
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID MAMBA–TRANSFORMER DECODER FOR
ERROR-CORRECTING CODES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel deep learning method for decoding error correction codes
based on the Mamba architecture, enhanced with Transformer layers. Our approach
proposes a hybrid decoder that leverages Mamba’s efficient sequential modeling
while maintaining the global context capabilities of Transformers. To further
improve performance, we design a novel layer-wise masking strategy applied to
each Mamba layer, allowing selective attention to relevant code features at different
depths. Additionally, we introduce a progressive layer-wise loss, supervising the
network at intermediate stages and promoting robust feature extraction throughout
the decoding process. Comprehensive experiments across a range of linear codes
demonstrate that our method outperforms or matches Transformer-only decoders
while improving complexity.

1 INTRODUCTION

Deep learning–based decoders have achieved remarkable success in decoding error-correcting codes
in recent years. Notable examples include Neural Belief Propagation (Nachmani et al., 2018), which
learns weights of the message-passing algorithm; Neural Min-Sum (Lugosch & Gross, 2017; Dai
et al., 2021a), which approximates the classical min-sum decoder with trainable parameters; Neural
RNN decoder (Kim et al., 2018) for convolutional and turbo error correcting codes. Recently,
diffusion-based decoders (Choukroun & Wolf, 2022a), which model channel noise as a diffusion
process that can be reversed; and Transformer-based decoders (Choukroun & Wolf, 2022b; 2024b;
Park et al., 2024; Zheng et al.), which exploit self-attention to capture the code structure, reached
state-of-the-art performance in neural decoding. However, despite their individual strengths, these
methods either incur a high computational cost, compared to classical decoders, or fail to achieve
state-of-the-art performance on some codes.

In this work, we propose a novel hybrid decoder that combines the Mamba architecture (Gu &
Dao, 2023) - known for its highly efficient sequential modeling and low runtime latency - with
Transformer layers (Vaswani et al., 2017) that provide global receptive fields throughout the codeword.
Concretely, we introduce a layer-wise masking strategy within each Mamba block, enabling the
model to selectively focus on the most informative subsets of bits at varying depths. To further
bolster the training dynamics, we propose a layer-wise loss that provides intermediate supervision
at each decoding stage. This auxiliary loss not only promotes better gradient propagation through
deep networks but also encourages the extraction of the decoded codeword at each stage enabling
intermediate estimation of the decoded codeword.

Extensive experiments on a diverse suite of binary linear block codes, including BCH, Polar,
and LDPC codes, demonstrate that our Mamba–Transformer decoder consistently surpasses both
Transformer-only decoders and conventional Mamba implementations. We report relative improve-
ments of up to 18% in BER for BCH and Polar codes, and is on par with LDPC codes, while
improving inference speed compared to previous works.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

2.1 NEURAL DECODERS

In recent years, the study of deep learning-based decoders for error correction codes has emerged as
a vibrant and rapidly evolving research area (Gruber et al., 2017). Two broad paradigms have been
pursued: model-based architectures, which embed the structure of classical decoding algorithms into
neural networks, and model-free architectures, which treat decoding as a purely data-driven mapping.

Model-based neural decoders In model-based approaches, the computational graph of a traditional
message-passing decoder is reinterpreted as a deep network with trainable parameters. Neural Belief
Propagation (NBP) first demonstrated this idea by assigning learnable weights to the edges and
messages of the belief propagation algorithm, resulting in a decoder that jointly optimizes its update
rules through gradient-based training (Nachmani et al., 2016). Building on NBP, the Neural Min-Sum
decoder approximates the classical Min-Sum algorithm by introducing scalar and vector weight
parameters into its summation and normalization steps (Lugosch & Gross, 2017; Dai et al., 2021b;
Kwak et al., 2022; 2023). This parameterization retains the low-complexity structure of Min-Sum
while achieving performance on par with more expensive decoders. To further reduce inference
cost, pruning techniques have been applied to compress these networks, systematically removing
redundant connections and yielding lightweight variants without significant performance degradation
(Buchberger et al., 2020).

Model-free neural decoders In contrast, model-free decoders rely solely on the representational
power of generic neural architectures. Early work employed fully-connected networks to directly
map noisy codewords to their nearest valid codewords, demonstrating feasibility on short block
codes (Cammerer et al., 2017). Subsequent studies showed that such networks can scale to moderate
block lengths without overfitting (Bennatan et al., 2018). More advanced generative frameworks
have also been introduced: diffusion-based decoders model the channel corruption as a forward
stochastic process and learn to reverse it via a sequence of denoising steps, achieving impressive
gains under various noise conditions (Choukroun & Wolf, 2022a). Meanwhile, Transformer-based
decoders exploit self-attention to capture long-range code constraints; notable examples include the
Error Correction Code Transformer with its extensions (Choukroun & Wolf, 2022b; 2024a;b;c) and
recent variants employing layer-wise masking and cross-message-passing modules to enhance both
expressivity and decoding speed (Park et al., 2023; 2024).

2.2 MAMBA ARCHITECTURE

In recent years, State-Space Models (SSMs) have attracted considerable attention as an alternative
to purely attention-based architectures for sequence modeling, due to their ability to capture long-
range dependencies with favorable computational and memory efficiency (Gu et al., 2021a;b). A
landmark contribution in this domain is the Structured State Space Sequence (S4) model, which
leverages parameterized linear dynamical systems and the HiPPO framework (Gu et al., 2020) to
achieve expressive, convolutional representations of sequential data. Building upon S4, subsequent
work proposed the Mamba architecture, wherein the SSM’s convolutional kernels are dynamically
generated as functions of the input sequence (Gu & Dao, 2023; Dao & Gu, 2024). Empirical
evaluations demonstrate that Mamba attains inference speeds up to five times faster than comparable
Transformer models while scaling seamlessly to input lengths on the order of millions of elements.
Moreover, when Mamba is integrated with Transformer layers in a hybrid configuration, the resulting
model consistently surpasses both standalone Transformer and S4 architectures in a range of language
and time-series benchmarks.

3 BACKGROUND

In this section, we formalize the decoding setup for binary linear block codes using the notation of
Choukroun & Wolf (2022b). Let C ⊆ Fn

2 be a binary linear block code of length n and dimension
k, defined by its parity-check matrix H ∈ F(n−k)×n

2 . A vector x ∈ Fn
2 is a valid codeword if and

only if H x = 0 . Transmission occurs over an Additive White Gaussian Noise (AWGN) channel

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with Binary Phase-Shift Keying (BPSK) modulation. Under this model, the codeword x ∈ {0, 1}n
is mapped to xs ∈ {±1}n ⊂ Rn and corrupted by Gaussian noise z ∼ N (0, σ2In), yielding the
received vector y = xs + z . To enforce invariance to the transmitted codeword and mitigate
overfitting, we construct the decoder input from the magnitude of the channel output and its syndrome
as in (Bennatan et al., 2018). First, we obtain the hard-decision vector yb = 1−sign(y)

2 ∈ {0, 1}n,
and then compute the syndrome s = H yb ∈ Fn−k

2 . Finally, we concatenate the amplitude
|y| ∈ Rn with the syndrome s to form the decoder input yin =

[
|y| s

]
∈ Rn+(n−k) , which is

provided to the proposed Mamba–Transformer decoder.

4 METHOD - MAMBA-TRANSFORMER DECODER

(a) Model Blocks

(b) Mamba block structure

(c) Model output processing

(d) Attention block structure

Figure 1: ECCM architecture

The ECCM model is composed of Nlayers layers, the layers alternate between Mamba layers and
attention layers, starting with a Mamba layer. The layers li where i ∈ 1, 3, ... are Mamba layers and
the layers li where i ∈ 2, 4, ... are attention blocks. The input to the li layer is denoted yi−1, with

y0[l, d] = yin[l]Wemb[l, d] (1)

where W i
emb ∈ RL×D, l ∈ [1, L], d ∈ [1, D], where D is the model hidden dimension, L = 2n− k,

and ⊙ represents the element-wise multiplication operator. Note that yi for i > 0, will be the
output of the i-th layer. The architecture uses two masks produced from the parity check matrix,
f(H) ∈ Z(n−k)×(2n−k)

2 and g(H) ∈ Z(2n−k)×(2n−k)
2 , which are used by the Mamba layers and

attention layers, respectively. The g(H) mask is taken from (Choukroun & Wolf, 2022b):

g(H) =

[
Graph(H) HT

H In−k

]
(2)

and Graph(H) ∈ Rn×n

Graph(H)[i, j] =

{
1, ∃m ∈ [1, n− k] such that H[m, i] = 1 and H[m, j] = 1

0, otherwise
(3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The g(H) mask ensures that only pairs on the same parity check line are computed, which reduces
the complexity of the attention operation and induces knowledge of the code into the model.

The proposed f(H) mask is designed to have the same effect on the SSM process. By applying it
to the matrices of the operation, the effect of the input in a specific position only changes the state
for bits that are on the same parity check line. Ensuring that interactions only happen along the
parity check lines, and across all of the parity check line in contrast to the pairwise interaction of a
transformer block.

f(H) = [H In−k] (4)

4.0.1 MAMBA BLOCK

Each Mamba block contains the following operations: First, yi−1 is projected with two learnable
matrices W i

u,W
i
z ∈ RD×D:

ui = yi−1(W i
u)

T (5)

zi = SiLU(yi−1(W i
z)

T) (6)

where ui, zi ∈ RL×D and SiLU is the activation function (Hendrycks & Gimpel, 2023). Then apply
1D-Convolution layer Convi to ui over the sequence length:

ui
conv = SiLU(Convi

(
ui
)
) (7)

where ui
conv ∈ RL×D. Then we apply the Selective-State-Space Model Gu & Dao (2023) with

modification to the error-correcting code scenario. First, ui
conv is projected to Bi, Ci ∈ RL×S where

S is the dimension of the state.
Bi = ui

convW
i
b

T
(8)

Ci = ui
convW

i
c

T
(9)

Where W i
b ,W

i
c ∈ RS×D are learnable matrices. Then we apply the discretization process (as

described in Gu & Dao (2023)) on matrices Bi, and Ai where Ai ∈ RD×S which is a learnable
matrix. First, generate the ∆i ∈ RL×D matrix:

∆i = ui
conv(W

i
∆)

T (10)

where W i
∆ ∈ RD×D is a learnable matrix. Second, initialize the tensors Āi, B̄i ∈ RL×D×S ,

Āi[l, d, s] = exp(Ai[d, s]∆i[l, d]) (11)

B̄i[l, d, s] = Bi[l, s]∆i[l, d] (12)

where l ∈ [1, L], s ∈ [1, S], d ∈ [1, D].

Here, the error-code-specific modification is inserted, using a mask. Generate the mask matrix f(H).
Then apply the mask to the matrices B̄i and Ci creating the matrices B̄i

M and Ci
M , respectively.

B̄i
M [l, d, s] =

{
f(H)[l, d]B̄i[l, d, s] d < (2n− k)

0 otherwise
(13)

where l ∈ [1, L], s ∈ [1, S], d ∈ [1, D]

Ci
M [l, s] =

{
f(H)[l, s]Ci[l, s] s < (2n− k)

0 otherwise
(14)

Apply the SSM process in which a series of states hl ∈ RD×S is calculated:

hl[d, s] = Ā[l, d, s]hl−1[d, s] + B̄i
M [l, d, s]ui

conv[l, d] (15)

ui
ssm[l, d] =

S∑
i=1

hl[d, i]C
i
M [l, i] +R[d]ui

conv[l, d]

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where R ∈ RD is a learnable vector, and h0 is initialized to a vector of zeros.

Then we apply the gating from Eq.6:
ui
fwd = zi ⊙ ui

ssm (16)

Up to this point, the description was of the processing in the causal direction. Now apply the reverse
direction processing in order to achieve a bidirectional Mamba block. Meaning, substitute yi−1,H
and ui

fwd with←−y i−1,
←−−−
f(H) and←−u i

fwd. And apply Eq.5 through Eq.16 where:
←−y i−1[l, d] = yi−1[L− l, d] (17)
←−−−
f(H)[l, d] = f(H)[L− l, d] (18)

and←−u i
fwd is the output of the process. Then calculate ui

bwd ∈ RL×D

ui
bwd[l, d] =

←−u i
fwd[L− l, d] (19)

and then the output of the block yi ∈ RL×D is calculated.
yi = ui

fwd + ui
bwd (20)

4.1 TRANSFORMER BLOCK

First, compute the queries, keys, and values Qi,Ki, V i ∈ RL×D using the input yi−1:
Qi = yi−1W i

Q + biQ

Ki = yi−1W i
K + biK

V i = yi−1W i
V + biV

(21)

where W i
Q,W

i
K ,W i

V ∈ RD×D and biQ, b
i
K , biV ∈ RD are learned parameters. These are reshaped

into h attention heads with per-head dimension dk = D/h:

Q̃i, K̃i, Ṽ i ∈ Rh×L×dk . (22)
Then apply the HPSA mechanism as described in (Levy et al., 2025):

Õi, αi = HPSA(Q̃i, K̃i, Ṽ i, g(H)), (23)

with Õi ∈ Rh×L×dk and αi ∈ Rh×L×L. The outputs from all heads are concatenated Oi ∈ RL×D:
Oi = concat(Õi). (24)

Finally, the output of the attention block is computed as yia ∈ RL×D:
yia = OiW i

O + biO (25)
where W i

O ∈ RD×D and biO ∈ RD. Then apply layer norm (Ba et al., 2016) to calculate ỹia ∈ RL×D.
ỹia = LayerNorm(yia) (26)

Then yi ∈ RL×D is calculated:
yi = ReLU(ỹiaW

i
1 + b1)W2 + b2 (27)

where W1 ∈ RD×4D, b1 ∈ R4D, W2 ∈ R4D×D, b2 ∈ RD are learnable parameters.

4.2 MODEL OUTPUT

After each layer, yi is projected down to oi ∈ Rn using wr ∈ RD,br ∈ RL,Ws ∈ Rn×L,bs ∈ Rn

which are learnable parameters:
oi = σ(Ws(y

iwr + br) + bs) (28)
where σ is the sigmoid function. The syndrome is calculated:

si = H(oi > 0.5) (29)
if si = s the processing is stopped - and set ilast = i, if si ̸= s ∀ i ∈ [1, Nlayers] set ilast = Nlayers
1

Note that the model output is an estimate for the input’s multiplicative noise, therefore in order to
calculate the estimated code-word:

ĉi[l] =
1− sign((1− 2oi[l])y[l])

2
(30)

1For implementation details in the batch case see Appendix: Early Stopping

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 LOSS FUNCTION

In order to calculate the loss, first calculate in which bit an error occurred as in Bennatan et al. (2018)

z[k] =
1− sign((1− 2c[k])y[k])

2
(31)

where k ∈ [1, n]

Then calculate the Binary Cross Entropy (BCE) between oi and z, and sum over all the outputs.

Loss =

ilast∑
i

BCE(oi, z) (32)

5 EXPERIMENTS

To evaluate the proposed decoder, we train it on four classes of linear block codes:
Bose–Chaudhuri–Hocquenghem (BCH) codes (Bose & Ray-Chaudhuri, 1960), Low-Density Parity-
Check (LDPC) codes (Gallager, 2003), Polar codes (Arikan, 2009), and MacKay codes. The
corresponding parity-check matrices are obtained from Helmling & Scholl (2016). Training samples
are generated at six signal-to-noise ratio (SNR) levels, SNR ∈ {2, . . . , 7} dB, and are then added
to the generated message to simulate an AWGN channel. We use the zero-codeword in the training
process in order to verify that the model doesn’t overfit the codewords it sees, by simply changing to
random codewords on model evaluation. The Adam (Kingma & Ba, 2017) optimizer was configured
with a learning rate of 2.5 × 10−4 and decays to 10−10 following a cosine (Loshchilov & Hutter,
2017) schedule. The training was done with a batch size of 128 and 1000 batches per epoch. In all
the experiments we set D = 128, Nblocks = 8, h = 8, S = 128, where D is the embedding size, S is
the Mamba block’s state size, h is the number of attention heads, and Nblocks is the number of blocks,
meaning there are 4 Mamba blocks and 4 attention blocks, the resulting model has a similar number
of parameters to previous methods at approx 1.2M . For evaluation, we simulate test examples at
SNR levels of 4dB, 5dB, and 6dB, and report the negative natural logarithm of the bit error rate,
− ln

(
BER

)
. Each evaluation run is continued until a fixed number of decoding errors, 500, has been

observed similar to (Park et al., 2024).

6 RESULTS AND DISCUSSIONS

In Tab.1, the results are presented compared to previous methods, For each code 6 methods are
presented: BP, ARBP, ECCT, AECCT, CrossMPT, and our own method ECCM. For each, the table
shows the negative natural log of the BER at SNR levels 4dB, 5dB, and 6dB. The best method is
marked in bold, in places where reported results were not available the "-" mark was used. The
table shows that ECCM consistently outperforms all the other methods across all BCH codes, and
SNR levels. Notably outperforming CrossMPT - with a significant improvement in the decoding of
BCH(63,45) code, achieving over 18% in terms of negative natural logarithm of BER, −ln(BER),
ECCM shows comparable performance to CrossMPT in the decoding of the Polar(64,48) code, and
shows notable improvements in longer Polar codes - achieving up to 7.2% gain in the Polar(128,86)
code. While CrossMPT achieves better results in some of the LDPC codes the improvements are
modest typically around 4%, ECCM achieves better performance in decoding LDPC(49,24) and -
comparable to increased - performance on LDPC(121,80). It also outperforms all other models in the
MacKay Code, slightly outperforming CrossMPT, which indicates the model is capable of learning
very sparse parity-check matrices. Fig 3 shows the performance in terms of BER as a function of
SNR for the above methods. It is important to note that integrating ECCM and CrossMPT is possible
- by replacing the AECCT transformer blocks, which in theory may close the gap in LDPC codes
decoding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of decoding performance at three SNR values (4, 5, 6) for BP, ARBP (Nachmani
& Wolf, 2021), ECCT (Choukroun & Wolf, 2022b), AECCT (Levy et al., 2025), CrossMPT (Park
et al., 2024), and ECCM. The results are measured by the negative natural logarithm of BER
(− ln(BER)). The best results are highlighted in bold. Higher is better.

Codes (N,K)
BP AR BP ECCT 1.2M AECCT 1.2M CrossMPT 1.2M ECCM 1.2M (ours)

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH

(31,16) 4.63
–

5.88
–

7.60
– 5.48 7.37 9.60 6.39 8.29 10.66 7.01 9.33 12.27 6.98 9.25 12.48 7.26 9.71 12.66

(63,36) 3.72
4.03

4.65
5.42

5.66
7.26 4.57 6.39 8.92 4.68 6.65 9.10 5.19 6.95 9.33 5.03 6.91 9.37 5.49 7.52 10.23

(63,45) 4.08
4.36

4.96
5.55

6.07
7.26 4.97 6.90 9.41 5.60 7.79 10.93 5.90 8.24 11.46 5.90 8.20 11.62 7.01 10.12 14.26

(63,51) 4.34
4.50

5.29
5.82

6.35
7.42 5.17 7.16 9.53 5.66 7.89 11.01 5.72 8.01 11.24 5.78 8.08 11.41 6.10 8.77 12.22

Polar
(64,48) 3.52

4.26
4.04
5.38

4.48
6.50 5.41 7.19 9.30 6.36 8.46 11.09 6.43 8.54 11.12 6.51 8.70 11.31 6.61 8.61 11.20

(128,86) 3.80
4.49

4.19
5.65

4.62
6.97 5.39 7.37 10.13 6.31 9.01 12.45 6.04 8.56 11.81 7.51 10.83 15.24 8.05 11.55 15.65

(128,96) 3.99
4.61

4.41
5.79

4.78
7.08 5.27 7.44 10.20 6.31 9.12 12.47 6.11 8.81 12.15 7.15 10.15 13.13 7.49 10.45 13.27

LDPC
(49,24) 5.30

6.23
7.28
8.19

9.88
11.72 6.58 9.39 12.39 5.79 8.13 11.40 6.10 8.65 12.34 6.68 9.52 13.19 6.71 9.55 13.25

(121,60) 4.82
–

7.21
–

10.87
– 5.22 8.31 13.07 5.01 7.99 12.78 5.17 8.32 13.40 5.74 9.26 14.78 5.49 8.87 14.23

(121,80) 6.66
–

9.82
–

13.98
– 7.22 11.03 15.90 – – – – – – 7.99 12.75 18.15 7.81 12.34 18.35

MacKay (96,48) –
–

–
–

–
– 7.43 10.65 14.65 – – – – – – 7.97 11.77 15.52 7.98 11.84 15.70

7 MODEL ANALYSIS

7.1 ABLATION ANALYSIS

Table 2: Ablation analysis: the negative natural logarithm of bit error rate (BER) for our complete
method compared with its partial components. Higher values indicate better performance. Highest
value is marked in bold.

Experiment Mamba Mask Model Layout Multi-Loss
SNR (dB)

4 5 6

Full Method f(H) Transformer & Mamba True 7.01 10.12 14.26

(i) g(H) Transformer & Mamba True 6.86 9.88 13.76
(ii) f(H) Transformer & Mamba False 5.80 8.18 11.60
(iii) N/A Transformer only True 6.66 9.45 13.31
(iv)2 N/A Transformer only True 6.64 9.19 12.69
(v)3 f(H) Mamba only True 4.40 6.09 8.05
(vi)3 4 f(H) Mamba only True 5.22 7.17 10.07

To analyze the contribution of each of the following proposed modifications: combining Mamba
and Transformer, using loss from every layer, and the proposed mask for the Mamba layers, variants
of the proposed method were trained, removing one modification at a time. The variants were trained
on the BCH(63,45) code, with the same hyperparameters as discussed above, excluding experiment
(iv) 2. Note that the number of layers was set to 8 in all experiments, with the exception of experiment
(vi), and therefore experiments (iii) and (iv) are on larger models in terms of parameter count (1.6M
parameters) relative to ECCM (1.2M parameters) and previous works. In addition, experiment (v)
is smaller than the rest at 0.8M parameters, and experiment (vi) was carried out with 12 layers to

2 Experiment (iv) is similar to (iii) but with hyperparameters from ECCT (Choukroun & Wolf, 2022b),
lr = 10−4, ηmin = 10−6

3When training a Mamba only model training is unstable, causing gradients to explode. The reported results
are the accuracy from the last epoch before the output becomes invalid.

4 Experiment (vi) is similar to (v) but with 12 layers instead of 8

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) No error (b) Single error

Figure 2: Comparison of attention maps sum. (a) without any error (b) with a single error.

complement experiment (v). The same performance evaluation process was used in this study as well.
Table 2 shows that each of the proposed modifications contributes to the performance of the final
model. The top row shows the full method, and in each subsequent row, one modification is removed
to isolate its effect. The "Mamba Mask" indicates which mask was used in the experiment in the
Mamba layers, either the proposed mask f(H), or the baseline mask g(H) from ECCT (Choukroun
& Wolf, 2022b). In experiment (iii) no Mamba layers are used. The "Model Layout" column indicates
whether in the experiment Mamba and Transformer layers, only Transformer layers, or only Mamba
layers were used. The "Multi-loss" column is "True" if the loss was computed using the output from
each layer, and "False" where it was computed only on the output of the last layer. Experiment (i)
shows that using the proposed mask f(H) yields better results than using g(H). Experiment (ii)
demonstrates that using the loss from each layer contributes significantly to the proposed model’s
performance. Experiment (iii) shows that removing the Mamba layers yields worse results, when
compared to both experiment (i) and the proposed model, confirming that the modification is an
improvement regardless of the mask used.

7.2 COMPLEXITY ANALYSIS

The complexity of the proposed method can be separated into the complexity of the trans-
former block and the complexity of the Mamba block. The complexity of the transformer
block is O((2n − k)D2 + (2n − k)2Dρ(G(H))) where ρ(A) is the sparsity of the mask ma-
trix. Moreover, the complexity of the Mamba blocks is O((2n − k)DS), the total complex-
ity of the model is O(LD(NMambaS + Ntransformer(D + Lρ(G(H)))), since the NMamba =
Ntransformer = 1

2Nblocks, we have a significant speedup 5 relative to AECCT and CrossMPT which
are O((2n − k)D2 + (2n − k)2(ρ(G(H))) and O((2n − k)D2 + n(n − k)(ρ((H)))) (Park et al.,
2024) respectively.

7.3 ATTENTION SCORE COMPARISON

In order to compare our model’s behavior with ECCT (Choukroun & Wolf, 2022b), examination of
the internal attention scores of the model’s layers in two cases, one where there is no error in the input,
and the other where there is a single error in the input. This method reveals how the attention changes
in response to error. To visualize the attention across the model, compute the full forward pass of the
model with the two inputs, and sum the attention scores across the transformer blocks of the model.
For this experiment, evaluate all the layers regardless of whether syndrome condition is met in Eq.
29. Examining the attention maps Fig 2, we can identify four distinct regions corresponding to the
structure of the g(H) mask: magnitude→ magnitude (top-left), magnitude→ syndrome (top-right),

5The speedup discussed in this section is regarding only the theoretical complexity. For empirical evi-
dence,and the rationale for its exclusion from the main body of the paper see Appendix: Empirical Processing
Time Measurements

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) BCH Code N=63 K=45 (b) Polar Code N=128 K=86

Figure 3: BER-SNR performance of ECCM versus baselines, on BCH and POLAR codes

syndrome → magnitude (bottom-left), and syndrome → syndrome (bottom-right). Each of these
regions exhibits different behaviors. Notably, the syndrome→ syndrome attention is consistently
strong, indicating that the model relies heavily on the syndrome. In addition, the magnitude →
syndrome attention also remains relatively unchanged regardless of the presence of errors, suggesting
that the model treats the syndrome as a reference for interpreting the magnitudes, rather than vice
versa. Furthermore, when no error is present, the attention in both the magnitude→ magnitude and
syndrome→ magnitude regions is low. This implies that the model has learned to infer the presence
or absence of errors primarily from the syndrome. However, when an error is present, there is a
clear increase in attention across the corresponding column, indicating that the model has learned
to examine the entire parity-check line to locate and assess potential errors. In previous analysis on
ECCT (Park et al., 2024) the magnitude→magnitude and syndrome→syndrome relations were less
significant leading to the design of the mask in CrossMPT. This analysis shows that ECCM is able to
leverage those relations in contrast with previous works.

8 LIMITATIONS AND BROADER IMPACTS

Limitations: While the proposed ECCM decoder demonstrates strong empirical performance and
competitive inference efficiency, several limitations should be noted. First, the model architecture,
although designed to generalize across code families, was primarily tested on standard benchmarks
with moderate block lengths. Its generalization to very long block codes or non-binary codes
remains unverified and may require architectural scaling or retraining. Second, while the hybrid
Mamba–Transformer structure improves efficiency over attention-only models, the total model
complexity remains non-trivial, and resource-constrained environments (e.g., edge devices) may still
face deployment challenges. Broader Impacts: Error correction codes are foundational to reliable
communication and data storage. The proposed ECCM method improves both the speed and accuracy
of decoding. Accuracy improvements can benefit a wide range of technologies, with deep-space
transmissions being a notable example, while speed gains may enable learned decoders in real-time
systems. However, the black-box nature of learned decoders like ECCM may pose challenges in
safety-critical applications where certifiability and interpretability are essential.

9 CONCLUSIONS

We introduced ECCM, a hybrid Mamba–Transformer decoder for linear error correction codes. By
combining Mamba’s efficient sequential modeling with the global context modeling of Transformers,
and incorporating parity-check-aware masking and progressive supervision, ECCM achieves state-of-
the-art accuracy while maintaining low and improving inference speed. Experimental results across
multiple code families demonstrate consistent improvements over existing neural decoders. These
findings highlight the potential of hybrid architectures for real-time, high-accuracy decoding, and
open the door to further exploration of structured neural models in communication systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in this work as an editorial tool, limited to fixing grammar,
correcting spelling errors, and improving phrasing. They were not used for research design, data
analysis, or drawing scientific conclusions.

11 REPRODUCIBILITY STATEMENT

For ease of reproducibility, the code and instructions are provided as supplementary material.

REFERENCES

E. Arikan. Channel polarization: A method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels. IEEE Transactions on Information Theory, 55(7):3051–3073,
2009.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. Deep learning for decoding of linear codes-a
syndrome-based approach. In 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 1595–1599. IEEE, 2018.

Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and control, 3(1):68–79, 1960.

Andreas Buchberger, Christian Häger, Henry D Pfister, Laurent Schmalen, and Alexandre Graell
i Amat. Pruning and quantizing neural belief propagation decoders. IEEE Journal on Selected
Areas in Communications, 39(7):1957–1966, 2020.

Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and Stephan Ten Brink. Scaling deep learning-
based decoding of polar codes via partitioning. In GLOBECOM 2017-2017 IEEE global communi-
cations conference, pp. 1–6. IEEE, 2017.

Yoni Choukroun and Lior Wolf. Denoising diffusion error correction codes, 2022a. URL https:
//arxiv.org/abs/2209.13533.

Yoni Choukroun and Lior Wolf. Error correction code transformer, 2022b. URL https://arxiv.
org/abs/2203.14966.

Yoni Choukroun and Lior Wolf. Deep quantum error correction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 64–72, 2024a.

Yoni Choukroun and Lior Wolf. A foundation model for error correction codes. In The Twelfth
International Conference on Learning Representations, 2024b.

Yoni Choukroun and Lior Wolf. Learning linear block error correction codes. arXiv preprint
arXiv:2405.04050, 2024c.

Jincheng Dai, Kailin Tan, Zhongwei Si, Kai Niu, Mingzhe Chen, H. Vincent Poor, and Shuguang Cui.
Learning to decode protograph ldpc codes. IEEE Journal on Selected Areas in Communications,
39(7):1983–1999, 2021a. doi: 10.1109/JSAC.2021.3078488.

Jincheng Dai, Kailin Tan, Zhongwei Si, Kai Niu, Mingzhe Chen, H Vincent Poor, and Shuguang Cui.
Learning to decode protograph ldpc codes. IEEE Journal on Selected Areas in Communications,
39(7):1983–1999, 2021b.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):
21–28, 2003.

10

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2209.13533
https://arxiv.org/abs/2209.13533
https://arxiv.org/abs/2203.14966
https://arxiv.org/abs/2203.14966

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan Ten Brink. On deep learning-based
channel decoding. In 2017 51st annual conference on information sciences and systems (CISS), pp.
1–6. IEEE, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Michael Helmling and Stefan Scholl. Database of channel codes and ml simulation results. www.
uni-kl.de/channel-codes, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https:
//arxiv.org/abs/1606.08415.

Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Communication algorithms via deep learning, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Hee-Youl Kwak, Jae-Won Kim, Yongjune Kim, Sang-Hyo Kim, and Jong-Seon No. Neural min-sum
decoding for generalized ldpc codes. IEEE Communications Letters, 26(12):2841–2845, 2022.

Hee-Youl Kwak, Dae-Young Yun, Yongjune Kim, Sang-Hyo Kim, and Jong-Seon No. Boosting
learning for ldpc codes to improve the error-floor performance. Advances in Neural Information
Processing Systems, 36:22115–22131, 2023.

Matan Levy, Yoni Choukroun, and Lior Wolf. Accelerating error correction code transformers, 2025.
URL https://openreview.net/forum?id=lAXlDAdan5.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017. URL
https://arxiv.org/abs/1608.03983.

Loren Lugosch and Warren J. Gross. Neural offset min-sum decoding. In 2017 IEEE International
Symposium on Information Theory (ISIT). IEEE, June 2017. doi: 10.1109/isit.2017.8006751. URL
http://dx.doi.org/10.1109/ISIT.2017.8006751.

Eliya Nachmani and Lior Wolf. Autoregressive belief propagation for decoding block codes. arXiv
preprint arXiv:2103.11780, 2021.

Eliya Nachmani, Yair Be’ery, and David Burshtein. Learning to decode linear codes using deep
learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 341–346. IEEE, 2016.

Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David Burshtein, and Yair Be’ery.
Deep learning methods for improved decoding of linear codes. IEEE Journal of Selected Topics in
Signal Processing, 12(1):119–131, 2018.

Seong-Joon Park, Hee-Youl Kwak, Sang-Hyo Kim, Sunghwan Kim, Yongjune Kim, and Jong-Seon
No. How to mask in error correction code transformer: Systematic and double masking. arXiv
preprint arXiv:2308.08128, 2023.

Seong-Joon Park, Hee-Youl Kwak, Sang-Hyo Kim, Yongjune Kim, and Jong-Seon No. Crossmpt:
Cross-attention message-passing transformer for error correcting codes. arXiv preprint
arXiv:2405.01033, 2024.

11

www.uni-kl.de/channel-codes
www.uni-kl.de/channel-codes
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=lAXlDAdan5
https://arxiv.org/abs/1608.03983
http://dx.doi.org/10.1109/ISIT.2017.8006751

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ziyan Zheng, Chin Wa Lau, Nian Guo, Xiang Shi, and Shao-Lun Huang. White-box error correction
code transformer. In The Second Conference on Parsimony and Learning (Proceedings Track).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX: COMPARISON TO CLASSICAL DECODERS

For completeness, we are adding comparison to classical decoders. The comparison demonstrates
the state of neural decoders in comparison to existing classical methods. We think it shows that
neural decoders are on par with classical methods, and their potential advantages - mainly being
differentiable outweighs the accuracy degradation.

A.1 BCH

Table 3: Decoding performance for BCH codes at three SNR values (4, 5, 6). Results are measured
by − ln(BER). Best results in bold.

Codes (N,K)
BM ECCM (ours)

4 5 6 4 5 6

(63,45) 4.84 6.42 8.77 7.01 10.12 14.26
(31,16) 4.06 5.59 7.12 7.26 9.71 12.66
(63,36) 4.87 7.08 9.65 5.49 7.52 10.23

On BCH codes, ECCM consistently outperforms the BM baselines across all block lengths. The
gains are particularly notable on BCH(63,45), where ECCM achieves more than a 5 dB improvement
in − ln(BER) at high SNR. These results highlight the advantage of combining Mamba and Trans-
former components with parity-check-aware masking. We do not compare against Ordered Statistics
Decoding (OSD), since its significantly higher computational complexity makes it non-comparable
in practice.

A.2 POLAR

Table 4: Decoding performance for Polar codes at three SNR values (4, 5, 6). Results are measured
by − ln(BER). Best results in bold.

Codes (N,K)
SCL (L = 32) CrossMPT ECCM (ours)

4 5 6 4 5 6 4 5 6

(64,48) 6.56 8.85 11.28 6.51 8.70 11.31 6.61 8.61 11.20
(64,32) 8.13 10.68 14.07 7.51 9.97 13.31 7.84 10.30 13.40

For Polar codes, ECCM narrows the performance gap to strong baselines. On Polar(64,48), ECCM,
CrossMPT, and SCL(L = 32) exhibit very similar results, with differences likely due to simulation
randomness rather than fundamental performance. On Polar(64,32),however, ECCM clearly improves
over CrossMPT: while CrossMPT lags behind SCL by about 0.6–0.7 nats across SNR levels, ECCM
reduces this gap to roughly 0.3–0.4 nats, showing that the proposed method meaningfully closes the
distance to the strong SCL baseline.

A.3 POLAR WITH CRC

Table 5: Decoding performance for Polar(64,32) with 16 bit CRC at three SNR values (4, 5, 6).
Results are measured by − ln(BER). Best results in bold.

Method 4 5 6
ECCM 7.86 10.31 13.74
CA-SCL(L=32) 6.20 9.27 13.73

CRC-Aided Successive Cancellation List (CA-SCL) is considered the SOTA for polar codes. However,
it requires additional redundancy bits (the CRC itself), which effectively changes the underlying error

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

correcting code. Therefore, we treat this experiment as a separate benchmark. In order to compare
our method with CA-SCL, we trained a model on a Polar(64,32) where the message included a 16 bit
CCITT CRC. The results, including the reference performance of a CA-SCL decoder, are presented
in Table 5. From the results, it is apparent that ECCM achieves better accuracy than CA-SCL, which
indicates that ECCM is better for CRC aided decoding, although further research is needed to reach a
definitive conclusion.

A.4 LDPC

Table 6: Decoding performance for LDPC(121,80) code at three SNR values (4, 5, 6). Results are
measured by − ln(BER). Best results in bold.

Codes (N,K)
Layered BP (L=50) Layered BP (L=5) CrossMPT ECCM (ours)

4 5 6 4 5 6 4 5 6 4 5 6

LDPC (121,80) 7.19 11.01 16.74 6.00 8.96 13.43 7.99 12.75 18.15 7.81 12.34 18.35

For LDPC(121,80), ECCM delivers highly competitive performance compared to both Layered BP
and CrossMPT. As expected, increasing the number of BP iterations (L=50 vs. L=5) improves perfor-
mance, but ECCM and CrossMPT outperform both BP variants across all SNR values. CrossMPT
has a slight edge at lower SNRs, while ECCM surpasses it at high SNR, achieving the best result at 6
dB (18.35 vs. 18.15). This shows that ECCM scales well to structured, high-rate LDPC codes, even
when compared to specialized iterative decoding methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B APPENDIX: EARLY STOPPING

B.1 BATCH IMPLEMENTATION

Algorithm 1 Batch Early Stopping

1: ilastb ← −1¯
2: o0b ← Φ(yib)
3: c0b ← Γ(oib)
4: for each si in N do
5: if All(c) then
6: break
7: end if
8: yib[¬c] = si(y

i
b[¬c])

9: oib ← Φ(yib)
10: cib ← Γ(oib)
11: end for

Where:

• Φ(hb) is Eq. 28 applied to each member of the batch independently.

• Γ(hb) is Eq. 29 applied to each member of the batch independently.

• si is the function that applies the i-th layer to each member of the batch independently.

• oib ∈ Rb×n is the output at layer i for each member of the batch.

• yib ∈ Rb×L×D is the hidden representation at layer i for each member of the batch.

• cib ∈ {0, 1}b is the vector indicating which batch elements are corrected at layer i.

B.2 LAYER USAGE

Figure 4: Layer usage statistics for decoding BCH(63,45) messages

In order to evaluate the effectiveness of the early stopping mechanism we ran a BER evaluation
experiment as described in Section 5. Instead of tracking BER we track ilast, Figure 4 shows the rate
at which a layer was reached, for BCH(63,45). We can see that most messages are corrected after
the first two layers, and that a non negligible but small number of messages start with no error. In
addition, we see that later layers exhibit diminishing returns in term of corrected messages and the
last layer corrects significantly less messages than the total non corrected messages.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Layer usage statistics for decoding POLAR(128,96) messages

In Figure 5 we can see that unlike the case for BCH(63,45), in POLAR(128,96) all messages required
some correction. This is expected, since the probability of an error increases with the length of the
message. We can see that most message are corrected and the first layers are much more dominant in
the operation of the network, with later layers exhibiting diminishing returns. A

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C APPENDIX: EMPIRICAL PROCESSING TIME MEASUREMENTS

Validating the claim that the suggested method is more efficient, the following experiments were
performed. For each of the methods ECCT, AECCT, CrossMPT, and ECCM - on the same machine
apply inference on batches of codewords, with the same number of batches, measure the time that the
process took and divide by the number of codewords generated. The process was performed with a
batch size of 512 and 200 batches, on a machine with a NVIDIA GeForce RTX 4090 GPU and a
Intel i9-14400K. For this test, the Early Stopping feature of the model was disabled.

Table 7: Average inference speed in µs for ECCT, AECCT, ECCM, and CrossMPT. Lower is better.

Code ECCT AECCT CrossMPT ECCM

LDPC (121,60) 332.23 µs 358.81 µs 289.11 µs 260.42 µs

Polar (128,96) 315.56 µs 332.23 µs 272.41 µs 221.98 µs

On the same machine, a similar test was performed but instead of testing on the different methods,
the test was performed only on ECCM and at different SNRs [dB]: 4, 5, 6. The intention of this test
is to show that the early-stopping feature is meaningful for inference runtime. The test results (Table
8 indicates that a partial model can still be used without major performance degradation for SNRs
5[dB] and 6[dB], since the speedup in these cases is coming from layers of the model not being used.

Table 8: Average inference speed at diferent SNRs. Lower is better, the best time is marked in bold.

Code No Early Stopping 4 [dB] 5 [dB] 6 [dB]

LDPC (121,60) 260.42 µs 119.78 µs 74.18 µs 53.72 µs

Polar (128,96) 221.98 µs 86.37 µs 57.83 µs 46.75 µs

On the same machine, an additional test was performed. Using the same ECCM model trained on
Polar(128,96) and early stopping feature turned off, the above experiment ran this time tracking
accuracy in addition to processing time. The results are displayed in Table 9, with the exception of
the last all layers contribute significantly, though with diminishing returns from the 5-th layer onward.

Table 9: Performance/Layer Count Table showing the Accuracy and Latency for decoding Po-
lar(128,96)

Layers 4 [dB] 5[dB] 6[dB] Latency
1 4.29 5.44 6.93 41 µs
2 4.88 6.39 8.86 58 µs
3 5.60 7.72 10.6 95 µs
4 6.07 8.65 11.52 111 µs
5 6.51 9.39 12.55 149 µs
6 7.09 10.13 12.90 167 µs
7 7.32 10.26 13.23 205 µs
8 7.65 10.51 13.28 222 µs
Ref 7.49 10.45 13.27 86-47 µs

The empirical processing-time measurements reported in Table 7 and 8 are included in the appendix
because they do not fully reflect the performance characteristics of a real-world deployment. In prac-
tice, a hardware-oriented implementation could exploit architectural properties that are not available
in our software-based general purpose GPU evaluation-for example, by specifically leveraging the
trinary nature of the HPSA representation. This is particularly relevant for AECCT and ECCM, as
this property could be used to achieve substantial acceleration in custom hardware. Nevertheless,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

we include these measurements as they represent the most faithful comparison attainable within our
current experimental constraints.

18

	Introduction
	Related works
	Neural Decoders
	Mamba Architecture

	Background
	Method - Mamba-Transformer Decoder
	Mamba block
	Transformer Block
	Model Output
	Loss Function

	Experiments
	Results and Discussions
	Model Analysis
	Ablation Analysis
	Complexity Analysis
	Attention Score Comparison

	Limitations and Broader Impacts
	Conclusions
	Use of Large Language Models (LLMs)
	Reproducibility statement
	Appendix: Comparison to classical decoders
	BCH
	POLAR
	POLAR With CRC
	LDPC

	Appendix: Early Stopping
	Batch Implementation
	Layer Usage

	Appendix: Empirical Processing Time Measurements

