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Abstract

Estimating conditional treatment effects has been a longstanding challenge for fields of study
such as epidemiology or economics that require a treatment-dosage pair to make decisions,
but may not be able to run randomized trials to precisely quantify their effect. This may
be due to financial restrictions or ethical considerations. In the context of representation
learning, there is an extensive literature relating model architectures with regularization
techniques to solve this problem using observational data. However, theoretically motivated
loss functions and bounds on generalization errors only exist in selected circumstances, such
as in the presence of binary treatments. In this paper, we introduce new bounds on the
counterfactual generalization error in the context of multiple treatments and continuous
dosage parameters, which subsume existing results. This result, in a principled manner,
guides the definition of new learning objectives that can be used to train representation
learning algorithms. We show empirically new state-of-the-art performance results across
several benchmark datasets for this problem, including in comparison to doubly-robust
estimation methods.

1 Introduction

Treatment effect estimation is the problem of predicting the effect of an intervention (e.g. a treatment-dosage
pair) on an outcome of interest to guide decision-making. The challenge for prediction models is to learn
this map from observational data, which is formally generated from a different structural causal model
in which treatment assignment varies according to an individual’s covariates, instead of being fixed by
the decision-maker. Counterfactuals define the outcome that would have been observed had the assigned
treatment been different. For concreteness, consider designing a policy for the administration of chemotherapy
regiments; not all cancer patients in the available data are equally likely to be offered the same type and
dosage, with varied factors, e.g. age, wealth, etc., involved in the decision-making process. Evaluating a
new treatment combination for a given patient is a data point that is invariably under-represented in the
empirical distribution of the data.

Treatment effect estimation is studied under a wide range of assumptions, including experimental designs that
feature ignorability (Imbens, 2000; Imai & Van Dyk, 2004), multiple treatments, sequential decision-making
problems, and different generative models encoded in general causal graphs (Pearl, 2009). There is a growing
literature on several parts of this problem in the field of machine learning that attempts to define loss functions
that are conducive to learning representations of covariates predictive of both observed and counterfactual
outcomes. Existing methods could be generally categorized by the theoretical guarantees that inspire training
objectives, driven either by bounds for the generalization error or by doubly-robustness guarantees. In the
first line of research, Shalit et al. (2017); Johansson et al. (2020) showed in the binary treatment setting
that the counterfactual error, that is not computable from data by design, could be instead bounded by the
in-sample error plus a term that quantifies the difference in distributions between treated and untreated
populations, leading to a differentiable loss function that can be used to train expressive neural networks.
Several papers used this insight to investigate different neural network architectures for this problem. For
example, Johansson et al. (2016) proposed to use separate feed-forward prediction heads on top of a common
representation, Zhang et al. (2022) use transformers, De Brouwer et al. (2022); Seedat et al. (2022) use neural
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differential equations. Tanimoto et al. (2021) and Lopez et al. (2020) extend the result from Shalit et al.
(2017) and Johansson et al. (2020) to multiple treatments settings. In turn, doubly-robust estimators combine
expressive function approximators and inverse probability weighting leveraging statistical non-parametric
asymptotic guarantees of both estimators (Funk et al., 2011; Kennedy, 2016; 2020). In particular, when the
direct estimate of the outcome is biased, such as when using nonparametric or high-dimensional regression,
the doubly robust estimator weights the model residuals by inverse propensity weights in order to remove the
bias. Its convergence and consistency for treatment effect estimation requires only that one of the estimators
is consistent. In principle, any consistent function approximator could be used, which in the context of neural
networks has led to several adaptations of loss functions and architectures. For example, Shi et al. (2019)
adapted the architecture of Johansson et al. (2016) for this purpose introducing targeted regularization, and
Nie et al. (2020) proposed varying coefficient networks in the context of continuously-valued dosage parameters.
As an alternative to regularisation approaches, Colangelo & Lee (2020) used a two-steps procedure to learn
non-parametric kernel models in continuous treatment settings. In these works, however, the authors provide
guarantees for population average treatment effect estimation, in contrast with conditional average treatment
effect estimation.

Despite the generality of these results, no guarantees and no theoretically motivated loss functions exist
for learning representations for counterfactual estimation in the general setting of multiple treatment types
and/or continuous treatment values or dosages. The challenge in the context of representation learning
is that there is no notion of treatment group as each individual gets assigned a potentially different and
unique treatment value. Lack of overlap in finite samples and subsequently large estimation variance for
counterfactual predictions are exacerbated in this setting to the extreme that adjustments for distributional
differences are, in principle, not applicable. In particular, the intuition for reducing variance by regularization
deviates from previous proposals (that regularize representations of covariates to match distributions among
groups with different treatment types (Shalit et al., 2017)) as a potentially infinite set of counterfactuals
for each individual must be considered. Even the analysis of multiple categorical treatments is currently an
open question as, while pairwise comparisons between treatment specific distributions could be implemented
in principle, it is not computationally tractable to do so in practice. At this moment, only heuristic neural
network architectures for this problem have been proposed, including Dose Response networks that consist of
multi-task layers for dosage sub-intervals defined on top of a common representation (Schwab et al., 2020),
variants of generative adversarial networks (Bica et al., 2020), and varying coefficient networks (Nie et al.,
2020).

In this paper, we investigate the design of representation learning-based algorithms for predicting (conditional
average) treatment effects in the context of multiple treatments and continuous dosage parameters. Our
analysis starts by extending definitions of loss and generalization error to this broader setting, over all
possible treatment-dosage pairs. We then show by using the definition of integral probability metrics that
the generalization error can be bounded by a term that is computable from data and that involves the
factual error and a term that quantifies the statistical dependence between the pair of treatment-dosage
random variables and observed confounders. In principle, any treatment space on which we can define a
probability measure is consistently accounted for, which gives well-defined bounds on the generalization
error for treatments with multiple types and continuous values, and in particular, our bound includes as
a special case existing guarantees in the binary treatment case (Shalit et al., 2017). This bound suggests
new training objectives for learning representations conducive to counterfactual estimation. Moreover, such
objectives are tractable: both avoiding combinatorial numbers of pairwise comparisons and avoiding binning
dosage values into different sub-intervals. A further contribution we make is to design extensive numerical
comparisons that compare both methods driven by bounds on the generalization error (that typically target
conditional average treatment effects) and methods driven by doubly-robust guarantees (that typically target
average treatment effects). Moreover, we do so independently of the adopted neural architecture which
provides the first analysis of different objectives for the problem of treatment effect estimation with multiple,
continuously-valued treatments. We hope these results can give some insight into the trade-offs of different
approaches to this problem and demonstrate the ability of representation learning techniques to tackle wider
ranging scenarios within treatment effect estimation.
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2 Background

We start by introducing the notation and definitions used throughout the paper. In particular, we use capital
letters for random variables pXq, small letters for their values pxq, bold letters for sets of variables pXq and
their values pxq, and Ω for the spaces where they are defined pΩXq if not explicitly stated. To simplify
notation, we consistently use the shorthand P pxq to represent probability mass or density functions P pX “ xq

and similarly P py | xq to represent P pY “ y | X “ xq. For three sets of variables X,Y,Z the conditional
independence statement "X is conditionally independent of Y given Z “ z" is written as X |ù Y|Z.

We use the semantics of the Rubin-Neyman potential outcomes framework, see e.g. Section 2 in Rubin
(2005). We assume that for an individual with observed covariates x P ΩX, and tuple T “ pW,Sq defining
the treatment type out of k distinct treatments W P ΩW “ tw1, . . . , wku and dosage parameter S P ΩS “ R,
there is a corresponding potential outcome Yt that would have been observed had the assigned treatment
been T “ t. With observational data only one of these potential outcomes is observed for each unit depending
on the treatment assignment. We will refer to the unobserved potential outcomes as counterfactuals. Let Y
denote the observed outcome and ΩT “ tpw, sq : w P ΩW , s P Ru denote the set of all treatment options. The
goal is to derive estimates of the expected potential outcomes for a given set of input covariates: ErYt | xs,
for any value of t and x. Under the following standard assumptions (Rubin, 2005), it is well understood that
the treatment effect between two selected treatment options t1 and t2 reduces to a contrast of conditional
distributions, presented in Prop. 1 below.

Assumption 1 (Unconfoundedness). The treatment assignment and potential outcomes are conditionally
independent given the covariates, i.e. YT |ù T | X.

Assumption 2 (Overlap). For any x P ΩX such that P pxq ą 0, we have P pt | xq ą 0 for each t P ΩT .

Assumption 3 (Consistency). The observed outcome is the potential outcome, as a function of treatment,
when the treatment is set to the observed exposure, i.e. Y “ Yt if T “ t for any t P ΩT .

Proposition 1 (Identifiability). Under assumptions 1 and 3, and any t1, t2 P ΩT ,

ErYt1 ´ Yt2 | xs “ ErY | x, t1s ´ ErY | x, t2s, (1)

which is composed entirely of observational quantities and can be estimated from data given Assump. 2.

We refer to the quantity ErYt1 ´ Yt2 | xs as the conditional (or individual if the conditioning set identifies a
unit) treatment effect (CATE), and the ErYt1 ´ Yt2 s as the average, or population, treatment effect (ATE).
Our results rely on defining representation functions ϕ : ΩX Ñ ΩR, where ΩR is the representation space,
that preserve unconfoundedness and overlap, and the identifiability of the treatment effect. For this purpose,
it is sufficient to assume ϕ to be injective1.

Corollary 1 (Identifiability given representation). Under the assumption that the representation ϕ is injective,
P pt | ϕpxqq ą 0 and YT |ù T | ϕpXq, that is unconfoundedness and overlap hold conditional on features ϕpxq.

Without loss of generality we will assume that ΩR is the image of ΩX under ϕ. We will write P also to
denote the distribution induced by ϕ over ΩR and let h : ΩR ˆ ΩT Ñ ΩY be a prediction function defined
over ΩR. Next, we define two complimentary loss functions: one is the standard machine learning loss, which
we will call the factual error on the estimation at the observed treatment type and dosage tuple, and the
other is the counterfactual error, as an average error over all other treatment assignment options, made for
an individual with a particular treatment type and dosage tuple.

1The remark has been made that injectivity of representation is difficult to enforce (Zhang et al., 2020; Johansson et al., 2019).
An algorithmic solution, discussed by Zhang et al. (2020), is to include a decoder from the representation to the input domain
and reconstruction loss in the training objective to encourage solutions with invertible latent representations. A reconstruction
loss and encoder-decoder architecture can be included on top of the regularization terms proposed in this paper.
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Definition 1. For a given loss function L : ΩY ˆ ΩY Ñ R`, the expected factual and counterfactual losses
of h and ϕ at treatment t P ΩT are defined as,

LF ptq “

ż

ΩX

ż

ΩY

Lpyt, hpϕpxq, tqqP pyt|xqP px|tqdxdyt, (2)

LCF ptq “ Et1„P

ż

ΩX

ż

ΩY

Lpyt, hpϕpxq, tqqP pyt|xqP px|t1qdxdyt. (3)

The counterfactual error defines the average error made for the counterfactual prediction at treatment tuple
t “ pw, sq on all individuals that are observed to be assigned a different treatment t1 ‰ t. This definition
extends the binary treatment case to assess the quality of counterfactual predictions at t P ΩT . Similarly,
we define an average measure of factual and counterfactual performance over all possible treatment options
t P ΩT .
Definition 2. The average factual and counterfactual error over all treatment options are defined.

LF “

ż

ΩT

LF ptqP ptqdt, LCF “

ż

ΩT

LCF ptqP ptqdt. (4)

Next we define the error made on the estimation of a counterfactual contrast for a given pair of treatments,
instead of an average over all counterfactual treatment options.
Definition 3. Let the treatment effect between two different treatments tuples t1, t2 P ΩT be given by
τpt1,t2qpxq “ ErYt1 | xs ´ ErYt2 | xs. The error in treatment effect estimation is then defined as,

Lpt1,t2q :“
ż

ΩX

Lpτpt1,t2qpxq, τ̂pt1,t2qpxqqP pxqdx, (5)

where τ̂pt1,t2q : ΩX Ñ ΩY denotes its estimate.

3 Representation learning for counterfactual estimation

As is apparent in the presence of multiple treatments and continuously-valued dosages, there is no notion of
treatment group as each individual gets assigned a potentially different and unique treatment value. The
intuition for reducing variance by regularization deviates from previous proposals as a potentially infinite
set of counterfactuals for each individual must be considered (Shalit et al., 2017). The following theorem
shows that the average counterfactual error defined in Def. 2 can be bounded by terms that are explicitly
computable from observational data.
Theorem 1 (Bound on average counterfactual generalization error). Under the assumption that ϕ is injective,
it holds that,

LCF ď LF ` λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩT

ż

ΩR

gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
. (6)

Ωg defines a space of functions g : ΩRˆΩT Ñ R expressive enough to include
ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt{λ

as a function of ϕpxq and t, where λ ą 0 depends on the choice of representation function ϕ.

This theorem states that the average counterfactual error is upper-bounded by the factual error plus a term
that quantifies the dependence between treatment tuple T and covariates X. As the treatment tuple contains
multiple treatment types w, as well as continuous dosages s, this single bound is valid for multiple treatment
values as well as continuous dosages.

Bias Variance tradeoff Counterfactual estimation would be unbiased by minimizing factual losses LF
by Prop. 1, but the variance in the estimation of counterfactuals for treatment-dosage pairs that are not
heavily represented in observational data will be high. This will contribute to larger generalization error
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and is captured in the supremum in the second term of Eq. (6). In particular, the supremum quantifies
an imbalance in the association of T and R by using distributional distances between joint distributions
and the product of marginals. |P prqP ptq ´ P pr, tq| is large if not all treatment and feature combinations
are evenly represented in the data. This observation recovers an interesting intuition if Ωg is chosen to be
expressive enough. The observation being that supgPΩg

ˇ

ˇ

ˇ

ş

ΩT

ş

ΩR
gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt

ˇ

ˇ

ˇ
“ 0 if and

only if the representation is independent of treatment assignment, i.e. ϕpXq |ù T . This extreme case leads to
lower variance as counterfactuals for a treatment-dosage tuple have the same effective sample size as that of
the observational data. The hyperparamter λ controls the tradeoff between the bias and the variance of the
counterfactuals. Two choices for Ωg we consider are the space of functions in a universal Reproducing Kernel
Hilbert Space (RKHS) with characteristic kernels (Sriperumbudur et al., 2011), which recovers the well-known
Hilbert Schmidt Independence Criterion (Gretton et al., 2007), and the space of Lipschitz functions with
Lipschitz constant bounded by 1 which recovers the Wasserstein distance (Villani, 2009).

Binary treatment case One insight from Thm. 1 is that bias in the treatment assignment in the context
of a general treatment choices, such as multiple treatment types or continuously-valued treatments, takes the
form of high statistical dependence between random variables, that is more general than differences between
distributions. In particular, differences in distributions between treatment groups as defined by Shalit et al.
(2017) in the binary treatment case can be formulated as statistical dependence between random variables.
The following corollary recovers the generalization bound of Shalit et al. (2017) as a special case.
Corollary 2. Let ΩT “ t0, 1u. Then, by Thm. 1,

LCF ď LF ` λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP pr | T “ 1q ´ P pr | T “ 0qqdr
ˇ

ˇ

ˇ
, (7)

and is equivalent to (Shalit et al., 2017, Lemma 1).

We show next a similar result that gives generalization bounds for the treatment effect comparing two specific
treatment options, instead of an average over all possible counterfactual options, that may be of interest in
applications specifically comparing two treatment options.
Theorem 2. Let t1, t2 P ΩT be two treatment tuples to be compared. Then,

Lpt1,t2q{2 ď LF pt1q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t1qqdr
ˇ

ˇ

ˇ
` LF pt2q

` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t2qqdr
ˇ

ˇ

ˇ
´ σYt1

´ σYt2
, (8)

where σYt1
and σYt2

stand for the variance of the random variables Yt1 and Yt2 , respectively, under the
distribution P pxq.

3.1 Architectures and algorithms for counterfactual estimation

This section discusses the architectures of the representation and prediction functions used, as well as training
objectives to leverage the generalization bound in Thm. 1. The training objective that we define can be used
with any neural network architecture that parameterizes a representation function ϕη : ΩX Ñ ΩR and a
separate prediction function hθ : ΩR ˆ ΩT Ñ ΩY with sets of parameters η and θ respectively.

Following the discussion in Sec. 3, we learn a representation ϕ and prediction function h to minimize a
trade-off between predictive accuracy and imbalance in the representation space using the following objective:

min
θ,η

N
ÿ

n“1

´

ypnq ´ hθpϕηpxpnqq, tpnqq

¯2
` γ ¨ IPMΩg pϕpXq, T q, (9)

where γ ě 0 is a hyperparameter, n is the number of samples, and IPMΩg
pϕpXq, T q :“ supgPΩg

ˇ

ˇ

ˇ

ş

ΩT

ş

ΩR
gpr, tq¨

pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
is the integral probability metric for a chosen space of functions Ωg.
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Figure 1: Sketch of the architecture.

Concretely, we wish to increase the predictive accuracy while making the representation as independent of the
treatment as possible. We consider the Hilbert Schmidt Independence Criterion (HSIC) and the Wassertein
distance as choices for the integral probability metric. In practice, the HSIC can be approximated with a finite
data sample using (Gretton et al., 2007, Eq. (3)). For the Wasserstein distance, we simulate a sample with
joint distribution P prqP ptq by randomly permuting the observed treatment-dosage pair across individuals to
generate a sample tprpnq, tpσpnqqq : n “ 1, . . . , Nu, where σ : t1, . . . , Nu Ñ t1, . . . , Nu is a bijective function.
The original data tprpnq, tpnqq : n “ 1, . . . , Nu is drawn from the distribution P pr, tq. The two empirical
distributions are compared using the arguments in (Cuturi & Doucet, 2014). Both these regularization terms
are differentiable and all parameters can be updated using stochastic gradient descent.

Each treatment type w corresponds to a separate prediction network head, i.e. hθ :“ th
pwq

θ uwPΩW
, while

the representation layer is common across all treatment types. In particular, this implies that each sample
pxpnq, wpnq, spnq, ypnqq is used to update only the prediction network h

pwpnq
q

θ corresponding to the observed
treatment wpnq, while all samples are used to update the representation layer ϕη. A sketch of this training
routine is given in Fig. 1.

The following network architectures for the prediction functions thpwquwPΩW
have been proposed in the

literature.

Dose Response Networks (DRNet) Schwab et al. (2020) propose Dose Response Networks for predicting
the effect of dosage on an outcome of interest. The architecture takes the form of a multi-task network with
a shared set of layers and multiple task-specific heads. In this context, the range of dosage values is split into
separate bins and each of them is associated with a separate head. Each task-specific network in addition
takes the dosage value as input, but crucially the parameterization of the prediction function is common
to all dosages belonging to the same sub-interval. For example, the range of dosage values for treatment
type w could be divided into 5 sub-intervals, thus using 5 task-specific heads hpwq

θ “ ph
pw,1q

θ , . . . , h
pw,5q

θ q,
h

pw,iq
θ : ΩR ˆ ΩT Ñ ΩY , i “ 1, . . . , 5. To some extent this approach accounts for the heterogeneity in the

dose-response function but remains limited by the binning choice and may be vulnerable to abrupt changes
in the prediction on the dosage values that separate two bins, as demonstrated by Nie et al. (2020).

Varying Coefficient networks (VCNet) Varying Coefficient networks (Nie et al., 2020) are proposed
for dose-response estimation, but a multi-task architecture can be designed as a special case. In particular,
the authors define the parameters θ for each prediction network h

pwq

θ :“ h
pwq

θpsq
: ΩR Ñ ΩY to be functions

θpsq “ pθ1psq, . . . , θdθ
psqq of dosage themselves, where dθ is the total number of parameters. Each scalar

parameter θi : ΩS Ñ R is given by a linear combination θipsq “
řL
l“1 αi,lψlpsq of polynomial basis functions

tψlu
L
l“1 defined on the space of dosage values ΩS . The coefficients tαi,l : i “ 1, . . . , dθ, l “ 1, . . . , Lu define

the trainable parameters and the map h
pwq

θ pr, sq :“ h
pwq

θpsq
pr, sq is differentiable with respect to tαi,l : i “

1, . . . , dθ, l “ 1, . . . , Lu. For example, DRNets are recovered by choosing tψlu
L
l“1 to be a piece-wise constant

functions spline basis of the form 1psi ď t ă sjq with different si, sj . More general choices can be made, such
as B-splines, that lead to continuous dose response curves. The influence of the dosage parameter is different
to that of a covariate and thus ensures dosage information is not lost in high-dimensional representations,
which in practice has been shown to lead to better counterfactual prediction performance.
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4 Experiments

This section conducts controlled experiments on synthetic and semi-synthetic datasets previously used in the
literature. Overall, we found that simulation results support our generalization guarantees with different
architectures benefiting from the proposed regularization strategy using both the HSIC and Wasserstein
distances.

4.1 Baselines and metrics

We consider several baselines for comparison, including different neural network architectures without
regularization and with doubly-robust regularization techniques. In particular, we consider a standard
multilayer perceptron (MLP) that optimises the (factual) squared error loss objective to learn the weights
of the network, a standard VCNet (Nie et al., 2020), and DRNet (Schwab et al., 2020). In the context of
doubly-robust optimization, Shi et al. (2019); Nie et al. (2020) propose to learn a joint representation ϕpxq

that is conducive to both counterfactual h1 : ΩR ˆ ΩT Ñ ΩY and propensity score estimation h2 : ΩR Ñ ΩT
by a using a loss function that trades-off the two objectives, e.g.,

1
N

N
ÿ

n“1

´

ypnq ´ h1pϕpxpnqq, tpnqq

¯2
` α ¨ CrossEntropy

´

h2pϕpxpnqqq, tpnq
¯

, (10)

If h1 and h2 are consistent estimators of the outcome and propensity scores respectively, as well as satisfy the
non-parametric estimating equation,

1
N

N
ÿ

n“1
µpypnq, tpnq,xpnq; ĥ1, ĥ2, ϵ̂q “ 0, (11)

where ϵ denotes a perturbation term that is optimized and where (in the binary treatment case for simplicity),

µpy, t,x;h1, h2, ϵq “ h1px, 1q ´ h1px, 0q `

ˆ

t

h2pxq
´

1 ´ t

1 ´ h2pxq

˙

¨ py ´ h1px, tqq ´ ϵ, (12)

then the resulting estimator will have desirable asymptotic properties for average treatment effect (Shi et al.,
2019; Kennedy, 2016). We consider h1 parameterized by both VCNets and DRNets. Algorithms trained to
minimize Eq. (10) are denoted VCNet-PS, DRNet-PS, and algorithms trained to minimize both Eqs. (10)
and (11) (also known as Targeted Regularization), are referred to as VCNet-TR, DRNet-TR. Finally, we
consider Generalized Propensity Scores (GPS) (Imbens, 2000; Imai & Van Dyk, 2004) that fit a linear model
using inverse propensity scores. Our proposed methods are labeled DRNet-HSIC, DRNet-Wass, VCNet-HSIC,
and VCNet-Wass, which combine existing architectures with the proposed regularization methods. We include
details on network architectures, hyperparameters optimisation and computational time in Appendix C.

For performance comparisons, we consider the Mean Integrated Squared Error (MISE),

MISE “
1
N

1
k

N
ÿ

n“1

ÿ

wPΩW

E
„

´

y
pnq

pw,sq
´ ŷ

pnq

pw,sq

¯2
ȷ

, (13)

where we use the notation y
pnq

pw,sq
and ŷ

pnq

pw,sq
for the true and predicted outcome for individual n given

treatment-dosage pairs pw, sq P ΩT , and the expectation is taken with respect to the dosage parameter,
i.e. E

”

y
pnq

pw,sq

ı

“
ş

ΩS
y

pnq

pw,sq
P psqds. Intuitively, MISE calculates how well an algorithm is at estimating

individual level dose response and thus accounts for the heterogeneity in treatment response. In contrast, the
Average Mean Squared Error (AMSE) evaluates population average counterfactual prediction by taking sums
and integrals before comparisons between predicted and true outcomes. We define and evaluate AMSE in
Appendix D.
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(a) Synthetic.
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Figure 2: Out-of-sample MISE error versus IPM regularization, relative to the error at γ “ 0 (no regularisation), on
50 realizations of Synthetic (a) and IHDP-continuous (b) datasets. Average values (dot markers) and one standard
deviation (shaded areas) are shown.

4.2 Datasets

The nature of the treatment-effects estimation problem does not allow for meaningful evaluation on real-world
datasets. This is simply because we never observe a counterfactual for a given unit. There are, however,
established synthetic and semi-synthetic datasets that have been used by Schwab et al. (2020); Bica et al.
(2020); Nie et al. (2020). Following these proposals we use the following datasets, all containing one continuous
treatment:

• Fully synthetic. A data generating mechanism with a total of 6 randomly generated covariates and a single
treatment with dosage ranging from 0 to 1 that involve complex functions for both treatment assignment
and outcome function, as defined by Nie et al. (2020).

• IHDP-continuous. The original semi-synthetic IHDP dataset from Hill (2011) contains binary treatments
with 747 observations on 25 covariates. We adapt this dataset to the continuous dosage context by changing
the treatment assignment and outcome function. We generate these in a similar way to Nie et al. (2020).

• News. The News dataset consists of 3000 randomly sampled news items from the NY Times corpus
(Newman, 2008), which was originally introduced as a benchmark in the binary treatment setting. We
generate a continuously-valued treatment and corresponding outcome in a similar way as Bica et al. (2020).

In each of our experiments we generate 50 independent realizations from each of the above datasets (20 for
News), with samples split into a train/validation/test set with ratios 0.6/0.2/0.2. Further details on the data
generating mechanisms, as well as about networks architecture, hyper-parameters tuning and training times
are provided in Appendix C.

4.3 Effectiveness of regularisation

Our first experiment tests the effectiveness of the proposed regulariser by evaluating counterfactual prediction
performance as a function of γ that determines the influence of the independence constraint in feature space
in Eq. (9).

We consider both DRNets and VCNets architectures, with both HSIC and Wasserstein regularizers on the
Synthetic and IHDP-continuous datasets. Fig. 2 compares MISE performance results for these models with
varying values of γ relative to γ “ 0 (without regularisation). Both datasets include confounding factors
which induce bias or imbalance in the treatment assignment T for different covariate subgroups X. On both
plots we observe that the proposed regularization term (with increasing γ ą 0 relative to γ “ 0) confers an
advantage to training with a regularization term that explicitly corrects for this imbalance for the purpose of
predicting counterfactuals. The gain of some γ ą 0 is consistent across different neural network architectures
and across different datasets, which illustrates our generalization guarantees but also shows that some form
of regularisation may broadly be applicable in practice.

8
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Synthetic IHDP-continuous News
GPS 2.80 (0.51) 4.91 (0.87) -

MLP 0.72 (0.09) 0.74 (0.07) 1.05 (0.07)

DRNet 0.34 (0.06) 0.60 (0.06) 0.84 (0.04)
DRNet-PS 0.43 (0.07) 0.66 (0.15) 0.84 (0.04)
DRNet-TR 0.41 (0.03) 2.07 (3.54) 0.82 (0.05)
DRNet-HSIC 0.39 (0.06) 0.52 (0.05) 0.87 (0.04)
DRNet-Wass 0.38 (0.07) 0.51 (0.08) 0.86 (0.04)

VCNet 0.33 (0.03) 0.56 (0.09) 0.85 (0.05)
VCNet-PS 0.62 (0.42) 0.59 (0.11) 0.98 (0.09)
VCNet-TR 0.42 (0.12) 0.64 (0.39) 0.99 (0.06)
VCNet-HSIC 0.28 (0.04) 0.56 (0.09) 0.87 (0.05)
VCNet-Wass 0.38 (0.03) 0.55 (0.10) 0.81 (0.05)

Table 1: Average values and standard deviations (within brackets) of
?

MISE across 50 (20) realizations of Synthetic,
IHDP-continuous (News) datasets. Bold notation highlights the best-performing algorithm on each dataset.

4.4 Performance comparisons

In this section we conduct a wide-range comparison against the benchmark prediction algorithms using the
three data generating mechanisms described in Section 4.2. Table 1 reports average values and standard
deviations of

?
MISE over 50 (20) realizations of Synthetic and IHDP-continuous (News) datasets. On

average, the proposed regularization technique, using either the HSIC or Wasserstein distances between
distributions, outperforms all other regularization techniques on both choices of neural network architecture.
Several trends are interesting to discuss in more detail.

Existing representation learning algorithms that optimise doubly-robust objectives are not always optimal.
The results show that, in terms of the MISE, our regularisation based on counterfactual generalisation
outperforms doubly robust methods. This can be explained by the fact that doubly robust methods have
guarantees when estimating average treatment effects, and not individual or conditional treatment effects.
The proposed regularization techniques, with guarantees for counterfactual generalization error, instead, are
designed for good performance in conditional average treatment effect estimation and often substantially
outperform in terms of MISE. We believe that this discrepancy is due to the doubly robust methods discarding
information that helps predict the individual outcome, resulting in a worse MISE performance. This also
emphasizes the fact that estimating average counterfactuals and individual counterfactuals can require different
objectives. Indeed, the cross-entropy term in Eq. (10) encourages the representation to retain information
that is predictive of the treatment; hence, it encourages the discarding of information that is predictive of
the outcome but not the treatment, which is simply noise when predicting the treatment. On average there
is also a significant gain by considering more expressive neural network architectures, for instance DRNet
outperforms MLP and VCNet outperforms DRNet on all metrics and data generating mechanisms. Finally,
we note that GPS requires matrix inversion which was not feasible to compute on the high-dimensional News
dataset.

5 Conclusion

In this paper, we investigate the task of estimating the conditional average causal effect of dosage from a
combination of observational data and assumptions on the causal relationships in the underlying system.
When these assumptions hold, we give new bounds on the counterfactual generalization error in the context of
multiple treatment types and continuously-valued dosage parameters that subsume generalization guarantees
from the binary treatment case. Using this result, we provide new learning objectives that can be used to guide
the training of representation learning algorithms. We show empirically new state-of-the-art performance
results across several benchmark datasets for this problem. To our knowledge, this is the first paper exploring

9
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representation learning and regularization for conditional average counterfactual estimation in the context
of multiple, continuous-valued treatments in a principled manner. We hope these results can demonstrate
the ability of representation learning techniques to tackle wider ranging scenarios within treatment effect
estimation.
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A Related work on doubly robust estimation of the average treatment effect

Thm. 1 suggests that the imbalance in the distribution of X across treatment dosage pairs is relevant for
the expected generalization error of fitted models. Estimators inspired from the semi-parametric literature,
known as doubly robust estimators (Van Der Laan & Rubin, 2006; Chernozhukov et al., 2017), instead try
to optimize average treatment effects (ATE), e.g. EXErY1 | xs ´ EXErY0 | xs, by constructing a prediction
function h1 : ΩX ˆ ΩT Ñ ΩY , a propensity score function h2 : ΩX Ñ ΩT , and perturbation term ϵ, satisfying
the non-parametric estimating equation,

1
N

N
ÿ

n“1
µpypnq, tpnq,xpnq; ĥ1, ĥ2, ϵ̂q “ 0, (14)

where (in the binary treatment case for simplicity),

µpy, t,x;h1, h2, ϵq “ h1px, 1q ´ h1px, 0q `

ˆ

t

h2pxq
´

1 ´ t

1 ´ h2pxq

˙

¨ py ´ h1px, tqq ´ ϵ. (15)

h1px, tq is an estimator of ErYt | xs, while h2pxq is an estimator of the probability of treatment P pt | xq and
ϵ P ΩT is a perturbation term that is optimized. In the literature, a common estimation approach is to rely
on (task-agnostic) fitted models ĥ1 and ĥ2, and then choose ϵ so that this equation is satisfied. If h1 and h2
are consistent estimators of the outcome and propensity scores respectively, as well as satisfy Eq. (14), the
resulting estimator of the ATE will have desirable asymptotic properties (Shi et al., 2019; Kennedy, 2016).
However, as these guarantees are on the average treatment effects, they do not necessarily guarantee accurate
estimates of conditional treatment effects.

In the context of neural networks, Shi et al. (2019); Nie et al. (2020) propose to learn a joint representation ϕpxq

that is conducive to both counterfactual h1 : ΩR ˆ ΩT Ñ ΩY and propensity score estimation h2 : ΩR Ñ ΩT
by a using a loss function that trades-off the two objectives, e.g.,

1
N

N
ÿ

n“1

´

ypnq ´ h1pϕpxpnqq, tpnqq

¯2
` α ¨ CrossEntropy

´

h2pϕpxpnqqq, tpnq
¯

, (16)

as in (Nie et al., 2020, Eq. (1)) or (Shi et al., 2019, Eq. (2.2)). The motivation is that: "If the average
treatment effect is identifiable conditioning on the propensity score [. . . ] it suffices to adjust for only the
information in x that is relevant for predicting the treatment", see (Shi et al., 2019, Theorem 2.1). Intuitively,
the cross entropy term in Eq. (16) encourages the representation to retain information that is predictive of
the treatment. Hence, it encourages the discarding of information that is predictive of the outcome but not
the treatment, which is simply noise when predicting the treatment.

Variables that affect the outcome and not treatment are referred to as effect modifiers in the literature, see e.g.
(Hernán & Robins, 2010). By definition, the treatment effect varies across different conditioning sets of these
effect modifiers. As effect modifiers are responsible for the heterogeneity of treatment effects, it is necessary
to condition on them to obtain accurate conditional treatment effects. Thus, to compute conditional average
or "individualized" treatment effects such representations may be too restrictive because they tend to ignore
effect modifiers.

In contrast, our regularizer penalizes the dependence between the representation and the treatment distri-
butions explicitly. Loosely speaking we discard covariate information predictive of treatment but outcome
information is retained. Hence, our regularizer should preserve these effect modifiers leading to more accurate
estimates of conditional treatment effects. We conclude that, in general, optimal average treatment effects
does not necessarily imply optimal conditional average treatment effects as measured by expected losses in
Definitions 1 and 22. We verify this intuition in our experiments.

2Definitions 1 and 2 also involve averages but makes a head to head comparisons between observed outcomes and predicted
outcomes for each individual px, tq in the term

ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt (which are then averaged across individuals)

instead of averaging predicted counterfactuals across the whole population before comparison with average true outcomes across
different dosage levels.

12
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B Proofs

Theorem 1 (Generalization bound for the average counterfactual error). Under the assumption that ϕ is
one to one, it holds that,

LCF ď LF ` λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩT

ż

ΩR

gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
. (17)

Ωg defines a space of functions g : ΩRˆΩT Ñ R expressive enough to include
ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt{λ

as a function of ϕpxq and t, where λ ą 0 depends on the choice of representation function ϕ.

Proof. Let ψ : ΩR Ñ ΩX be the inverse of ϕ and let lh,ϕpx, tq :“
ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt. The

following derivations show the claim.

LCF ´ LF “

ż

ΩT

ż

ΩX

lh,ϕpx, tqP pxqP ptqdxdt´

ż

ΩT

ż

ΩX

lh,ϕpx, tqP px|tqP ptqdxdt

“

ż

ΩT

ż

ΩX

lh,ϕpx, tq ¨ pP pxqP ptq ´ P px, tqqdxdt

“

ż

ΩT

ż

ΩR

lh,ϕpψprq, tq ¨ pP pψprqqP ptq ´ P pψprq, tqqdψprqdt

“

ż

ΩT

ż

ΩR

lh,ϕpψprq, tq ¨ pP prqP ptq ´ P pr, tqqJψJ
´1
ψ drdt

ď λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩT

ż

ΩR

gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
.

For the third equality, the distribution P over ΩR ˆ ΩT can be obtained by the standard change of variables
formula, using the determinant of the Jacobian of ψprq, denoted Jψ giving P pψprq, tq “ P pr, tqJψ (which
cancels with the inverse Jacobian that appears after the change of variables in the differential term). The last
inequality comes from the assumption that lh,ϕpx, tq{λ P Ωg, which is justified and extensively discussed in
Shalit et al. (2017).

To prove Thm. 2, we will use the following lemma.

Lemma 2. For convenience, we write mpt,xq :“ ErYt | xs and we define its estimate given a prediction
function f : ΩR ˆ ΩX Ñ ΩY by fpt,xq. If L is the square loss, it then holds that,

LCF ptq “

ż

ΩX

ż

ΩY

Lpyt, hpϕpxq, tqqP pyt|xqP pxqdytdx (18)

“

ż

ΩX

ż

ΩY

pyt ´ fpx, tqq2P pyt | xqP pxqdytdx (19)

“

ż

ΩX

ż

ΩY

pfpx, tq ´mpx, tqq2P pyt | xqP pxqdytdx (20)

`

ż

ΩX

ż

ΩY

pmpx, tq ´ ytq
2P pyt | xqP pxqdytdx (21)

` 2
ż

ΩX

ż

ΩY

pfpx, tq ´mpx, tqqpmpx, tq ´ ytqP pYt | xqP pxqdytdx (22)

“

ż

ΩX

pfpx, tq ´mpx, tqq2P pxqdx ` σYt
. (23)

The third term in the third equality evaluates to zero because mpx, tq :“
ş

ΩY
ytP pyt | xqdyt and we have defined

the variance of Yt with respect to the distribution P pxq as σYt :“
ş

ΩX

ş

ΩY
pmpx, tq ´ ytq

2P pyt | xqP pxqdytdx.
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Theorem 2 (Generalization bound for selected treatment tuples t1 and t2). Let t1, t2 P ΩT be two treatment
tuples to be compared. Then,

Lpt1,t2q{2 ď LF pt1q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t1qqdr
ˇ

ˇ

ˇ
` LF pt2q

` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t2qqdr
ˇ

ˇ

ˇ
´ σYt1

´ σYt2
, (24)

where σYt1
and σYt2

stand for the variance of the random variables Yt1 and Yt2 , respectively, under the
distribution P pxq.

Proof.

Lpt1,t2q “

ż

ΩX

pfpt1,xq ´ fpt2,xq ´mpt1,xq `mpt2,xqq2P pxqdx (25)

ď 2
ż

ΩX

pfpt1,xq ´mpt1,xqq2P pxqdx ` 2
ż

ΩX

pfpt2,xq ´mpt2,xqq2P pxqdx (26)

“ 2pLCF pt1q ´ σYt1
q ` 2pLCF pt2q ´ σYt2

q (27)

ď 2
˜

LF pt1q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr|T “ t1qqdr
ˇ

ˇ

ˇ
´ σYt1

¸

(28)

` 2
˜

LF pt2q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr|T “ t2qqdr
ˇ

ˇ

ˇ
´ σYt2

¸

. (29)

The first inequality holds by the fact that pa` bq2 ď 2a2 ` 2b2 for any a, b P R. The second equality holds by
Lemma 2 and the last inequality holds by the same arguments used in Theorem 1.

C Experimental details

C.1 Data generating mechanisms

This section describes the data generating mechanisms used in our experiments.

Synthetic. We generate synthetic data similar to Nie et al. (2020). With covariates x P R6 all drawn from
a uniform distribution between 0 and 1, we generate the continuous dosages and outcomes as follows,

s̃|x “
10 sinpmaxpx1, x2, x3qq ` maxpx3, x4, x5q3

1 ` px1 ` x5q2 ` sinp0.5x3qp1 ` exppx4 ´ 0.5x3qq` (30)

x2
3 ` 2 sinpx4q ` 2x5 ´ 6.5 ` N p0, 0.25q,

y|x, s “ cosp2πps´ 0.5qq

ˆ

s2 `
4 maxpx1, x6q3

1 ` 2x2
3

sinpx4q

˙

` N p0, 0.25q, (31)

where s “ p1 ` expp´s̃qq´1.

IHDP Continuous. The IHDP dataset contains 25 covariates with binary treatments and continuous
outcomes (Hill, 2011). Disregarding original treatments and outcomes, we use the covariates to generate new
continuous dosages and outcomes to test our method. We follow the data generating procedure of Nie et al.
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(2020), namely:

s̃|x “
2x1

1 ` x2
`

2 maxpx3, x5, x6q

0.2 ` minpx3, x5, x6q
` 2 tanh

ˆ

5
ř

iPI xi ´ c2

|I|

˙

´ 4 ` N p0, 0.25q, (32)

y|x, s “
sinp3πsq
1.2 ´ s

ˆ

tanh
ˆ

5
ř

iPJ xi ´ c1

|J |

˙

` exp
ˆ

0.2px1 ´ x6q

0.5 ` minpx2, x3, x5q

˙˙

` N p0, 0.25q, (33)

c1 “ Eppxq

„ř

iPJ xi
|J |

ȷ

, (34)

c2 “ Eppxq

„ř

iPI xi
|I|

ȷ

, (35)

where s “ p1 ` expp´s̃qq´1, I “ t16, 17, 18, 19, 20, 21, 22, 23, 24, 25u, and J “ t4, 7, 8, 9, 10, 11, 12, 13, 14, 15u.

News. This dataset contains words sampled from 5000 news articles (Newman, 2008). The covariates are
word counts. We generated continuous dosage and outcomes by following the data generation method listed
in Bica et al. (2020). We first sample three vectors v1

i „ N p0, 1q, with vi “ v1
i{||v1

i||2 for i “ 1, 2, 3. Then,
dosages are drawn from a Beta distribution:

s „ Betap2, βq, β “ max
ˆ

1,
ˇ

ˇ

ˇ

ˇ

2xTv2

xTv1

ˇ

ˇ

ˇ

ˇ

˙

. (36)

Finally, outcomes are sampled according to:

y1 “ exp
ˆ

ˇ

ˇ

ˇ

ˇ

xTv2

xTv1

ˇ

ˇ

ˇ

ˇ

´ 0.3
˙

(37)

y “ 2
´

maxp´2,minp2, y1q ` 20xTv3 ˚ p4ps´ 0.5q2q ˚ sin
´πs

2

¯¯

` N p0, 0.25q. (38)

C.2 Architectures and training details

In both VCNet and DRNet, the representation part of the network ϕη and the prediction heads hθ have two
layers each, with 50 hidden units and ReLU activations. Following Nie et al. (2020), we use B-spline with
degree 2 and knots placed at t1{3, 2{3u for VCNet and 5 regression heads for DRNet.

For the MLP model, we use a 4-layers network to represent similar power of approximations to ensure fair com-
parison. We optimise the networks using Adam (Kingma & Ba, 2014) with a weight decay of 0.005 for regularisa-
tion and a batch size of 1000. Learning rate is chosen within the set t0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005u

using the procedure outlined in C.3. Each data set is split into a train/validation/test set with ratios
0.6/0.2/0.2. To avoid overfitting, we stop the training if the validation loss did not improve after 50 epochs.

Propensity score regularization (-PS methods) In addition to the representation net ϕ : ΩX Ñ ΩR
and to the prediction net h1 : ΩR ˆ ΩT Ñ ΩY , propensity score regularized methods also include a separate
head h2 : ΩR Ñ ΩT . Parameters are tuned by minimizing the loss

LPSpϕ, h1, h2q “
1
N

N
ÿ

n“1

´

ypnq ´ h1pϕpxpnqq, tpnqq

¯2
` α ¨ CrossEntropy

´

h2pϕpxpnqqq, tpnq
¯

. (39)

In our experiments, h2 is modelled through a softmax layer over a grid of 10 bins. Average treatment effects
are then estimated by considering an additional perturbation term following Shi et al. (2019) and Nie et al.
(2020). α is treated as a hyperparameter and chosen within the set t0.5, 1u using the procedure detailed in
C.3. The implementation in practice follows the publicly available code of Nie et al. (2020).

Targeted regularization (-TR methods) Methods labeled -TR use the functional targeted regularization
approach presented in Nie et al. (2020) which optimizes the loss function

LTRpϕ, h1, h2, ϵN q “ LPSpϕ, h1, h2q `
β

N

N
ÿ

n“1

ˆ

ypnq ´ h1pϕpxpnqq, tpnqq ´
ϵN ptpnqq

h2pϕpxpnqqq

˙2

(40)
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Synthetic IHDP-continuous News
DRNet 55.82 (0.36) 49.82 (0.21) 82.91 (1.76)
DRNet-PS 55.83 (0.30) 50.09 (0.17) 83.47 (2.00)
DRNet-TR 87.71 (0.22) 79.65 (0.58) 125.17 (2.77)
DRNet-HSIC 83.28 (1.47) 75.86 (1.44) 134.47 (1.74)
DRNet-WASS 63.57 (0.42) 59.67 (0.30) 99.20 (1.64)

VCNet 32.73 (0.15) 29.71 (0.34) 77.51 (0.23)
VCNet-PS 32.91 (0.21) 29.79 (0.21) 76.13 (0.26)
VCNet-TR 51.82 (0.24) 43.82 (0.17) 114.03 (0.30)
VCNet-HSIC 59.43 (0.61) 53.88 (0.94) 128.23 (0.76)
VCNet-WASS 41.69 (0.29) 38.64 (0.29) 91.83 (0.52)

Table 2: Computational times (in seconds) required for 2000 epochs of training. Averages and standard deviations
(within brackets) over 10 runs (5 for News dataset) are reported.

where ϵN p¨q “
řJN

j“1 ajψjp¨q is modelled through JN spline basis functions ψj of degree 2. The number of
basis might change with the sample size N . Following Nie et al. (2020), we select the learning rate for ϵN p¨q,
β and the number of spline knots within the sets {0.001, 0.0001}, t20, 10, 5u{

?
N and t5, 10, 20u, respectively.

Again, the implementation in practice follows the publicly available code of Nie et al. (2020).

IPM regularization (-HSIC and -Wass methods) IPM regularized methods minimize the proposed
loss in Equation (13) in the main body of this paper, where the γ is selected within the set t10i{6, i “

´18,´17, ¨ ¨ ¨ , 9, 10u using the procedure in C.3. The implementation of Wasserstein distance regulariser
follows the one available at https://github.com/clinicalml/cfrnet/blob/master/cfr/util.
py#L166. HSIC regulariser is computed according to (Greenfeld & Shalit, 2020, Eq. 3), using two RBF
kernels with length-scales t0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500u.

Generalised Propensity Score (GPS) We use our own implementation following Hirano & Imbens
(2004).

C.3 Hyper-parameters tuning

We use grid-search to tune the hyper-parameters. Namely, we generate a dataset for each hyperparameters
setting, randomly splitting it into a train/test set with a ratio of 0.8/0.2 and we choose the hyperparameters
values giving the best MISE test score.

C.4 Run time comparisons

Table 2 reports the computational time (in seconds) required by the algorithms compared in the experimental
section for 2000 training epochs. These results are machine and algorithm- specific but do serve as a relative
comparison of run times for different neural network architectures and regularization techniques. In general,
Wassertstein IPM regularisation is more computationally efficient than TR and IPM regularisation through
HSIC metric.
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Synthetic IHDP-continuous News
?

MISE
?

AMSE
?

MISE
?

AMSE
?

MISE
?

AMSE
GPS 2.80 (0.51) 2.75 (0.52) 4.91 (0.87) 4.88 (0.88) - -

MLP 0.72 (0.09) 0.62 (0.11) 0.74 (0.07) 0.59 (0.05) 1.05 (0.07) 0.66 (0.15)

DRNet 0.34 (0.06) 0.20 (0.04) 0.60 (0.06) 0.42 (0.05) 0.84 (0.04) 0.37 (0.09)
DRNet-PS 0.43 (0.07) 0.25 (0.06) 0.66 (0.15) 0.43 (0.12) 0.84 (0.04) 0.37 (0.09)
DRNet-TR 0.41 (0.03) 0.17 (0.02) 2.07 (3.54) 0.68 (0.70) 0.82 (0.05) 0.30 (0.10)
DRNet-HSIC 0.39 (0.06) 0.22 (0.02) 0.52 (0.05) 0.35 (0.06) 0.87 (0.04) 0.44 (0.07)
DRNet-Wass 0.38 (0.07) 0.21 (0.02) 0.51 (0.08) 0.34 (0.08) 0.86 (0.04) 0.43 (0.07)

VCNet 0.33 (0.03) 0.13 (0.06) 0.56 (0.09) 0.33 (0.09) 0.85 (0.05) 0.31 (0.11)
VCNet-PS 0.62 (0.42) 0.32 (0.30) 0.59 (0.11) 0.31 (0.12) 0.98 (0.09) 0.25 (0.13)
VCNet-TR 0.42 (0.12) 0.19 (0.11) 0.64 (0.39) 0.31 (0.13) 0.99 (0.06) 0.4 (0.08)
VCNet-HSIC 0.28 (0.04) 0.10 (0.03) 0.56 (0.09) 0.33 (0.08) 0.87 (0.05) 0.35 (0.11)
VCNet-Wass 0.38 (0.03) 0.11(0.03) 0.55 (0.10) 0.33 (0.08) 0.81 (0.05) 0.29 (0.1)

Table 3: Average values and standard deviations (within brackets) of
?

MISE and
?

AMSE across 50 (20) realizations
of Synthetic, IHDP-continuous (News) datasets. Bold notation highlights the best-performing algorithm on each
dataset.

D Further experiments

This section includes experiments comparing performance with respect to Average Mean Squared Error
(AMSE), in addition to Mean Integrated Squared Error (MISE),

MISE “
1
N

1
k

N
ÿ

n“1

ÿ

wPΩW

E
„

´

ypnqpw, sq ´ ŷpnqpw, sq
¯2

ȷ

,

AMSE “
1
k

ÿ

wPΩW

E

«

ˆ

1
N

N
ÿ

n“1
pypnqpw, sq ´ ŷpnqpw, sqq

˙2
ff

,

where ypnqpw, sq and ŷpnqpw, sq stand for the true and predicted outcome for individual n given treatment-
dosage pairs pw, sq P ΩT , and Egpsq “

ş

ΩS
gpsqP psqds. The AMSE calculates the accuracy of the population

level dose response.

As the doubly robust methods get rid of effect modifiers, that are useful for accurate predictions, but have
theoretical guarantees for the average treatment effects, we expect these methods to get a better AMSE. On
the other hand, as the regularizers proposed in this work provide guarantees on the counterfactual error, we
expect models trained with these to achieve a better MISE score.

In Table 3 we show mean performance for both MISE (as in the main body of this paper) and AMSE with
the objective to contrast the proposed methods, designed for optimal conditional average counterfactual
prediction, i.e. MISE, and doubly-robust methods designed for population average counterfactual prediction,
i.e. AMSE. Overall, we note that the proposed regularization technique, using either the HSIC or Wasserstein
distances between distributions, is competitive across all datasets and metrics, including AMSE.

Across all datasets, there is a clear trend showing that regularizing for optimal generalization performance
in terms of the MISE with HSIC leads to good population average performance as well, as measured by
AMSE. Doubly-robust methods (-PS, -TR) are designed for optimality in estimation of the AMSE, and across
all datasets they are either optimal or competitive compared to all other algorithms. It is interesting to
note that the performance achieved by the proposed regularisation techniques (HSIC, Wasserstein) are very
close to the optimum AMSE while, in contrast, doubly robust methods often perform significantly worse in
terms of MISE than the optima achieved by HSIC and Wasserstein regularisation. This further confirms the
intuition presented in Appendix A: estimating average counterfactuals and individual counterfactuals can
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require different objectives. Moreover, in terms of AMSE, it still holds that neural network architectures with
better expressiveness to model heterogeneous dose-response curves perform better on all datasets.
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