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Abstract

We propose an inexact regularized adaptive dual averaging algorithm with
momentum, RAMDA, for training structured neural networks in various
tasks by leveraging the help of regularization. Through the theory of mani-
fold identification, we show that even in the presence of subproblem solution
inexactness inevitable for adaptive methods with nonsmooth regulariza-
tion, after a finite number of steps, the structure of the iterates generated
by RAMDA are all identical to that induced by the regularizer at the sta-
tionary point of asymptotic convergence. This structure is locally optimal
near the point of convergence and hence provides the best performance
possible among all methods converging to the same point. Being able to
produce stochastic gradient estimators converging almost surely to the true
gradient even when the training problem is not a finite-sum but a stochas-
tic one due to data augmentation, RAMDA is the first adaptive method
with nonsmooth regularization to achieve this critical property for train-
ing structured deep learning models. With the simultaneous presence of a
preconditioner and a regularization term, the subproblems of RAMDA as
well as those of existing frameworks have no closed-form solutions, so we
also propose a general iterative subroutine for approximately solving such
subproblems efficiently while retaining similar guarantees for convergence
and manifold identification. Extensive numerical experiments in modern
computer vision, language processing, and speech tasks show that our sub-
problem solver is efficient and also applicable to existing frameworks, and
the proposed RAMDA excels state of the art to generate deep learning mod-
els that are more structured without decreasing the prediction performance.

1 Introduction

Since the recent emergence of ChatGPT, large language models (LLMs) have gained much
attention and popularity even among the public who are unfamiliar with machine learning.
An issue of such gigantic neural network models is that they have hundreds of billions of
model parameters, making their storage and inference expensive. It is thus important to find
ways to exploit structures in the trained models to reduce their spatial and prediction costs
without degrading the prediction performance. An active line of research is to explicitly use
a regularizer in the training objective and apply proximal stochastic (sub)gradient methods
to induce a desirable structure in the final model (Yang et al., 2019; Yun et al., 2021;
Deleu & Bengio, 2021). However, it has been pointed out by Huang & Lee (2022) that
these methods do not have any guarantees in finding a desirable structure due to the non-
vanishing variance of the stochastic gradient estimators they use, and these algorithms
indeed produce highly unstable and suboptimal structures empirically. Huang & Lee (2022)
then proposed a regularized dual averaging method with momentum, abbreviated as RMDA,
and leveraged the theory of manifold identification (Hare & Lewis, 2004; 2007; Lee, 2023) to
show that models produced by RMDA can stably identify the locally optimal structure. Their
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experiments demonstrated that their proposed method also empirically outperforms existing
methods on modern computer vision tasks thanks to the ability of structure identification.
Unfortunately, their method does not incorporate adaptiveness and thus might be only
useful for computer vision related tasks.
For a wide range of tasks in deep learning such as language modeling and speech recognition,
researchers have developed numerous architectures to achieve state-of-the-art prediction per-
formance, including the popular transformer (Vaswani et al., 2017) and LSTM (Hochreiter
& Schmidhuber, 1997). It is noteworthy that the transformer is also gaining prominence
in computer vision (Liu et al., 2021), so it is becoming increasingly important to devise
methods that attain satisfactory performance for training these network architectures with
structure. For such modern architectures, adaptive algorithms like Adam (Kingma & Ba,
2015) that iteratively rescale the stochastic gradient update directions via a coordinate-
wise preconditioner are known to outperform their non-adaptive counterparts (Denkowski
& Neubig, 2017; Anil et al., 2019; Zhang et al., 2020; Liu et al., 2020; Kunstner et al., 2023).
It is hence expected that the non-adaptive RMDA of Huang & Lee (2022) might not be quite
promising for such architectures and tasks in language and speech, as well as the transformer
models for computer vision, due to its lack of ability to learn some desired features faster
while keeping the rest relatively steady like adaptive methods (Zhang et al., 2021).
This work aims to fill this gap to propose a regularized adaptive method that generates
iterates identifying the active manifold, which represents all points possessing the structure
identical to that at the point of convergence induced by the regularization. This structure is
locally optimal in the sense that for including a sequence converging to the same point, the
active manifold is of the lowest rank possible among the manifold collection of the structure
class induced by the regularizer. A manifold of a lower rank means the model is more
structured and thus the active manifold is desirable. Indeed, consider a simple example
of ℓ1-norm regularization that promotes sparsity, whose associated manifold collection is
the subspaces of different sparsity patterns, and assume that the point of convergence is
x∗ = (0, 1, 2). Near x∗, ∥x∗∥1 is smooth along the two-dimensional active manifold S :=
{(0, a, 1) | a, b ∈ R}. For any sequence {xt} converging to x∗, it is impossible that ∥xt∥0 < 2
for all t large, as we otherwise get ∥xt − x∗∥ ≥ 1. On the other hand, consider xt :=
(t−1, 1 + t−1, 2) and yt := (0, 1 + t−1, 2 + t−1). Clearly, both sequences converge to x∗, but
xt /∈ S and yt ∈ S for all t, meaning that {yt} identifies the active manifold to possess
desirable structure at the limit point x∗ but {xt} fails so. Our goal is to devise an algorithm
with adaptiveness for training structured neural networks that produces iterates like {yt}
above. Such a property for iterates not leaving the active manifold of the objective function
is called manifold identification in nonlinear optimization (Hare & Lewis, 2007).
Given the pervasive usage of data augmentation in deep learning, we consider the case in
which the objective function is the expectation over a probability distribution as follows.

min
W∈E

F (W ) := Eξ∼D [fξ (W )] + ψ (W ) , (1)

where E is a Euclidean space with inner product ⟨·, ·⟩ and the induced norm ∥·∥, D is a
distribution over a space Ω that represents all possible data modifications, fξ is differentiable
almost everywhere for all ξ ∈ Ω, and the possibly nonsmooth term ψ(W ) is a regularizer
for promoting a desirable structure in the optimal solutions. As discussed by Poon et al.
(2018); Huang & Lee (2022), to achieve manifold identification for stochastic methods, it is
necessary to drive the variance of the stochastic estimator of the gradient of the loss term
to zero. Our method thus draws inspirations from Huang & Lee (2022) to consider a dual
averaging approach to asymptotically reduce the variance of zero, but we go beyond their
non-adaptive algorithm to incorporate an adaptive preconditioner in order to achieve better
model predictive ability. Our algorithm also borrows ideas from MADGRAD of Defazio &
Jelassi (2022) that combined adaptiveness, momentum, and dual averaging for unregularized
training objectives, and our method can also be seen as a generalization of theirs to the
regularized setting. These features result in our Regularized Adaptive Momentumized Dual
Averaging (RAMDA) method. We will prove that even with adaptiveness and momentum
added, RAMDA still attains variance reduction and convergence to a stationary point for
the regularized training problem (1). Although Defazio & Jelassi (2022) provided some
convergence guarantees for MADGRAD that can be seen as the special case of RAMDA when
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ψ ≡ 0, their analysis is limited to the convergence rate of the objective value in convex
problems. Our analysis of convergence in the nonconvex case, variance reduction, and the
manifold identification property are new and closer to the properties desirable in practice.
On the empirical side, our method achieves performance better than state of the art for
training structured models on representative modern deep learning tasks.
Moreover, the major challenge of designing regularized adaptive methods is solving the
subproblem. When adaptiveness is not involved, subproblems of existing methods for regu-
larized training like RMDA have closed-form solutions through the proximal operator associ-
ated with the regularizer. Similarly, when no regularization is involved, the subproblems of
adaptive methods like Adam or MADGRAD are smooth quadratic, so closed-form solutions
can also be obtained efficiently. However, when a preconditioner for adaptiveness and a
nonsmooth regularization term appears simultaneously, these subproblems no longer pos-
sess easily-computable closed-form solutions except for few special cases. To deal with this
issue, for the subproblems of both our RAMDA and existing regularized adaptive methods,
we propose an implementable inexact condition in the subproblem solving and a companion
subproblem solver that efficiently compute approximate solutions satisfying this condition.
As the earlier toy example has demonstrated, approximate subproblem solutions can eas-
ily fail manifold identification, but our analysis shows that our inexactness condition still
ensures manifold identification and provides convergence guarantees to stationary points.
When applied to existing methods, our inexactness condition is applicable to general regu-
larizers, and it provides strong convergence guarantees similar to those in existing analyses
for the exact versions.
Our major contributions are as follows.
1. An adaptive algorithm for finding the locally optimal structure: RAMDA is

the first regularized adaptive method guaranteed to find the locally optimal structure
possessed by the stationary point to which its iterates converge. It thus produces models
that are more structured without decreasing the prediction performance. In comparison
to RMDA that also guarantees structure identification, RAMDA is an adaptive one and
thus provides better performance on a wide range of modern deep learning models as
evidenced by our extensive experiments.

2. Efficient subproblem solver for regularized adaptive methods: We propose an
implementable inexactness condition a companion efficient subproblem solver for ap-
proximate solutions of subproblems of regularized adaptive methods, including ours and
existing ones, that have no closed-form solution. Without additional assumptions on the
problem class, we show that the induced inexactness does not affect convergence guaran-
tees or manifold identification. This condition and subproblem solver therefore also serve
as the key step for realizing existing frameworks for regularized adaptive algorithms.

3. A method with outstanding performance in practice: Experiments on train-
ing modern neural networks in computer vision (ImageNet), language processing
(Transformer-XL), and speech (Tacotron2) with structured sparsity show that RAMDA
steadily outperforms state of the art to obtain higher structured sparsity ratio and better
prediction performance at the same time.

2 Algorithm

Our algorithm can be seen as a dual averaging method that incorporates a proximal oper-
ation for the regularization, momentum, and an adaptive feature that computes a diagonal
preconditioner from a weighted average of the squared norm of historical stochastic gradi-
ents. For the ease of the description, we assume without loss of generality that E = Rn in this
section. At the tth iteration, we first draw an independent and identically distributed sam-
ple ξt ∼ D, calculate st := ηt

√
t, compute the stochastic (sub)gradient Gt := ∇fξt

(W t−1) of
the loss function at the current point W t−1 with respect to ξt, and then update the weighted
sum Vt of historical stochastic gradients and the weighted sum Ut of their squared norms
using the stepsize st:{

V0 := 0, Vt :=
∑t
k=1 skG

k = Vt−1 + stG
t,

U0 := 0, Ut :=
∑t
k=1 skG

k ◦Gk = Ut−1 + stG
t ◦Gt,

∀t > 0, (2)
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Algorithm 1: RAMDA (W 0, T, T2, ϵ, {ηt}, {ct}, {ϵt})
V 0 ← 0, U0 ← 0, α0 ← 0
for t = 1, . . . , T do

Sample ξt ∼ D, st ← ηt
√
t, αt ← αt−1 + st

Gt ← ∇fξt
(W t−1)

Compute V t, U t by (2), construct P t by (3), and θt ← max(diag(P t))−1

Compute W̃ t in (4) by PG(W t,W 0, α−1
t V t, α−1

t P t, αtθt, T2)
Update W t by (5)

output: WT

where ◦ denotes the Hadamard (pointwise) product in E . We then construct the precondi-
tioner P t by

P t := Diag( 3
√
U t + ϵ), (3)

where ϵ > 0 is a (usually small) constant for numerical stability, and Diag(·) is the diagonal
matrix whose diagonal entries are the elements of the input vector. The update direction is
then obtained by (approximately) solving the following subproblem.

W̃ t ≈ arg min
W

(
Qt(W ) := ⟨V t, W ⟩+1

2 ⟨W−W
0, P t(W−W 0)⟩+αtψ(W )

)
, αt :=

t∑
k=1

sk. (4)

Details regarding the subproblem (4) and how to solve it are deferred to Section 3. Finally,
the iterate is updated by averaging W̃ t and W t−1 using a prespecified factor ct ∈ [0, 1]:

W t = (1− ct)W t−1 + ctW̃
t = W t−1 + ct

(
W̃ t −W t−1) . (5)

If one sets P t =
√
tI, where I is the identity matrix, this framework recovers RMDA of

Huang & Lee (2022). On the other hand, with (3), adaptiveness is incorporated to obtain
our RAMDA. The averaging step in (5) with ct ̸= 1 can be interpreted as incorporating
a momentum term to compute the next iterate in the non-regularized non-adaptive case
(Jelassi & Defazio, 2020; Tao et al., 2018). We also note that when ψ ≡ 0, RAMDA reduces
to MADGRAD of Defazio & Jelassi (2022).

3 Subproblem Solver

Given the current iterate W t, a momentum term mt, a preconditioner P t, and a stepsize
ηt, existing regularized adaptive stochastic gradient algorithms for (1) can be summarized
in the following general form (Yun et al., 2021):

W t = arg min
W

(
Q̂t(W ) := ⟨mt, W ⟩+ 1

2ηt
⟨W −W t−1, P t(W −W t−1)⟩+ ψ(W )

)
, (6)

which is very similar to (4). When the preconditioner P t is a multiple of the identity matrix
like in the case of Huang & Lee (2022), the exact subproblem solution of (4) can be efficiently
computed through the proximal operator associated with the regularizer. However, a major
difficulty for realizing regularized adaptive methods, including the proposed RAMDA and the
framework of Yun et al. (2021), whose preconditioners are not a multiple of the identity, is
that except for few special regularizers, the subproblem usually has no closed-form solution.
We therefore consider using approximate solutions of the subproblem in (4).
We propose to apply a few iterations of proximal gradient (PG) (see, e.g., Beck & Teboulle,
2009; Nesterov, 2013) to approximately solve the subproblems in (4) and (6) when no closed-
form solution is available, and we will show theoretically and empirically in the following
sections that such approximate solutions have only little affects on the theoretical guarantees
and the final model quality. For the inexactness of the approximate solution in (4), we require

ϵt ≥ min
s∈∂Qt(W̃ t)

∥s∥, Qt(W̃ t) ≤ Qt(W t−1), (7)
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for some pre-specified ϵt, where ∂Qt(W t+1) is the (limiting) subdifferential (see, e.g., Rock-
afellar & Wets, 2009, Definition 8.3). This condition can be easily checked as the PG
iterations would produce an element of ∂ψ(W t+1), and the differential of the smooth part
of Qt is straightforward. For the sake of time efficiency, we also impose an upper limit for
the number of PG iterations. Likewise, when we apply our subproblem solver to (6), we
assume (7) but with Qt replaced by Q̂t and W̃ t by W t. We focus on the case that P t
is diagonal, and thus the reciprocal of the largest eigenvalue max(diag(P t)), where diag(·)
is the vector formed by the diagonal entries of the input matrix, can be calculated easily
and be used to compute a step size guaranteeing sufficient objective decrease. For cases in
which this value is difficult to obtain, one can apply a simple backtracking linesearch for the
subproblem to find a suitable step size efficiently. This PG subproblem solver is summarized
in Algorithm 2. To guarantee convergence for both our algorithm and the framework of Yun
et al. (2021), our analysis in Section 4 requires that {ϵt} satisfy

∞∑
t=0

ϵ2t <∞. (8)

For any given ϵt, we will show in Section 4 that (7) can be satisfied by our PG solver after
a certain number of iterations.

Algorithm 2: PG (Z0,W 0, V, P, θ, T2, ϵ̂)
if ψ is nonconvex then θ ← θ/2
for j = 1, . . . , T2 do

Zj ← proxψ(Zj−1 − θ(V + P (Zj−1 −W 0)))
if (7) holds with ϵt = ϵ̂ and W̃ t = Zj then ZT2 ← Zj and break

output: ZT2

4 Analysis

This section discusses theoretical guarantees for RAMDA and the proposed subproblem
solver in Algorithm 2. We also prove convergence guarantees for applying PG to approxi-
mately solve (6) for the framework of Yun et al. (2021). Due to the space limit, all proofs are
in the appendices. Some of our results are inspired by Huang & Lee (2022), but we note that
with the added inexactness in (4) and the adaptiveness for the preconditioner, the analysis
is nontrivial. Recall that we assume that fξ is differentiable only almost everywhere but
not everywhere, which conforms with widely used network structures like the ReLU-type
activations.
We first show that (7) can be attained by our PG subproblem solver.
Theorem 1. Assume that (4) and (6) has at least one optimal solution, with the optimal
function value being finite. Given any ϵt > 0, the number of iterations of Algorithm 2 needed
for satisfying (7) for both (4) and (6) is O(ϵ−1

t ) when ψ is convex and O(ϵ−2
t ) when ψ is

nonconvex.

Next, we argue that the point of convergence W ∗ of RAMDA is almost surely a stationary
point such that 0 ∈ ∂F (W ∗).
Theorem 2. Consider {W̃ t} generated by Algorithm 1 with (7) for (1), with {ct} and
{ϵt} satisfying

∑
ct = ∞ and (8). Assume for any ξ ∼ D, fξ is L-Lipschitz-continuously-

differentiable almost surely for some L, so the expectation is also L-Lipschitz-continuously-
differentiable, there is C ≥ 0 such that Eξt∼D

∥∥∇fξt

(
W t−1)∥∥4 ≤ C for all t, and that the

set of stationary points Z := {W | 0 ∈ ∂F (W )} is nonempty. For any given W 0, consider
the event that {W̃ t} converges to a point W ∗ (each event corresponds to a different W ∗).
If ∂ψ is outer semicontinuous at W ∗, this event has a nonzero probability, and {ηt} satisfy∑

stα
−1
t =∞,

∑(
stα

−1
t

)2
<∞,

∥∥W t+1 −W t
∥∥ (stα−1

t

)−1 a.s.−−→ 0,

then we have that W ∗ ∈ Z with probability one conditional on this event. Moreover, {W t}
also converges to this stationary point W ∗.

5



Usually, convergence to a point requires some further regularity conditions like the Kurdyka–
 Lojasiewicz condition and boundedness of the iterates. However, existing frameworks re-
garding iterates convergence using such conditions also require the method analyzed to have
a subgradient-descent-like behavior and to be a descent algorithm. Neither of these hold
true even for the basic stochastic gradient algorithm, and we leave the analysis for this part
as a challenging future work.
Our next key result shows that after a finite number of iterations, the iterates of RAMDA
all possess the same structure as that of the point of convergence W ∗. For this end, we first
need to introduce the notions of partial smoothness and prox-regularity, and impose these
assumptions on ψ at W ∗.
Definition 1 (Partial Smoothness (Lewis, 2002; Hare & Lewis, 2004)). A function ψ is
partly smooth at a point W ∗ relative to a set MW∗ ∋W ∗ if
1. Around W ∗, MW∗ is a C2-manifold and ψ|MW ∗ is C2.
2. ψ is regular (finite with the Fréchet subdifferential coincides with the limiting Fréchet

subdifferential) at all points W ∈MW∗ around W ∗ with ∂ψ(W ) ̸= ∅.
3. The affine span of ∂ψ(W ∗) is a translate of the normal space to MW∗ at W ∗.
4. ∂ψ is continuous at W ∗ relative to MW∗ .

We often call MW∗ the active manifold at W ∗. Locally, this manifold represents all points
near W ∗ that share the same structure as W ∗ induced by the regularizer. Therefore, finding
the active manifold is equivalent to finding the locally optimal structure.
Definition 2 (Prox-regularity (Poliquin & Rockafellar, 1996)). A function ψ is prox-regular
at W ∗ for V ∗ ∈ ∂ψ(W ∗) if ψ is locally lower semi-continuous around W ∗, finite at W ∗, and
there is ρ > 0 such that ψ(W1) ≥ ψ(W2) + ⟨V, W1 −W2⟩ − ρ

2∥W1 −W2∥2 for every W1,W2
near W ∗ with ψ(W2) close to ψ(W ∗) and V ∈ ∂ψ(W2) close to V ∗. ψ is prox-regular at
W ∗ if it is prox-regular for all V ∈ ∂ψ(W ∗).
Theorem 3. Consider Algorithm 1 with the conditions in Theorem 2 satisfied. Consider
the event of {W̃ t} converging to a certain point W ∗ as in Theorem 2, if the probability of
this event is nonzero; ψ is prox-regular and subdifferentially continuous at W ∗ and partly
smooth at W ∗ relative to the active C2 manifold MW∗ ; ∂ψ is outer semicontinuous at W ∗;
and the nondegeneracy condition

−∇f (W ∗) ∈ relint ∂ψ (W ∗)

holds at W ∗, then conditional on this event, almost surely there is T0 ≥ 0 such that

W̃ t ∈MW∗ , ∀t ≥ T0.

In other words, the active manifold at W ∗ is identified by the iterates of Algorithm 1 after
a finite number of iterations almost surely.

We note particularly that convex and weakly-convex (Nurminskii, 1973) functions are all
regular, prox-regular, and subdifferentially continuous everywhere.
We also show that the subproblem solver proposed in Section 3 can be effectively applied
to the general framework of Yun et al. (2021) while still maintaining the same convergence
guarantees. We note that our result is much stronger than that of Deleu & Bengio (2021)
because we do not make any assumption on the regularizer, while their analysis for the
inexact case has a very restrictive requirement such that the regularization term ψ needs
to be Lipschitz-continuously-differentiable, which excludes numerous widely-used regulariz-
ers in machine learning for inducing structures. Moreover, our inexact condition is easily
checkable, while theirs for the objective distance to the optimum of the subproblem cannot
be implemented.
Theorem 4. For the framework in Yun et al. (2021) with the subproblem solved approxi-
mately by Algorithm 2 and that (7) holds with {ϵt} satisfying (8). Then Theorem 1 of Yun
et al. (2021) still holds, but with the constants {Qi} being also dependent on

∑∞
t=0 ϵ

2
t .
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5 Experiments

Following Wen et al. (2016), we consider structured sparsity in our experiments for training
structured neural networks. We in particular employ the group lasso regularization (Yuan
& Lin, 2006) to encourage group sparsity. We begin from demonstrating the efficiency and
effectiveness of the PG solver described in Section 3 for both RAMDA and existing regularized
adaptive methods. We then consider tasks in computer vision, language processing, and
speech, and compare the following algorithms using Pytorch (Paszke et al., 2019).

• RAMDA: The proposed Algorithm 1.
• RMDA (Huang & Lee, 2022): A regularized modernized (non-adaptive) dual averaging

method.
• ProxSGD (Yang et al., 2019): A non-adaptive proximal SGD method with momentum.
• ProxGen (Yun et al., 2021): A general framework of stochastic proximal methods. We

follow their experimental setting to use an AdamW (Loshchilov & Hutter, 2019) imple-
mentation with regularization. The subproblem solver is Algorithm 2.

• ProxSSI (Deleu & Bengio, 2021): an implementation of ProxGen specifically designed for
group sparsity. In particular, ProxSSI uses the Newton-Raphson algorithm to solve the
subproblem to near optimality.

For each task, we also provide a dense baseline that did not include a group lasso regularizer
in the training for reference, but our comparison is only among those methods for training
structured models. The baseline is SGD with momentum (MSGD) for computer vision,
and AdamW for the other two. These algorithms are summarized in Table 1. Our code
for reproducing the experiments and the hyperparameter settings in the experiments are all
available in the supplementary materials. Additional details on the stability in the structure
(namely the level of structured sparsity here) over epochs of RAMDA is put in Appendix C.

Table 1: Algorithms used in the experiments.

Algorithm Unregularized counterpart Subproblem
RAMDA MADGRAD (Defazio & Jelassi, 2022) PG
RMDA MDA (Jelassi & Defazio, 2020) Closed-form solution
ProxSGD MSGD Closed-form solution
ProxGen AdamW (Loshchilov & Hutter, 2019) PG
ProxSSI AdamW (Loshchilov & Hutter, 2019) Newton-Raphson

Because we disable weight decay in these experiments, (regularized) AdamW actually reduces
to (regularized) Adam. We use two criteria to compare the algorithms: 1. Model predictive
ability, and 2. Structured sparsity level. The definition of model predictive ability de-
pends on the specific problem, so we provide precise specifications for each problem in their
respective sections. Regarding the structured sparsity, sparsifying deep neural networks
while preserving its performance requires prior knowledge of model design. A commonly
used approach is retaining certain parameters during the training process, and we adhere
to this convention such that the bias, batch normalization (Ioffe & Szegedy, 2015), layer
normalization (Ba et al., 2016), and embedding layers do not have any sparsity-inducing
regularization imposed on them (Deleu & Bengio, 2021; Peste et al., 2021). For the rest,
we adopt a channel-wise grouping for convolutional layers, an input-wise grouping for fully-
connected layers, and also an input-wise grouping for LSTM layers during training phase.
For evaluation, our structured sparsity is calculated using the weighted group sparsity with
the weights proportional to the number of parameters in each group. This criterion better
reflects the percentage of model condensation and inference acceleration.
Following Huang & Lee (2022), we introduce a restarting strategy to the implementation
of RAMDA. At each stage of the training, the learning rate ηt and the momentum factor ct
are fixed throughout the stage. Once the epoch count enters the next stage, we reset the
counter t to 1 and use the output parameters WT from the previous round as the new input
parameters W 0 to the same algorithm, set αt, V t and U t to 0, but keep the scheduling for η
and c going without resetting them. The hyperparameter momentum value ct is initialized
as either 0.1 or 0.01, depending on the problems. However, different from the suggestion of
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Table 2: Group sparsity and validation accuracy of different subproblem stopping criteria.

No early stopping Early stopping
Algorithm Validation acc. Group sparsity Validation acc. Group sparsity

Logistic regression/MNIST
ProxGen 91.31% 39.92% 91.31% 39.92%
RAMDA 91.35% 57.40% 91.35% 57.40%

VGG19/CIFAR10
ProxGen 92.70 ± 0.22% 88.79 ± 0.03% 92.67 ± 0.11% 86.92 ± 0.38%
RAMDA 92.70 ± 0.21% 86.73 ± 0.30% 92.92 ± 0.18% 86.29 ± 0.40%

ResNet50/CIFAR100
ProxGen 73.63 ± 0.13% 74.69 ± 0.58% 74.03 ± 0.08% 67.55 ± 3.05%
RAMDA 69.90 ± 1.54% 69.54 ± 2.07% 71.23 ± 1.39% 67.48 ± 1.59%

Table 3: Weighted group sparsity, validation accuracy and time of ProxSSI and ProxGen for
CIFAR10/CIFAR100. We report the average time per epoch using one NVIDIA V100 GPU.

Algorithm Accuracy Sparsity Time Accuracy Sparsity Time
VGG19/CIFAR10 VGG19/CIFAR100

ProxSSI 92.8 ± 0.1% 88.4 ± 0.2% 79s 67.3 ± 0.1% 78.6 ± 0.3% 79s
ProxGen 92.8 ± 0.0% 86.6 ± 0.1% 24s 68.1 ± 0.4% 75.5 ± 0.2% 26s

ResNet50/CIFAR10 ResNet50/CIFAR100
ProxSSI 94.0 ± 0.1% 83.7 ± 0.6% 260s 73.7 ± 0.4% 70.4 ± 0.7% 251s
ProxGen 94.1 ± 0.1% 80.4 ± 0.4% 70s 73.6 ± 0.4% 65.5 ± 3.6% 74s

Huang & Lee (2022); Jelassi & Defazio (2020) such that ηtct remain a constant, we use a
constant momentum value until the final stage, where we gradually increase the momentum
value by ct = min(c

√
i, 1), where i counts the training steps executed at this stage. This

new momentum strategy is applied to both RAMDA and RMDA in our experiments.
We run each experiment three times with different random initializations and show the mean
and standard deviation of the validation predictive performance and the structured sparsity
of the final model of all methods.

5.1 Subproblem

We start from showing the effectiveness of our proposed subproblem solver for RAMDA
and ProxGen. For both approaches, we use Theorem 2 of Deleu & Bengio (2021) to safely
screen a portion of groups that will be zero at the optimal subproblem solution, and opt
for the PG algorithm discussed in Section 3 to solve the remaining parts. We consider two
practical stopping criteria for PG: 1. Running until it reaches the maximum iterations (no
early stopping), and 2. Terminate when the subproblem objective is almost non-decreasing
(early stopping). For the former, we set the maximum iterations to 100. For the latter, we
terminate PG when either (Qt(Zj−1) − Qt(Zj))/(|Qt(Zj | + 1) < 10−8 or the iteration cap
is reached. Moreover, to ensure incorporation of the preconditioner into ProxGen, we set its
minimum PG iterations to 2. We examine how these stopping criteria affect the final model
of RAMDA and ProxGen using image classification problems with a smaller scale.
From Table 2, we see that no matter early stopping is used or not, the performance is similar.
Given that early stopping is more efficient, we will adopt it in all subsequent experiments.
Next, we compare ProxGen-PG with ProxSSI to examine the efficiency and performance dif-
ferences between solving the subproblems approximately and exactly in Table 3. These two
algorithms are essentially the same except for the subproblem part. We see that our solver
is around three times faster than ProxSSI, and the model qualities of the two approaches are
similar. In the following experiments, we thus exclude ProxSSI from our comparisons due
to its excessively lengthy running time, especially for large-scale models and datasets.
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5.2 Image Classification

Table 4: Weighted group sparsity and validation
accuracy of different methods for ImageNet.

Alg. Accuracy Group sparsity
MSGD 77.14 ± 0.04% -
ProxSGD 73.50 ± 0.20% 17.54 ± 1.26%
ProxGen 74.17 ± 0.08% 20.29 ± 0.22%
RMDA 74.47 ± 0.08% 25.20 ± 1.69%
RAMDA 74.53 ± 0.10% 29.19 ± 0.94%

We run a classical computer vision task of
training ResNet50 (He et al., 2016) with
the ILSVRC 2012 ImageNet dataset (Rus-
sakovsky et al., 2015). The result in Ta-
ble 4 shows that RAMDA attains the best
validation accuracy and structured spar-
sity simultaneously.
We note that some additional experiments
in Appendix B show that RAMDA might
sometimes perform worse than existing
methods on smaller problems like CIFAR10/100. But for such smaller problems, the training
cost is not very significant, and one can afford to try more algorithms.

5.3 Language Modeling

Table 5: Weighted group sparsity and validation perplex-
ity for training Transformer-XL with WikiText-103.

Alg. Perplexity Group sparsity Time/epoch
AdamW 23.00 ± 0.05 - 6261 ± 21s
ProxSGD 27.42 ± 0.02 33.10 ± 1.46% 6167 ± 12s
ProxGen 27.49 ± 0.19 30.47 ± 0.63% 6652 ± 21s
RMDA 27.10 ± 0.08 35.99 ± 2.68% 6184 ± 20s
RAMDA 26.97 ± 0.10 36.17 ± 0.25% 6954 ± 30s

For language modeling, we
train Transformer-XL (base)
(Dai et al., 2019) using the
WikiText-103 dataset (Merity
et al., 2017). Transformer-
XL is comprised of embedding
and non-embedding layers, and
in the PyTorch implementation,
the non-embedding layers are
built using linear and layer nor-
malization layers. We apply
group lasso regularization to those linear layers, and present the perplexity and the weighted
group sparsity of the models trained by different methods in Table 5. We can see that
RAMDA gives the lowest perplexity and the highest structured sparsity.

5.4 Speech Synthesis

Table 6: Weighted group sparsity and validation loss for
training Tacotron2 with the LJSpeech dataset.

Alg. Loss Group sparsity Time/epoch
AdamW 0.39 ± 0.02 - 431 ± 2s
ProxSGD 0.50 ± 0.00 34.29 ± 1.64% 431 ± 0s
ProxGen 0.45 ± 0.01 45.63 ± 0.91% 438 ± 2s
RMDA 0.46 ± 0.01 45.92 ± 1.69% 431 ± 2s
RAMDA 0.44 ± 0.01 52.85 ± 1.63% 443 ± 1s

We consider Tacotron2 (Shen
et al., 2018) for speech syn-
thesis on the LJSpeech dataset
(Ito & Johnson, 2017). We ap-
ply regularization to the convo-
lutional, LSTM, and linear lay-
ers of Tacotron2 and show the re-
sults in Table 6. Clearly, RAMDA
gives the lowest validation loss
and the highest group sparsity.

6 Conclusions

In this work, we propose a regularized dual averaging method with adaptiveness for
training structured neural networks. Our method is particularly useful for language
models and speech recognition and proven to outperform state of the art on mod-
ern architectures including LSTM and transformers as well as the ImageNet problem.
We also propose a subroutine to approximately solve the regularized subproblem for
both our method and an existing framework with strong convergence guarantees. Ex-
tensive experiments on group sparsity show that our subproblem solver can greatly
reduce the training time for existing methods, and our proposed algorithm RAMDA
achieves simultaneously higher structured sparsity ratio and better prediction perfor-
mance than existing methods. Our implementation will be released for public use.
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A Proofs

This section provides proofs of the theoretical results stated in Section 4. We restate these
results and provide their corresponding proofs right after each statement.
Theorem 1. Assume that (4) and (6) has at least one optimal solution, with the optimal
function value being finite. Given any ϵt > 0, the number of iterations of Algorithm 2 needed
for satisfying (7) for both (4) and (6) is O(ϵ−1

t ) when ψ is convex and O(ϵ−2
t ) when ψ is

nonconvex.

Proof. We use the notation
Q̄t(Z) = ft(Z) + ψ(Z)

to unify the two objective function Qt/αt and Q̂t, where ft is the smooth part that has
L-Lipschitz continuous gradients.
At each iteration of PG, it solves the following subproblem

Zj+1 ∈ arg min
Z
⟨∇ft(Zj), Z − Zj⟩+ 1

2θt
∥∥Z − Zj∥∥2 + ψ(Z),

and thus from the first-order optimality conditions, clearly it satisfies

∇ft(Zj+1)−∇ft(Zj)−
1
θt

(
Zj+1 − Zj

)
∈ ∂Q̄t(Zj+1).

We thus have from the Lipschitz continuity of ∇ft that

min
s∈∂Q̄t(Zj+1)

∥s∥ ≤
∥∥∥∥∇ft(Zj+1)−∇ft(Zj)−

1
θt

(
Zj+1 − Zj

)∥∥∥∥ ≤ (L+ θ−1
t

) ∥∥Zj+1 − Zj
∥∥.
(9)

Note that Q̄t is lower bounded, say by Q̄∗
t , and has at least one solution Z∗ (unique when

ψ is convex).
In the case that ψ is convex, we know that θt = 1/L, and standard analysis of proximal
gradient (see, for example, Beck, 2017, Theorem 10.27) gives that

L
∥∥Zj+1 − Zj

∥∥ ≤ 2L
∥∥Z0 − Z∗

∥∥
j

,∀j ≥ 0. (10)

Therefore, the combination of (9) and (10) shows that it takes O(ϵ−1
t ) iterations for PG to

reach the required precision of ϵt.
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When ψ is nonconvex, we have that θt = 1/(2L) and standard analysis (Beck, 2017, Theo-
rem 10.15) gives

min
k=0,1,...,j

∥∥Zj+1 − Zj
∥∥ ≤ C√

j
(11)

for some constant C depending on L and Q̄t(W t)− Q̄∗
t . Therefore, (11) and (9) show that

it takes O(ϵ−2
t ) iterations to reach the desired precision.

Theorem 2. Consider {W̃ t} generated by Algorithm 1 with (7) for (1), with {ct} and
{ϵt} satisfying

∑
ct = ∞ and (8). Assume for any ξ ∼ D, fξ is L-Lipschitz-continuously-

differentiable almost surely for some L, so the expectation is also L-Lipschitz-continuously-
differentiable, there is C ≥ 0 such that Eξt∼D

∥∥∇fξt

(
W t−1)∥∥4 ≤ C for all t, and that the

set of stationary points Z := {W | 0 ∈ ∂F (W )} is nonempty. For any given W 0, consider
the event that {W̃ t} converges to a point W ∗ (each event corresponds to a different W ∗).
If ∂ψ is outer semicontinuous at W ∗, this event has a nonzero probability, and {ηt} satisfy∑

stα
−1
t =∞,

∑(
stα

−1
t

)2
<∞,

∥∥W t+1 −W t
∥∥ (stα−1

t

)−1 a.s.−−→ 0, (12)

then we have that W ∗ ∈ Z with probability one conditional on this event. Moreover, {W t}
also converges to this stationary point W ∗.

Proof. First, we prove that when {W̃ t} converges to W ∗, W t also converges to W ∗. Indeed,
from (5), we have that∥∥W t −W ∗∥∥ ≤ (1− ct)

∥∥W t−1 −W ∗∥∥+ ct
∥∥W̃ t −W ∗∥∥, (13)

Assume that it is not true, then there is δ > 0 such that ∥W t −W ∗∥ ≥ δ for all t. Consider
some t0 such that

∥∥W̃ t −W ∗
∥∥ ≤ δ/2 for all t ≥ t0. (13) then gives∥∥W t−1 −W ∗∥∥− ∥∥W t −W ∗∥∥ ≥ ct∥∥W t−1 −W ∗∥∥− ctδ

2 ≥
ctδ

2 , ∀t > t0. (14)

By summing (14) from t = t0 + 1 to t = T for any T > t0 + 1, we obtain

∥∥W t0 −W ∗∥∥ ≥ δ
∑T
t=t0+1 ct

2 .

However, since
∑
ct = ∞, the right-hand side approaches infinity as T goes to infinity,

which cannot hold true because ∥W t0 −W ∗∥ is a finite value that does not change with T .
This part is thus proven true by contradiction.
Next, consider the update of α−1

t U t, we can see from (2) that

U t

αt
= αt−1

αt

U t−1

αt−1
+ st∇fξt

(W t−1)
αt

=
(

1− st
αt

)
U t−1

αt−1
+ st
αt
∇fξt(W t−1). (15)

Moreover, the assumptions on ηt satisfies all the required conditions of Lemma 1 of
Ruszczyński (1980). We therefore apply Lemma 1 of Ruszczyński (1980) to conclude that

U t

αt

a.s.−−→ ∇Eξ∼D
[
fξ
(
W t
)]
◦ ∇Eξ∼D

[
fξ
(
W t
)]
. (16)

The update for α−1
t V t has a form analogous to (15), and we have from Jensen’s inequality

that
Eξt∼D

∥∥∇fξt

(
W t−1)∥∥2 ≤

√
Eξt∼D∥∇fξt

(W t−1)∥4 ≤
√
C,

implying that the second moment is also bounded in expectation. We can therefore also
apply Lemma 1 of Ruszczyński (1980) to α−1

t V t and conclude that

V t

αt

a.s.−−→ ∇Eξ∼D
[
fξ
(
W t
)]
. (17)

We further notice that the union of two almost surely events is still an almost surely event.
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From (4) and (7), we can see that there is a sequence {zt} such that

−
(
V t

αt
+ zt
αt

+ P t

αt
(W̃ t −W 0)

)
∈ ∂ψ(W̃ t), ∥zt∥ ≤ ϵt. (18)

Our assumption in (12) implies that αt →∞, which together with (8) shows that
zt
αt
→ 0. (19)

From (17), that ∇Eξ∼D [fξ (W )] is Lipschitz continuous, and that W t → W ∗ (which we
have proven in the first part), we see that

V t

αt

a.s.−−→ ∇Eξ∼D [fξ(W ∗)] . (20)

For the third term, we have from (3) and (16) that

P t

αt
= α

− 2
3

t Diag
(

3

√
U t

αt

)
+ ϵ

αt
I.

Again since αt → ∞, the second term of the equation above converges to 0. Therefore, by
(16), we obtain that

P t

αt

a.s.−−→ α
− 2

3
t Diag

(
3
√
∇Eξ∼D [fξ (W t)] ◦ ∇Eξ∼D [fξ (W t)]

)
.

Again from the continuity of ∇Eξ∼D [fξ (W )] and that αt →∞, we conclude that

P t

αt

a.s.−−→ α
− 2

3
t Diag

(
3
√
∇Eξ∼D [fξ (W ∗)] ◦ ∇Eξ∼D [fξ (W ∗)]

)
a.s.−−→ 0. (21)

Finally, using the outer semicontinuity of ∂ψ(W ) at W ∗, we conclude from (18)–(21) that

0 ∈ ∇Eξ∼D [fξ (W ∗)] + lim
t→∞

ψ(W̃ t) ⊆ ∇Eξ∼D [fξ (W ∗)] + ψ(W ∗) = ∂F (W ∗)

with probability one, showing that W ∗ is a stationary point almost surely.

Theorem 3. Consider Algorithm 1 with the conditions in Theorem 2 satisfied. Consider
the event of {W̃ t} converging to a certain point W ∗ as in Theorem 2, if the probability of
this event is nonzero; ψ is prox-regular and subdifferentially continuous at W ∗ and partly
smooth at W ∗ relative to the active C2 manifold MW∗ ; ∂ψ is outer semicontinuous at W ∗;
and the nondegeneracy condition

−∇f (W ∗) ∈ relint ∂ψ (W ∗) (22)
holds at W ∗, then conditional on this event, almost surely there is T0 ≥ 0 such that

W̃ t ∈MW∗ , ∀t ≥ T0. (23)
In other words, the active manifold at W ∗ is identified by the iterates of Algorithm 1 after
a finite number of iterations almost surely.

Proof. From (18), there exists a sequence {Y t} such that

Y t ∈ ∂ψ(W̃ t), V t

αt
+ zt
αt

+ P t

αt
(W̃ t −W 0) + Y t = 0, ∀t. (24)

For notational ease, we denote
f(W ) := Eξ∼D [fξ(W )] . (25)

We thus have
∇f(W̃ t) + Y t ∈ ∂F (W̃ t), ∀t.
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From (24), we then get

∇f(W̃ t)− V t

αt
− zt
αt
− P t

αt
(W̃ t −W 0) ∈ ∂F (W̃ t). (26)

We aim to show that
dist(0, ∂F (W̃ t)) := min

Y ∈∂F (W̃ t)
∥Y ∥

converges to 0 almost surely. From (26), we have

dist(0, ∂F (W̃ t)) ≤
∥∥∥∥∇f(W̃ t)− V t

αt
− zt
αt
− P t

αt
(W̃ t −W 0)

∥∥∥∥
≤
∥∥∥∥∇f(W̃ t)− V t

αt

∥∥∥∥+
∥∥∥∥ ztαt

∥∥∥∥+
∥∥∥∥P tαt (W̃ t −W 0)

∥∥∥∥
≤
∥∥∥∥∇f(W̃ t)− V t

αt

∥∥∥∥+ ϵt
αt

+
∥∥∥∥P tαt (W̃ t −W 0)

∥∥∥∥. (27)

From (16) and (17), there are {At} and {Bt} such that{
V t

αt
= ∇f(W t) +At, ∥At∥

a.s.−−→ 0
P t

αt
= α

− 2
3

t Diag
(

3
√
∇f(W t) ◦ ∇f(W t)

)
+Bt, ∥Bt∥

a.s.−−→ 0.
(28)

Substituting the above two equations back to (27), we obtain

dist(0, ∂F (W̃ t))

≤
∥∥∇f(W̃ t)−∇f(W t)

∥∥+ ∥At∥+ ϵt
αt

+
(
α

− 2
3

t

∥∥∥ 3
√
∇f(W t) ◦ ∇f(W t)

∥∥∥+ ∥Bt∥
)∥∥W̃ t −W 0∥∥

≤ L
∥∥W̃ t −W t

∥∥+ ∥At∥+ ϵt
αt

+
(
α

− 2
3

t

∥∥∥ 3
√
∇f(W t) ◦ ∇f(W t)

∥∥∥+ ∥Bt∥
)∥∥W̃ t −W 0∥∥. (29)

From Theorem 2, we know that W̃ t and W t both converge to W ∗, so∥∥W̃ t −W t
∥∥ ≤ ∥∥W̃ t −W ∗∥∥+

∥∥W t −W ∗∥∥→ 0.

From (8) and (12), we know that ϵt/αt → 0. Because W̃ t →W ∗, we have that∥∥W̃ t −W 0∥∥→ ∥∥W ∗ −W 0∥∥ <∞.
From W t →W ∗, we have that∥∥∥ 3

√
∇f(W t) ◦ ∇f(W t)

∥∥∥→ ∥∥∥ 3
√
∇f(W ∗) ◦ ∇f(W ∗)

∥∥∥ <∞.
Combining these results with (29), we conclude that

L
∥∥W̃ t −W t

∥∥+ ∥At∥+ ϵt
αt

+
(
α

− 2
3

t

∥∥∥ 3
√
∇f(W t) ◦ ∇f(W t)

∥∥∥+ ∥Bt∥
)∥∥W̃ t −W 0∥∥ a.s.−−→ 0,

proving that
dist(0, ∂F (W̃ t)) a.s.−−→ 0.

On the other hand, since f is continuous and ψ is subdifferentially continuous at W ∗,
W̃ t → W ∗, and that ∇f(W̃ t) + Yt

a.s.−−→ 0 ∈ ∂F (W ∗), we know that F (W̃ t) a.s.−−→ F (W ∗)
as well. Therefore, we can apply (Lemma 1 Lee, 2023) to prove that (23) indeed holds for
some T0 <∞.

A.1 Convergence Result for ProxGen

We next discuss the convergence result for the framework of Yun et al. (2021) with inexact-
ness being added. For consistency, we first use our notations to introduce their framework
with our inexactness condition added in Algorithm 3.
In their analysis, Yun et al. (2021) made the following four assumptions, and we will follow
these assumptions using the notation (25).
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Algorithm 3: ProxGen (W 0, T, T2, {ηt}, {ρt}, {ct}, {ϵt}, {bt}, δI)
m0 ← 0
for t = 1, . . . , T do

Sample ξt ∼ D with batch size bt
Gt ← ∇fξt

(W t−1)
mt ← ρtmt−1 + (1− ρt)Gt
Construct P t satisfying P t ⪰ δI
θt ← 1/∥P t∥2
Compute W t+1 by roughly solving (6) that satisfies (7) with Qt replaced by Q̂t and
W̃ t replaced by W t+1, using PG(W t,W t,mt, η

−1
t P t, θt, T2, ϵt)

output: WT

(C-1) The loss function f is L-Lipschitz-continuously-differentiable and lower-bounded.
(C-2) The stochastic gradient Gt = ∇fξt

(W t−1) is unbiased, and has a bounded variance.

Eξt∼D[Gt]] = ∇f(W t−1), Eξt∼D

[∥∥Gt −∇f(W t−1)
∥∥2
]
≤ σ2

bt
,

where bt is the batch size of ξt.
(C-3)

∥∥W t+1 −W t
∥∥ ≤ D, ∥Gt∥ ≤ G, ρt = ρ0µ

t−1 for all t, where ρ0, µ ∈ [0, 1) and
D,G > 0.

(C-4)
∥∥η−1
t P t

∥∥
2 ≤ 1/γ <∞.

We also have from our reformulation that there is δ > 0 such that

P t ≥ δ, ηt ≤
δ

3L. (30)

Theorem 4. For the framework in Yun et al. (2021) with the subproblem solved approxi-
mately by Algorithm 2 and that (7) holds with {ϵt} satisfying (8). Then Theorem 1 of Yun
et al. (2021) still holds, but with the constants {Qi} being also dependent on

∑∞
t=0 ϵ

2
t .

Proof. The major flow of our proof follows that of Yun et al. (2021) but with suitable
modifications to accommodate the inexactness condition in the subproblem solving. It is
clear from (Yun et al., 2021, Lemma 1) that ∥mt∥ ≤ G for all t.
By (6) and (7), we have

0 ∈ zt + (1− ρt)gt + ρtmt−1 + ∂ψ(W t) + 1
ηt

(P t)(W t −W t−1), ∥zt∥ ≤ ϵt,

leading to

∇f(W t)− zt − (1− ρt)gt − ρtmt−1 −
1
ηt

(P t)(W t −W t−1) ∈ ∂F (W t). (31)

We thus have from (31) and (C-4) that

dist(0, ∂F (W t))2

≤
∥∥∥zt + (1− ρt)gt −∇f(W t) + ρtmt−1 + (W t −W t−1) + 1

ηt
(P t)(W t −W t−1)− (W t −W t−1)

∥∥∥2

≤ 4
∥∥∥(1− ρt)gt −∇f(W t) + ρtmt−1 + (W t −W t−1)

∥∥∥2
+ 4ϵ2t + 4

∥∥∥ 1
ηt

(P t)(W t −W t−1)
∥∥∥2

+ 4
∥∥∥(W t −W t−1)

∥∥∥2

≤ 4
∥∥∥(1− ρt)gt −∇f(W t) + ρtmt−1 + (W t −W t−1)

∥∥∥2

︸ ︷︷ ︸
T1

+4
( 1
γ2 + 1

)
∥W t −W t−1∥2 + 4ϵ2t .

(32)
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We will separately bound the quantities T1 and
∥∥W t −W t−1

∥∥2 below.

From the subproblem objective requirement in (7), we also get〈
(1− ρt)gt + ρtmt−1,W

t −W t−1〉+ ψ(W t) + 1
2ηt
⟨W t −W t−1, P t(W t −W t−1)⟩

≤ ψ(W t−1).
(33)

From (C-1), we have

f(W t) ≤ f(W t−1) + ⟨∇f(W t−1),W t −W t−1⟩+ L

2 ∥W
t −W t−1∥2. (34)

Summing (33) and (34) gives〈
(1− ρt)gt −∇f(W t−1) + ρtmt−1,W

t −W t−1〉+
∥∥W t −W t−1∥∥2

P t

2ηt
− L

2 I

≤ F (W t−1)− F (W t).
(35)

Note that (2ηt)−1P t − LI/2 ⪰ 0 from (30) so the second term in (35) is nonnegative. (35)
together with (C-3) then leads to
∥W t −W t−1∥2

P t

2ηt
− L

2 I

≤ F (W t−1)− F (W t)−
〈
gt −∇f(W t−1),W t −W t−1〉+ ⟨ρtgt,W t −W t−1⟩ − ⟨ρtmt−1,W

t −W t−1⟩

≤ F (W t−1)− F (W t) + 1
2L∥gt −∇f(W t−1)∥2 + L

2 ∥W
t −W t−1∥2 + ρ2

t

2L∥gt∥
2 + L

2 ∥W
t −W t−1∥2

+ ∥ρtmt−1∥∥W t −W t−1∥

≤ F (W t−1)− F (W t) + ρ0µ
t−1DG+ ρ2

0µ
2(t−1)G2

2L + L∥W t −W t−1∥2 + 1
2L∥gt −∇f(W t−1)∥2.

Summing it over t = 1, 2, . . . , T and utilizing the assumption that the step sizes are non-
increasing then give( δ

2η0
− 3

2L
) T∑
t=1
∥W t −W t−1∥2 ≤ ∆ + C1 + 1

2L

T∑
t=1
∥gt −∇f(W t−1)∥2,

where
∆ := F (W 0)−min

W
F (W ), C1 := ρ0DG

1− µ + ρ2
0G

2

2L(1− µ2) .

From the inequality above, we obtain
T∑
t=1
∥W t −W t−1∥2 ≤ H1 +H2

T∑
t=1
∥gt −∇f(W t−1)∥2 (36)

for some constants H1, H2 depending on L,∆, δ, η0, and C1. From (35), we have〈
(1− ρt)gt −∇f(W t) + ρtmt−1,W

t −W t−1
〉

≤ F (W t−1)− F (W t)−
〈
∇f(W t)−∇f(W t−1),W t −W t−1〉− ∥∥W t −W t−1∥2

1
2ηt

(P t)− L
2 I

≤ F (W t−1)− F (W t)−
〈
∇f(W t)−∇f(W t−1),W t −W t−1〉.

Therefore, we obtain
T1 = ∥(1− ρt)gt −∇f(W t) + ρtmt−1∥2 + ∥W t −W t−1∥2

+ 2
〈

(1− ρt)gt −∇f(W t) + ρtmt−1,W
t −W t−1

〉
≤ ∥(1− ρt)gt −∇f(W t−1) +∇f(W t−1)−∇f(W t) + ρtmt−1∥2 + ∥W t −W t−1∥2

+ F (W t−1)− F (W t)−
〈
∇f(W t)−∇f(W t−1),W t −W t−1〉

≤ 4∥gt −∇f(W t−1)∥2 + 4L2∥W t −W t−1∥2 + 4ρ2
t (∥mt−1∥2 + ∥gt∥2) + ∥W t −W t−1∥2

+ F (W t−1)− F (W t) + L∥W t −W t−1∥2

≤ F (W t−1)− F (W t) + 8ρ2
0µ

2(t−1)G2 +
(

1 + L+ 4L2
)
∥W t −W t−1∥2 + 4∥gt −∇f(W t−1)∥2.

(37)
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Let C2 := 2 + L+ 4L2 + γ−2 and insert (37) into (32), we get

dist(0, ∂F (W t))2

≤ 4
(
F (W t−1)− F (W t) + 8ρ2

0µ
2(t−1)G2 + C2∥W t −W t−1∥2 + 4∥gt −∇f(W t−1)∥2 + ϵ2t

)
.

(38)

Therefore, by letting S :=
∑∞
t=1 ϵ

2
t and noting that S < ∞, we have from (38) and (C-2)

that

Ea,ξ1,...,ξT
[dist(0, ∂F (W a))2]

≤ 1
T

T∑
t=1

E
[∥∥(1− ρt)gt −∇f(W t) + zt + ρtmt−1 + 1

ηt
(P t)(W t −W t−1)

∥∥2
]

≤ 4
T

(
∆ + 8ρ2

0G
2

1− µ2 + 4
T∑
t=1

E∥gt −∇f(W t−1)∥2 + C2

T∑
t=1

E∥W t −W t−1∥2 +
T∑
t=1

ϵ2t

)
≤ 4
T

(
∆ + 8ρ2

0G
2

1− µ2 + 4σ2
T∑
t=1

1
bt

+ C2(H1 +H2σ
2
T∑
t=1

1
bt

) + S
)

≤ Q1

T

T∑
t=1

1
bt

+ Q2∆
T

+ Q3

T
,

for some constants Q1, Q2, Q3 dependent on {η0, δ,∆, L,D,G, ρ0, µ, γ, S}, but not on T .
This proves our theorem.

B Additional Experiments for Computer Vision

In this section, we compare RAMDA with other methods on image classification with smaller
datasets. They are:

1. Logistic regression (neural network with no hidden layer) with the MNIST dataset
(LeCun et al., 1998).

2. A modified VGG19 (Simonyan & Zisserman, 2015) with the CIFAR10 dataset
(Krizhevsky, 2009).

3. The same VGG19 with the CIFAR100 dataset (Krizhevsky, 2009).
4. A modified ResNet50 (He et al., 2016) with the CIFAR10 dataset.
5. The same ResNet50 with the CIFAR100 dataset.

The results are shown in Table 7. In the logistic regression task, we only perform a single
run as it is a convex problem. Moreover, when dealing with ProxSSI, ProxGen, and ProxSGD
in the logistic regression problem, whose sparsity levels are highly unstable over iterations,
we report their highest weighted group sparsity over all epochs, but for all other problems,
we report the group sparsity level of the final output.

C Plots of Sparsity Level and Validation Accuracy over
Epochs

In this section, we provide the plots of predictive ability and structured sparsity over epochs
for all conducted experiments in Fig. 1. In the plot for Transformer-XL, one step processes
ten batches, and for our batch size of 64, one epoch consists of 8,401 batches. These
experiments are:

1. ResNet50 with the ILSVRC 2012 ImageNet dataset.
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Table 7: Group sparsity and validation accuracy of different methods on image classification
with smaller datasets.

Algorithm Validation accuracy Group sparsity
Logistic Regression/MNIST

ProxSGD 91.31% 39.29%
ProxSSI 91.31% 39.92%
ProxGen 91.31% 39.92%
RMDA 91.34% 57.02%
RAMDA 91.35% 57.40%

VGG19/CIFAR10
MSGD 93.95 ± 0.14% -
ProxSGD 92.82 ± 0.09% 82.76 ± 5.42%
ProxSSI 92.81 ± 0.15% 88.40 ± 0.23%
ProxGen 92.83 ± 0.05% 86.64 ± 0.12%
RMDA 93.13 ± 0.10% 90.22 ± 0.06%
RAMDA 92.89 ± 0.13% 86.31 ± 0.31%

VGG19/CIFAR100
MSGD 74.07 ± 0.05% -
ProxSGD 71.96 ± 0.15% 72.34 ± 11.9%
ProxSSI 67.29 ± 0.06% 78.58 ± 0.34%
ProxGen 68.13 ± 0.36% 75.46 ± 0.17%
RMDA 71.96 ± 0.31% 80.88 ± 0.11%
RAMDA 70.47 ± 0.25% 65.19 ± 0.77%

ResNet50/CIFAR10
MSGD 95.54 ± 0.19% -
ProxSGD 92.36 ± 0.05% 82.18 ± 2.67%
ProxSSI 94.04 ± 0.12% 83.67 ± 0.63%
ProxGen 94.07 ± 0.12% 80.45 ± 0.45%
RMDA 95.11 ± 0.11% 85.64 ± 0.12%
RAMDA 93.85 ± 0.10% 81.99 ± 1.26%

ResNet50/CIFAR100
MSGD 79.49 ± 0.49% -
ProxSGD 74.54 ± 0.58% 49.29 ± 5.91%
ProxSSI 73.65 ± 0.39% 70.38 ± 0.74%
ProxGen 73.63 ± 0.43% 65.51 ± 3.58%
RMDA 75.62 ± 0.19% 79.97 ± 0.27%
RAMDA 69.23 ± 0.86% 68.65 ± 1.83%

2. Transformer-XL with the WikiText-103 dataset.
3. Tacotron2 with the LJSpeech dataset.
4. Logistic Regression with the MNIST dataset.
5. A modified VGG19 with the CIFAR10 dataset.
6. The same VGG19 with the CIFAR100 dataset.
7. A modified ResNet50 with the CIFAR10 dataset.
8. The same ResNet50 with the CIFAR100 dataset.

We further see the zoomed-in sparsity plots in Fig. 2 of the stable sparsity level of RAMDA.
These plots corroborates our theory that RAMDA is indeed capable of manifold identifi-
cation, while achieving competitive prediction performance. On the other hand, in the
absence of manifold identification guarantees, the sparsity levels of ProxSGD, ProxSSI and
ProxGen exhibit oscillations that are sometimes drastic. We note that for the largest prob-
lems Tacotron2 and Transformer-XL, the sparsity levels of RAMDA were still gradually
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increasing even at the final epochs. This suggests that if we are willing to run the algorithm
for longer, it is possible that the structured sparsity can be further improved.

D Experiment with Nuclear-norm Regularization

In this appendix, we conduct some preliminary experiments with a different regularizer
to showcase that the proposed RAMDA can be applied to structures beyond sparsity. We
consider the structure of each layer being low-rank, induced by imposing a nuclear-norm
regularizer on each layer individually by treating each layer as a matrix. Given a matrix
X ∈ Rm×n of rank r ≤ min{m,n} with its singular value decomposition (SVD) X = UΣV ⊤,
where U ∈ Rm×r, V ∈ Rn×r are orthogonal and the positive definite diagonal matrix
Σ ∈ Rr×r represents the nonzero singular values of X, the nuclear norm of X is computed
by

∥X∥∗ =
r∑
i=1

Σi,i,

and the corresponding proximal operator for λ > 0 is

proxλ∥·∥∗
(X) = U Σ̂V ⊤, where Σ̂i,i = max{0,Σi,i − λ}.

Given a point X∗ with rank r∗, the active manifold of the nuclear norm at X∗ is
M(X∗) = {Y | rank(Y ) = r∗}.

Using low-rankness to condense neural networks is itself an interesting research topic, but
conducting full SVDs could be rather time-consuming, so applying this structure to larger
problems is a challenging but potentially useful one. How to exploit this structure for
prediction acceleration and to make the training more efficient, possibly using iterative
methods to compute approximate SVDs, is an interesting topic we plan to investigate in the
near future, and here we conduct a preliminary experiment for showing that our method is
also applicable to other structures.
We first consider training a simple neural network with six fully-connected layers using
the FashionMNIST dataset (Xiao et al., 2017). Since this is a rather small-scale problem
and this is a image classification problem, we do not expect RAMDA to outperform non-
adaptive methods, especially the RMDA method that is also able to identify the active
manifold. The purpose of this experiment is to demonstrate the possibilities of structures
beyond sparsity. The results are shown in Table 8. As we have anticipated, RAMDA is indeed
slightly worse than RMDA regarding the low-rank level and the prediction accuracy, but it
is still competitive and outperforms ProxGen and ProxSGD. This exemplifies the potential
of RAMDA as well as RMDA for training neural networks with other useful structures.
We also conduct an experiment on pretraining a modified vision transformer model (Liu
et al., 2021) for masked image modeling (Xie et al., 2022) using the CIFAR10 dataset.
Following the standard practice of this task, we select the model that gives the lowest
validation loss among the last 50 epochs as the final output. The results are shown in
Table 9. We can see that RAMDA attains the lowest validation loss and has a low-rank level
almost identical to that of RMDA. On the other hand, ProxSGD and ProxGen have worse
low-rank levels.

Table 8: Low-rank level and validation accuracy of different methods on training a six-layer
fully-connected neural network with the FashionMNIST dataset for image classification.

Algorithm Validation accuracy Low-rank level
MSGD 89.95 ± 0.29% -
ProxSGD 87.54 ± 0.52% 78.00 ± 0.77%
ProxGen 86.66 ± 0.33% 87.46 ± 4.19%
RMDA 88.19 ± 0.23% 91.88 ± 0.12%
RAMDA 87.99 ± 0.24% 89.59 ± 0.42%
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Table 9: Low-rank level and validation loss of different methods on pretraining a modified
vision transformer model using the CIFAR10 dataset for masked image modeling.

Algorithm Validation loss Low-rank level
AdamW 0.0865 ± 0.0001 -
ProxSGD 0.1042 ± 0.0003 82.60 ± 0.34%
ProxGen 0.1120 ± 0.0019 82.64 ± 2.47%
RMDA 0.1054 ± 0.0031 86.23 ± 0.41%
RAMDA 0.1035 ± 0.0016 86.20 ± 0.35%
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(g) ResNet50 on CIFAR10
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(h) ResNet50 on CIFAR100

Figure 1: Group sparsity level and validation prediction performance v.s all epochs. In the
plot for Transformer-XL, one step processes ten batches, and for our batch size of 64, one
epoch consists of 8,401 batches.
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Figure 2: Group sparsity level at the last epochs.
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