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Abstract

Estimating individual treatment effects (ITEs) from observational data is relevant1

in many fields such as personalized medicine. However, in practice, the treatment2

assignment is usually confounded by unobserved variables and thus introduces3

bias. A remedy to remove the bias is the use of instrumental variables (IVs). Such4

settings are widespread in medicine (e.g., trials where compliance is used as binary5

IV). In this paper, we propose a novel, multiply robust machine learning framework,6

called MRIV, for estimating ITEs using binary IVs and thus yield an unbiased ITE7

estimator. Different from previous work for binary IVs, our framework estimates8

the ITE directly via a pseudo outcome regression. (1) We provide a theoretical9

analysis where we show that our framework yields multiply robust convergence10

rates: our ITE estimator achieves fast convergence even if several nuisance esti-11

mators converge slowly. (2) We further show that our framework asymptotically12

outperforms state-of-the-art plug-in IV methods for ITE estimation. (3) We build13

upon our theoretical results and propose a tailored deep neural network architecture14

called MRIV-Net for ITE estimation using binary IVs. Across various compu-15

tational experiments, we demonstrate empirically that our MRIV-Net achieves16

state-of-the-art performance. To the best of our knowledge, our MRIV is the first17

multiply robust machine learning framework tailored to estimating ITEs in the18

binary IV setting.19

1 Introduction20

Individual treatment effects (ITEs) are relevant across many disciplines such as marketing [41] and21

personalized medicine [51]. Knowledge about ITEs provides insights into the heterogeneity of22

treatment effects, and thus help in potentially better treatment decisions.23

Many recent works that use machine learning to estimate ITEs are based on the assumption of24

unconfoundedness [1, 15, 27, 36, 42], In practice, however, this assumption is often violated because25

it is common that some confounders are not reported in the data. Typical examples are race,26

income, gender, or the socioeconomic status of patients, which are not stored in medical files. If the27

confounding is sufficiently strong, standard methods for estimating ITEs suffer from confounding28

bias [31], which may lead to inferior treatment decisions.29

To handle unobserved confounders, instrumental variables (IVs) can be leveraged to relax the30

assumption of unconfoundedness and still compute reliable ITE estimates. IV methods were originally31

developed in economics [48], but, only recently, there is a growing interest in combining IV methods32

with machine learning (see Sec. 3). Importantly, IV methods outperform classical ITE estimators33

if a sufficient amount of confounding is not observed [17]. We thus aim at estimating ITEs from34

observational data under unobserved confounding using IVs.35
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In this paper, we consider the setting where a single binary instrument is available. This setting is36

widespread in personalized medicine (and other applications such as marketing or public policy)37

[9]. In fact, the setting is encountered in essentially all observational or randomized studies with38

observed non-compliance [19]. As an example, consider a randomized controlled trial (RCT), where39

treatments are randomly assigned to patients and their outcomes are observed. Due to some potentially40

unobserved confounders (e.g., income, education), some patients refuse to take the treatment initially41

assigned to them. Here, the treatment assignment serves as a binary IV. Moreover, such RCTs have42

been widely used by public decision-makers, e.g., to analyze the effect of health insurance on health43

outcome (see the so-called Oregon health insurance experiment) [16] or the effect of military service44

on lifetime earnings [2].45

We propose a novel machine learning framework (called MRIV) for estimating ITEs using binary IVs.46

Our framework takes an initial ITE estimator and nuisance parameter estimators as input to perform a47

pseudo-outcome regression. Importantly, our framework uses a multiply robust parametrization of48

the efficient influence function as pseudo outcome.49

We provide a theoretical analysis, where we use tools from [22] to show that our framework achieves50

a multiply robust convergence rate, i.e., our MRIV converges with a fast rate even if several nuisance51

parameters converge slowly. We further show that, compared to existing plug-in IV methods, the52

performance of our framework is asymptotically superior. Finally, we leverage our framework and,53

on top of it, build a tailored deep neural network called MRIV-Net.54

Differences to existing literature: Our framework is multiply robust1, i.e., it is consistent in55

the union of three different model specifications. This is different from existing methods for ITE56

estimation using IVs, which are only doubly robust (e.g., Syrgkanis et al. [40]) or plug-in estimators57

[5, 19].58

Figure 1: Underlying
causal graph. The instru-
ment Z has a direct influ-
ence on the treatment A,
but does not have a direct
effect on the outcome Y .
Note that we allow for un-
observed confounders for
both Z–A (dashed line)
and A–Y (given by U ).
Our setting is general in
that U can be correlated
or uncorrelated with the
observed confounders X.

Contributions:2 (1) We propose a novel, multiply robust machine learn-59

ing framework (called MRIV) to learn the ITE using the binary IV setting.60

To the best of our knowledge, ours is the first that is multiply robust, i.e.,61

consistent in the union of three model specifications. For comparison,62

existing works for ITE estimation are only double robust [45, 40]. (2) We63

prove that MRIV achieves a multiply robust convergence rate. This is64

different to methods for IV settings which are only doubly robust, such65

as [40]. We further show that our MRIV is asymptotically superior to ex-66

isting plug-in estimators. (3) We propose a tailored deep neural network,67

called MRIV-Net, which builds upon our framework to estimate ITEs.68

We demonstrate that MRIV-Net achieves state-of-the-art performance.69

2 Problem setup70

Data generating process: We observe data D = (xi, zi, ai, yi)
n
i=1 con-71

sisting of n ∈ N observations of the tuple (X,Z,A, Y ). Here, X ∈ X72

are observed confounders, Z ∈ {0, 1} is a binary instrument, A ∈ {0, 1}73

is a binary treatment, and Y ∈ R is an outcome of interest. Furthermore,74

we assume the existence of unobserved confounders U ∈ U , which affect75

both the treatment A and the outcome Y . The causal graph is shown in76

Fig. 1.77

Applicability: Our proposed framework is widely applicable in practice, namely to all settings with78

the above data generating process. This includes both (1) observational data and (2) RCTs with79

non-compliance. For (1), observational data is commonly encountered in, e.g., personalized medicine.80

Here, modeling treatments as binary variables is consistent with previous literature on causal effect81

estimation and standard in medical practice [33]. For (2), our setting is further encountered in RCTs82

when the instrument Z is a randomized treatment assignment but individuals do not comply with83

their treatment assignment. Such RCTs have been extensively used by public decision-makers, e.g.,84

1For a detailed introduction to multiple robustness and its importance in treatment effect estimation, we refer
to [46], Section 4.5.

2Codes are in the supplementary materials. Codes are also available at
https://anonymous.4open.science/r/MRIV-Net-0AC4 (Upon acceptance, we replace the link and point
to a public GitHub repository).
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to analyze the effect of health insurance on health outcome [16] or the effect of military service on85

lifetime earnings [2].86

We build upon the potential outcomes framework [34] for modeling causal effects. Let Y (a, z)87

denote the potential outcome that would have been observed under A = a and Z = z. Following88

previous literature on IV estimation [45], we impose the following standard IV assumptions on the89

data generating process.90

Assumption 1 (Standard IV assumptions [45, 47]). We assume: (1) Exclusion: Y (a, z) = Y (a) for91

all a, z ∈ {0, 1}, i.e., the instrument has no direct effect on the patient outcome; (2) Independence:92

Z ⊥⊥ U | X; (3) Relevance: Z ⊥̸⊥ A | X , (iv) The model includes all A–Y confounder: Y (a) ⊥⊥93

(A,Z) | (X,U) for all a ∈ {0, 1}.94

Assumption 1 is standard for IV methods and fulfilled in practical settings where IV methods95

are applied [2, 4, 19]. Note that Assumption 1 does not prohibit the existence of unobserved Z–96

A confounders. On the contrary, it merely prohibits the existence of unobserved counfounders97

that affect all Z, A, and Y simultaneously, as it is standard in IV settings [47]. A practical and98

widespread example where Assumption 1 is satisfied are randomized controlled trials (RCTs) with99

non-compliance [19]. Here, the treatment assignment Z is randomized, but the actual relationship100

between treatment A and outcome Y may still be confounded. For instance, in the Oregon health101

insurance experiment [16], people were given access to health insurance (Z) by a lottery with aim102

to study the effect of health insurance (A) on health outcome (Y ) [16]. Here, non-compliance103

information is observed because the lottery winners needed to sign up for health insurance.104

Objective: In this paper, we are interested in estimating the individual treatment effect (ITE)105

τ(x) = E[Y (1)− Y (0) | X = x]. (1)

If there is no unobserved confounding (U = ∅), the ITE is identifiable from observational data under106

mild positivity assumptions [36]. However, in practice, it is often unlikely that all confounders are107

observable. To account for this, we leverage the instrument Z to identify the ITE. We state the108

following assumption for identifiability.109

Assumption 2 (Identifiability of the ITE [45]). At least one of the following two statements holds110

true: (1) E[A | Z = 1, X, U ] − E[A | Z = 0, X, U ] = E[A | Z = 1, X] − E[A | Z = 0, X]; or111

(2) E[Y (1)− Y (0) | X,U ] = E[Y (1)− Y (0) | X].112

Example: Assumption 1 holds is when the function f(a,X,U) = E[Y (a) | X,U ] is additive with113

respect to a and U , e.g., f(a,X,U) = g(a,X) + h(U) for measurable functions h and g.114

Under Assumptions 1 and 2, the ITE is identifiable [45]. It can be written as115

τ(x) =
µY
1 (x)− µY

0 (x)

µA
1 (x)− µA

0 (x)
=

δY (x)

δA(x)
, (2)

where µY
i (x) = E[Y | Z = i,X = x] and µA

i (x) = E[A | Z = i,X = x]. Even if Assumption 2116

does not hold, the quantity on the right-hand side of Eq. (2) still allows for interpretation. If no117

unobserved Z–A confounders exist, it can be interpreted as conditional version of the local average118

treatment effect (LATE) [19, 5] under a monotonicity assumption. Furthermore, under a no-current-119

treatment-value-interaction assumption, it can be interpreted as conditional treatment effect on the120

treated (ETT) [45]. 3 This has an important implication for our results: If Assumption 2 does not121

hold in practice, our estimates still provide conditional LATE or ETT estimates under the respective122

assumptions because they are based on Eq. (2). If Assumption 2 does hold, all three – i.e., ITE,123

conditional LATE, and ETT – coincide [45].124

3 Related work125

ITE methods without unconfoundedness: Various machine learning methods for estimating ITEs126

without unobserved confounding have been proposed in recent literature [1, 15, 25, 27, 36, 42, 52,127

3The conditional LATE measures the ITE for individuals which are part of the complier subpopulation, i.e.,
the subpopulation for whom A(Z = 1) > A(Z = 0). The conditional ETT measures the ITE for treated
individuals.
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53]. To remove plug-in bias, the DR-learner performs a second stage regression on the uncentered128

influence function of the average treatment effect [22, 14]. However, under unobserved confounding,129

all of these methods are biased (see Appendix). As a result, this hampers their performance in our130

setting.131

ITE methods for unobserved confounding: There is a rich literature for causal effect estimation132

under unobserved confounding. Methods include deconfounding methods [46, 7, 18], proxy learning133

methods [13, 49], causal sensitivity analysis [21, 20], and IV methods. IV methods address the134

problem of unobserved confounding by exploiting the variance in treatment and outcome induced by135

the instruments. Traditionally, two-stage least squares (2SLS) has been used for estimating causal136

effects [48, 4]. 2SLS was originally developed in economics, and follows a two-stage procedure: it137

performs a first stage regression of treatment A on the instrument Z, and then uses the fitted values138

for a second stage regression to predict the outcome Y . Several nonparametric methods have been139

developed in econometric to generalize 2SLS in order to account for non-linearities within the data140

[28, 44], yet these are limited to low-dimensional settings.141

Only recently, machine learning has been integrated into IV methods. These are: [37] and [50]142

generalize 2SLS by learning complex feature maps using kernel methods and deep learning, re-143

spectively. [17] adopts a two-stage neural network architecture that performs the first stage via144

conditional density estimation. [6] and [40] leverage moment conditions for IV estimation. However,145

the aforementioned methods are not specifically designed for the binary IV setting but, rather, for146

multiple IVs or treatment scenarios. In particular, they impose stronger assumptions such as additive147

confounding in order to identify the ITE. Note that additive confounding is a special case of when our148

Assumption 2 holds. Moreover, they are not multiply robust: Even though doubly robust IV methods149

have been proposed (e.g., Syrgkanis et al. [40]), these methods are not consistent in the union of more150

than two model specifications [45]. We provide more details below.151

Table 1: Key methods for causal effect es-
timation with IVs. This paper: Multiply
robustness for ITEs.
hhhhhhhhhhRobustness

Estimand ATE ITE

Doubly robust Okui et al. [30] Syrgkanis et al. [40]
Multiply robust Wang et al. [45] MRIV (ours)

Doubly robust IV methods: Doubly robust estimators152

are commonly used in causal inference as they allow153

for consistent estimation under model misspecification154

and fast convergence rates [22]. Recently, they also155

have been adopted for IV settings: [23] proposes a156

pseudo regression estimator for the local average treat-157

ment effect using continuous instruments, which has been extended to individual effects by [35].158

Furthermore, [38] uses a doubly robust approach to estimate average compiler parameters. Finally,159

Ogburn et al. [29] and Syrgkanis et al. [40] propose doubly robust ITE estimators in the IV setting160

which both rely on doubly robust parametrizations of the uncentered efficient influence function [30].161

However, these estimators are not multiply robust in the sense that they are consistent in the union of162

more than two model specifications [45].163

Multiply robust IV methods: Multiply robust estimators for IV settings have been proposed only164

for average treatment effects (ATEs) [45] and optimal treatment regimes [12] but not for ITEs. In165

particular, Wang et al. [45] derive a multiply robust parametrization of the efficient influence function166

for the ATE. However, there exists no similar approach for ITE estimation (see Table 1).167

We provide a detailed, technical comparison of existing methods and our framework in Appendix E.168

Binary IVs: In the binary IV setting, current methods proceed by estimating µY
i (x) and µA

i (x)169

separately, before plugging them in Eq. 2 [19, 3, 5]. As result, these suffer from plug-in bias and do170

not offer robustness properties.171

Research gap: To the best of our knowledge, there exists no method for ITE estimation under172

unobserved confounding that is multiply robust. To fill this gap, we propose MRIV: a multiply robust173

machine learning framework tailored to the binary IV setting. For this, we build upon the approach174

by Kennedy [22] to derive robust convergence rates, yet this approach has not been adapted to IV175

settings, which is our contribution.176

4 MRIV for estimating ITEs using binary instruments177

In the following, we present our MRIV framework for estimating ITEs under unobserved confounding178

(Sec. 4.1). We then derive an asymptotic convergence rate for MRIV (Sec. 4.2) and finally use our179

framework to develop a tailored deep neural network called MRIV-Net (Sec. 4.4).180
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4.1 Framework181

Motivation: A naïve approach to estimate the ITE is to leverage the identification result in Eq. (2).182

Assuming that we have estimated the nuisance components µ̂Y
i and µ̂A

i for i ∈ {0, 1}, we can simply183

plug them into Eq. (2) to obtain the so-called (plug-in) Wald estimator τ̂W(x) [43].184

However, in practice, the true ITE curve τ(x) is often simpler (e.g., smoother, more sparse) than185

its complements µY
i (x) or µA

i (x) [25]. In this case, τ̂W(x) is inefficient because it models all186

components separately, and, to address this, our proposed framework estimates τ directly using a187

pseudo outcome regression.188

Overview: We now propose MRIV. MRIV is a two-stage meta learner that takes any base method for189

ITE estimation as input. For instance, the base ssssmethod could be the Wald estimator from Eq. (2),190

any other IV method such as 2SLS, or a deep neural network (as we propose in our MRIV-Net later191

in Sec. 4.4). In Stage 1, MRIV produces nuisance estimators µ̂Y
0 (x), µ̂

A
0 (x), δ̂A(x), and π̂(x), where192

π̂(x) is an estimator of the propensity score π(x) = P(Z = 1 | X = x). In Stage 2, MRIV estimates193

τ(x) directly using a pseudo outcome ŶMR as a regression target.194

Given an arbitrary initial ITE estimator τ̂init(x) and nuisance estimates µ̂Y
0 (x), µ̂

A
0 (x), δ̂A(x), and195

π̂(x), we define the pseudo outcome196

ŶMR =

(
Z − (1− Z)

δ̂A(X)

)(
Y −

(
µ̂Y
0 (X) + τ̂init(X) (A− µ̂A

0 (X))
)

Z π̂(X) + (1− Z)(1− π̂(X))

)
+ τ̂init(X). (3)

197

The pseudo outcome ŶMR in Eq. (3) is a multiply robust parameterization of the (uncentered) efficient198

influence function for the average treatment effect EX [τ(X)] (see the derivation in [45]). The initial199

estimator τ̂init(X) is corrected by a weighted difference of the observed outcome Y and the term200

µ̂Y
0 (X) + τ̂init(X) (A− µ̂A

0 (X)). Individuals X with small δ̂A(X) (large estimated compliance) or201

small/large π(X) (i.e., low/high probability of receiving treatment Z) receive a larger correction.202

Once we have obtained the pseudo outcome ŶMR, we regress it on X to obtain the Stage 2 MRIV203

estimator τ̂MRIV(x) for τ(x). The pseudocode for MRIV is given in Algorithm 1. MRIV can be204

interpreted as a way to remove plug-in bias from τ̂init(x) via the efficient influence function [14]205

Algorithm 1: MRIV
Input : data (X,Z,A, Y ), initial ITE estimator τ̂init(x)
// Stage 1: Estimate nuisance components
π̂(x)← Ê[Z | X = x], µ̂Y

0 (x)← Ê[Y | X = x, Z = 0], µ̂A
0 (x)← Ê[A | X = x, Z = 0]

δ̂A(x)← Ê[A | X = x, Z = 1]− Ê[A | X = x, Z = 0]
// Stage 2: Pseudo outcome regression

ŶMR ←
(

Z−(1−Z)

δ̂A(X)

)(
Y −A τ̂init(X)−µ̂Y

0 (X)+µ̂A
0 (X) τ̂init(X)

Z π̂(X)+(1−Z)(1−π̂(X))

)
+ τ̂init(X)

τ̂MRIV(x)← Ê[ŶMR | X = x]

206

Using the fact that ŶMR is a multiply robust parametrization of the efficient influence function, we207

derive a multiply robustness property of τ̂MRIV(x).208

Theorem 1 (multiply robustness property). Let µ̂Y
0 (x), µ̂

A
0 (x), δ̂A(x), π̂(x), and τ̂init(x) denote209

estimators of µY
0 (x), µ

A
0 (x), δA(x), π(x), and τ(x), respectively. Then, for all x ∈ X , it holds that210

E[ŶMR | X = x] = τ(x),if least one of the following conditions is satisfied: (1) µ̂Y
0 = µY

0 , µ̂A
0 = µA

0 ,211

δ̂A = δA, and τ̂init = τ ; or (2) π̂ = π and δ̂A = δA; or (3) π̂ = π and τ̂init = τ .212

Theorem 1 implies that τ̂MRIV(x) is consistent for τ(x) if either condition (1), (2), or (3) holds.213

As a result, our MRIV framework is multiply robust in the sense that our estimator, τ̂MRIV(x), is214

consistent in the union of three different model specifications. Importantly, this is different from215

doubly robust estimators which are only consistent in the union of two model specifications [45].216

Example: We illustrate the robustness under model specification (2) in an example. Let µ̂Y
0 (x) =217

µ̂A
0 (x) = τ̂init(x) = 0 be misspecified and let π̂ = π and δ̂A = δA be correctly specified. It218

follows E[ŶMR | X = x] = 1
δA(X)E

[
ZY−(1−Z)Y

Zπ(x)+(1−Z)(1−π(x)) | X = x
]
=

µY
1 (x)−µY

0 (x)
δA(X) = τ(x). This219

justifies the pseudo-outcome regression in last step of MRIV.220
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Our MRIV is directly applicable to RCTs with non-compliance: Then, the treatment assignment is221

randomized and the propensity score π(x) is known. Our MRIV framework can be thus adopted222

by plugging in the known π(x) into the pseudo outcome in Eq. (3). Moreover, τ̂MRIV(x) is already223

consistent if either τ̂init(x) or δ̂A(x) are.224

4.2 Theoretical analysis225

In the following, we derive the asymptotic convergence rate of MRIV under smoothness assumptions.226

For this, we define s-smooth functions as functions contained in the Hölder class H(s), associated227

with Stone’s minimax rate [39] of n−2s/(2s+p), where p is the dimension of X .228

Assumption 3 (Smoothness). We assume that (1) the nuisance components µY
i (·) are α-smooth,229

µA
i (·) and δA(·) are β-smooth, and π(·) is δ-smooth; (2) all nuisance components are estimated with230

their respective minimax rate of n
−2k
2k+p , where k ∈ {α, β, δ}; and (3) the oracle ITE τ(·) is γ-smooth231

and the initial ITE estimator τ̂init converges with rate rτ (n).232

Assumption 3 for smoothness provides us with a way to quantify the difficulty of the underlying233

nonparametric regression problems. Similar assumptions have been imposed for asymptotic analysis234

of previous ITE estimators in [22, 15]. They can be replaced with other assumptions such as235

assumptions on the level of sparsity of the ITE components. We also provide an asymptotic analysis236

under sparsity assumptions (see Appendix B).237

We additionally impose the following boundedness assumptions on the the underlying data generating238

process and estimators.239

Assumption 4 (Boundedness). We assume that there exist constants C, ρ, ρ̃, ϵ,K > 0 such that for240

all x ∈ X it holds that: (1) |µY
i (x)| ≤ C; (2) |δA(x)| = |µA

1 (x) − µA
0 (x)| ≥ ρ and |δ̂A(x)| ≥ ρ̃;241

(3) ϵ ≤ π̂(x) ≤ 1− ϵ; and (4) |τ̂init(x)| ≤ K.242

Assumptions 4.1, 4.3, and 4.4 are standard and in line with previous works on theoretical analyses243

of ITE estimators [15, 22]. Assumption 4.2 ensures that both the oracle ITE and the estimator are244

bounded. Violations of Assumption 4.2 may occur when working with so-called “weak” instruments,245

which are IVs that are only weakly correlated with the treatment. Using IV methods with weak246

instruments should generally be avoided [26]. However, in many applications such as RCTs with247

non-compliance, weak instruments are unlikely to occur as patients’ decisions to follow the treatment248

are generally correlated with the initial treatment assignments.249

We state now our main theoretical result: an upper bound on the oracle risk of the MRIV estimator.250

To derive our bound, we leverage the sample splitting approach from [22]. The approach in [22] has251

been initially used to analyze the DR-learner for ITE estimation under unconfoundedness and allows252

for the derivation of robust convergence rates. It has later been adapted to several other meta learners253

[15], yet not for IV methods.254

Theorem 2 (Oracle upper bound under sample splitting). Let Dℓ for ℓ ∈ {1, 2, 3} be independent255

samples of size n. Let τ̂init(x), µ̂Y
0 (x), and µ̂A

0 (x) be trained on D1, and let δ̂A(x) and π̂(x) be256

trained on D2. We denote ŶMR as the pseudo outcome from Eq. (3) and Y0 as the corresponding257

oracle. Let τ̂MRIV(x) = Ên[ŶMR | X = x] and τ̃MRIV(x) = Ên[Y0 | X = x] denote the (oracle)258

pseudo outcome regression on D3 for some generic estimator Ên[· | X = x] of E[· | X = x].259

We assume that the second-stage estimator Ên yields the minimax rate n−
2γ

2γ+p and satisfies the fol-260

lowing two assumptions from Kennedy [22]: (1) Ên[W + c | X = x] = Ên[W | X = x] + c261

for any random W and constant c and (2) if E[W | X = x] = E[V | X = x], then262

E
[(

Ên[W | X = x]− E[W | X = x]
)2]

≍ E
[(

Ên[V | X = x]− E[V | X = x]
)2]

. Then, the263

oracle risk is upper bounded by264

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + rτ (n)

(
n

−2β
2β+p + n

−2δ
2δ+p

)
+ n−2(

α
2α+p+

δ
2δ+p ) + n−2(

β
2β+p+

δ
2δ+p ).

Proof. See Appendix A.265
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Recall that the first summand of the lower bound in Eq. (2) is the minimax rate for the oracle ITE266

τ(x) which cannot be improved upon. Hence, for a fast convergence rate of τ̂MRIV(x), it is sufficient267

if either: (1) rτ (n) decreases fast and δ is large; (2) rτ (n) decreases fast and α and β are large;268

or (3) all α, β, and δ are large. This is in line with the multiply robustness property of MRIV and269

means that MRIV achieves a fast rate of convergence even if the initial estimator or several nuisance270

estimators converge slowly.271

From the bound in Eq. (2), it follows that τ̂MRIV(x) improves on the convergence rate of the initial272

ITE estimator τ̂init(x) if its rate rτ (n) is lower bounded by273

rτ (n) ≳ n
−2γ
2γ+p + n−2 (

α
2α+p+

δ
2δ+p ) + n−2 (

β
2β+p+

δ
2δ+p ). (4)

Hence, our MRIV estimator is more likely to improve on the initial estimator for large α, β, and δ,274

i.e., if the nuisance components are smooth. Note that it is sufficient if either (1) only the propensity275

score π(x) is relatively smooth (large δ) or (2) that all other nuisance components are (large α and276

β). In fact, this is widely fulfilled in practice. For example, the former is fulfilled for RCTs with277

non-compliance, where π(x) is often some known, fixed number p ∈ (0, 1). Hence, for RCTs with278

non-compliance, MRIV should (at least asymptotically) improve the performance of most estimators.279

4.3 MRIV vs. Wald estimator280

In the following, we compare τ̂MRIV(x) to the Wald estimator τ̂W(x). First, we derive corresponding281

upper bound under smoothness.282

Theorem 3 (Wald oracle upper bound). Given estimators µ̂Y
i (x) and µ̂A

i (x). Let δ̂A(x) = µ̂A
1 (x)−283

µ̂A
0 (x) satisfy Assumption 4. Then, the oracle risk of the Wald estimator τ̂W (x) is bounded by284

E
[
(τ̂W(x)− τ(x))2

]
≲ n−

2α
2α+p + n−

2β
2β+p . (5)

Proof. See Appendix A.285

We now consider the MRIV estimator τ̂MRIV(x) with τ̂init = τ̂W(x), i.e., initialized with the Wald286

estimator (under sample splitting). Plugging the Wald rate from Eq. (5) into the Eq. (2) yields287

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p+n

−4β
2β+p+n−2(

α
2α+p+

β
2β+p )+n−2(

δ
2δ+p+

α
2α+p )+n−2(

δ
2δ+p+

β
2β+p ).

(6)

For α = β = δ, the rates of τ̂MRIV(x) and τ̂W(x) reduce to288

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + n

−4α
2α+p and E

[
(τ̂W(x)− τ(x))

2
]
≲ n

−2α
2α+p . (7)

Hence, τ̂MRIV(x) outperforms τ̂W(x) asymptotically for γ > α, i.e., when the ITE τ(x) is smoother289

than its components, which is usually the case in practice [25]. For γ = α, the rates of both estimators290

coincide. Hence, we should expect MRIV to improve on the Wald estimator in real-world settings291

with sufficiently large sample size.292

4.4 MRIV-Net293

Based on our MRIV framwork, we develop a tailored deep neural network called MRIV-Net for ITE294

estimation using IVs. Our MRIV-Net produces both an initial ITE estimator τ̂init(x) and nuisance295

estimators µ̂Y
0 (x), µ̂

A
0 (x), δ̂A(x), and π̂(x).296

For MRIV-Net, we choose deep neural networks for the nuisance components due to their predictive297

power and their ability to learn complex shared representations for several nuisance components.298

Sharing representations between nuisance components has been exploited previously for ITE estima-299

tion, yet only under unconfoundedness [36, 15]. Building shared representations is more efficient in300

finite sample regimes than estimating all nuisance components separately as they usually share some301

common structure.302

In MRIV-Net, not all nuisance components should share a representation. Recall that, in303

Theorem 2, we assumed that (1) τ̂init(x), µ̂Y
0 (x), and µ̂A

0 (x); and (2) δ̂A(x) and π̂(x)304

are trained on two independent samples in order to derive the upper bound on the oracle305

risk. Hence, we propose to build two separate representations Φ1 and Φ2, so that (i) Φ1306

is used to learn τ̂init(x), µ̂Y
0 (x), and µ̂A

0 (x), and (ii) Φ2 is used to learn δ̂A(x) and π̂(x).307
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Figure 2: Architecture of
MRIV-Net.

This ensures that the nuisance estimators (1) share minimal information308

with nuisance estimators (2) even though they are estimated on the same309

data. Intuitively, this should lead to a faster decay of the oracle upper310

bound (cf. [15]).311

The architecture of MRIV-Net is shown in Fig. 2. MRIV-Net takes the312

observed covariates X as input to build the two representations Φ1 and313

Φ2. The first representation Φ1 is used to output estimates µ̂Y
1 (x), µ̂

Y
0 (x),314

µ̂A
1 (x), and µ̂A

0 (x) of the ITE components. The second representation315

Φ2 is used to output estimates µ̃A
1 (x), µ̃

A
0 (x), and π̂(x). MRIV-Net is316

trained by minimizing an overall loss317

L(θ) =
n∑

i=1

[(
µ̂Y
zi(xi)− yi

)2
+BCE

(
µ̂A
zi(xi), ai

)
+BCE

(
µ̃A
zi(xi), ai

)
+BCE (π̂(xi), zi)

]
, (8)

where θ denotes the neural network parameters and BCE is the binary cross entropy loss. After318

training MRIV-Net, we obtain the τ̂init(x) =
µ̂Y
1 (x)−µ̂Y

0 (x)

µ̂A
1 (x)−µ̂A

0 (x)
and obtain the nuisance estimators µ̂Y

0 (x),319

µ̂A
0 (x), δ̂A(x) = µ̃A

1 (x) − µ̃A
0 (x) and π̂(x). Then, we perform, we perform the pseudo regression320

(Stage 2) of MRIV to obtain τ̂MRIV(x).321

Implementation: We use PyTorch Lightning for our implementation and train MRIV-Net with322

the Adam optimizer [24]. Details on the network architecture and hyperparameter tuning are in323

Appendix G. We perform both the training of MRIV-Net and the pseudo outcome regression on324

the full training data. Needless to say, MRIV-Net can be easily adopted for sample splitting or325

cross-fitting procedures as in [10], namely, by learning separate networks for each representation326

Φ1 and Φ2. However, in our experiments, we do not use sample splitting or cross-fitting, as this can327

affect the performance in finite sample regimes. Of note, our choice is consistent with previous work328

[15].329

5 Computational experiments330

5.1 Simulated data331

In causal inference literature, it is common practice to use simulated data for performance evaluations332

[8, 15, 17]. Simulated data offers the crucial benefit that it provides ground-truth information on the333

counterfactual outcomes and thus allows for direct benchmarking against the oracle ITE.334

Data generation: We generate simulated data by sampling the oracle ITE τ(x) and the nuisance335

components µY
i (x), µ

A
i (x), and π(x) from Gaussian process priors. Using Gaussian processes has336

the following advantages: (1) It allows for a fair method comparison, as there is no need to explicitly337

specify the nuisance components, which could lead to unwanted inductive biases favoring a specific338

method; (2) the sampled nuisance components are non-linear and thus resemble real-world scenarios339

where machine learning methods would be applied; and, (3) by sampling from the prior induced by340

the Matérn kernel [32], we can control the smoothness of the nuisance components, which allows341

us to confirm our theoretical results from Sec. 4.2. For a detailed description of our data generating342

process, we refer to Appendix C.343

Baselines: We compare our MRIV-Net with the following state-of-the-art baselines: (1) ITE methods344

for unconfoundedness: TARNet [36] and TARNet combined with the DR-learner [22]; (2) general345

IV methods: 2SLS [48], kernel IV (KIV) [37], DFIV [50], DeepIV [17], DeepGMM [6], DMLIV346

[40], and DMLIV combined with DRIV (as described in [40]); (3) the (plug-in) Wald estimator using347

linear models and Bayesian additive regression trees (BART) [11]. Of note, the DR-learner assumes348

unconfoundedness, which is why we only combine it TARNet in our experiments. Implementation349

details regarding baselines and nuisance parameter estimation are in Appendix E. Note that many of350

the baselines do not directly aim at ITE estimation but rather at counterfactual outcome prediction.351

We nevertheless use these methods as baselines and, for this, obtain the ITE by taking the difference352

between the predictions of the factual and counterfactual outcomes.353

Performance evaluation: For all experiments, we use a 80/20 split as training/test set. We calcalute354

the root mean squared errors (RMSE) between the ITE estimates and the oracle ITE on the test set.355
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We report the mean RMSE and the standard deviation over five data sets generated from random356

seeds.357

Table 2: Performance comparison: our MRIV-Net vs. ex-
isting baselines.

Method n = 3000 n = 5000 n = 8000

(1) STANDARD ITE
TARNet [36] 0.76± 0.14 0.70± 0.12 0.69± 0.17
TARNet + DR [36, 22] 0.78± 0.10 0.66± 0.09 0.70± 0.10

(2) GENERAL IV
2SLS [47] 1.22± 0.23 0.79± 0.37 1.12± 0.29
KIV [37] 1.54± 0.53 1.18± 1.14 3.80± 4.71
DFIV [50] 0.43± 0.11 0.40± 0.21 0.46± 0.54
DeepIV [17] 0.96± 0.30 0.28± 0.09 0.23± 0.04
DeepGMM [6] 0.95± 0.38 0.37± 0.09 0.42± 0.14
DMLIV [40] 1.92± 0.71 0.92± 0.41 1.14± 0.24
DMLIV + DRIV [40] 0.41± 0.12 0.22± 0.04 0.21± 0.06

(3) WALD ESTIMATOR [43]
Linear 1.06± 0.63 0.62± 0.22 0.81± 0.34
BART 0.95± 0.30 0.63± 0.33 0.88± 0.28

MRIV-Net (ours) 0.26 ± 0.11 0.15 ± 0.03 0.13 ± 0.03

Reported: RMSE for base methods (mean± standard deviation). Lower = better (best in bold)

Results: Table 2 shows the results for358

all baselines. Here, the DR-learner does359

not improve the performance of TAR-360

Net, which is reasonable as both the361

DR-learner and TARNet assume uncon-362

foundedness and are thus biased in our363

setting. Our MRIV-Net outperforms all364

baselines. Our MRIV-Net also achieves365

a smaller standard deviation. For addi-366

tional results, we refer to Appendix H.367

We further compare the performance of368

two different meta-learner frameworks –369

DRIV [40] and our MRIV– across differ-370

ent base methods. The nuisance param-371

eters are estimated using feed forward neural networks (DRIV) or TARNets with either binary or372

continuous outputs (MRIV). The results are in Table 3. Our MRIV improves over the variant without373

any meta-learner framework across all base methods (both in terms of RMSE and standard deviation).374

Table 3: Base model with different meta-learners (i.e., none, DRIV, and our MRIV).
n = 3000 n = 5000 n = 8000

hhhhhhhhhhhhhhBase methods
Meta-learners

None DRIV MRIV (ours) None DRIV MRIV (ours) None DRIV MRIV (ours)

(1) STANDARD ITE
TARNet [36] 0.76± 0.14 0.31 ± 0.05 0.34± 0.13 0.70± 0.12 0.17 ± 0.06 0.17 ± 0.05 0.69± 0.17 0.21± 0.04 0.16 ± 0.04

(2) GENERAL IV
2SLS [47] 1.22± 0.23 0.40± 0.11 0.31 ± 0.08 0.79± 0.37 0.17 ± 0.09 0.19± 0.05 1.12± 0.29 0.21± 0.05 0.16 ± 0.02
KIV [37] 1.54± 0.53 0.40± 0.10 0.39 ± 0.11 1.18± 1.14 0.20± 0.08 0.17 ± 0.06 3.80± 4.71 0.31± 0.18 0.28 ± 0.19
DFIV [50] 0.43± 0.11 0.26 ± 0.05 0.27± 0.07 0.40± 0.21 0.18± 0.09 0.16 ± 0.04 0.46± 0.54 0.21± 0.06 0.18 ± 0.05
DeepIV [17] 0.96± 0.30 0.27± 0.03 0.26 ± 0.05 0.28± 0.09 0.18 ± 0.08 0.18 ± 0.05 0.23± 0.04 0.21± 0.03 0.16 ± 0.03
DeepGMM [6] 0.95± 0.38 0.40± 0.15 0.36 ± 0.13 0.37± 0.09 0.24± 0.12 0.16 ± 0.05 0.42± 0.14 0.21± 0.03 0.17 ± 0.03
DMLIV [40] 1.92± 0.71 0.41± 0.12 0.37 ± 0.11 0.92± 0.41 0.22± 0.05 0.16 ± 0.05 1.14± 0.24 0.21± 0.06 0.18 ± 0.05

(3) WALD ESTIMATOR [43]
Linear 1.06± 0.63 0.42± 0.15 0.38 ± 0.14 0.62± 0.22 0.19 ± 0.09 0.25± 0.09 0.81± 0.34 0.19± 0.09 0.18 ± 0.04
BART 0.95± 0.30 0.48± 0.14 0.46 ± 0.12 0.63± 0.33 0.26± 0.13 0.20 ± 0.07 0.88± 0.28 0.31± 0.08 0.29 ± 0.04

MRIV-Net\w network only (ours) 0.39± 0.13 0.35± 0.12 0.26 ± 0.11 0.31± 0.04 0.19± 0.13 0.15 ± 0.03 0.26± 0.06 0.18± 0.08 0.13 ± 0.03

Reported: RMSE (mean ± standard deviation). Lower = better (best improvement over none meta-learner in bold)

Table 4: Ablation study.

Method n = 3000 n = 5000 n = 8000

MRIV-Net\w network only 0.39± 0.13 0.31± 0.04 0.26± 0.06
MRIV-Net\w single repr. 0.28± 0.12 0.21± 0.04 0.32± 0.10
MRIV-Net (ours) 0.26 ± 0.11 0.15 ± 0.03 0.13 ± 0.03

Reported: RMSE (mean± standard deviation). Lower = better (best in bold)

Furthermore, MRIV is clearly superior375

over DRIV. This demonstrates the effec-376

tiveness of our MRIV across different377

base methods (note: MRIV with an ar-378

bitrary base model is typically superior379

to DRIV with our custom network from380

above). MRIV-Net is overall best. We381

also performed additional experiments where we used cross-fitting approaches for both meta-learners382

(see Appendix I).383

Ablation study: Table 4 compares different variants of our MRIV-Net. These are: (1) MRIV but384

network only; (2) MRIV-Net with a single representation for all nuisance estimators; and (3) our385

MRIV-Net from above. We observe that MRIV-Net is best. This justifies our proposed network386

architecture for MRIV-Net. Hence, combing the result from above, our performance gain must be387

attributed to both our framework and the architecture of our deep neural network.388

1 2 3 4 5
Confounding level U

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

n = 3000

1 2 3 4 5
Confounding level U

RM
SE

n = 5000

1 2 3 4 5
Confounding level U

RM
SE

n = 8000

Method
TARNet
TARNet + DR
MRIV-Net\w netowrk only
MRIV-Net (ours)

Figure 3: Results over different levels of confounding αU . Shaded
area shows standard deviation.

Robustness checks for389

unobserved confounding390

and smoothness: Here, we391

demonstrate the importance392

of handling unobserved393

confounding (as we do in our394

MRIV framework). For this,395

Fig. 3 plots the results for396

our MRIV-Net vs. standard397

ITE without customization398

for confounding (i.e., TARNet with and without the DR-learner) over over different levels of399

unobserved confounding. The RMSE of both TARNet variants increase almost linearly with400
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increasing confounding. In contrast, the RMSE of our MRIV-Net only marginally. Even for low401

confounding regimes, our MRIV-Net performs competitively.402

Fig. 4 varies the smoothness level. This is given by α of µY
i (·) (controlled by the Matérn kernel403

prior). Here, the performance decreases for the baselines, i.e., DeepIV and our network without404

MRIV framework. In contrast, the peformance of our MRIV-Net remains robust and outperforms405

the baselines. This confirms our theoretical results from above. It thus indicates that our MRIV406

framework works best when the oracle ITE τ(x) is smoother than the nuisance parameters µY
i (x).407

5 10
Smoothness 

0.10

0.15

0.20

0.25

0.30

0.35

RM
SE Method

DeepIV
MRIV-Net\w netowrk only
MRIV-Net (ours)

Figure 4: Results over different lev-
els of smoothness α of µY

i (·), sam-
ple size n = 8000. Larger α =
smoother. Shaded areas show stan-
dard deviation.

408

5.2 Case study with real-world data409

Setting: We demonstrate effectiveness of our framework using410

a case study with real-world, medical data. Here, we use medi-411

cal data from the so-called Oregon health insurance experiment412

(OHIE) [16]. It provides data for an RCT with non-compliance:413

In 2008, ∼30,000 low-income, uninsured adults in Oregon were414

offered participation in a health insurance program by a lottery.415

Individuals whose names were drawn could decide to sign up416

for health insurance. After a period of 12 months, in-person417

interviews took place to evaluate the health condition of the418

respective participant.419

In our analysis, the lottery assignment is the instrument Z, the decision to sign up for health insurance420

is treatment A, and an overall health score is the outcome Y . We also include five covariates X (age,421

gender, language, the number of emergency visits before the experiment, and the number of people422

the individual signed up with). It is important to include the latter in our analysis as it is the only423

variable influencing the propensity score. For details, we refer to Appendix D. We first estimate the424

ITE function and then report the treatment effect heterogeneity w.r.t. age and gender, while fixing425

the other covariates (i.e., we consider the English-speaking subpopulation with one emergency visit426

that signed up alone). We repeat the same procedure for our neural network architecture without the427

MRIV-Net framework and TARNet. The results are in Fig. 5.428

Results: Our MRIV-Net estimates larger causal effects for an older age. In429

contrast, TARNet does not estimate positive ITEs even for an older age.430
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gender = male

20 40 60
Age

gender = female

Method
TARNet
MRIV-Net\w netowrk only
MRIV-Net (ours)
DMLIV + DRIV

Figure 5: Results on real-world medical data.

Even though we cannot evaluate the estimation431

quality on real-world data, our estimates seem432

reasonable in light of the medical literature: the433

benefit of health insurance should increase with434

older age. This showcases that TARNet may435

suffer from bias induced by unobserved con-436

founders. We also report the results for DRIV437

with DMLIV as base method, and observe that438

in contrast to MRIV-Net, the corresponding ITE439

does not vary much between ages. Interestingly,440

both our MRIV-Net estimate a somewhat smaller ITE for middle ages (around 30–50 yrs). One441

explanation might be that individual in this age group are more likely to have stable jobs and, thus, are442

also more likely to be able to afford medical care, decreasing the direct effect of health insurance on443

individuals health. In sum, the findings from our case study are of direct relevance for decision-makers444

in public health [19], and highlight the practical value of our framework.445

6 Conclusion446

In this paper, we propose MRIV-Net: a novel ITE estimator based on a deep neural network.447

Importantly, our estimator is consistent in the union of three models specifications and, therefore,448

multiply robust. This is a crucial difference to existing works: previously, existing ITE estimators449

(such es DRIV from Syrgkanis et al. [40]) were only doubly robust. We show both theoretically and450

empirically that MRIV-Net is state-of-the-art for estimating ITEs using binary IVs. For future work,451

it would be interesting to derive finite sample results for MRIV-Net, because our theoretical analysis452

is purely asymptotic. Furthermore, one could develop multiply robust estimators for other IV settings453

(e.g., multiple or continuous instruments and treatments).454

10



References455

[1] Ahmed M. Alaa and Mihaela van der Schaar. “Bayesian inference of individualized treatment456

effects using multi-task Gaussian processes”. In: NeurIPS. 2017.457

[2] Joshua D. Angrist. “Lifetime earnings and the vietnam era draft lotter: Evidence from social458

security administrative records”. In: The American Economic Review 80.3 (1990), pp. 313–336.459

[3] Joshua D. Angrist, Guido W. Imbens, and Donald B. Rubin. “Identification of causal effects460

using instrumental variables”. In: Journal of the American Statistical Association 91.434461

(1996), pp. 444–455.462

[4] Joshua D. Angrist and Alan B. Krueger. “Does compulsory school attendance affect schooling463

and earnings?” In: The Quarterly Journal of Economics 106.4 (1991), pp. 979–1014.464

[5] Falco J. Bargagli-Stoffi, Kristof de Witte, and Giorgio Gnecco. “Heterogeneous causal effects465

with imperfect compliance: A Bayesian machine learning approach”. In: Annals of Applied466

Statistics (2021).467

[6] Andrew Bennett, Nathan Kallus, and Tobias Schnabel. “Deep generalized method of moments468

for instrumental variable analysis”. In: NeurIPS. 2019.469

[7] Ioana Bica, Ahmed M. Alaa, and Mihaela van der Schaar. “Time series deconfounder: Esti-470

mating treatment effects over time in the presence of hidden confounders”. In: ICML. 2020.471

[8] Ioana Bica et al. “Estimating counterfactual treatment outcomes over time through adversarially472

balanced representations”. In: ICLR. 2020.473

[9] Howard S. Bloom et al. “The benefits and costs of JTPA title II-A programs: Key Findings474

from the National Job Training Partnership Act Study”. In: Journal of Human Resources 32.32475

(1997), pp. 549–586.476

[10] Victor Chernozhukov et al. “Double/debiased machine learning for treatment and structural477

parameters”. In: The Econometrics Journal 21.1 (2018), pp. C1–C68.478

[11] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. “BART: Bayesian additive479

regression trees”. In: The Annals of Applied Statistics 4.1 (2010), pp. 266–298.480

[12] Yifan Cui and Eric Tchetgen Tchetgen. “A semiparametric instrumental variable approach481

to optimal treatment regimes under endogeneity”. In: Journal of the American Statistical482

Association 116.553 (2021), pp. 126–137.483

[13] Yifan Cui et al. “Semiparametric proximal causal inference”. In: arXiv preprint (2020).484

[14] Alicia Curth, Ahmed M. Alaa, and Mihaela van der Schaar. “Estimating structural target485

functions using machine learning and influence functions”. In: arXiv preprint (2020).486

[15] Alicia Curth and Mihaela van der Schaar. “Nonparametric estimation of heterogeneous treat-487

ment effects: From theory to learning Algorithms”. In: AISTATS. 2021.488

[16] Amy Finkelstein et al. “The oregon health insurance experiment: Evidence from the first year”.489

In: The Quarterly Journal of Economics 127.3 (2012), pp. 1057–1106.490

[17] Jason Hartford et al. “Deep IV: A flexible approach for counterfactual prediction”. In: ICML.491

2017.492

[18] Tobias Hatt and Stefan Feuerriegel. “Sequential deconfounding for causal inference with493

unobserved confounders”. In: arXiv preprint (2021).494

[19] Guido W. Imbens and Joshua D. Angrist. “Identification and estimation of local average495

treatment effects”. In: Econometrica 62.2 (1994), pp. 467–475.496

[20] Andrew Jesson et al. “Quantifying ignorance in individual-level causal-effect estimates under497

hidden confounding”. In: ICML. 2021.498

[21] Nathan Kallus, Xiaojie Mao, and Angela Zhou. “Interval estimation of individual-level causal499

effects under unobserved confounding”. In: AISTATS. 2019.500

[22] Edward H. Kennedy. “Optimal doubly robust estimation of heterogeneous causal effects”. In:501

arXiv preprint (2020).502

[23] Edward H. Kennedy, Scott A. Lorch, and Dylan S. Small. “Robust causal inference with503

continuous instruments using the local instrumental variable curve”. In: Journal of the Royal504

Statistical Society: Series B 81.1 (2019), pp. 121–143.505

[24] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: ICLR.506

2015.507

11



[25] Sören R. Künzel et al. “Metalearners for estimating heterogeneous treatment effects using508

machine learning”. In: Proceedings of the National Academy of Sciences (PNAS) 116.10509

(2019), pp. 4156–4165.510

[26] Chunxiao Li, Cynthia Rudin, and Typer H. McCormick. “Rethinking nonlinear instrumental511

variable models through prediction validity”. In: Journal of Machine Learning Research 23512

(2022), pp. 1–55.513

[27] Bryan Lim, Ahmed M. Alaa, and Mihaela van der Schaar. “Forecasting treatment responses514

over time using recurrent marginal structural networks”. In: NeurIPS. 2018.515

[28] Whitney K. Newey and James L. Powell. “Instrumental variable estimation of nonparametric516

models”. In: Econometrica 71.5 (2003), pp. 1565–1578.517

[29] Elizabeth L. Ogburn, Andrea Rotnitzky, and James M. Robins. “Doubly robust estimation of518

the local average treatment effect curve”. In: Journal of the Royal Statistical Society: Series B519

77.2 (2015), pp. 373–396.520

[30] Ryo Okui et al. “Doubly robust instrumental variable regression”. In: Statistica Sinica 22.1521

(2012), pp. 173–205.522

[31] Judea Pearl. Causality. New York City: Cambridge University Press, 2009.523

[32] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine524

learning. 3. print. Adaptive computation and machine learning. Cambridge, Mass.: MIT Press,525

2008.526

[33] James M. Robins, Miguel A. Hernán, and Babette Brumback. “Marginal structural models and527

causal inference in epidemiology”. In: Epidemiology 11.5 (2000), pp. 550–560.528

[34] Donald B. Rubin. “Estimating causal effects of treatments in randomized and nonrandomized529

studies”. In: Journal of Educational Psychology 66.5 (1974), pp. 688–701.530

[35] Vira Semenova and Victor Chernozhukov. “Debiased machine learning of conditional average531

treatment effects and other causal functions”. In: The Econometrics Journal 24.2 (2021),532

pp. 264–289.533

[36] Uri Shalit, Fredrik D. Johansson, and David Sontag. “Estimating individual treatment effect:534

Generalization bounds and algorithms”. In: ICML. 2017.535

[37] Rahul Singh, Maneesh Sahani, and Arthur Gretton. “Kernel instrumental variable regression”.536

In: NeurIPS. 2019.537

[38] Rahul Singh and Liyang Sun. “Double robustness for complier parameters and a semiparamet-538

ric test for complier characteristics”. In: arXiv preprint ().539

[39] Charles J. Stone. “Optimal rates of convergence for nonparametric estimators”. In: Annals of540

Statistics 8.6 (1980).541

[40] Vasilis Syrgkanis et al. “Machine learning estimation of heterogeneous treatment effects with542

instruments”. In: NeurIPS. 2019.543

[41] Hal R. Varian. “Causal inference in economics and marketing”. In: Proceedings of the National544

Academy of Sciences (PNAS) 113.27 (2016), pp. 7310–7315.545

[42] Stefan Wager and Susan Athey. “Estimation and inference of heterogeneous treatment effects546

using random forests”. In: Journal of the American Statistical Association 113.523 (2018),547

pp. 1228–1242.548

[43] Abraham Wald. “The fitting of straight lines if both variables are subject to error”. In: Annals549

of Mathematical Statistics 11.3 (1940), pp. 284–300.550

[44] Guihua Wang, Jun Li, and Wallace J. Hopp. “An instrumental variable forest approach for551

detecting heterogeneous treatment effects in observational studies”. In: Management Science552

(2021).553

[45] Linbo Wang and Eric J. Tchetgen Tchetgen. “Bounded, efficient and multiply robust estimation554

of average treatment effects using instrumental variables”. In: Journal of the Royal Statistical555

Society: Series B 80.3 (2018), pp. 531–550.556

[46] Yixin Wang and David M. Blei. “The blessings of multiple causes”. In: Journal of the American557

Statistical Association 114.528 (2019), pp. 1574–1596.558

[47] Jeffrey M. Wooldridge. Introductory Econometrics: A modern approach. Routledge, 2013.559

[48] Phillip G. Wright. The tariff on animal and vegitable oils. New York: Macmillan, 1928.560

[49] Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. “Deep proxy causal learning and its561

application to confounded bandid policy evaluation”. In: NeurIPS. 2021.562

12



[50] Liyuan Xu et al. “Learning deep features in instrumental variable regression”. In: ICLR. 2021.563

[51] Azam M. Yazdani and Eric Boerwinkle. “Causal inference in the age of decision medicine”.564

In: Journal of Data Mining in Genomics & Proteomics 6.1 (2015).565

[52] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “GANITE: Estimation of individu-566

alized treatment effects using generative adversarial nets”. In: ICLR. 2018.567

[53] Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. “Learning overlapping representations568

for the estimation of individualized treatment effects”. In: AISTATS. 2020.569

Checklist570

1. For all authors...571

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s572

contributions and scope? [Yes] See here573

(b) Did you describe the limitations of your work? [Yes] See Sec. 5.2.574

(c) Did you discuss any potential negative societal impacts of your work? [No]575

(d) Have you read the ethics review guidelines and ensured that your paper conforms to576

them? [Yes]577

2. If you are including theoretical results...578

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. 4.2579

and Appendix A..580

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.581

3. If you ran experiments...582

(a) Did you include the code, data, and instructions needed to reproduce the main experi-583

mental results (either in the supplemental material or as a URL)? [Yes] (both).584

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they585

were chosen)? [Yes] See Appendix E and G586

(c) Did you report error bars (e.g., with respect to the random seed after running ex-587

periments multiple times)? [Yes] One standard deviation using 5 random seeds, see588

Sec. 5.589

(d) Did you include the total amount of compute and the type of resources used (e.g., type590

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.591

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...592

(a) If your work uses existing assets, did you cite the creators? [Yes] See Sec. 5.2.593

(b) Did you mention the license of the assets? [No] No license is provided on the OHIE594

website.595

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]596

See Appendix D.597

(d) Did you discuss whether and how consent was obtained from people whose data you’re598

using/curating? [No] We only used simulated and publicly available data.599

(e) Did you discuss whether the data you are using/curating contains personally identifiable600

information or offensive content? [No] The OHIE data is publicly available, personally601

identifiable information are censored.602

5. If you used crowdsourcing or conducted research with human subjects...603

(a) Did you include the full text of instructions given to participants and screenshots, if604

applicable? [No] Not applicable.605

(b) Did you describe any potential participant risks, with links to Institutional Review606

Board (IRB) approvals, if applicable? [No] Not applicable.607

(c) Did you include the estimated hourly wage paid to participants and the total amount608

spent on participant compensation? [No] Not applicable.609

13



Estimating individual treatment effects under
unobserved confounding using binary instruments

Appendix

Anonymous Author(s)
Affiliation
Address
email

Contents1

A Proofs 22

A.1 Proof of Theorem 1 (multiple robustness property) . . . . . . . . . . . . . . . . . 23

A.2 Proof of Theorem 2 (Convergence rate of MRIV) . . . . . . . . . . . . . . . . . . 34

A.3 Proof of Theorem 3 (Convergence rate of the Wald estimator) . . . . . . . . . . . . 45

B Theoretical analysis under sparsity assumptions 56

C Simulated data 67

D Oregon health insurance experiment 88

E Details for baseline methods 99

E.1 ITE methods for unconfoundedness . . . . . . . . . . . . . . . . . . . . . . . . . 910

E.2 General IV methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

E.3 Wald estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112

F Visualization of predicted ITEs 1213

G Implementation details and hyperparameter tuning 1314

H Results for semi-synthetic data 1515

I Results for cross-fitting 1616

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



A Proofs17

We start by deriving an auxiliary Lemma. That is, we derive an explicit expression for the Stage 218

oracle pseudo outcome regression E[Ŷ0 | X = x] of MRIV.19

Lemma 4.
E[Ŷ0 | X = x]

=
π(x)

δ̂A(x)π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)
+

(1− π(x))

δ̂A(x)(1− π̂(x))

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

+
µ̂A
0 (x) τ̂init(x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ τ̂init(x)

(1)

Proof.

E[Ŷ0 | X = x] (2)

=π(x)E

[
Y −A τ̂init(X)− µ̂Y

0 (X) + µ̂A
0 (X) τ̂init(X)

δ̂A(X) π̂(X)

∣∣∣∣∣ X = x, Z = 1

]

+ (1− π(x))E

[
Y −A τ̂init(X)− µ̂Y

0 (X) + µ̂A
0 (X) τ̂init(X)

δ̂A(X) (1− π̂(X))

∣∣∣∣∣ X = x, Z = 0

]
+ τ̂init(x)

(3)

=
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)− µ̂Y
0 (x) + µ̂A

0 (x) τ̂init(x)
)

+
1− π(x)

δ̂A(x) (1− π̂(x))

(
µY
0 (x)− µA

0 (x) τ̂init(x)− µ̂Y
0 (x) + µ̂A

0 (x) τ̂init(x)
)
+ τ̂init(x) (4)

Rearranging the terms yields the desired result.20

A.1 Proof of Theorem 1 (multiple robustness property)21

We use Lemma 4 to show that under each of the three conditions it follows that E[Ŷ0 | X = x] = τ(x).22

1.
E[Ŷ0 | X = x] (5)

=
π(x)

δA(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ(x) + µA
0 (x) τ(x)− µY

0 (x)
)

+
(1− π(x))

δA(x) (1− π̂(x))

(
µA
0 (x) τ(x)− µY

0 (x)− µA
0 (x) τ(x) + µY

0 (x)
)
+ τ(x) (6)

=
π(x)

δA(x) π̂(x)
(δY (x)− δY (x)) + τ(x) = τ(x). (7)

2.

E[Ŷ0 | X = x] =

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)

δA(x)
+

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

δA(x)
+ τ̂init(x)

(8)

=
δY (x)− τ̂init(x) δA(x)

δA(x)
+ τ̂init(x) = τ(x). (9)

3.

E[Ŷ0 | X = x] =

(
µY
1 (x)− µA

1 (x) τ(x)
)

δ̂A(x)
+

(
µA
0 (x) τ(x)− µY

0 (x)
)

δ̂A(x)
+ τ(x) (10)

=
δY (x)

δ̂A(x)
− τ(x)

δA(x)

δ̂A(x)
+ τ(x) = τ(x) (11)
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A.2 Proof of Theorem 2 (Convergence rate of MRIV)23

To prove Theorem 2, we need an additional assumption on the second stage regression estimator Ên.24

We refer to Kennedy [8] (Theorem 1) for a detailed discussion on this assumption.25

Assumption 5 (From Theorem 1 of Kennedy [8]). The following two statements hold:26

1. Ên[W + c | X = x] = Ên[W | X = x] + c for any random W and constant c27

2. If E[W | X = x] = E[V | X = x] then28

E
[(

Ên[W | X = x]− E[W | X = x]
)2]

≍ E
[(

Ên[V | X = x]− E[V | X = x]
)2]

.

(12)

Proof of Theorem 2. Using Assumption 5, we can apply Theorem 1 of Kennedy [8] and obtain29

E
[
(τ̂init(x)− τ(x))

2
]
≲ R(x) + E

[
r̂(x)2

]
, (13)

where R(x) = E
[
(τ̃MR(x)− τ(x))

2
]

is the oracle risk of the second stage regression and r(x) =30

E[Ŷ0 | X = x]− τ(x). We can apply Lemma 4 to obtain31

r̂(x) =
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)
+

(1− π(x))

δ̂A(x) (1− π̂(x))

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

+
µ̂A
0 (x) τ̂init(x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ τ̂init(x)− τ(x) (14)

=

(
µY
1 (x)− µY

0 (x)

δ̂A(x)

)
π(x)

π̂(x)
+
µY
0 (x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ (τ̂init(x)− τ(x))

+

(
(µA

0 (x)− µA
1 (x)) τ̂init(x)

δ̂A(x)

)
π(x)

π̂(x)
+

(µ̂D
0 (x)− µD

0 (x)) τ̂init(x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
(15)

=
δY (x)π(x)

δ̂A(x) π̂(x)
+

(
µY
0 (x)− µ̂Y

0 (x)
)
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))
+ (τ̂init(x)− τ(x))

− δA(x)π(x) τ̂init(x)

δ̂A(x) π̂(x)
+

(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x) (π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))
(16)

=
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))

[(
µY
0 (x)− µ̂Y

0 (x)
)
+
(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x)

]
+ (τ̂init(x)− τ(x)) +

π(x)δA(x)

π̂(x)δ̂A(x)
(τ(x)− τ̂init(x)) (17)

=
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))

[(
µY
0 (x)− µ̂Y

0 (x)
)
+
(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x)

]
+ (τ(x)− τ̂init(x))

(
δA(x)− δ̂A(x)

)
π(x) + (τ(x)− τ̂init(x)) (π(x)− π̂(x)) δ̂A(x).

(18)

Applying the inequality (a+ b)2 ≤ 2(a2+ b2) together with Assumption 4 and the fact that π(x) ≤ 132

yields33

r̂(x)2 ≤ 4

ϵ4ρ2
(π(x)− π̂(x))

2
[(
µY
0 (x)− µ̂Y

0 (x)
)2

+
(
µ̂A
0 (x)− µA

0 (x)
)2
K2
]

+ 4 (τ(x)− τ̂init(x))
2
(
δA(x)− δ̂A(x)

)2
+ 4 (τ(x)− τ̂init(x))

2
(π(x)− π̂(x))

2
. (19)
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By setting K̃ = max{K, 1}, we obtain34

r̂(x)2 ≤ 4K̃2

ϵ4ρ2

(
(π(x)− π̂(x))

2
[(
µY
0 (x)− µ̂Y

0 (x)
)2

+
(
µ̂A
0 (x)− µA

0 (x)
)2

+ (τ̂init(x)− τ(x))
2
]

+ (τ(x)− τ̂init(x))
2
(
δA(x)− δ̂A(x)

)2)
. (20)

Applying expectations on both sides yields35

E
[
(τ̂init(x)− τ(x))

2
]

(21)

≲R(x) + E
[
(τ̂init(x)− τ(x))

2
](

E
[(
δ̂A(x)− δA(x)

)2]
+ E

[
(π̂(x)− π(x))

2
])

+ E
[
(π̂(x)− π(x))

2
] (

E
[(
µ̂Y
0 (x)− µY

0 (x)
)2]

+ E
[(
µ̂A
0 (x)− µA

0 (x)
)2])

, (22)

because (π̂(x), δ̂A(x)) ⊥⊥ (µ̂Y
0 (x), µ̂

A
0 (x), τ̂init(x)) due to sample splitting. The claim follows now36

by applying Assumption 3.37

A.3 Proof of Theorem 3 (Convergence rate of the Wald estimator)38

Proof. We define C̃ = max{C, 1} and obtain the upper bound39

(τ̂W (x)− τ(x))2 (23)

=

(
(µ̂Y

1 (x)− µY
1 (x)) δA(x) + (µY

0 (x)− µ̂Y
0 (x)) δA(x) + (δA(x)− δ̂A(x)) δY (x)

δA(x) δ̂A(x)

)2

(24)

≤ 4C̃2

ρ2ρ̃2

[
(µ̂Y

1 (x)− µY
1 (x))

2 + (µ̂Y
0 (x)− µY

0 (x))
2 + (δA(x)− δ̂A(x))

2
]

(25)

≤ 8C̃2

ρ2ρ̃2
[
(µ̂Y

1 (x)− µY
1 (x))

2 + (µ̂Y
0 (x)− µY

0 (x))
2 + (µ̂A

1 (x)− µA
1 (x))

2

+(µ̂A
0 (x)− µA

0 (x))
2
]
, (26)

where we used the inequality (a+ b)2 ≤ 2(a2 + b2) several times. Taking expectations and applying40

the smoothness assumptions yields the result.41
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B Theoretical analysis under sparsity assumptions42

In Sec. 4.2, we analyzed MRIV theoretically by imposing smoothness assumptions on the underlying43

data generating process. In particular, we derived a multiple robust convergence rate and showed44

that MRIV outperforms the Wald estimator if the oracle ITE is smoother than its components. In45

this section, we derive similar results by relying on a different set of assumptions. Instead of using46

smoothness, we make assumptions on the level of sparsity of the ITE components. This assumption47

is often imposed in high-dimensional settings (n < p) and is in line with previous literature on48

analyzing ITE estimators [4, 8].49

In the following, we say a function f(x) is k-sparse, if it is linear in x ∈ Rp and it only depends50

on k < min{n, p} predictors. [22] showed, that in this case the minimax rate of f(x) is given by51
k log(p)

n . The linearity assumption can be relaxed to an additive structural assumption, which we omit52

here for simplicity. In the following, we replace the smoothness conditions in Assumption 3 with53

sparsity conditions.54

Assumption 6 (Sparsity). We assume that (1) the nuisance components µY
i (·) are α-sparse, µA

i (·)55

and δA(·) are β-sparse, and π(·) is δ-sparse; (2) all nuisance components are estimated with their56

respective minimax rate of k log(p)
n , where k ∈ {α, β, δ}; and (3) the oracle ITE τ(·) is γ-sparse and57

the initial ITE estimator τ̂init converges with rate rτ (n).58

We restate now our result from Theorem 3 for MRIV using the sparsity assumption.59

Theorem 5 (MRIV upper bound under sparsity). We consider the same setting as in Theorem 260

under the sparsity assumption 6. If the second-stage estimator Ên yields the minimax rate γ log(p)
n61

and satisfies Assumption 5, the oracle risk is upper bounded by62

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲
γ log(p)

n
+ rτ (n)

(β + δ) log(p)

n
+

(α+ β)δ log2(p)

n2
.

Proof. Follows immediately from the proof of Theorem 2, i.e., from Eq.(21) by applying Ass- 6.63

Again, we obtain a multiple robust convergence rate for MRIV in the sense that MRIV achieves a fast64

rate even if the initial estimator or several nuisance estimators converge slowly. More precisely, for a65

fast convergence rate of τ̂MRIV(x), it is sufficient if either: (1) rτ (n) decreases fast and δ is small;66

(2) rτ (n) decreases fast and α and β are small; or (3) all α, β, and δ are small.67

We derive now the corresponding rate for the Wald estimator.68

Theorem 6 (Wald oracle upper bound). Given estimators µ̂Y
i (x) and µ̂A

i (x). Let δ̂A(x) = µ̂A
1 (x)−69

µ̂A
0 (x) satisfy Assumption 4. Then, under Assumption 6 the oracle risk of the Wald estimator τ̂W (x)70

is bounded by71

E
[
(τ̂W(x)− τ(x))2

]
≲

(α+ β) log(p)

n
(27)

Proof. Follows immediately from the proof of Theorem 3, i.e., from Eq.(23) by applying Ass- 6.72

If α = β = δ, we obtain the rates73

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲
γ log(p)

n
+
α2 log2(p)

n2
and E

[
(τ̂W(x)− τ(x))2

]
≲
α log(p)

n
,

(28)

which means that τ̂MRIV(x) outperforms τ̂W(x) for γ < α, i.e., if the oracle ITE is more sparse than74

its components.75
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C Simulated data76

In the following, we describe how we simulate synthetic data for the experiments in Sec. 5.1 from the77

main paper. As mentioned therein, we simulate the ITE components from Gaussian processes using78

the prior induced by the Matern kernel [12]79

Kℓ,ν(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

ℓ
∥xi − xj∥2

)ν

Kν

(√
2ν

ℓ
∥xi − xj∥2

)
, (29)

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of second kind. Here, ℓ80

is the length scale of the kernel and ν controls the smoothness of the sampled functions.81

We set ℓ = 1 and sample functions δY ∼ GP(0,Kℓ,γ), µY
0 ∼ GP(0,Kℓ,α), f1 ∼ GP(0,Kℓ,β),82

f0 ∼ GP(0,Kℓ,β) and g ∼ GP(0,Kℓ,β). Then, we define µY
1 = δY + µY

0 , µA
1 = 0.3 · σ ◦ f1 + 0.7,83

µA
0 = 0.3 · σ ◦ f0, δA = µA

1 − µA
0 , µY

0 = c0δA, and π = σ ◦ g. Finally, we set the oracle ITE to84

τ =
µY
1 − µY

0

µA
1 − µA

0

=
δY
δA
. (30)

Note that we can create a setup where the ITE τ is smoother than its components by using a small85

α/β ratio. An example is shown in Fig. 1.86

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

4

Y Z = 1
Y Z = 0

Y
1
Y
0

Figure 1: Gaussian process simulation for α = 1.5 and β = 50.

In the following, we describe how we generate data the (X,Z,A, Y ) using the ITE components87

µY
i (x), µ

A
i (x), and π(x). We begin by sampling n observed confounder X ∼ N (0, 1), unobserved88

confounders U ∼ N
(
0, 0.22

)
, and instruments Z ∼ Bernoulli(π(X)). Then, we obtain treatments89

via90

A = Z 1{U + ϵA > α1(X)}+ (1− Z)1{U + ϵA > α0(X)} (31)

with indicator function 1, noise ϵA ∼ N
(
0, 0.12

)
, and αi(X) = Φ−1

(
1− µA

i (X)
)√

0.12 + 0.22,91

where Φ−1 denotes the quantile function of the standard normal distribution. Finally, we generate the92

outcomes via93

Y = A

(
(µA

1 (X)− 1)µY
0 (X)− µA

0 (X)µY
1 (X) + µY

1 (X)

δA(X)

)
(32)

+ (1−A)

(
µA
1 (X)µY

0 (X)− µA
0 (X)µY

1 (X)

δA(X)

)
+ αUU + ϵY , (33)

where ϵY ∼ N
(
0, 0.32

)
is noise and αU > 0 is a parameter indicating the level of unobserved94

confounding. This choice of A and Y in Eq. (31) and Eq. (32), respectively, implies that τ(x) is95

indeed the ITE, i. e., it holds that τ(x) = E[Y (1)− Y (0) | X = x].96

6



Lemma 7. Let (X,Z,A, Y ) be sampled from the the previously described procedure. Then, it holds97

that98

µA
i (x) = E[A | Z = i,X = x] and µY

i (x) = E[Y | Z = i,X = x]. (34)

Proof. The first claim follows from99

E[A | Z = i,X = x] = P (U + ϵA > αi(x)) = 1− Φ(Φ−1(1− µA
i (x))) = µA

i (x), (35)

because U + ϵA ∼ N (0,
√
0.12 + 0.22). The second claim follows from100

E[Y | Z = i,X = x] = µA
i (x)

(
(µA

1 (x)− 1)µY
0 (x)− µA

0 (x)µ
Y
1 (x) + µY

1 (x)

δA(x)

)
(36)

+ (1− µA
i (x))

(
µA
1 (x)µ

Y
0 (x)− µA

0 (x)µ
Y
1 (x)

δA(x)

)
(37)

=
µY
i (x)δA(x)

δA(x)
= µY

i (x). (38)

101
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D Oregon health insurance experiment102

The so-called Oregon health insurance experiment1 (OHIE) [6] was an important RCT with non-103

compliance. It was intentionally conducted as large-scale effort among public health to assess the104

effect of health insurance on several outcomes such as health or economic status. In 2008, a lottery105

draw offered low-income, uninsured adults in Oregon participation in a Medicaid program, providing106

health insurance. Individuals whose names were drawn could decide to sign up for the program.107

In our analysis, the lottery assignment is the instrument Z, the decision to sign up for the Medicaid108

program is the treatment A, and an overall health score is the outcome Y . The outcome was obtained109

after a period of 12 months during in-person interviews. We use the following covariates X: age,110

gender, language, the number of emergency visits before the experiment, and the number of people111

the individual signed up with. The latter is used to control for peer effects, and it is important to112

include this variable in our analysis as it is the only variable influencing the propensity score (see113

below). We extract ∼ 10,000 observations from the OHIE data and plot the histograms of all variables114

in Fig. 2. We can clearly observe the presence of non-compliance within the data, because the115

ratio of treated / untreated individuals is much lower than the corresponding ratio for the treatment116

assignment.117
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Figure 2: Histograms of each variable in our sample from OHIE.

The data collection in the OHIE was done follows: After excluding individuals below the age118

of 19, above the age of 64, and individuals with residence outside of Oregon, 74,922 individuals119

were considered for the lottery. Among those, 29,834 were selected randomly and were offered120

participation in the program. However, the probability of selection depended on the number of121

household members on the waiting list: for instance, an individual who signed up with another person122

was twice as likely to be selected. From the 74,922 individuals, 57,528 signed up alone, 17,236123

signed up with another person, and 158 signed up with two more people on the waiting list. Thus, the124

probability of being selected conditional on the number of household members on the waiting list125

follows the multivariate version of Wallenius’ noncentral hypergeometric distribution [2].126

Propensity score: We computed the propensity score as follows. To account for the Wallenius’127

noncentral hypergeometric distribution, we use the R package BiasedUrn to calculate the propensity128

score π(x) = P(Z = 1 | X = x). We obtained129

π(x) =


0.345, if individual x signed up alone,
0.571, if individual x signed up with one more person,
0.719, if individual x signed up with two more people.

(39)

During the training of both MRIV and DRIV, we use the calculated values from Eq. (39) for the130

propensity score.131

1Data available here: https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-
experiment
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E Details for baseline methods132

In this section, we give a brief overview on the baselines which we used in our experiments. We133

implemented: (1) ITE methods for unconfoundedness [8, 13]; (2) general IV methods, i.e., IV134

methods developed for IV settings with multiple or continuous instruments and treatments [1, 7, 14,135

15, 20, 21]; and (3) two instantiations of the Wald estimator for the binary IV setting [16].136

E.1 ITE methods for unconfoundedness137

Many ITE methods assume unconfoundedness, i.e., that all confounders are observed in the data.138

Formally, the unconfoundedness assumption can be expressed in the potential outcomes framework139

as140

Y (1), Y (0) ⊥⊥ A | X. (40)
Under unconfoundedness, the ITE is identified as141

τ(x) = µ1(x)− µ0(x) with µi(x) = E[Y | A = i,X = x]. (41)
Methods that assume unconfoundedness proceed by estimating µi(x) = E[Y | A = i,X = x] from142

Eq. (41). However, if unobserved confounders U exist, it follows that143

τ(x) = E[Y | A = 1, X = x, U ]− E[Y | A = 0, X = x, U ] ̸= µ1(x)− µ0(x), (42)
which means that estimators that assume unconfoundedness are generally biased. Nevertheless, we144

include two baselines that assume unconfoundedness into our experiments: TARNet [13] and the145

DR-learner [8].146

TARNet [13]: TARNet [13] is a neural network that estimates the ITE components µi(x) from147

Eq. 41 by learning a shared representation Φ(x) and two potential outcome heads hi(Φ(x)). We train148

TARNet by minimizing the loss149

L(θ) =
n∑

i=1

L (hai(Φ(xi, θΦ), θhi), yi) , (43)

where θ = (θh1
, θh0

, θΦ) denotes the model parameters and L denotes squared loss if Y is continuous150

or binary cross entropy loss if Y is binary.151

Note regarding balanced representations: In [13], the authors propose to add an additional regular-152

ization term inspired from domain adaptation literature, which forces TARNet to learn a balanced153

representation Φ(x), i.e., that minimizes the distance the treatment and control group in the feature154

space. They showed that this approach leads to minimization of a generalization bound on the ITE155

estimation error if the representation is invertible.156

In our experiments, we refrained from learning balanced representations because minimizing the157

regularized loss from [13] does not necessarily result in an invertible representation and thus may158

even harm the estimation performance. For a detailed discussion, we refer to [4]. Furthermore,159

by leaving out the regularization, we ensure comparability between the different baselines. If160

balanced representations are desired, the balanced representation approach could also be extended to161

MRIV-Net, as we also build MRIV-Net on learning shared representations.162

DR-learner [8]: The DR-learner [8] is a meta learner that takes arbitrary estimators of the ITE163

componenets µi and the propensity score π(x) = P(A = 1 | X = x) as input and performs a pseudo164

outcome regression by using the pseudo outcome165

Ŷ0 =

(
A

π̂(X)
− 1−A

1− π̂(X)

)
Y +

(
1− A

π̂(X)

)
µ̂1(X)−

(
1− 1−A

1− π̂(X)

)
µ̂0(X). (44)

In our experiments, we use TARNet as base method to provide initial estimators µ̂i(X). We further166

learn propensity score estimates π̂(X) by adding a seperate representation to TARNet as done in167

[13].168

E.2 General IV methods169

2SLS [20]: 2SLS [20] is a linear two-stage approach. First, the treatments A are regressed on the170

instruments Z and fitted values Â are obtained. In the second stage, the outcome Y is regressed on Â.171

We implement 2SLS using the scikit-learn package.172
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KIV [14]: Kernel IV [14] generalizes 2SLS to nonlinear settings. KIV assumes that the data is173

generated by174

Y = f(A) + U, (45)
where U is an additive unobserved confounder and f is some unknown (potentially nonlinear)175

structural function. KIV then models the structural function via176

f(a) = µtψ(a) and E[ψ(A) | Z = z] = V ϕ(z), (46)
where ψ andϕ are feature maps. Here, kernel ridge regressions instead of linear regressions are used177

in both stages to estimate µ and V .178

Following [14] we use the exponential kernel [12] and set the length scale to the median inter-point179

distance. KIV does not provide a direct way to incorporate the observed confounders X . Hence, we180

augment both the instrument and the treatment with X , which is consistent with previous work [1,181

21]. We also use two different samples for each stage as recommended in [14].182

DFIV [21]: DFIV [21] is a similar approach KIV in generalizing 2SLS to nonlinear setting by183

assuming Eq. (45) and Eq. (46). However, instead of using kernel methods, DFIV models the features184

maps ψθA and ϕθZ as neural networks with parameters θA and θZ , respectively. DFIV is trained by185

iteratively updating the parameters θA and θZ . The authors also provide a training algorithm that186

incorporates observed confounders X , which we implemented for our experiments. During training,187

we used two different datasets for each of the two stages as described in in the paper.188

DeepIV [7]: DeepIV [7] also assumes additive unobserved confounding as in Eq. (45), but leverages189

the identification result [10]190

E[Y | X = x, Z = z] =

∫
h(a, x) dF (a | x, z), (47)

where h(a, x) = f(a, x) + E[U | X = x] is the target counterfactual prediction function. DeepIV191

estimates F (a | x, z), i.e., the conditional distribution function of the treatment A given observed192

covariates X and instruments Z, by using neural networks. Because we consider only binary193

treatments, we simply implement a (tunable) feed-forward neural network with sigmoid activation194

function. Then, DeepIV proceeds by learning a second stage neural network to solve the inverse195

problem defined by Eq. (47).196

DeepGMM [1]: DeepGMM [1] adopts neural networks for IV estimation inspired by the (optimally197

weighted) Generalized Method of Moments. The DeepGMM estimator is defined as the solution of198

the following minimax game:199

θ̂ ∈ argmin
θ∈Θ

sup
τ∈T

1

n

n∑
i=1

f(zi, τ)(yi − g(ai, θ))−
1

4n

n∑
i=1

f2(zi, τ)(yi − g(ai, θ̃))
2, (48)

where f(zi, ·) and g(ai, ·) are parameterized by neural networks. As recommended in [1], we solve200

this optimization via adversarial training with the Optimistic Adam optimizer [5], where we set the201

parameter θ̃ to the previous value of θ.202

DMLIV [15]: DMLIV [15] assumes that the data is generated via203

Y = τ(X)A+ f(X) + U, (49)
where τ is the ITE f some function of the observed covariates. First, DMLIV estimates the functions204

q(X) = E[Y | X], h(Z,X) = E[A | Z,X], and p(X) = E[A | X]. Then, the ITE is learned by205

minimizing the loss206

L(θ) =
∑
i=1

(yi − q̂(xi)− τ̂(xi, θ)(ĥ(zi, xi)− p̂(xi))
2, (50)

where τ̂(X, ·) is some model for τ(X). In our experiments, we use (tunable) feed-forward neural207

networks for all estimators.208

DRIV [15]: DRIV [15] is a meta learner, originally proposed in combination with DMLIV. It requires209

initial estimators for q(X), p(X), π(X) = E[Z | X = x], and f(X) = E[A · Z | X = x] as well210

as an initial ITE estimatior τ̂init(X) (e.g., from DMLIV). The ITE is then estimated by a pseudo211

regression on the following doubly robust pseudo outcome:212

ŶDR = τ̂init(X) +
(Y − q̂(X)− τ̂init(X)(A− p̂(X))Z − π̂(X))

f̂(X)− p̂(X)r̂(X)
. (51)
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We implement all regressions using (tunable) feed-forward neural networks.213

Comparison between DRIV vs. MRIV: There are two key differences between our paper and [15]:214

(i) Our MRIV is multiply robust, while DRIV is only doubly robust. (ii) We derive a multiple robust215

convergence rate, while the rate in [15] is not robust with respect to the nuisance rates.216

Ad (i): Both MRIV and DRIV perform a pseudo-outcome regression on the efficient influence217

function (EIF) of the ATE. The key difference: DRIV uses the doubly robust parametrization of the218

EIF from [11], whereas we use the multiply robust parametrization of the EIF from [17] 2. Hence,219

our MRIV frameworks extends DRIV in a non-trivial way to achieve multiple robustness (rather220

than doubly robustness). Thus, our estimator is consistent in the union of three different model221

specifications rather than two.3222

Ad (ii): Here, we compare the convergence rates from DRIV and our MRIV and, thereby, show the223

strengths of our MRIV. To this end, let us assume that the pseudo regression function is γ-smooth and224

that we use the same second-stage estimator Ên with minimax rate n−
2γ

2γ+p for both DRIV and MRIV.225

If the nuisance parameters q(X), p(X), f(X), and π(X) are α-smooth and further are estimated226

with minimax rate n
−2α
2α+p , Corollary 4 from [15] states that DRIV converges with rate227

E
[
(τ̂DRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + n

−4α
2α+p .

In contrast, MRIV assumes estimation of the nuisance parameters µY
0 (x) with rate n

−2α
2α+p , µA

0 (x)228

and δA(x) with rate n
−2β
2β+p , and π(x) with rate n

−2δ
2δ+p . If the initial estimator τ̂init(x) converges with229

rate rτ (n), our Theorem 2 yields the rate230

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + rτ (n)

(
n

−2β
2β+p + n

−2δ
2δ+p

)
+ n−2( α

2α+p+
δ

2δ+p ) + n−2( β
2β+p+

δ
2δ+p ).

If all nuisance parameters converge with the same minimax rate of n
−2α
2α+p , the rates of DRIV and231

our MRIV coincide. However, different to DRIV, our rate is additionally multiple robust in spirit of232

Theorem 1. This presents a crucial strength of our MRIV over DRIV: For example, if δ is small (slow233

convergence of π̂(x)), our MRIV still with fast rate as long as α and β are large (i.e., if the other234

nuisance parameters are sufficiently smooth).235

E.3 Wald estimator236

Finally, we consider the Wald estimator [16] for the binary IV setting. More precisely, we estimate237

the ITE components µY
i (x) and µA

i (x) seperately and plug them into238

τ(x) =
µ̂Y
1 (x)− µ̂Y

0 (x)

µ̂A
1 (x)− µ̂A

0 (x)
. (52)

We consider two versions of the Wald estimator:239

Linear: We use linear regressions to estimate the µY
i (x) and logistic regressions to estimate the240

µA
i (x).241

BART: We use Bayesian additive regression trees [3] trees to estimate the µY
i (x) and random forest242

classifier to estimate the µA
i (x).243

2For a detailed discussion on multiple robustness and the importance of the EIF parametrization, we refer to
[18], Section 4.5.

3On a related note, a similar, important contribution of developing multiply robust method was recently made
for the average treatment effect. Here, the estimator of [11] was extended by the estimator of [17] to allow for
multi robustness. Yet, this different from our work in that it focuses on the average treatment effect, while we
study the individual treatment effect in our paper.
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F Visualization of predicted ITEs244

We plot the predicted ITEs for the different baselines and MRIV-Net in Fig. 3 (for n = 3000). As245

expected, the linear methods (2SLS and linear Wald) are not flexible enough to provide accurate246

ITE estimates. We also observe that the curve of MRIV-Net without MRIV is quite wiggly, i.e., the247

estimator has a relatively large variance. This variance is reduced when the full MRIV-Net is applied.248

As a result, curve is much smoother. This is reasonable because MRIV does not estimate the ITE249

components individually, but estimates the ITE directly via the Stage 2 pseudo outcome regression.250

Overall, this confirms the superiority of our proposed framework.251

X
3

2

1

0

1

2

3

Y

Method = TARNet

X

Y

Method = 2SLS

X

Y

Method = KIV

X

Y

Method = DFIV

X
3

2

1

0

1

2

3

Y

Method = DeepIV

X

Y

Method = DeepGMM

X

Y

Method = DMLIV

2 0 2
X

Y

Method = Wald (linear)

2 0 2
X

3

2

1

0

1

2

3

Y

Method = Wald (BART)

2 0 2
X

Y

Method = MRIV-Net (network only)

2 0 2
X

Y

Method = MRIV-Net

Figure 3: Predicted ITEs (blue) and oracle ITE (red) for different baselines.
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G Implementation details and hyperparameter tuning252

Implementation details for deep learning models: To make the performance of the deep learning253

models comparable, we implemented all feed-forward neural networks (including MRIV-Net) as254

follows: We use two hidden layers with RELU activation functions. We also incorporated a dropout255

layer for each hidden layer. We trained all models with the Adam optimizer [9] using 100 epochs.256

Exceptions are only DFIV and DeepGMM, where we used 200 epochs for training, accounting for257

slower convergence of the respective (adversarial) training algorithms. For DeepGMM, we further258

used Optimistic Adam [5] as in the original paper.259

Training times: We report the approximate times needed to train the deep learning models on260

our simulated data with n = 5000 in Table 1. For training, we used an AMD Ryzen Pro 7 CPU.261

Compared to DMLIV and DRIV, the training of MRIV-Net is faster because only a single neural262

network is trained.263

Table 1: Training times for deep learning models (in seconds).

TARNet TARNet + DR DFIV DeepIV DeepGMM DMLIV DMLIV + DRIV MRIV-Net

∼10.62 ∼28.57 ∼164.98 ∼30.21 ∼17.31 ∼74.98 ∼91.12 ∼32.20

Hyperparameter tuning: We performed hyperparameter tuning for all deep learning models264

(including MRIV-Net), KIV, and the BART Wald estimator on all datasets. For all methods except265

KIV and DFIV, we split the data into a training set (80%) and a validation set (20%). We then266

performed 40 random grid search iterations and chose the set of parameters that minimized the267

respective training loss on the validation set. In particular, the tuning procedure was the same for268

all baselines, which ensures that the performance gain of MRIV-Net is due to the method itself269

and not due to larger flexibility. Exceptions are only KIV and DFIV, for which we implemented270

the customized hyperparameter tuning algorithms proposed in [14] and [21] to ensure consistency271

with prior literature. For the meta learners (DR-learner, DRIV, and MRIV), we first performed272

hyperparameter tuning for the base methods and nuisance models, before tuning the pseudo outcome273

regression neural network by using the input from the tuned models. The tuning ranges for the274

hyperparameter are shown in Table 2. These include both the hyperparameter rangers shared across275

all neural networks and the model-specific hyperparameters. For reproducibility purposes, we publish276

the selected hyperparameters in our GitHub project as .yaml files.4277

Table 2: Hyperparameter tuning ranges.

MODEL HYPERPARAMETER TUNING RANGE

Feed-forward neural networks Hidden layer size(es) p, 5p, 10p, 20p, 30p (simulated data)
(Shared parameter ranges p, 3p, 5p, 8p, 10p (OHIE)
for all deep learning baselines) Learning rate 0.0001, 0.0005, 0.001, 0.005, 0.01

Batch size 64, 128, 256
Dropout probability 0, 0.1, 0.2, 0.3

KIV λ (Ridge penalty first stage) 5, 6, 7, 8, 9, 10, 12
ξ (Ridge penalty second stage) 5, 6, 7, 8, 9, 10, 12

DFIV λ1 (Ridge penalty first stage) 0.0001, 0.001, 0.01, 0.1 (simulated data)
0.01, 0.05, 0.1 (OHIE)

λ2 (Ridge penalty second stage) 0.0001, 0.001, 0.01, 0.1 (simulated data)
0.01, 0.05, 0.1 (OHIE)

DeepGMM λf (learning rate multiplier) 0.5, 1, 1.5, 2, 5
Wald (BART) Number of trees (BART) 20, 30, 40, 50

Number of trees (Random forest classifier) 20, 30, 40, 50
p = network input size

Hyperparameter robustness checks: We also investigate the robustness of MRIV-Net with respect278

to hyperparameter choice. To to this, we fix the optimal hyperparameter constellation for our simulated279

data for n = 3000 and perturb the hidden layer sizes, learning rate, dropout probability, and batch size.280

4Codes are in the supplementary materials. Codes are also available at
https://anonymous.4open.science/r/MRIV-Net-0AC4 (Upon acceptance, we replace the link and point
to a public GitHub repository).
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The results are shown in Fig. 4. We observe that the RMSE only changes marginally when perturbing281

the different hyperparameters, indicating that our method is to a certain degree robust against282

hyperparameter misspecification. Furthermore, our results indicate that the performance improvement283

of MRIV-Net over the baselines observed in our experiments is not due to hyperparameter tuning,284

but to our method itself.285
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Figure 4: Robustness checks for different hyperparameters of MRIV-Net.
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H Results for semi-synthetic data286

In the main paper, we evaluated MRIV-Net both on synthetic and real-world data. Here, we provide287

additional results by constructing a semi-synthetic dataset on the basis of OHIE. It is common practice288

in causal inference literature to use semi-synthetic data for evaluation, because it combines advantages289

of both synthetic and real-world data. On the one hand, the real-world data part ensures that the290

data distribution is realistic and matches those in practice. On the other hand, the counterfactual291

ground-truth is still available, which makes it possible to measure the performance of ITE methods.292

We construct our semi-synthetic data as follows: First, we extract the covariates X ∈ R5 and instru-293

ments Z ∈ {0, 1} of our OHIE dataset from Sec. D. Then, we construct the treatment components294

µA
i (x) via295

µA
1 (X) = 0.3 · σ(X1) + 0.7 and µA

0 (X) = 0.3 · σ(X1), (53)
where X1 is the (standardized) age and σ(·) is the sigmoid function. The outcome components are296

constructed via297

µY
1 (X) = 0.5X2

1 +

5∑
i=2

X2
i and µY

0 (X) = −0.5X2
1 +

5∑
i=2

X2
i . (54)

We then sample treatments A and outcomes Y as in Eq. (31) and Eq. (32). Lemma 7 ensures that298

µY
i (X) = E[Y | Z = i,X] and µA

i (X) = E[A | Z = i,X].299

Given the above, the oracle ITE becomes300

τ(X) =
X2

1

0.7
. (55)

Note that τ(X) is sparse in the sense that it only depends on age, while the outcome components301

depend on all five covariates. Following our theoretical analysis in Sec. B, MRIV-Net should thus302

outperform methods that aim at estimating the components directly. This is confirmed in Table 3,303

where we show the results for all baselines and MRIV-Net on the semi-synthetic data. Indeed, we304

observe that MRIV-Net outperforms all other baselines, confirming both the superiority of our method305

as well as our theoretical results under sparsity assumptions from Sec. B.306

Table 3: Results for semi-synthetic data.

Method n = 3000 n = 5000 n = 8000

(1) STANDARD ITE
TARNet [13] 1.66± 0.11 1.58± 0.07 1.57± 0.11
TARNet + DR [13, 8] 1.31± 0.28 1.22± 0.37 1.12± 0.15

(2) GENERAL IV
2SLS [19] 1.34± 0.06 1.31± 0.03 1.32± 0.02
KIV [14] 1.97± 0.10 1.92± 0.05 1.93± 0.05
DFIV [21] 1.67± 0.44 1.63± 0.47 1.45± 0.17
DeepIV [7] 1.24± 0.26 0.99± 0.22 0.84± 0.19
DeepGMM [1] 1.39± 0.03 1.37± 0.16 1.18± 0.16
DMLIV [15] 2.12± 0.10 2.09± 0.09 2.02± 0.11
DMLIV + DRIV [15] 1.22± 0.10 1.18± 0.19 1.00± 0.08

(3) WALD ESTIMATOR [16]
Linear 1.42± 0.24 1.28± 0.07 1.32± 0.07
BART 1.48± 0.24 1.29± 0.04 1.06± 0.13

MRIV-Net (network only) 1.11± 0.15 0.84± 0.14 0.95± 0.21
MRIV-Net (ours) 0.71 ± 0.24 0.75 ± 0.18 0.78 ± 0.26

Reported: RMSE (mean ± standard deviation). Lower = better (best in bold)
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I Results for cross-fitting307

Here, we repeat our experiments from the main paper but now make use of cross-fitting. Recall that,308

in Theorem 2, we assume that the nuisance parameter estimation and the pseudo-outcome regression309

are performed on three independent samples. We now address this through cross-fitting. To this end,310

our aim is to show that our proposed MRIV framework is again superior.311

For MRIV, we proceeded as follows: We split the sample D into three equally sized samples D1, D2,312

and D3. We then trained τ̂init(x), µ̂Y
0 (x), and µ̂A

0 (x) on D1, δ̂A(x) and π̂(x) on D2, and performed313

the pseudo-outcome regression on D3. Then, we repeated the same training procedure two times, but314

performed the pseudo-outcome regression on D2 and D1. Finally, we averaged the resulting three315

ITE estimators. For DRIV, we implemented the cross-fitting procedure described in [15]. For the316

DR-learner, we followed [8].317

The results are in Table H. Importantly, the results confirm the effectiveness of our proposed MRIV.318

Overall, we find that our proposed MRIV outperforms DRIV for the vast majority of base methods319

when performing cross-fitting. Furthermore, MRIV-Net is highly competitive even when comparing320

it with the cross-fitted estimators. This shows that our heuristic to learn separate representations321

instead of performing sample splits works in practice. In sum, the results confirm empirically that our322

MRIV is superior.323

Table 4: Results for base methods with different meta-learners (i.e., DRIV, and our MRIV) using
cross-fitting and results for MRIV-Net without cross-fitting.

n = 3000 n = 5000 n = 8000
hhhhhhhhhhhhhhBase methods

Meta-learners
DRIV MRIV (ours) DRIV MRIV (ours) DRIV MRIV (ours)

(1) STANDARD ITE
TARNet [13] 0.30 ± 0.02 0.36± 0.16 0.18± 0.06 0.16 ± 0.03 0.21± 0.08 0.13 ± 0.04
TARNet + DR-learner [13, 8] 0.85± 0.11 0.66± 0.08 0.67± 0.12

(2) GENERAL IV
2SLS [19] 0.42± 0.11 0.33 ± 0.09 0.20 ± 0.07 0.23± 0.11 0.24± 0.10 0.14 ± 0.02
KIV [14] 0.47± 0.18 0.45 ± 0.15 0.20± 0.06 0.19 ± 0.08 0.22± 0.04 0.15 ± 0.03
DFIV [21] 0.35± 0.05 0.28 ± 0.09 0.22± 0.10 0.18 ± 0.08 0.24± 0.12 0.16 ± 0.04
DeepIV [7] 0.38 ± 0.09 0.44± 0.16 0.20± 0.07 0.19 ± 0.07 0.20± 0.08 0.12 ± 0.02
DeepGMM [1] 0.42 ± 0.09 0.42 ± 0.16 0.19 ± 0.04 0.19 ± 0.07 0.22± 0.06 0.13 ± 0.02
DMLIV [15] 0.44 ± 0.09 0.46± 0.16 0.21± 0.04 0.19 ± 0.07 0.21± 0.05 0.14 ± 0.02

(3) WALD ESTIMATOR [16]
Linear 0.47± 0.23 0.36 ± 0.12 0.24± 0.05 0.20 ± 0.08 0.22± 0.05 0.15 ± 0.02
BART 0.43± 0.12 0.39 ± 0.12 0.14± 0.05 0.13 ± 0.05 0.23± 0.08 0.15 ± 0.02

MRIV-Net\w network only (ours) 0.35± 0.12 0.26 ± 0.11 0.19± 0.13 0.15 ± 0.03 0.18± 0.08 0.13 ± 0.03

Reported: RMSE (mean ± standard deviation). Lower = better (best in bold)
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