIDE

OCMFH [33] 0.5191 0.5334 0.5192 0.4303 0.5182 0.5349 0.5185 0.4295
LEMON [35] 0.8544 0.7974 0.8000 0.7914 0.8270 0.7883 0.7829 0.7753

LEMON+POLISH 0.8662 0.8691 0.8883 0.8846 0.8415 0.8642 0.8440 0.8622
DOCH [44] 0.8847 0.8919 0.8955 0.8969 0.8547 0.8615 0.8649 0.8660

DOCH+POLISH 0.8985 0.8969 0.8993 0.8936 0.8599 0.8807 0.8841 0.8758
LSE-OH [13] 0.8781 0.8502 0.8505 0.8315 0.7838 0.7628 0.7644 0.7497

LSE-OH+POLISH 0.8795 0.8768 0.8870 0.8880 0.7885 0.7990 0.8128 0.8031

To construct class-incremental scenarios, we shuffled the order of
samples in both datasets. More specifically, the datasets, MIRFlickr
and NUS-WIDE, were divided into 10 and 20 chunks, respectively.
In each chunk, a certain proportion of samples introduced new
classes (labels not seen in previous rounds). Additionally, 10% of
the image-text pairs were randomly selected as the query set, while
the rest formed the training set in each chunk.

4.2 Experimental Settings
4.2.1 Evaluation Metrics and Parameter Setting. The eval-
uation of POLISH encompasses two cross-modal retrieval tasks:
1) In “Image-to-Text” task, an image serves as a query to retrieve
relevant text data. 2) “Text-to-Image” task uses a text as a query to
retrieve relevant images. Similar to previous methods, we employ a
widely used evaluation criterion for assessing performance, namely
the Mean Average Precision (MAP). A higher MAP value signifies
superior performance.

The parameters of POLISH are selected experimentally. We set
𝛼 = 10, 𝛽 = 10 on both MIRFlickr and NUS-WIDE, more details
are shown in Sec. 4.4.3. And the iteration number of learning label
embeddings is set to 5.

4.2.2 Baselines. To validate the efficacy of our proposed method,
we conducted a comprehensive comparative analysis against sev-
eral state-of-the-art cross-modal hashing baselines, which encom-
pass five batch-based approaches, namely DCH [38], LCMFH [32],
SCRATCH [14], LFMH [45], and TASPH [8], in addition to four on-
line methods, OCMFH [33], LEMON [35], DOCH [44], and LSE-OH
[13]. Notably, OCMFH is categorized as an unsupervised online
cross-modal hashing method, whereas others are supervised ones.
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Figure 2: Cross-modal retrieval in online scenarios. TheMAP-
round curves of several methods on MIRFlickr with 64 bits.

For all batch-based baselines, during each round, all available data is
aggregated for the training of their hash functions and hash codes.
The source code for these baselines is publicly accessible.

It is worth highlighting our choice of these three works as super-
vised online cross-modal hashing baselines. Here’s why: 1) LEMON
is a classical method that optimizes hash codes using an auxiliary
variable strategy. It predominantly focuses on the relevance among
newly arrived data or between new data and the existing data for
hash code learning while overlooking valuable global semantic
information. 2) DOCH is a typical method that employs discrete
techniques to optimize hash codes. It involves the random selec-
tion of anchors from the old data to preserve previous knowledge.
This strategy has the same propose as ours, which can effectively
address the problem of catastrophic forgetting. 3) LSE-OH is the
most similar method to ours as it also learns label representations.
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Table 2: The results of ablation experiments on MIRFlickr. The best MAP values of each chunk are shown in boldface

Method
Image-to-Text Text-to-Image

32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits
LSE-OH 0.7906 0.7922 0.7991 0.7954 0.6981 0.7130 0.7163 0.7200

LSE-OH+POLISH-1 0.7830 0.8145 0.8077 0.8160 0.6908 0.7313 0.7249 0.7364
LSE-OH+POLISH-2 0.7964 0.8138 0.8145 0.7974 0.7245 0.7566 0.7603 0.7505
LSE-OH+POLISH-3 0.8098 0.8418 0.8496 0.8354 0.7189 0.7454 0.7522 0.7496
LSE-OH+POLISH-4 0.7984 0.8490 0.8591 0.8574 0.7231 0.7475 0.7616 0.7544
LSE-OH+POLISH 0.8379 0.8512 0.8639 0.8438 0.7398 0.7540 0.7701 0.7498

However, there are notable distinctions. LSE-OH regenerates la-
bel representations in each training round, while in POLISH, label
representations are learned once and remain constant to provide
global guidance. Additionally, the label representations in LSE-OH
are binary codes, not real values, resulting in information loss.

4.3 Comparison When New Classes Come (Q1)
To the best of our knowledge, this is the first work addressing the is-
sue of incremental label space in the domain of online cross-modal
hashing tasks. In order to evaluate our approach, we reshuffled
the order of samples in the datasets to simulate class-incremental
scenarios. In each round, the new data consistently introduces class
labels that are not previously seen. Supervised methods often ex-
hibit poor performance and even fail to work in scenarios with label
increments. This is primarily due to potential issues concerning
mismatches in label matrix dimensions between different rounds.
Consequently, for all methods except POLISH, we zero-padded the
data labels to ensure label dimension consistency.

To evaluate POLISH, we presented the MAP results for the final
round on MIRFlickr and NUS-WIDE in Table 1. Moreover, for a
comprehensive portrayal of online retrieval performance, Figure
2 provides an illustrative presentation of MAP results for several
methods across each round, taking into account 64-bit representa-
tions. Analysis of these outcomes reveals that:
• Our proposed method, POLISH, consistently demonstrates a sub-

stantial enhancement in performance over the original baselines
under the class-incremental scenarios in both benchmark datasets.
For instance, when the hash code length is fixed at 64 bits, POLISH
outperforms the LSE-OH method by a remarkable 5.9% and 4.1%
in the "Image-to-Text" and "Text-to-Image" tasks on MIRFlickr.

• We also compared our method with some batch-based supervised
cross-modal hashing methods on the MIRFlickr. These batch-
based methods aggregate all available data in each round to train
hash functions and codes. It is evident that online methods con-
sistently outperform batch-based methods. One possible reason
is that in the streaming data scenario, online methods often con-
sider the similarity between new and old data, which helps learn
more accurate hash codes.

• Thanks to its well-designed module, POLISH demonstrates re-
markable performance when dealing with the arrival of new
classes. In comparison to LEMON, which ignores global informa-
tion, POLISH exhibits significant improvements. This indicates
that in class-incremental scenarios, global information plays a
guiding role and can alleviate catastrophic forgetting.

• Combining the discrete optimization method DOCH with POL-
ISH, DOCH+POLISH consistently outperforms DOCH in all cases.
This suggests thatmerely selecting anchors from old data to retain
prior knowledge is insufficient, and employing invariant label
representations as global information yields superior results.

• In contrast to LSE-OH, LSE-OH+POLISH achieves superior per-
formance. This implies that using binary label representations
learned from label co-occurrence may lead to the loss of valu-
able information. POLISH leverages the correlation and semantic
information of labels obtained from language models to learn
real-value representations and gat better results.

• The MAP-round curves on two datasets demonstrate a similar
trend, which reveals the effectiveness of our method.
From the above results, we can conclude that POLISH performs

exceptionally well. It benefits not only from utilizing language
models to learn label relevance and semantic information but also
from using obtained label representations as global information to
guide the learning of hash codes.

4.4 Further Analysis (Q2)
4.4.1 Ablation Experiments. To verify the effectiveness of our
method, we designed several variants. 1) POLISH-1: it omits the
first three terms in Eq. (9), meaning that we only used the semantic
information obtained by language models when learning label rep-
resentations, neglecting the correlation among labels. 2) POLISH-2:
it sets 𝛼 = 0, which only considers the correlations among labels
when learning label representations. 3) POLISH-3: it learns binary
embeddingR(𝑡 ) of labels rather than real-valuedR(𝑡 ) . 4) POLISH-4:
It does not use Hadamard matrices to assist in learning R(𝑡 ) . The
MAP results of these variants combined with the LSE-OH method
are presented in Table 2. From this table, we can find:
• LSE-OH+POLISH outperforms LSE-OH+POLISH-1, demonstrat-

ing that by further preserving correlation among labels, better
label representations can be obtained.

• LSE-OH+POLISH always offers better performance compared
with LSE-OH+POLISH-2, revealing the superiority of embedding
the semantic information into label representations.

• LSE-OH+POLISH-3 is worse than LSE-OH+POLISH inmost cases.
One possible reason is that the real-valued embedding could
preserve more accurate information.

• LSE-OH+POLISH performs better than LSE-OH+POLISH-4 in
most cases, revealing the effectiveness of incorporatingHadamard
matrices into label embedding learning.
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Table 3: The performance of the LEMON+POLISH method using various language models on MIRFlickr. The best MAP values
are highlighted in bold.

Method Image-to-Text Text-to-Image

32 bits 64 bits 96 bits 128 bits 32 bits 64 bits 96 bits 128 bits
Word2Vec [25] 0.8075 0.8478 0.8516 0.8262 0.7813 0.8256 0.8303 0.7971

BERT [3] 0.8105 0.8250 0.8647 0.8373 0.7837 0.7932 0.8192 0.7846
CLIP [27] 0.8220 0.8404 0.8262 0.8089 0.8056 0.8066 0.7963 0.7761

RoBERTa [21] 0.8034 0.8059 0.8456 0.8427 0.7696 0.7856 0.8257 0.7885
BLOOM [28] 0.7741 0.8306 0.8458 0.8463 0.7697 0.8079 0.8383 0.8071

• POLISH and all its variants outperform LSE-OH, demonstrating
the effectiveness of our designed plug-in. By harnessing multi-
angle information provided by language models, we have learned
valuable label embeddings that represent global information. Si-
multaneously, these embeddings guide the learning process, en-
abling POLISH to retain more information and generate more
accurate hash codes.

4.4.2 Language Models Analysis. Language models have made
significant strides in recent years, especially in the past few months,
and have garnered considerable attention. Models like BERT, GPT,
and others exhibit powerful natural language processing capabili-
ties, finding applications across various domains. In this paper, we
leveraged language models to explore the latent knowledge encap-
sulated within labels. Using the robust representational capabilities
of language models, we generated label correlation and semantic in-
formation and utilize them to generate learnable label embeddings.
To further explore the performance of our approach, we evaluated it
using different language models. Specifically, we utilized Word2Vec
[25], BERT [3], CLIP [27], RoBERTa [21], and BLOOM [28]. The
MAP values they achieve on the MIRFlickr dataset are presented in
Table 3. From this table, we could have the following observations:
• Our method consistently performs well, regardless of the lan-

guage model used. This demonstrates the versatility and adapt-
ability of our approach.

• When the hash code length is relatively high, some excellent
large language models like BLOOM perform well. However, due
to their high-dimensional representations (BLOOM has a rep-
resentation dimension of 2560), when using them to generate
low-dimensional hash codes of samples, a significant amount of
information is lost, resulting in performance that falls short of
Word2Vec and RoBERTa.

• In low-dimensional scenarios, CLIP performs well. One possible
reason is that CLIP is the only model that aligns image and text
modalities during training. This natural alignment is well-suited
for cross-modal retrieval tasks.
The focus of this paper is not to determine which language model

might perform better. We are primarily proposing the potential of
integrating online cross-modal retrieval tasks with languagemodels.
Therefore, in this paper, we used Word2Vec as the language model
for extracting information in other experiments.

4.4.3 Sensitivity to Parameters. We conducted experiments on
MIRFlickr and NUS-WIDE to analyze the influence of parameters
on the performance in the case of 32-bit code length. The results
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Figure 3: Parameter sensitivity analysis of 𝛼 and 𝛽 .

on MIRFLickr and NUS-WIDE are presented in Figure 3. We exclu-
sively evaluated the performance impact of different 𝛼 values on the
LSE-OH method, with similar results expected for other methods.
Notably, POLISH demonstrates robustness to the 𝛼 , performing
well across a broad range from 10−2 to 103. Conversely, 𝛽 governs
the balance between POLISH and the original baselines, the sen-
sitivity of the 𝛽 . The value of 𝛽 can significantly affect the results,
contingent on the specific method. Consequently, we presented the
performance of the 𝛽 across all methods. While 𝛽 proves to be sensi-
tive, it consistently yields favorable results when set to 10 across all
datasets. This observation underscores the critical role of our plugin
in hash code learning. In conclusion, through the experiment, we
set 𝛼 = 10, 𝛽 = 10 on both MIRFlickr and NUS-WIDE.

5 CONCLUSION
In this paper, we introduce a novel supervised online cross-modal
hashing method, referred to as adaPtive Online cLass- Incremental
haSHing (POLISH). To the best of our knowledge, this is the first
attempt to explicitly design a model to accommodate incremental
label spaces in the online cross-modal hashing domain. POLISH uti-
lizes language models to learn label embeddings and translates class
correlation and class semantic information into label embeddings.
Besides, POLISH uses class embeddings as global information to
guide hash code learning, thereby enhancing hash code accuracy.
Extensive experiments were conducted on real-world benchmark
datasets, and the results demonstrate the superiority of POLISH.
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