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Abstract

Recent advances in LLMs have sparked a de-001
bate on whether they understand text. In this002
position paper, we argue that opponents in this003
debate hold different definitions for understand-004
ing, and particularly differ in their view on005
the role of consciousness. To substantiate this006
claim, we propose a thought experiment involv-007
ing an open-source chatbot Z which excels on008
every possible benchmark, seemingly without009
subjective experience. We ask whether Z is010
capable of understanding, and show that dif-011
ferent schools of thought within seminal AI re-012
search seem to answer this question differently,013
uncovering their terminological disagreement.014
Moving forward, we propose two distinct work-015
ing definitions for understanding which explic-016
itly acknowledge the question of consciousness,017
and draw connections with a rich literature in018
philosophy, psychology and neuroscience.019

1 Introduction: A Thought Experiment020

Large language models (LLMs) achieve impres-021

sive results on various benchmarks, seeming to022

generalize to unseen tasks and domains (Brown023

et al., 2020). This initiated a debate on whether024

LLMs truly understand (Mitchell and Krakauer,025

2022). On the one hand, several works claim that026

LLMs are starting to show signs of understanding027

text (Manning, 2022; Piantadosi and Hill, 2022;028

Bubeck et al., 2023), while on the other hand, oth-029

ers argue that LLMs are inherently incapable of030

understanding because they observe form without031

meaning (Bender and Koller, 2020; Bender et al.,032

2021; Marcus, 2022). Evidently, such works have033

differing opinions of what it means for a model to034

understand. Here, we do not advocate for a single035

“true” definition for understanding, and instead aim036

to shed new light on the roots of this debate.037

We contextualize the debate on machine cogni-038

tion within the mind-body problem, which has been039

at the center of vast philosophical debate, as well040

as intense empirical research in cognitive neuro- 041

science. We follow Chalmers (1995), who asks 042

whether the quality of consciousness - the ability to 043

have subjective experiences - is a strict requirement 044

for understanding, or whether it can also manifest 045

in non-conscious agents. We argue that this ques- 046

tion lies in the background of all discussion around 047

whether LLMs truly understand. 048

To make this concrete, consider the following 049

thought experiment: you are presented with Z, a 050

new newfangled chatbot. Z is implemented in com- 051

puter hardware and performs only mathematical 052

manipulations of its input. It is completely open- 053

source — you have access to its code, training data, 054

weights, hyperparmeters, and any other implemen- 055

tation detail. You interact with Z and discover that 056

it excels on all NLP benchmarks, and will do so 057

on any possible test you will come up with in the 058

future. In essence, Z is the chatbot equivalent of 059

the philosophical zombie (Kirk, 1974; Chalmers, 060

1996); it outperforms humans on all tasks, suppos- 061

edly without having subjective experience. Do you 062

consider Z as capable of “understanding”? 063

If you answer “Yes”, turn to Section 3. For 064

you, the path toward machine cognition lies in test 065

sets of ever-increasing complexity, identifying ever- 066

more subtle deficiencies in machine responses. If 067

we reach this road’s end, we will find Z. 068

If you answer “No”, turn to Section 4. You hold 069

that consciousness is a prerequisite for understand- 070

ing, as that is the only thing distinguishing Zom- 071

bies from humans. We make several connections 072

between recent neuroscience research and AI, e.g., 073

the function of consciousness and advancements in 074

the field of neural correlates of consciousness. 075

If you feel uncomfortable with either of these op- 076

tions turn to Section 5, where we address potential 077

objections to our setup and assumptions. 078

This setup produces two distinct definitions 079

and research agendas for machine understanding, 080

which are currently conflated in AI discussion. 081
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2 Background: Philosophical Zombies082

The zombie argument is a thought experiment pro-083

posed in the context of debates about consciousness084

and its relationship to the physical world, i.e., to085

what is measurable (Kirk, 1974). It seeks to ques-086

tion the validity of physicalism, the belief that all087

that exists in our world, including consciousness,088

is physical (Stoljar, 2024). The zombie argument089

suggests that it is conceptually possible for there to090

be beings that are physically identical to humans091

but possess no conscious experiences. These are092

commonly referred to as “philosophical zombies”.093

Philosophical zombies behave just like humans.094

They appear to feel pain when injured, joy when095

pleased and can converse about the events in which096

they participate. Despite these behaviors, philo-097

sophical zombies possess no subjective experiences098

or “qualia” (Tye, 2021) – they do not consciously099

experience sensations, feelings, or thoughts. For100

instance, a philosophical zombie would react ex-101

ternally like a human would to stepping on a sharp102

object but would not internally suffer due to the103

painful sensation. Chalmers (1996) played a signif-104

icant role in bringing the argument into the main-105

stream discourse, particularly in the context of the106

philosophy of mind.107

We conjure the equivalent of a zombie chatbot.108

It is implemented on physical computer hardware,109

and it is capable of excelling on every NLP task,110

seemingly without conscious experience.111

3 Zombies do Understand:112

Functional Definition of Understanding113

One approach to machine cognition relies only on114

the model’s behavior, independent of any internal115

experience. This definition holds that understand-116

ing can be inferred from performance on specific117

tasks. We formulate this notion for a task T in118

Definition 1:119

Definition 1: Functional Understanding

A model Z functionally understands a task
T if its performance on T is as good (or
better than) a human that understands T .

120

This framing helps explain the common practice121

for testing understanding in models through long-122

standing challenges, such as chess, Go, or language123

generation. McCarthy (1990) figuratively called124

such tasks the Drosophila of AI, drawing a parallel125

between research in AI and biology, where model 126

organisms (e.g., the Drosophila fly) are chosen for 127

wide benchmark experimentation with findings gen- 128

eralizing beyond that specific organism. 129

Evidently, the recurring trend in the last 70 years 130

has seen tasks adopted as benchmarks for under- 131

standing until automated models functionally un- 132

derstand them. Then, the AI community moves 133

the goalposts to another, arguably harder, external 134

objective benchmark for understanding. Taken to 135

the extreme, a model that functionally understands 136

every potential benchmark is equivalent to our hy- 137

pothetical Z chatbot. Notably, models excelling on 138

these tasks are tested only externally and are not 139

required to have any internal state linked to their 140

success. Below, we outline some famous examples 141

of this trend. 142

Perhaps the most well-known examples are the 143

games of chess and Go. Chess served as a proxy 144

task for understanding for nearly 50 years. Early 145

works, such as Shannon (1950) and Turing (1953), 146

already deemed chess a benchmark for machine 147

intelligence. With the advent of deep learning mod- 148

els, chess engines now vastly outplay any human 149

opponent (Silver et al., 2017). For all intents and 150

purposes, these models functionally understand 151

chess according to Definition 1. Consequently, 152

chess was abandoned as a useful benchmark for 153

understanding.1 Instead, the game of Go was 154

adopted as a marker for understanding (Bouzy and 155

Cazenave, 2001; Van Der Werf, 2004), until here, 156

too, models have outplayed even the best human 157

players (Silver et al., 2016). 158

A natural follow-up question is whether LLMs 159

can functionally understand. We argue that similar 160

trends to Go and chess happen for certain NLP 161

tasks. For example, natural language inference 162

(NLI) has garnered significant attention since its 163

introduction (Dagan et al., 2005), and was framed 164

as “fundamental to understanding natural language” 165

by the authors of SNLI, one of the most prominent 166

benchmarks for the task (Bowman et al., 2015). 167

However, as can be seen in Figure 1, the number of 168

models developed over SNLI has dropped in recent 169

years when performance on the benchmark was 170

saturated, while similar trends are observed also 171

for the follow-up MNLI dataset (Williams et al., 172

2018). To the best of our knowledge, there is no 173

large scale effort to curate a new benchmark for 174

1New chess engines are still being developed, albeit with-
out any claims about general understanding beyond chess.
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Figure 1: %Models tested on SNLI (blue bars, left
axis) per year versus state-of-the-art performance on the
benchmark (red line, right axis). Data collected from
paperswithcode.com.

the task. It could be argued that LLMs functionally175

understand NLI, and the field has implicitly moved176

to other tasks. An indication that this trend does177

not stem from loss of interest in the task are various178

recent works that use NLI models as components179

within larger systems, showing that indeed NLI180

models are useful (Honovich et al., 2021; Laban181

et al., 2022; Aharoni et al., 2023; Min et al., 2023).182

Adopting this notion of understanding implies183

getting other NLP tasks to go down this path, in-184

crementally achieving functional understanding on185

as many tasks as possible. At the end of this path,186

if it is reachable, lies our hypothetical Z chatbot,187

which functionally understands every NLP task.188

4 Zombies don’t Understand:189

Consciousness as Prerequisite for190

Understanding191

In contrast to the external approach to understand-192

ing in AI, stands a long line of work that either193

explicitly or implicitly requires models to have sub-194

jective experience. Importantly, these works view195

the quality of consciousness as an essential aspect196

of understanding, regardless of any external behav-197

ior. This notion is formulated in Definition 2:198

Definition 2: Conscious Understanding

A model M is said to consciously under-
stand if it has subjective experience imme-
diate to it but not necessarily to an observer.
Or, in Nagel (1974)’s words there is some-
thing that it is like to be M .

199

As we highlight below, this notion of understand-200

ing has been articulated by seminal works in the201

field of AI and NLP. In a section titled Argument 202

from Consciousness from his famous paper, Turing 203

(1950) cites (Jefferson, 1949):2 204

Not until a machine can write a sonnet or compose a
concerto because of thoughts and emotions felt, and not by
the chance fall of symbols, could we agree that machine
equals brain—that is, not only write it but know that it had
written it. No mechanism could feel (and not merely
artificially signal, an easy contrivance) pleasure at its
successes, grief when its valves fuse, be warmed by flattery,
be made miserable by its mistakes, be charmed by sex, be
angry or depressed when it cannot get what it wants.

Turing (1950)

Importantly, this reveals a strong tie between ex- 205

ternal behaviors, such as writing a sonnet or com- 206

posing music, and subjective experiences, such as 207

feeling emotions, in considering them as prerequi- 208

sites for understanding, or intelligence. 209

This conflation is also evident in Searle’s inter- 210

pretation for his Chinese room argument (Searle, 211

1980). This questions if a computer can be truly in- 212

telligent by imagining a non-Chinese speaker using 213

a rule-book to manipulate Chinese symbols, seem- 214

ingly displaying comprehension without real under- 215

standing. Searle (2010) explicitly states that this 216

argument was meant as a thought experiment for 217

the existence of consciousness, or its lack thereof: 218

I demonstrated years ago with the so-called Chinese Room
Argument that the implementation of the computer program
is not by itself sufficient for consciousness or intentionality.

Searle (2010)

Since then, notable works have also connected 219

the Turing test and Chinese room argument to 220

consciousness (Churchland and Churchland, 1990; 221

Gozzano, 1995; Dehaene and Sigman, 2012). 222

It seems that from the inception of AI research, 223

foundational works defined understanding as the 224

existence of consciousness. We believe that this 225

drives part of the current discussion regrading the 226

question of whether LLMs understand, evident in 227

this quote from (Bender et al., 2021): 228

Our human understanding of coherence derives from our
ability to recognize interlocutors’ beliefs and intentions
within context. That is, human language use takes place
between individuals who share common ground and are
mutually aware of that sharing (and its extent), who have
communicative intents which they use language to convey,
and who model each others’ mental states as they
communicate.

Bender et al. (2021)

Finally, this definition for understanding is in 229

2Emphasis is our own in all quotes.
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line with (O’Gieblyn, 2021), who in her recent230

book advocated for consciousness as the defining231

factor of human intelligence:232

As AI continues to blow past us in benchmark after
benchmark of higher cognition we quell our anxiety by
insisting that what distinguishes true consciousness is
emotions, perception, the ability to experience and feel.
The qualities, in other words, which we share with animals.

O’Gieblyn (2021)

To move forward on conscious understanding233

as articulated in Definition 2, we suggest follow-234

ing literature in neuroscience regarding the neural-235

correlate-of-consciousness (NCC; Koch et al.,236

2016). This field is dedicated to recognizing the237

neural dynamics in biological organisms that are as-238

sociated with consciousness experience. For exam-239

ple, the Integrated Information Theory (IIT; Tononi240

et al., 2016), and more specifically the weak IIT,241

links elements of consciousness with wider in-242

formation flow metrics, like recurrent process-243

ing, or global workspace. These findings can in-244

form cognitively-inspired architectures, e.g., spik-245

ing neural networks (Mediano et al., 2022).246

5 Other Possible Answers247

Here we survey alternative answers to the question248

of whether zombies understand. We reply to these249

objections below, hopefully resolving seeming in-250

consistencies within our paradigm.251

Argument: Whether Z understands depends on252

its implementation (training data, architecture, hy-253

perparameters, etc.), but that has nothing to do254

with conscious experience.255

This argument assumes that there may exist im-256

plementations of Z which will show that it indeed257

understands, e.g., if they involve complex feature258

manipulation or explicit reasoning steps, while259

there may exist other implementations which imply260

that Z does not understand, e.g., if all Z does is261

leverage spurious correlations or memorize an im-262

mense look up table, similar to the Chinese room263

argument (Searle, 1980). We posit that this argu-264

ment is compatible within our discussion around265

functional understanding (§3). For example, if Z266

leverages spurious correlations, then by definition267

there are samples which do not exhibit these cor-268

relations and which will stump Z (otherwise they269

would not be spurious), contradicting our assump-270

tion that Z is a philosophical zombie, and does271

not make non-human errors. Similarly, since hu-272

man language can produce an infinite amount of 273

meaningful texts (Chomsky, 2002), and Z can only 274

memorize a finite amount of samples (as it is im- 275

plemented in finite hardware), then there must be 276

samples outside of its memory on which it is bound 277

to fail. This again contradicts our initial assumption 278

that Z does not fail where humans do not fail. 279

Argument: The question is ill-posed as it does 280

not define what is understanding. Different defini- 281

tions may lead to different answers. 282

We do not aim to define apriori what constitutes 283

understanding, and do not argue that there is a sin- 284

gle “correct” definition. Instead, we try to tease 285

apart what researchers mean when they use the 286

term, specifically highlighting the role that con- 287

sciousness plays in it, and examine how AI research 288

may be explained through this lens. In fact, we 289

claim that answering the question elucidates differ- 290

ent definitions for understanding (Definitions 1,2). 291

We invite researchers to engage with this question 292

to examine their definition for understanding. 293

Argument: The question is ill-posed as Z is in- 294

conceivable. Hence it is meaningless to discuss 295

different properties of Z. 296

This argument may stem from a philosophical 297

stance often termed mind-body dualism (Robinson, 298

2023), positing that mental states are distinct from 299

physical states, and that not all mental capacities 300

can manifest in purely physical objects (e.g., com- 301

puter hardware). We argue that this position is in 302

fact compatible with the view that consciousness is 303

a prerequisite for understanding (§4), and takes it a 304

step further, claiming that consciousness can never 305

be implemented in machines. 306

6 Discussion 307

We pose the question of whether Zombies under- 308

stand to highlight consciousness’s role in AI de- 309

bates. We propose two definitions for understand- 310

ing. One deals with functional understanding, and 311

the other revolves around conscious experience. 312

These definitions leads to different research agen- 313

das. This argument can be ported to other discus- 314

sions about LLMs possessing human traits. E.g., 315

Perry (2023) recently claimed that LLMs could 316

not feel empathy. We argue that here, too, con- 317

sciousness plays a major role in the definition of 318

empathy. Similarly, the question of the relevance 319

of consciousness to empathy can be unpacked by 320

asking “Can Zombies be Empathetic?”. 321
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Limitations322

We presented a thought experiment posing a philo-323

sophical question and have tried to answer it324

through the lens of two schools of thought within325

the fields of AI and NLP. While we tried to ad-326

dress potential reservations to our paradigm, it is327

possible that there are other answers that were not328

considered in this paper. We invite opinions and329

objections to further inform the discussion around330

machine cognition.331
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