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Abstract

Large Language Models (LLMs) have shown001
impressive capabilities, yet they still struggle002
with math reasoning. In this work, we pro-003
pose CoT-Influx, a novel approach that pushes004
the boundary of few-shot Chain-of-Thoughts005
(CoT) learning to improve LLM mathemati-006
cal reasoning. Motivated by the observation007
that adding more concise CoT examples in the008
prompt can improve LLM reasoning perfor-009
mance, CoT-Influx employs a coarse-to-fine010
pruner to maximize the input of effective and011
concise CoT examples. The pruner first se-012
lects as many crucial CoT examples as pos-013
sible and then prunes unimportant tokens to014
fit the context window. As a result, by en-015
abling more CoT examples with double the016
context window size in tokens, CoT-Influx sig-017
nificantly outperforms various prompting base-018
lines across various LLMs (LLaMA2-7B, 13B,019
70B) and 5 math datasets, achieving up to020
4.55% absolute improvements. Remarkably,021
without any fine-tuning, LLaMA2-70B with022
CoT-Influx surpasses GPT-3.5 and a wide range023
of larger LLMs (PaLM, Minerva 540B, etc.) on024
GSM8K. CoT-Influx is a plug-and-play module025
for LLMs, adaptable in various scenarios. It’s026
compatible with advanced reasoning prompting027
techniques, such as self-consistency, and sup-028
ports different long-context LLMs, including029
Mistral-7B-v0.3-32K and Yi-6B-200K.030

1 Introduction031

Large Language Models (LLMs) have demon-032

strated remarkable capabilities across a range of033

tasks (Brown et al., 2020; OpenAI, 2023a). How-034

ever, it remains a significant challenge to im-035

prove LLM performance on math reasoning tasks.036

While existing efforts focus on optimizing Chain-037

of-Thought (CoT) prompts (Wei et al., 2022; Wang038

et al., 2023d; Yao et al., 2023) and fine-tuning039

LLMs (Luo et al., 2023) under the zero-shot set-040

ting, the potential of few-shot learning in improv-041

ing LLM reasoning has not been fully explored.042

Inspired by the human reasoning process, we pro- 043

pose the hypothesis: if LLMs are exposed to more 044

step-by-step problem-solving examples (i.e., CoTs) 045

before answering questions, it could potentially 046

improve LLMs reasoning capability to generate a 047

correct solution. This leads us to ask: what’s the 048

boundary of LLM reasoning capability achievable 049

through inputting more CoT examples? 050

We face two major obstacles. First, the limited 051

token length of LLMs’ context window restricts 052

the number of few-shot examples. Extending the 053

context window is one solution, but it requires ex- 054

pensive fine-tuning and increases inference over- 055

head (Peng et al., 2023a; Ding et al., 2024). While 056

prompt compression (Li et al., 2023b; Jiang et al., 057

2023b) is another approach, it underperforms in 058

math reasoning. Tokens like numerical and format 059

ones, though identified as redundant, are crucial for 060

few-shot prompting to solve math problems. 061

Second, it’s challenging to select effective CoT 062

examples. Section 3 reveals that random choices 063

can even harm reasoning performance. Existing 064

retrieval-based methods (Liu et al., 2021; Scarlatos 065

and Lan, 2023) are not tailored for math reason- 066

ing, making them suboptimal. These retrieved ex- 067

amples are model-agnostic, while we found that 068

different LLMs favor CoT examples of varying 069

characteristics (e.g., diverse difficulty levels). 070

In this work, we propose CoT-Influx, which ad- 071

dresses all the above challenges and pushes the 072

boundaries of utilizing few-shot learning to im- 073

prove LLM math reasoning capability. CoT-Influx 074

is motivated by the observation that current LLM 075

context window has not been fully utilized due to 076

redundancy at both the example and token levels in 077

natural language input. As such, these redundant 078

inputs can be pruned to free up space for more in- 079

formative context. The central idea of CoT-Influx is 080

to input long lengthy CoT examples, select the cru- 081

cial examples for the target LLM, and then prune 082

redundant tokens. As a result, by inputting much 083
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more helpful CoT examples, each composed solely084

of informative tokens and with a shorter length,085

we greatly improve LLM math reasoning ability.086

Moreover, as all these inputs remain within the087

context window, we do not increase any inference088

overhead. This stands in stark contrast to other089

methods (Hao et al., 2022; Chen et al., 2023a).090

CoT-Influx treats the target LLM as a black box,091

and serves as a plug-and-play module for LLMs as092

shown in Fig. 3. The key module is a coarse-to-fine093

pruner consisting of two steps: (i) a shot pruner094

first selects the most helpful CoT examples from095

candidates, and (ii) a token pruner then removes096

unimportant tokens from selected CoT examples.097

However, training the pruner presents two chal-098

lenges: (1) since we identify discrete tokens before099

the LLM tokenizer, the loss gradient cannot be100

backpropagated through the tokenizer to update101

the pruner; (2) The high difficulty of many math102

problems, which consistently yield incorrect an-103

swers regardless of the quality of compressed few-104

shot examples, poses a challenge to the effective105

training of the pruner. To this end, we introduce a106

novel training approach with reinforcement learn-107

ing to mitigate the gradient issue. We design a108

reward function to measure the LLM loss, few-109

shot math reasoning effectiveness, and token length110

constraints. Then, we propose a difficulty-aware111

dataloader filtering appropriate problems and intro-112

duce two techniques to stabilize the RL training.113

Extensive experiments on various LLMs and di-114

verse reasoning datasets demonstrate the effective-115

ness of CoT-Influx. CoT-Influx significantly boosts116

LLM reasoning capability, achieving up to 14.09%117

absolute improvements over SOTA baselines, and118

establishes a new prompting-based benchmark in119

math reasoning accuracy without any fine-tuning or120

additional inference costs. Remarkably, LLaMA2-121

70B with CoT-Influx outperforms a broad range of122

larger LLMs and surpasses GPT-3.5 by 2.5% on123

GSM8K. Moreover, we prove that CoT-Influx is124

also highly beneficial on long-context LLMs. For125

example, we achieve ∼2.5% higher GMS8K accu-126

racy with 15× fewer input tokens on Yi-6B-200K.127

2 Related Works128

LLMs for Math Reasoning. Drawing from the129

Chain-of-Thought (CoT) (Wei et al., 2022), recent130

research has greatly improved the reasoning capa-131

bilities of LLMs by providing step-by-step reason-132

ing paths. The main efforts are twofold: enhancing133
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Figure 1: LLaMA2-7B reasoning accuracy under an
increasing number of TopK retrieved CoT examples.

CoT prompts, such as Program-of-Thoughts (Chen 134

et al., 2023b), Tree-of-Thoughts (Yao et al., 2023), 135

and Everything-of-Thoughts (Ding et al., 2023), 136

and innovating CoT-based training data for fine- 137

tuning LLMs like WizardMath (Luo et al., 2023). 138

However, most works focus on the zero-shot set- 139

ting with only task instruction or CoT prompts, 140

leaving the potential of few-shot CoT largely un- 141

tapped. We explore leveraging few-shot CoT learn- 142

ing to improve LLMs’ math reasoning capabilities. 143

Prompt Compression. One related works involve 144

compressing input prompts, including (1) token 145

pruning (Kim et al., 2022; Li et al., 2023a); (2) soft 146

prompt compression (Mu et al., 2023; Chevalier 147

et al., 2023); and (3) information-entropy-based 148

approaches (Li et al., 2023b; Jiang et al., 2023b). 149

However, they do not effectively solve our prob- 150

lem for two reasons. First, they prune tokens based 151

on designed metrics, often failing to remove re- 152

dundancy of the entire CoT examples. Second, 153

some tokens such as numerical and format tokens, 154

although redundant, are crucial for math reasoning. 155

Prompt Retrieval aims to optimize LLM perfor- 156

mance by selecting effective few-shot examples. 157

Heuristic methods, such as the TopK retrieval (Liu 158

et al., 2021; Gao et al., 2021), BM25 (Robert- 159

son et al., 2009), VoteK (Hongjin et al., 2022), 160

and entropy (Lu et al., 2022), select examples 161

based on semantic similarity. Recently, supervised- 162

based methods like EPR (Rubin et al., 2021), LLM- 163

R (Wang et al., 2023b), and IDS (Qin et al., 2023) 164

have been proposed, which train a retrieval model 165

to learn better example selection. However, these 166

methods do not consider token redundancy, which 167

can limit the number of retrieved examples. 168

3 Pilot Study 169

This section presents our key observations of few- 170

shot learning in improving LLMs math reasoning, 171

upon which the CoT-Influx design is based. Note 172

that experiments are done with our CoT dataset, 173

MRD3, as introduced in Sec. 4.1. 174
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Observation 1: LLMs can improve reasoning with175

more helpful CoT examples, but the context window176

length limits further accuracy gains.177

A standard practice for evaluating LLMs’ math178

reasoning capability is the use of 8-shot manually-179

designed CoTs (Wei et al., 2022). We increase the180

number of CoT shots to see if reasoning accuracy181

improves. To avoid poor-quality examples, we use182

the TopK method (Liu et al., 2021) to select the183

k most relevant CoT examples for each question.184

Given LLaMA2’s context window limit of 4096185

tokens, we could only input up to 20 CoT exam-186

ples1. As Fig. 1 shows, increasing CoT examples187

improves LLaMA2-7B’s reasoning accuracy on the188

GSM8K dataset, significantly outperforming the189

standard 8-shot setting. However, the limited LLM190

context window hinders the full potential of few-191

shot CoT learning for improving math reasoning.192

For instance, even with 20 CoTs not hitting the to-193

ken limit, accuracy drops as the large input context194

limits the LLM’s response space.195

Observation 2: CoT example selection is crucial196

for math reasoning. Simply adding CoT examples197

randomly doesn’t boost performance.198

The prior study suggests that more CoT exam-199

ples can improve LLM reasoning performance.200

However, the quality of CoT examples is crucial201

to the final performance. As shown in Table 1,202

even with up to 16 CoT shots, random selection203

underperforms the standard 8-shot setting, which204

is manually curated for quality.205

Table 1: The selection of CoT examples heavily impacts
LLM math reasoning performance on GSM8K.

Model Manual 8 Shots Random 16 Shots

LLaMA2-7B 13.79 12.82±0.94
LLaMA2-13B 27.82 23.16±0.42

Observation 3: A CoT example contains redundant206

tokens for math reasoning, which can be pruned to207

free up space for more informative content.208

Observation 2 indicates that few-shot CoT ex-209

amples contain useless or even harmful examples210

that can be pruned. We further observe that a CoT211

example often has redundant tokens. For instance,212

the blue tokens in Fig. 2 can be removed without213

affecting LLM performance. However, identifying214

redundant tokens for math reasoning poses a chal-215

lenge. Simply using existing prompt compression216

methods (Jiang et al., 2023b; Li et al., 2023b) leads217

1The input token length is less than the context window
token limit, as the answer generation also shares this limit.

to a significant performance decline. Fig. 2 shows 218

a compressed example using LLMLingua (Jiang 219

et al., 2023b). Some numerical and format tokens 220

(colored in red), while identified as redundant, are 221

crucial for LLM to comprehend the context for 222

solving a math problem. 223

Figure 2: A compressed CoT example using the prompt
compression tool of LLMLingua (Jiang et al., 2023b).
The pruned tokens contain truly redundant tokens (col-
ored in blue) and crucial tokens (colored in red).

4 CoT-Influx Methodology 224

Motivated by our observations, this section intro- 225

duces CoT-Influx, which maximizes CoT examples 226

within the original LLM context window by identi- 227

fying the most important CoT examples and tokens 228

from a long input context. 229

4.1 CoT Dataset Collection 230

We start by collecting a high-quality math reason- 231

ing dataset comprising diverse CoT examples with 232

varying steps and difficulties. We merge the train- 233

ing set of GSM8K (Cobbe et al., 2021), MAWPS, 234

MAWPS-single (Koncel-Kedziorski et al., 2016), 235

and 1000 random examples from AQuA (Ling et al., 236

2017) to create an initial dataset of 9.7K question- 237

answer pairs. Then, we prompt GPT-4 to generate 238

formatted CoT reasoning steps. We apply 5 muta- 239

tion schemes, three to increase reasoning difficulty 240

and two to simple questions. The final dataset is 241

referred to as Math Reasoning Dataset with Diverse 242

Difficulty (MRD3). The details of dataset evolution 243

are listed in Section. B in the Appendix. 244

4.2 Problem Formulation 245

Let D denote the CoT dataset (i.e., the MRD3), 246

and D̂ = {xcot
i }ki=1 be a subset of k CoT examples, 247

each composed of a question, reasoning steps, and 248

an answer. The total number of tokens in these k 249

CoT examples far exceeds the LLM context win- 250

dow length limit of T . CoT-Influx is designed to 251

perform a two-step pruning process: 252

D̂ = {xcot
i }ki=1

Shot Pruner−−−−−−→ {xcot
j }k′j=1

Token Pruner−−−−−−−→ {x̂cot
j }k′j=1 (1) 253

3



CoT 

Examples

Example Prompt Candidates

question CoT answer

question CoT answer

…….

difficulty

difficulty

Difficulty

Filter

Question
Embedding

Model 

(BERT, Frozen)

Reward

Retrieve 𝑘 shots 

Shot 

pruner

Token 

pruner

𝑎shot

[𝑘, 2]
𝑎token

[𝑘′ ∗ 𝑁, 2]

𝑠shot 

[𝑘, 𝑁]
𝑠token 

[𝑘′, 𝑁]

CoT-Influx Coarse-to-fine Pruner

REINFORCE

GPT-4 

Evolution
MRD3

Shot 

pruner

Token pruner

…

Q: Heloise has dogs and cats in the ratio of 10:17, with the total number of pets 

being 189. If she gives 10 dogs to her friend Janet, how many dogs does she 

remain with altogether? 

A: Let’s think step by step. Step 1: Find the total ratio. The total ratio of dogs 

and cats is 10 + 17 = 27. Step 2: Find the fraction representing the number of 

dogs. The fraction representing dogs is 10/27. Step 3: Find the total number of 
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10 to Janet 70 - 10 = 60. Therefore, the answer is 60.

…

Q: Jason has six fish in his aquarium. He realizes that every day the number of 

fish doubles. On the third day he takes out one-third of the fish. On the fifth 

day he takes out one-fourth of the fish. On the seventh day he adds 15 more 

fish. How many fish in total does he have? 

A: Let’s think step by step. Day 1: Jason has 6 fish. Day 2: Jason has 6 x 2 = 

12 fish . Day 3: Jason has 12 x 2 = 24 fish . Day 4: Jason has 24 x 2 = 48 fish . 

Day 5: Jason has 48 x 2 = 96 fish (he takes out 1/4 of the fish from the original 

6, which is 1.5 fish, rounded up to 2 fish)Day 6: Jason has 96 x 2 = 192 fish . 

Day 7: Jason has 192 + 15 = 207 fish . Therefore, the answer is 207.

…

…
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Jason has 12 x 2 = 24 fish . Day 4: Jason has 24 x 2 = 48 fish . Day 5: Jason has 48 x 2 = 96 

fish (he takes out 1/4 of the fish from the original 6, which is 1.5 fish, rounded up to 2 fish) 
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answer is 207.

…
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Q: Jason has six fish in. He every day the number of fish doubles. third day takes out one-third 

fish. On fifth day out one-fourth fish. On the seventh day adds 15. How many fish total have? 

A: Let’s think step by step. Day 1: 6 fish. Day 2: Jason 6 x 2 = 12. 3: 12 x 2 = 24 fish . Day 4: 

48. Day 5: Jason 48 x 2 = 96 (out 1/4 of the fish from 6 1.5 fish, rounded 2) Day 6: Jason has 

96 x 2 = 192 fish. Day 7: Jason has 192 + 15 = 207 fish. Therefore, the answer is 207.

…
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Figure 3: Above: The overview procedure of CoT-Influx; Below: an example illustrating the use of CoT-Influx to
first prune entire CoT examples and then prune tokens. The blue-highlighted text indicated the pruned context.

Initially, unhelpful CoT examples are pruned from254

D̂, resulting in a reduced set of k′ examples. Then,255

for each retained CoT example xcot, redundant to-256

kens are pruned, yielding a shorter example, ˆxcot.257

Let xquestion denote the question that LLM is258

tasked to solve. For final input xinput, we concate-259

nate all tokens from {x̂cot
j }k′j=1 and place them be-260

fore xquestion. Our goal is to optimize the input261

xinput so that LLM can correctly answer the ques-262

tion under xinput. Meanwhile, the token count of263

xinput, t, must be less than the LLM context win-264

dow limit T . Formally, we optimize the following:265

266
min
D̂⊆D

LLLM
(
xinput) , max

D̂⊆D
RAcc

(
yLLM

(
xinput) , yanswer) ,

s.t. t
(
xinput) = k′∑

1

|x̂cot|+ |xquestion| ≤ T
(2)267

where LLLM is LLM loss, and RAcc evaluates if268

LLM’s answer yLLM(xinput) matches the correct269

answer yanswer, this will be elaborated in Sec. 4.4.270

Overview. Fig. 3 illustrates our approach. The271

core component is a lightweight, plug-and-play272

module (Sec. 4.3), which consists of a small text273

embedding extractor and a coarse-to-fine pruner.274

To train the pruner, we face the challenge of275

gradient backpropagation when pruning discrete276

tokens outside the LLM. The LLM loss gradient277

cannot be backpropagated through the tokenizer.278

To address this, we design a multi-objective reward279

function and use reinforcement learning for effec-280

tive training (Sec. 4.4). The overall training process281

is outlined in Algorithm 1.282

4.3 Coarse-to-fine Pruner Design 283

Text embedding extractor. As CoT-Influx serves 284

as an external module, we need to extract text em- 285

bedding as prediction features. However, it’s non- 286

trivial to extract features for long inputs beyond the 287

LLM context window. To address this, we use a 288

small encoder model, BERT-Large (Devlin et al., 289

2018), to extract sentence-level (i.e., a CoT exam- 290

ple) embedding instead of extracting token embed- 291

ding for the entire long context. For a batch of k 292

CoT examples, each example is padded to N=512 293

tokens. BERT then inferences these examples to 294

obtain the final layer of text embedding, denoted 295

as Hsshot ∈ Rk×N×DBERT , where DBERT is BERT’s 296

hidden dimension size. 297

State. As shown in Fig. 3, we define state sshot ∈ 298

Rk×N for the first shot pruner, representing the 299

input batch of k CoT examples ∈ D̂. For the sec- 300

ond token pruner, we define state stoken ∈ Rk′×N , 301

which represents all remaining tokens after the shot 302

pruner. k′ is the number of retained examples. 303

Action. Let ashot and atoken denote the actions pre- 304

dicted by the shot and token pruner, respectively. 305

The action space is defined as {0, 1}, where 1 306

signifies retention and 0 indicates pruning. ashot 307

determines whether each CoT example should be 308

pruned, while atoken predicts the pruning of each 309

token in the retained CoT examples. 310

Two-stage policy network. The pruner module is a 311

two-stage policy network, each stage is a two-layer 312

feed-forward network (MLP) with GELU activa- 313
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Algorithm 1 Pruner Training and Inference
Input: target LLM, dataset D, number of CoTs k, token limit
T , manual few-shot cot xfew-shot, repeat trepeat

1: ▶ Phase 1: MRD3 preperation
2: Perform evolution and difficulty evaluation to get D;
3: Use the difficulty filter and split D into questions set

Dquestion and CoT candidates set Dcot
4: ▶ Phase 2: Training the two-stage pruner (1 epoch)
5: for (xquestion, yanswer) in Dquestion do
6: Retrieve Top-k examples D̂ = {xcot}ki=1 from Dcot

7: Hsshot = BERT
(
{xcot}ki=1

)
8: for j=1 to trepeat do
9: Get π (ashot|sshot; θ) with Eq. 3, sample ashot

10: {xcot}ki=1 −→ {xcot}k
′

i=1

11: Hstoken = BERT
(
{xcot}k

′
i=1

)
12: Get π (atoken|stoken; θ) with Eq. 4, sample atoken

13: {xcot}k
′

i=1 −→ {x̂cot}k
′

i=1

14: xinput =
(
{x̂cot}k

′
i=1, x

few-shot, xquestion
)

15: Output LLM(xinput); Compute R with Eq. 5
16: end for
17: Compute policy gradient using Eq. 6, update θ
18: end for
19: ▶ Phase 3: LLM reasoning with pruner and MRD3

20: Retrieve Top-k shots {xcot
q }k ∈ D for target question q

21: Do pruning: {xcot
q }k θ−→ {x̂cot

q }k
′
, reconstruct {x̂cot

q }k
′

22: xinput
q =

(
{x̂cot

q }k
′
, xfew-shot, xquestion

q

)
23: Get LLM reasoning output LLM(xinput

q )

tion. This module outputs a continuous categorical314

distribution π, used for sampling discrete actions315

(i.e., {0, 1}). Let θ denote the MLP’s trainable316

parameters and σ(·) the sigmoid function. Based317

on the current states {sshot, sshot} and the hidden318

states {Hsshot , Hstoken}, the policy network sequen-319

tially make two action predictions as follows:320

π(ashot|sshot; θ) = σ
(
MLP

(
Hsshot

))
(3)321

322 π(atoken|stoken; θ) = σ
(
MLP

(
Hstoken

))
, (4)323

where ashot and atoken are the predicted actions,324

sequentially predicting whether to prune each of325

the k CoT examples and each token within the326

retained examples, respectively. We predict the327

discrete action by sampling from the categorical328

distribution π with a softmax function.329

4.4 End-to-end RL Optimization330

Multi-objective Reward. Our objective in Eq. 2331

is to train the pruner module to identify the most332

crucial CoT examples and useful tokens for math333

problem-solving while keeping the final tokens334

within the original LLM context window. To335

achieve this, we design a multi-objective reward.336

Let xinput be the final input to LLM, which in-337

cludes the retained CoT tokens from the policy338

network and the target question. t represents the339

token count of xinput, and T is the token count limit. 340

The reward R is defined as follows: 341

R
(
xinput

)
= (

1

1 + LLLM
+RAcc)×

[
t

T

]w

(5) 342

where the first term evaluates the effectiveness of 343

inputted CoT tokens, and the second term ensures 344

they are within the LLM context window. LLLM is 345

LLM’s prediction loss under xinput, RAcc evaluates 346

the reasoning accuracy (to be discussed later). w 347

is a hyperparameter that penalizes the token count 348

t for being too short (i.e., w > 0) or exceeding 349

(i.e.,w < 0 ) the token limit T . 350

In addition to LLLM, we introduce RAcc to evalu- 351

ate math reasoning accuracy. This is because LLLM, 352

the average loss of generated tokens, doesn’t fully 353

reflect LLM’s ability to generate correct answers. 354

Specifically, RAcc is set to 1 for a correct answer 355

and 0 for an incorrect one. Notably, we found that 356

if the format or crucial tokens are pruned, LLM 357

struggles to interpret the input, leading to irrelevant 358

answers for math problem-solving. In such cases, 359

we penalize RAcc with a value of -0.1. 360

Optimization with REINFORCE. We employ re- 361

inforcement learning to maximize the reward and 362

train the two-stage policy network. According to 363

REINFORCE (Williams, 1992), the network pa- 364

rameters are updated by the gradients: 365

R · ∇θlogπ(ashot|sshot)π(atoken|stoken) (6) 366

Notably, as shown in Fig. 3, only the parameters 367

of the policy network require training. The em- 368

bedding extractor and LLM are frozen. Thus, the 369

overall training overhead is lightweight. 370

Difficulty-aware data filter. Existing LLMs, par- 371

ticularly smaller ones, underperform in math rea- 372

soning. Suppose the question is too challenging 373

for LLMs. In that case, the answer will always be 374

incorrect, regardless of the quality of compressed 375

few-shot CoT examples, making it challenging to 376

train our pruner module effectively. To address it, 377

we use a difficulty filter to sample a math question 378

set Dquestion from D, which includes only easy ques- 379

tions with a difficulty score below a threshold dthr. 380

During training, each question in Dquestion samples 381

a batch of k CoT examples from Dcot, where Dcot 382

is the CoT candidate set sampled from D. 383

Stabilize the training. Another challenge is that 384

pruning CoT and tokens during training introduces 385

instability, making it difficult for effective training. 386

First, despite the optimization of question set 387

Dquestion through the filter, LLM performance for 388
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a randomly sampled question under different few-389

shot prompts can still be unpredictable. This un-390

predictability, where a question might yield correct391

results under low-quality pruned prompts and a392

complex question might fail under carefully pruned393

prompts, can affect the pruner’s training effective-394

ness. To address this, we continuously repeat a395

sampled question multiple times, trepeat, each time396

with a different pruned few-shot prompt from the397

pruner. Moreover, we use exponential moving av-398

erage (EMA) to smooth reward RAcc in Eq. 5.399

Second, during the early training, our pruner400

module makes random decisions, leading to arbi-401

trary removal of CoT examples and tokens. These402

randomly pruned few-shot prompts can cause insta-403

bility in RL training. Empirically, we append the404

manually-designed 8-shot CoTs (Wei et al., 2022)405

to the pruned prompts. This ensures a good lower406

bound and stabilizes the training.407

5 Evaluation and Analysis408

Models, datasets and metric. We evaluate CoT-409

Influx on LLaMA2-7B, LLaMA2-13B, LLaMA2-410

70B and two long-context LLMs. The math411

datasets for evaluation include GSM8K (Cobbe412

et al., 2021), AddSub (Hosseini et al., 2014), Multi-413

arith (Roy and Roth, 2015), Svamp (Patel et al.,414

2021), and Singleeq (Koncel-Kedziorski et al.,415

2015). We also include MMLU-STEM (Hendrycks416

et al., 2020) for general reasoning evaluation. We417

report the Exact Match (EM) accuracy of the418

predicted answers as the metric. We also in-419

clude the evaluation of a challenging math dataset420

MATH (Hendrycks et al., 2021) in Appendix A.421

Baselines We set three baselines for comparison:422

• CoT and few-shot CoT prompting: We com-423

pare with widely-used prompts for LLM reason-424

ing, including zero-shot, zero-shot-CoT (Kojima425

et al., 2022), and the standard manual few-shot-426

CoT (Wei et al., 2022) with 8 shots.427

• Prompt retrieval: we also compare with retrieval428

baselines, specifically using random, TopK (Liu429

et al., 2021), and BM25 (Robertson et al., 2009)430

methods. We select as many CoT examples as431

possible using each method, without exceeding432

the LLM context window. Random retrieval is to433

reflect the average quality of our CoT dataset.434

• Prompt compression: To evaluate the effective-435

ness of identifying crucial tokens, we compare436

the resulting compressed prompts from the same437

batch of CoT shots with state-of-the-art prompt438

compression baselines: Selective Context (Li 439

et al., 2023b), LLMLingua (Jiang et al., 2023b), 440

and compression through GPT-4. 441

5.1 Main Results 442

Effectiveness of enabling more CoT shots. We 443

first evaluate how far the boundary of few-shot 444

learning can be pushed using CoT-Influx. For com- 445

parison, we set up two baselines: (i) Few-shot CoT, 446

using 8 manual-designed CoT shots. (ii) TopK, 447

which retrieves 20 CoT shots from our dataset. 448

For CoT-Influx, we test LLaMA2 7B and 13B on 449

GSM8K, adjusting the number of CoT shots from 450

16 to 64 examples, which corresponds to 0.7× to 451

2.8× the token count of LLaMA2 context window. 452

16 24 32 40 48 56 64
12

13

14

15

16

17

E
M

(%
) A

cc
ur

ac
y 

on
 G

SM
8K

LLaMA2-7B

16 24 32 40 48 56 64
23

25

27

29

31

33
LLaMA2-13B

CoT-Influx Few-shot CoT (8 shots) TopK (20 shots)

Figure 4: EM(%) accuracy on GSM8K with inputting
different number of CoT examples for CoT-Influx.

As shown in Fig. 4, we make two observations: 453

(1) More CoT shots, facilitated by CoT-Influx, in- 454

deed boosts LLM math reasoning performance, par- 455

ticularly for larger LLMs. On LLaMA2-13B, by 456

inputting 48 CoTs, we significantly outperform the 457

standard few-shot CoT and TopK by 4.55% and 458

8.72%, respectively. (2) There is an optimal num- 459

ber of CoT shots for CoT-Influx. Its peak perfor- 460

mance on LLaMA2 7B and 13B are at 40 and 48 461

shots, respectively. We attribute this to two poten- 462

tial reasons. First, an extremely large number of 463

shots complicates CoT-Influx’s optimization. Sec- 464

ond, there may be an upper limit to improving LLM 465

reasoning capability through few-shot learning. 466

Comparison with state-of-the-art baselines. Ta- 467

ble 2 and Table 3 present the comparison results 468

of CoT-Influx with state-of-the-art baselines across 469

LLaMA2 family and 5 mathematical datasets, high- 470

lighting the following observations: (1) by utilizing 471

more few-shot CoTs that are twice the LLM con- 472

text window, CoT-Influx significantly outperforms 473

all baselines, with up to 4.55% absolute improve- 474

ments. (2) Despite using fewer input tokens, CoT- 475

Influx consistently outperforms retrieval baselines 476

by 1.36% to 14.09% absolute improvements. This 477

is because our compressed tokens indicate more 478
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Table 2: Comparison of EM (%) accuracy on GSM8K with state-of-the-art baselines. Note that the 20 CoT shots of
retrieval baselines are the max number, given that the context window limit of LLaMA2 is 4096 tokens.

Method #Input CoT shots #Average tokens LLaMA2-7B LLaMA2-13B LLaMA2-70B

Zero-shot 0 - 4.25 5.84 11.45
Zero-shot-CoT (Kojima et al., 2022) 0 - 1.74 12.28 21.91
Few-shot-CoT (Wei et al., 2022) 8 655 13.79 27.82 55.42

Random retrieval 20 3379.8 12.51 22.21 53.07
TopK retrieval (Liu et al., 2021) 20 3535.4 14.56 23.65 54.59
BM25 retrieval (Zhenyu et al., 2023) 20 3816.1 13.42 25.17 54.21

TopK+GPT4 Compression 40 1376.0 7.08 11.01 25.17
TopK+Selective Context (Li et al., 2023b) 40 2262.4 0.45 0.76 2.50
TopK+LLMLingua (Jiang et al., 2023b) 40 2048.0 5.38 8.34 22.74

CoT-Influx 48 2037.0 15.92 (↑1.36) 32.37 (↑4.55) 59.59 (↑4.17)

Table 3: Comparison of EM (%) accuracy on Addsub,
Multiarith, Svamp, and Singleeq math reasoning dataset
Model Method AddSub Multiarith Svamp Singleeq Avg.

Zero-shot 58.73 5.50 32.2 62.79 39.81
Few-shot-CoT 56.96 43.67 38.1 66.54 51.32

LLaMA2-7B TopK retrieval 46.08 34.50 38.1 46.46 41.29
TopK+LLMLingua 12.91 10.50 19.5 19.49 15.60
CoT-Influx 62.28 47.00 40.2 72.05 55.38

Zero-shot 70.13 6.50 43.8 71.07 47.88
Few-shot-CoT 65.82 72.83 42.7 77.36 64.68

LLaMA2-13B TopK retrieval 60.76 57.00 50.2 68.50 59.12
TopK+LLMLingua 22.28 22.33 27.5 25.20 24.33
CoT-Influx 69.62 73.87 50.5 83.07 69.26

Table 4: Comparison of EM (%) accuracy on GSM8K
with larger LLMs under the few-shot-CoT setting.

Model Parameters EM (%)

Finetuned GPT-3 (Wei et al., 2022) 175B 34.0
Chinchilla (Hoffmann et al., 2022) 70B 43.7
Text-davinci-002 (Kojima et al., 2022) 175B 51.5
PaLM (Chowdhery et al., 2022) 540B 56.5
GPT-3.5 (OpenAI, 2023a) - 57.1
Minerva (Lewkowycz et al., 2022) 540B 58.8

LLaMA2-70B+CoT-Influx 70B 59.6

informational CoT examples without redundancy.479

In contrast, they select entire examples, which may480

contain redundant tokens. (3) CoT-Influx signifi-481

cantly outperforms prompt compression baselines482

in preserving the most crucial tokens for math rea-483

soning, while methods like Selective Context and484

LLMLingua suffer accuracy declines due to diffi-485

culties in maintaining few-shot prompt structure.486

GPT-4 tends to prune essential reasoning steps,487

which negatively impacts CoT effectiveness.488

We further demonstrate the effectiveness of CoT-489

Influx by comparing LLaMA2-70B with larger-490

size LLMs on GSM8K. As shown in Table 4,491

CoT-Influx significantly boosts LLM reasoning ca-492

pabilities. Remarkably, without any fine-tuning,493

LLaMA2-70B with CoT-Influx outperforms much494

larger LLMs such as GPT-3.5.495

Compatible with existing reasoning prompts. As496

a method to improve LLM reasoning capability,497

CoT-Influx is complementary with other advanced498

Table 5: CoT-Influx is compatible with advanced prompt
techniques like self-consistency (i.e., maj@20) and self-
verification (i.e., verify@20).

Method LLaMA2-13B LLaMA2-70B

CoT-Influx 32.37 59.59
CoT-Influx+maj@20 33.43 (↑1.06) 60.73 (↑1.14)
CoT-Influx+verify@20 34.04 (↑1.67) 61.79 (↑2.20)

reasoning-based prompts. To prove this, we ap- 499

ply self-consistency (Wang et al., 2023d) and self- 500

verification (Weng et al., 2023) to the prompts gen- 501

erated by CoT-influx. For evaluation efficiency, we 502

sampled 20 times. As Table 5 shows, applying self- 503

consistency and self-verification further improves 504

LLaMA2’s performance on GSM8k. 505

Generalization to other reasoning tasks. To vali- 506

date the generalizability of CoT-Influx on general 507

reasoning tasks beyond math, we further verify 508

our method on an additional benchmark: MMLU- 509

STEM (Hendrycks et al., 2020). As shown in Ta- 510

ble 6, despite CoT-Influx being trained on MRD3 511

with only math data, it still improves commonsense 512

reasoning performance over various baselines. We 513

believe that by integrating CoT datasets for more 514

tasks, our CoT-Influx can achieve superior reason- 515

ing performance. We leave this as future work. 516

Table 6: Comparison of accuracy on MMLU-STEM
benchmark with state-of-the-art baselines.

Method #Input shots LLaMA2-7B LLaMA2-13B

Few-shot 5 36.4 44.1
TopK retrieval 5+20 35.7 43.9
TopK+LLMLingua 5+40 34.2 43.3

CoT-Influx 5+40 37.0 (↑0.6) 44.3 (↑0.2)
517

5.2 CoT-Influx on Long Context LLMs 518

Recently, an increasing number of long-context 519

LLMs (context length≥32K) have emerged to 520

address tasks involving extensive input contexts. 521

These models naturally facilitate handling as many 522

few-shot examples as possible. However, re- 523

searchers have pointed out that scaling the few- 524
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shot examples does not consistently improve the525

in-context learning performance (Zhao et al., 2024;526

Li et al., 2024), and most long-context tasks can be527

solved by short-context input (Qian et al., 2024).528

We verify these observations and further demon-529

strate that CoT-Influx is highly beneficial to long-530

context LLMs by selecting high-quality, concise531

CoT examples. Moreover, CoT-Influx can serve532

as a prompt compressor for long-context LLMs,533

saving inference costs by pruning redundant input534

tokens. Fig. 5 shows the results on Mistral-7B-535

v0.3-32K (Jiang et al., 2023a) and Yi-6B-200K (AI536

et al., 2024). While more CoT examples may not537

consistently improve accuracy, CoT-Influx signif-538

icantly outperforms current few-shot and prompt539

retrieval baselines. With an average 72.9% and540

86.4% input token reduction in the prompt, we can541

achieve 2.7% and 2.5% absolute improvement on542

GSM8K, respectively.543
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Figure 5: Prompt compression effect on long-context
LLMs. The x-axis indicates the number of input tokens.

5.3 Ablation Study and Analysis544

Ablation study on coarse-to-fine pruner. Our545

pruner operates at both shot and token levels to546

fully exploit redundancy within CoT examples. To547

verify the effectiveness, we conducted experiments548

with only a shot or token pruner in the same set-549

ting. As shown in Table 7, removing any pruning550

stage decreases performance. Notably, removing551

token-only pruning causes a larger accuracy drop552

than shot-only pruning, indicating that shot-level553

redundancy is easier for the pruner to learn.554

Table 7: Comparison of different pruning strategies.
Pruning Strategy LLaMA2-7B LLaMA2-13B LLaMA2-70B

CoT-Influx (shot+token) 15.92 32.37 59.59
Prune shot only 15.69 (↓0.23) 31.08 (↓1.29) 57.77 (↓1.82)
Prune token only 12.05 (↓3.87) 25.32 (↓7.05) 49.36 (↓10.23)

Token pruning ratios. We now investigate token555

pruning ratios by our pruner. Fig. 6 shows the556

remaining token length for LLaMA2-70B after our557

pruner. In total, we achieve a 4.28× pruning ratio,558

with the shot pruner contributing a 3.87× ratio. The 559

results suggest that our pruner favors pruning more 560

coarse-grained shots over fine-grained tokens. 561

8751.8 tokens (48-shot)

2261.4 tokens

2045.7 tokens

3.87× Compression Ratio

4.28× Compression Ratio

Figure 6: Token length after each stage of our pruner.

Inference cost. CoT-Influx is a lightweight plug- 562

and-play module, including a 336MB BERT-Large 563

model and a tiny 4MB coarse-to-fine pruner. We 564

measure its additional inference cost. Table 8 565

shows the total inference latency and GPU memory 566

required to run LLaMA2-7B with different meth- 567

ods on GSM8K, measured on a single NVIDIA 568

A100 GPU. The results reveal that CoT-Influx in- 569

troduces a negligible 1.4GB additional memory 570

and a 1.7% increase in latency. This is more effec- 571

tive than prompt compression baselines, such as 572

Selective Context and LLMLingua, which require 573

significantly higher latency and more GPU mem- 574

ory, potentially hindering efficient deployment. 575

Table 8: The total inference costs on GSM8K.
Method #Input-shot #Token Time GPU Memory

LLaMA2-7B 12 2108.6 2.99h 19.7GB

Selective Context 40 2262.4 4.38h 23.5GB
LLMLingua 40 2048.0 3.65h 33.0GB

CoT-Influx 40 2037.0 3.04h 21.1GB

Implications. Our analysis of retained CoT exam- 576

ples and tokens yields the following insights: (1) 577

More capable LLMs favor harder CoT examples, 578

while smaller LLMs opt for simpler ones. (2) Nu- 579

merical and format tokens are essential for math 580

reasoning. Function words like with, the, then, and 581

irrelevant background context can be pruned with- 582

out affecting reasoning capability. 583

6 Conclusion 584

We present CoT-Influx, a plug-and-play module 585

that improves LLM math reasoning by pruning 586

unnecessary few-shot examples at shot and token 587

levels for a more effective input context. To train 588

the module, we use reinforcement learning to opti- 589

mize a math reasoning-specific reward. Extensive 590

experiments on various datasets and LLMs com- 591

pared with state-of-the-art baselines demonstrate 592

the effectiveness of our method. This paper high- 593

lights the vast potential of few-shot CoT prompting 594

in augmenting LLMs’ math reasoning abilities. 595
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Limitations596

As in-context learning with LLM heavily relies597

on the selected examples in the prompt, the per-598

formance of CoT-Influx can be influenced by the599

quality of CoT generation. Despite this, CoT-Influx600

still demonstrates strong performance on our GPT4-601

evolved dataset MRD3. We currently use BERT to602

obtain the feature embedding of a CoT example,603

which cannot handle long-sequence examples ex-604

ceeding 512 tokens. We will take these limitations605

into account and mitigate them in future work.606
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Appendix 937

This appendix includes additional analysis, the evolution of MRD3, pruner training details, additional 938

related works, and prompt settings. These contents are organized in separate sections as follows: 939

• Sec. A provides additional analysis and case studies, including the comparison of CoT-Influx with 940

context window extension methods, the performance of CoT-Influx on instruction-finetuned LLMs 941

(LLaMA2-13B-Chat and GPT-3.5-Turbo), ablation study on the reward design, and sensitivity analysis 942

on hyperparameters of the pruner. The effectiveness of CoT-Influx on a more difficult dataset MATH is 943

verified. Additional case studies on the GSM8K with different prompting methods are given to prove the 944

effectiveness of our method. 945

• Sec. B introduces the prompt we used for the evolution of the examples in our MRD3. Both the original 946

input and the evolution results are given as examples. We also analyze the difficulty and reasoning step 947

distribution of different evolution methods and derive a new observation regarding difficulty preference 948

for different LLMs. 949

• Sec. C includes the algorithm for training data preparation as a supplement to Algorithm 1. The 950

hyperparameter settings, the training dynamic of the pruner, and the detailed introduction of the evaluation 951

dataset are also included. 952

• Sec. D elaborates previous LLM context window extension and LLM in-context learning methods and 953

analyzes the advantage of our proposed CoT-Influx compared with various previous methods. 954

• Sec. E demonstrates the prompt we used in this work for difficulty and reasoning step evaluation, and 955

GPT-4 based compression on input few-shot prompts. 956

A Additional Analysis and Case Study 957

A.1 Comparison with context window extension methods 958

While our work tackles the challenge of the limited context window by pruning the redundant input 959

few-shot prompts, another solution is to extend the context window of LLMs. We compare the math 960

reasoning performance of LLaMA2-7B with CoT-Influx and LLaMA2-7B with 32K token context window 961

extended with Positional Interpolation (PI) (Chen et al., 2023a). The results are listed in Table 9. 962

Table 9: Comparsion of EM(%) on GSM8K of LLaMA2-7B with CoT-Influx and LLaMA2-7B-32K with PI.

Number of input shots 12 16 20 24 28 32 40

Average number of tokens 2108.6 2820.6 3535.4 4217.2 4929.1 5641.2 7070.8

LLaMA2-7B 13.87 15.08 14.02 - - - -
LLaMA2-7B+CoT-Influx - - - 14.33 15.09 15.92 15.77

LLaMA2-7B-32K 11.37 12.81 11.37 11.83 11.83 11.52 11.30

When the input prompt does not exceed the window token limit (the number of input shots is not 963

more than 20), we compare the performance of LLaMA2-7B-32K with LLaMA2-7B. When the input 964

prompt exceeds the context window length, we apply our CoT-Influx to prune the prompts to make sure 965

that they can be directly input to LLaMA2-7B without PI. The results show that the context window 966

extension weakens reasoning ability when using the same input prompt. The limit of the context window 967

can be unlocked with our CoT-Influx. Moreover, our observation that LLMs can improve reasoning with 968

more helpful CoT examples does not hold true for LLMs with extended context windows, which is also 969

discussed in recent research (Li et al., 2024). 970

Another drawback of the existing context window extension method lies in the efficiency of fine-tuning 971

models with the extended context. Compared to the previously proposed methods such as PI (Li et al., 972

2024), YaRN (Peng et al., 2023a), and LongRoPE (Ding et al., 2024), as can be seen from the Table 10 973

13



Table 10: Comparsion of Efficiency of CoT-Influx and common context extension methods.

Method PI (Li et al., 2024) YaRN (Peng et al., 2023a) LongRoPE (Ding et al., 2024) CoT-Influx

Devices for Training 128 A100 GPUs 16 A100 GPUs 16 A100 GPUs 1 A100 GPU

Training Time unknown unknown 2 weeks 3 hours

which compares the number of GPUs and the training time, our CoT-Influx is significantly more efficient974

in terms of the training cost.975

Recently, researchers proposed a training-free LLM context window extension method InfLLM (Xiao976

et al., 2024), which improves the efficiency of attention computation by storing distant contexts into977

additional memory units and using dynamic multi-step memory lookup. While this work solves the978

problem of expensive finetuning costs to some extent, significant inference overhead still exists for979

inputting the long context to the LLM and additional operations such as the memory lookup. In addition980

to the computation overhead, the results in our paper also suggest that removing informative tokens in981

prompts can also improve reasoning performance. However, context extension methods keep the original982

prompt as the input and also retain these “harmful tokens”. We believe this is another important advantage983

of our method compared to all context extension methods, including InfLLM (Xiao et al., 2024).984

A.2 CoT-Influx on instruction-finetuned LLMs985

In Sec. 5.1, we verify the effectiveness of CoT-Influx on LLaMA2-7B, 13B, and 70B. LLaMA2-chat (Tou-986

vron et al., 2023) and GPT-3.5-Turbo (OpenAI, 2023b) are also the widely adopted LLMs that are987

acquired after supervised instruction finetuning (SIFT) and Reinforcement Learning from Human Feed-988

back (RLHF), respectively. The different finetuning strategies and the various finetuning data result in989

unique properties of the LLMs. For example, LLaMA2-Chat-13B performs significantly better than990

LLaMA2-13B on math reasoning tasks with zero-shot-cot prompts. To show that our CoT-Influx can also991

help improve the reasoning ability of these finetuned LLMs, we conduct experiments of LLaMA2-13B-992

Chat and GPT-3.5-Turbo (gpt35-turbo-0613) on GSM8K dataset. As shown from the results listed in993

Table 11, our CoT-Influx also surpasses a wide range of prompting baselines with more input shots and994

fewer tokens. Specifically on LLaMA2-13B-Chat, CoT-Influx achieve an absolute improvement of 9.78%995

compared to the TopK retrieval baseline with only 57.6% average tokens.996

Table 11: The EM (%) accuracy on GSM8K with CoT-Influx and other baselines. Note that the context window
limit of LLaMA2-13B-Chat and GPT-3.5-Turbo are all 4096 tokens.

Method #Input CoT shots #Average tokens LLaMA2-13B-Chat GPT-3.5-Turbo

Few-shot-CoT (Fu et al., 2023) 8 655 27.82 72.55
TopK retrieval (Liu et al., 2021) 20 3535.4 31.16 70.74
TopK+LLMLingua (Jiang et al., 2023b) 40 2048.0 10.69 49.96

CoT-Influx 48 2037.0 40.94 73.31

A.3 Ablation study on reward design997

The reward of our CoT-Influx pruner is made up of three parts: math reasoning accuracy reward RAcc,998

LLM loss reward RLoss =
1

1+LLLM
, and context window token limit reward RLimit =

[
t
T

]w. Each part of999

the full reward function is important for the effective learning of the pruner. We perform ablation studies1000

on these components and the results are listed in Table 12. As can be seen from the results, whenever a1001

reward component is removed, the CoT-Influx pruner gives sub-optimal prompt selection and compression1002

results, which cause a decrease compared to the full reward baseline. Among these three reward function1003

parts, the token limit reward RLimit is the most important because training without this term will cause the1004

pruner not to prune any shot or token and directly output the truncated prompt of the redundant input.1005
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Table 12: The EM (%) accuracy on GSM8K of LLaMA2-7B and LLaMA2-13B with different reward function.

Reward Function LLaMA-2-7B LLaMA-2-13B

Full Reward 15.92 32.37
w/o RAcc 15.24 31.46
w/o RLoss 14.78 31.16
w/o RLimit 14.25 29.72

A.4 Sensitivity analysis on hyperparameters and training settings 1006

We perform sensitivity analysis on the hyperparameters to investigate the robustness of our CoT-Influx 1007

pruner training. The most important setting in the training of our CoT-Influx pruner is the token target 1008

T , token penalty co-efficient w, and the reward penalty value in RAcc. Table 13 and Table 13 present 1009

the results of CoT-Influx using different sets of hyperparameters T , w, and reward penalty in RAcc. The 1010

results demonstrate that the training of our CoT-Influx pruner is highly robust as long as the token target 1011

T is not overly aggressive (token target T should not be too small). We also empirically set the value of 1012

the reward penalty in RAcc as -0.1 based on the experiments. 1013

Table 13: Sensitivity analysis on token target T and token penalty co-efficient w

Token target T LLaMA-2-13B

2048 32.37
1024 29.57
3072 32.37

Token penalty co-efficient w LLaMA-2-13B

(-1,1) 32.37
(-0.5,1) 31.69
(-1,0.5) 32.22

Table 14: Sensitivity analysis on reward penalty value in RAcc

Reward Penalty in RAcc 0 -0.05 -0.1 -0.2 -0.5

LLaMA2-13B@GSM8K 31.69 32.37 32.37 32.07 31.92

We have also verified the effect of applying different LLMs for the training of the CoT-Influx pruner. 1014

The results are listed in Table 15. Based on our observations, the choices of LLM during training will not 1015

significantly influence the pruning capability of CoT-Influx, as the performance of CoT-Influx+LLaMA2- 1016

7B on GSM8K with different training LLM is close. 1017

A.5 CoT-Influx for more difficult math reasoning tasks 1018

As described in the abstract, introduction, and analysis, the proposed dataset MRD3 and reward function 1019

design of CoT-Influx are tailored for grade-school-level math reasoning tasks. To explore the general- 1020

izability of CoT-Influx to higher-difficulty math reasoning problems, we further verify our method on 1021

one additional benchmark MATH (Hendrycks et al., 2021) consisting of 12,500 challenging competition 1022

mathematics problems, covering algebra, calculus, statistics, geometry, linear algebra, and number theory. 1023

We directly apply our CoT-Influx pruner trained on MRD3 to optimize the prompt for MATH evaluation. 1024

The results are shown in Table. 16. We notice that the improvement of CoT-Influx is less significant 1025

compared to GSM8K, mainly because reasoning on MATH is more difficult, and the average difficulty 1026

CoT candidates in MRD3 shown in Figure 7 is closer to GSM8K instead of MATH. 1027

A.6 Case Study on different prompt compression methods 1028

To show how different prompt compression methods prune input few-shot prompts in different manners, 1029

we give an example of an 8-shot prompt selected using the TopK retriever. The original full few-shot 1030

prompts are listed in the following box: 1031
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Table 15: Comparison of different choices on the LLMs used for training the CoT-Influx pruner.

LLM used for training LLaMA2-7B LLaMA2-13B LLaMA2-70B

CoT-Influx+LLaMA2-7B 15.77 15.92 15.85

Table 16: Comparison of accuracy on MATH dataset with state-of-the-art baselines.

Method #Input CoT shots LLaMA2-7B LLaMA2-13B LLaMA2-70B

Zero-shot 0 2.8 3.9 13.5
Few-shot-CoT (Wei et al., 2022) 8 7.7 11.5 24.1
TopK retrieval (Liu et al., 2021) 20 9.1 13.5 24.5
TopK+LLMLingua (Jiang et al., 2023b) 40 6.6 10.3 19.9

CoT-Influx 48 9.3 (↑0.2) 14.0 (↑0.5) 25.2 (↑0.7)

Original full few-shot prompt for math reasoning (1331 tokens):

Q: Dave won 11 tickets at the arcade and spent 5 on a beanie. Afterward, he won 10 more tickets. Calculate his final ticket count by first finding the
remaining tickets after his purchase and then adding the newly won tickets.
A: Let’s think step by step. Dave had 11 tickets, spent 5, leaving him with 6. Then he won 10 more, resulting in: 6 + 10 = 16 tickets. The answer is 16.

Q: At the carnival, tickets for rides cost 0.75 dollars each, or you can buy a 15-dollar armband for unlimited rides for one night. To determine the
number of rides where the armband’s cost equals that of individual tickets, set up and solve an equation involving x, the number of rides.
A: Let’s think step by step. Let x be the number of rides. Equate the cost of x rides using individual tickets, 0.75x dollars, to the 15-dollar armband
cost: 0.75x = 15. Solve for x: x = 15/0.75, which gives x = 20. The answer is 20.

Q: Mitch, Jam, and Jay went out for a movie. Mitch paid $7 per ticket for 3 friends, Jam purchased 2 popcorn boxes at $1.5 each, and Jay got 3 milk
teas for $3 each. To equitably split the expenses, how much should each of them contribute?
A: Let’s think step by step. The total cost of 3 tickets at $7 each, 2 popcorn boxes at $1.5 each, and 3 milk teas at $3 each is $21 + $3 + $9 = $33.
Dividing the overall expenses among 3 friends results in a contribution of $33/3 = $11 per person. The answer is $11.

Q: Connor is taking his date to the movies, with tickets costing $10.00 each. They opt for the large popcorn & 2 drink combo meal at $11.00, and each
choose a box of candy at $2.50 per box. Determine the combined expenses for the movie tickets, combo meal, and candy to find the total amount
Connor will spend on his date.
A: Let’s think step by step. Calculate the cost of two movie tickets (2 x $10.00 = $20.00), the combo meal ($11.00), and two boxes of candy (2 x $2.50
= $5.00), then sum them up ($20.00 + $11.00 + $5.00 = $36.00). The answer is $36.00.

Q: Scott has 4 tickets. Ernest starts with 9 tickets and later discovers a stash of 72 more. Calculate the final number of tickets Ernest possesses.
A: Let’s think step by step. Ernest initially holds 9 tickets and acquires 72 additional ones, leading to a total of 9 + 72 = 81 tickets. The answer is 81.

Q: Joseph and his friends watched two movies at his place. The first movie lasts 1 hour and 30 minutes, and the second is 30 minutes longer. They took
10 minutes for popcorn and double that for fries. Determine, in hours, the cumulative time spent cooking and watching movies by breaking down each
component of time spent.
A: Let’s think step by step. First, find the second movie’s length (1 hour and 30 minutes + 30 minutes = 2 hours). Then, sum both movies’ lengths (1
hour and 30 minutes + 2 hours = 3 hours and 30 minutes). Next, calculate cooking time (10 minutes for popcorn + 20 minutes for fries = 30 minutes).
Lastly, add movie and cooking times (3 hours and 30 minutes + 30 minutes = 4 hours). The answer is 4 hours.

Q: The movie theater sold a number of tickets to the horror and romance movies. The horror movie ticket sales were 18 more than three times the
romance movie ticket sales. If there were 25 romance movie tickets sold, how many tickets were sold for the horror movie, considering the given
relationship?
A: Let’s think step by step. Let "h" represent the horror movie tickets sold. Given that h = 3(25) + 18, we can simplify the equation: h = 75 + 18,
resulting in h = 93. The answer is 93.

Q: On Saturday, Sara purchased 2 movie theater tickets at $10.62 each, rented a movie for $1.59, and bought another movie for $13.95. Determine
Sara’s total expenditure on movies by performing a step-by-step calculation.
A: Let’s think step by step. Firstly, calculate the movie tickets’ cost by multiplying the ticket price ($10.62) by the quantity (2), resulting in $21.24.
Secondly, combine the rental ($1.59) and purchase ($13.95) costs, equaling $15.54. Lastly, sum the ticket cost and rental/purchase cost: $21.24 +
$15.54 = $36.78. The answer is $36.78.

1032

Most of the examples above have similar backgrounds and targets (tickets, movies, expenses, etc.),1033

but the difficulty and number of reasoning steps are various. In addition, the solutions to most questions1034

are highly redundant. When performing math reasoning, it is important to select the most suitable and1035

concise examples considering the characteristics of the current input question. In our evaluation across1036

different methods shown in Sec. 5.1, we have empirically observed the previous methods fail to retain the1037

structural integrity of the prompt. We show the pruned prompt with different methods and similar token1038

lengths in the following box. We can see that Selective Context and LLMLingua frequently discard the1039

important part including ‘Q:’, ‘A:’, ‘\n’, “Let’s think step by step”, and “The answer is” in these examples.1040

Although GPT-4 can retain a majority of these tokens, the reasoning steps are systematically removed1041

because GPT-4 cannot be instructed to utilize the redundancy in both example-level and token-level. Our1042
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proposed CoT-Influx, however, selects the most representative examples and only removes the redundant 1043

function words. 1044

Pruned few-shot prompt of different methods:

Selective Context:
Q Dave won 11 tickets Afterward won: step Dave 11 tickets spent leaving Then won 10 resulting: 16 Q At tickets
rides rides where set solve x: step Let x rides Equate x rides individual tickets dollars = x 20 Q Mitch Jam went
paid per 3 friends Jam purchased equitably how: step 3 tickets + 3 friends results $ Q Connor tickets They opt the
large popcorn & 2 drink combo meal choose candy combo meal candy Connor: step combo boxes sum $ Q Scott 4
tickets starts 9 tickets discovers 72 Ernest possesses: step initially holds 9 tickets 72 additional ones leading 81 Q
Joseph watched lasts They popcorn double hours cooking breaking: step First find + Then sum both movies’ lengths
+ Next, calculate cooking time popcorn + Lastly add movie cooking times + 4 hours Q sold 25 romance movie tickets
considering the given relationship: step Let "h the horror movie tickets Given = 18 simplify 75 93 Q Sara purchased
rented movies performing: step Firstly calculate resulting Secondly combine rental Lastly sum $

LLMLingua:
: Dave won11ets the and5 a be. After he. his final count by first theets after the: Lets think. Daveets5„ in.
: the,ets 5, or a-ollarides for one. To theidesband cost equals of, equation involving r. A: think. Let.ides
using individualets, the1ollar cost5 which. :, Jam and Jay a7 ticket3 Jam2orn5 Jay3 milk. To equ the.ets
boxes53 milk each1. the overallenses3 friends a. The : Connor is his,.. They theorn & drinkbo and0. theandy
think. ofets0 theboal and two then :. Ernest and later a7. think. Ernest initially and, 9: friends at movie
the minutes They and for. the spent by think, the, calculate The a the and ticket, think.:, bought.by-step
calculation. A: Let’s think step by step. Firstly, calculate the movie tickets’ cost by multiplying the ticket price
($10.62) by the quantity (2), resulting in $21.24. Secondly, combine the rental ($1.59) and purchase ($13.95) costs,
equaling $15.54. Lastly, sum the ticket cost and rental/purchase cost: $21.24 + $15.54 = $36.78. The answer is $36.78.

GPT-4 Compression:
Q: Dave won 11, spent 5 and won 10 more. Determine final count.
A: The answer is 16.
Q: Tickets cost 0.75 per ride, armband cost 15. Determine rides that armband’s cost equals tickets.
A: The answer is 20.
Q: $7 per ticket for 3, 2 popcorn boxes at $1.5, 3 milk teas for $3. Determine each contribute.
A: The answer is $11.
Q: Tickets cost $10.00 each, meal cost $11.00, a box of candy at $2.50. Determine the expenses.
A: The answer is $36.00.
Q: Scott has 4. Ernest starts with 9 and discovers 72 more. Determine the final number.
A: The answer is 81.
Q: The first 1.5 hour, the second is 30 minutes longer. 10 minutes for popcorn. Determine the time.
A: The answer is 4 hours.
Q: Horror movie were 18 more than 3 times romance. 25 romance movie sold, Determine number of horror movie.
A: The answer is 93.
Q: Sara purchased 2 at $10.62 each, a movie for $1.59, and another $13.95. Determine total expenditure.
A: The answer is $36.78.

CoT-Influx:
Q: Mitch, Jam, and went out a. Mitch paid $7 per ticket for 3, Jam purchased 2 boxes at $1.5 each, and got 3 for $3
each. To equitably split, how much should each them contribute?
A: Let’s think step by step. The total cost 3 tickets $7 each, 2 popcorn boxes $1.5 each, and 3 milk $3 each is $21 +
$3 + $9 = $33. Dividing the overall expenses among 3 results of $33/3 = $11 per. The answer is $11.

Q: The theater sold number tickets to horror and romance movies. The horror movie ticket sales were 18 more than
three times romance ticket. If there 25 romance sold, how many tickets were sold horror movie, considering?
A: Let’s think step by step. Let "h" represent horror tickets sold. Given h = 3(25) + 18, we can simplify equation: h =
75 + 18, resulting h = . The answer is 93.

Q: On, Sara purchased 2 theater tickets $10.62 each, rented movie $1.59, and bought movie $13.95. Determine
Sara’s total expenditure movies performing a calculation.
A: Let’s think step by step. , calculate tickets’ cost price ($10.62) by quantity (2), resulting $21.24. Secondly, combine
rental ($1.59) purchase ($13.95), equaling. Lastly, sum ticket rental/purchase: $21.24 + $15.54. The answer is $36.78.

1045

B Evolution of MRD3 1046

B.1 Prompt template for evolution 1047

The prompt we used for the evolution of the examples in our dataset is listed as follows: 1048
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Prompt for different evolution strategies

I want you to act as a Prompt Rewriter. Your objective is to rewrite a given prompt into a more complex version to
make those famous AI systems (e.g., LLaMA, ChatGPT, and GPT4) a bit harder to handle.
The prompt is made up of a math reasoning question and the corresponding answer.
The rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit or change the input and results in #Given Prompt#. Also, please retain the format of
’Question: ’ and ’Answer: ’ in your response.
You SHOULD complicate the given prompt using the following method:
{Evolution template}
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10
to 20 words into #Given Prompt#.
The #Rewritten Prompt# should also follow the format that the rewritten question appears after ’Question: ’ and the
rewritten answer appears after ’Answer: ’.
The rewritten answer should end up with ’The answer is [results]’.
#Given Prompt#:
Question: {Given question}
Answer: {Given answer}
#Rewritten Prompt#:

Evolution template for evolution strategy add_constraints:
Please add one more constraint/requirement to the question of #Given Prompt#

Evolution template for evolution strategy deepening:
Please increase the depth and breadth of the question and answer of #Given Prompt#

Evolution template for evolution strategy increase_reasoning:
If #Given Prompt# can be solved with just a few simple thinking processes, please rewrite it to explicitly
request multiple-step reasoning.

Evolution template for evolution strategy revise_difficulty:
Please revise the high-difficulty questions to lower difficulty.

Evolution template for evolution strategy produce_easier:
Please produce a new and easier question with another different topic.

1049

Most parts of the prompt of different evolution strategies are similar. Based on our quantitative analysis of1050

the difficulty and reasoning step distribution, GPT-4 can effectively follow our instructions to modify the1051

constraints or difficulty level of input questions.1052

B.2 Difficulty and Reasoning Steps Distribution of MRD31053

Based on the GPT-4-based estimation, we are able to quantitatively look into the distribution of difficulty1054

and reasoning step distribution in MRD3 without evolution and MRD3 with various evolution schemes.1055

The results are shown in Figure 7. The original distribution of both difficulty level and reasoning steps1056

of questions centralized between 2 and 4. More questions with higher difficulty using add_constraints,1057

deepening, and increase_reasoning. As we discuss in the reward design of our RL pruner, easy questions1058

are important for the stabilization of RL and can help effectively identify the quality of pruned prompts.1059

Easier questions are generated with revise_difficulty and produce_easier evolution scheme.1060

B.3 Additional observation on difficulty distribution1061

As shown in Figure 7, the difficulty diversity of examples in MRD3 is improved after prompt evolution.1062

We then research the difficulty distribution of the input examples for in-context learning. The observation1063

is shown as follows in addition to the 3 main observations proposed in Sec. 3:1064

Observation 4: LLMs with different capabilities prefer CoT examples of varying difficulties.1065

In our further exploration of the optimal selection of CoT examples for improved mathematical1066

reasoning, we observe that LLMs of different capabilities exhibit preferences for CoT examples of varying1067

difficulty levels. As Table 17 shows, we categorize each CoT example in the MRD3-Evol dataset by1068

difficulty level. We then select the top 16 CoT examples from different groups as few-shot examples for1069

LLaMA2 models. Results show LLaMA2-7b prefers CoT examples with a difficulty level of 3-4, while1070
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Figure 7: The difficulty distribution (first row) and the number of reasoning steps distribution (second row).

LLaMA2-13b, more capable, prefers those with a difficulty level of 4 or above. This aligns with intuition: 1071

for instance, when assisting a middle school student with math problems, it is more beneficial to provide 1072

examples of moderate difficulty that they can comprehend, whereas for a high school student, examples 1073

with a higher level of difficulty are more useful. 1074

Table 17: Smaller, less capable LLMs favor simpler CoT examples, while larger ones prefer more complex ones.

Model Difficulty (≤ 3) Difficulty (3-4) Difficulty (≥ 4)

LLaMA2-7B 14.49 15.39 14.86
LLaMA2-13B 23.81 25.32 25.47

In our evaluation of CoT-Influx with various LLMs, we found that the shot selection results are 1075

consistent with our observation. The average difficulty score and number of reasoning steps for the 1076

examples selected by LLaMA2-70B pruner are 3.57 and 3.04, which are higher than the results of 1077

LLaMA2-13B are 3.51 and 2.98. The empirical results further support our assumption that LLMs with 1078

larger sizes prefer harder examples than smaller-scale LLMs. 1079

B.4 The effectiveness of MRD3 dataset 1080

We verify the effectiveness of the MRD3 dataset, which is evolved by GPT-4 for diverse reasoning 1081

steps and difficulties. We compare with two baselines: (1) MRD3 without evolution, excluding GPT-4 1082

evolved examples, and (2) the human-labeled GSM8K training set, which excludes GPT-4’s reformatted 1083

generation. We apply our pruner on these datasets under the same setting. As shown in Table 18, both 1084

GPT-4 generated and evolved CoT examples are vital for improving the reasoning performance. 1085

Table 18: Comparison of EM(%) on GSM8K using CoT-Influx pruner across different CoT datasets.

CoT dataset LLaMA2-7B LLaMA2-13B LLaMA2-70B

MRD3 15.92 32.37 59.59
MRD3 w/o evolution 14.94 30.55 57.70
GSM8K training set 14.18 29.64 56.71

B.5 Evolution example 1086

We give an example of a math question and then show the evolved results of the questions and answers. 1087

The evolved results follow our instructions given in Sec. B.1. As can be seen from the evolution results, 1088

the answer to input questions can be modified (e.g. ground truth answer change from 16 to 12 in 1089

add_constraints). The whole background of the questions can also be replaced (e.g. computation target of 1090

question change from current tickets at the arcade to final points of a game in produce_easier). These 1091

modifications and variations improve the diversity of our prompt candidate sets, which are the building 1092

block for the training and reasoning with CoT-Influx. 1093
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Example of prompt evolution

Input example for evolution:
Q: At the arcade Dave won 11 tickets. If he spent 5 tickets on a beanie and later won 10 more tickets, how many
would he have?
A: Dave initially had 11 tickets, spent 5 on a beanie, and later won 10 more, resulting in a total of: 11 - 5 + 10 = 16
tickets. The answer is 16.

Evolution result of add_constraints:
Q: At the arcade, Dave won 11 tickets. If he spent 5 tickets on a beanie, won 10 more tickets, and gave 4 tickets to his
friend, how many would he have?
A: Dave initially had 11 tickets, spent 5 on a beanie, won 10 more, and gave 4 to his friend, resulting in a total of: 11 -
5 + 10 - 4 = 12 tickets. The answer is 12.
Evolution result of deepening:
Q: At the arcade, Dave triumphed in a game and earned 11 tickets. He redeemed 5 of those tickets for a beanie and
subsequently won an additional 10 tickets. What is his final ticket count?
A: Dave started with 11 tickets, used 5 to acquire a beanie, and later added 10 more to his collection, resulting in: 11 -
5 + 10 = 16 tickets. The answer is 16.
Evolution result of increase_reasoning:
Q: Dave won 11 tickets at the arcade and spent 5 on a beanie. Afterward, he won 10 more tickets. Calculate his final
ticket count by first finding the remaining tickets after his purchase and then adding the newly won tickets.
A: Dave had 11 tickets, spent 5, leaving him with 6. Then he won 10 more, resulting in: 6 + 10 = 16 tickets. The
answer is 16.
Evolution result of revise_difficulty:
Q: Dave got 11 tickets at the arcade. He used 5 tickets to get a beanie and then won 10 more tickets. How many
tickets does he have now?
A: Dave started with 11 tickets, used 5 for a beanie, and won 10 more, giving him: 11 - 5 + 10 = 16 tickets. The
answer is 16.
Evolution result of produce_easier:
Q: In a game, Sarah scored 11 points. She lost 5 points in a penalty and then scored 10 more points. What is her final
score?
A: Sarah initially scored 11 points, lost 5 due to a penalty, and scored 10 more, resulting in a total of: 11 - 5 + 10 = 16
points. The answer is 16.

1094

C Pruner Training and Evaluation Details1095

C.1 Detailed algorithm for training data preparation1096

As a supplement to phase 1 in Algorithm 1, we show the algorithm for training data preparation in1097

Algorithm 2. Both the difficulty level and the number of reasoning steps are involved in the GPT-4-based1098

evaluation. However, we omit the reasoning step in this algorithm as we only use difficulty level in the1099

training set split.1100

Algorithm 2 Training dataset preparation
Input: CoT dataset {xcot

i }Li=1, difficulty threshold dthr,

Output: MRD3 D = {xcot
j , dj}L

MRD3

j=1 , questions set Dquestion, prompt set Dcot

1: ▶ Phase 1: MRD3-Evol Preparation
2: MRD3 dataset D = {}
3: for i = 1 to L do
4: Perform GPT-4 based prompt evolution on xcot

i to get {xcot-E
i,e }e

5: Evaluate difficulty on {xcot-E
i,e }e to get score {di,e}e using GPT-4

6: Append examples {xcot-E
i,e , di,e}e to D

7: end for
8: Prompt set Dcot = {}, question set Dquestion = {}
9: for j = 1 to LMRD3

do
10: if dj ≤ dthr then
11: Append example (xcot

j , dj) to Dquestion
12: else
13: Append example (xcot

j , dj) to Dcot
14: end if
15: end for
16: Return full dataset with evolution D, questions set Dquestion, prompt candidate set Dcot
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C.2 Detailed settings and hyperparameters 1101

The detailed hyper-parameters setting of different LLMs’ pruners are listed in Table 19. The majority of 1102

these hyperparameters are shared across different LLMs. The evolution subset as the prompt candidates 1103

for evaluation is determined by searching the performance of math reasoning on 100 random examples. 1104

Table 19: Detailed hyper-parameters for pruner training scheme of different LLMs.

Model LLaMA2-7B LLaMA2-13B LLaMA2-70B

Epoch 3 3 3
Batch Size 1 1 1

Pruner LLM Base LLaMA2-13B LLaMA2-13B LLaMA2-70B
Input Shot 40 48 48

Input Shot (TopK) 32 32 32
Input Shot (Few-shot) 8 16 16

Optimizer AdamW AdamW AdamW
Weight Decay 1e−2 1e−2 1e−2

Learning Rate 1e−5 1e−5 1e−5

Embedding Extractor BERT-Large (cased) BERT-Large (cased) BERT-Large (cased)
Embedding Size 1024 1024 1024

Tokenizer Padding 512 512 512
Difficulty Threshold dthr 2 2 2

Token Target T 2048 2048 2048
Token Penalty Coefficient w (-1,1) (-1,1) (-1,1)

Selection Repeat trepeat 10 10 5

Evol Subset add_constraints increase_reasoning increase_reasoning
temperature 0.8 0.8 0.8

top_p 0.95 0.95 0.95
top_k 40 40 40

num_beams 1 1 1
max_new_tokens 1 1 1

C.3 Training dynamics 1105

We visualize the RL training dynamics of the LLaMA2-13B pruner in Figure 8 including the LLM loss 1106

reward 1
1+LLLM

, prediction reward RAcc, moving average of the final pruner reward R, and remaining 1107

token count t. We can see from the results that the reward increases steadily with the RL training steps. 1108

The number of remaining tokens decreases rapidly in the early steps and then oscillates around the token 1109

target. Since our prediction reward RAcc are discrete values of {−0.1, 0, 1}, the oscillation phenomenon is 1110

more obvious compared with another reward term. This highlights the effectiveness of question repetition 1111

and using the Exponential Moving Average (EMA) of the final reward to suppress this oscillation. 1112
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Figure 8: RL training dynamics of the LLaMA2-13B pruner.

C.4 Detailed introduction of dataset for evaluation 1113

We introduce the details of the datasets we used for evaluation as follows: 1114

• GSM8K (Cobbe et al., 2021) is a math reasoning dataset consisting of high-quality linguistically diverse 1115

grade school math word problems created by human problem writers. There are 7473 training examples 1116
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and 1319 validation examples in the dataset.1117

• SVAMP (Patel et al., 2021) representing Simple Variations on Arithmetic Math word Problems that1118

conduct question sensitivity variation, reasoning ability variation, and structural variation on existing1119

math datasets. There is a total of 1000 examples, and all of them are used for evaluation in our settings.1120

• MultiArith (Roy and Roth, 2015) is a collection of multi-step arithmetic problems with 600 examples1121

that are used for evaluation in our settings.1122

• AddSub (Hosseini et al., 2014) is a dataset consisting of addition and subtraction problems with 3951123

examples, all used for evaluation in our settings.1124

• SingleEq (Koncel-Kedziorski et al., 2015) consists of grade-school algebra word problems that map to1125

single equations with varying length. Every equation may involve multiple math operations, including1126

multiplication, division, subtraction, and addition over non-negative rational numbers and only one1127

variable. There are 508 problems, 1117 sentences, and 15292 words in the dataset.1128

C.5 Rule-based prompt reconstruction1129

To make sure the input prompt for inference remains structurally intact, we apply a rule-based prompt1130

reconstruction on the input. For example, “\n [question]” will be reconstructed to “\nQ: [question]”1131

and “A: Let’s step by step” will be repaired to “A: Let’s think step by step”. While our pruner has been1132

trained to learn the importance of structure integrity and consistency, there are still a few cases when1133

important tokens are pruned, leading to incorrect reasoning results. The rule-based reconstruction can1134

effectively alleviate the influence of a sub-optimal pruning strategy. The important tokens that should be1135

reconstructed include ‘Q:’, ‘A:’, ‘\n’, “Let’s think step by step”, and “The answer is”.1136

D Additional Related Works1137

LLM In-Context Learning In-context learning (ICL) is one of the emerging abilities of LLMs that1138

conduct various downstream tasks with provided few-shot demonstrations. To fully understand and1139

optimize the ICL paradigm, previous research mainly focuses on the underlying mechanism of ICL or the1140

proper application of ICL. Pioneering research (Von Oswald et al., 2023; Dai et al., 2023) empirically1141

find the similarity between gradient-descent (GD) and ICL, which interprets the trained LLMs as meta-1142

optimizers that can learn the examples in the context in the forward pass. More recently, Wang et al.1143

(2023a) propose a hypothesis that label words in examples serve as anchors in ICL, and the anchors can1144

help aggregate and distribute the task-relevant information flow. To better utilize ICL, previous research1145

also researched the input format (Yoo et al., 2022) and order of examples (Min et al., 2022). Our work1146

falls in the second category, which shows that compressed examples are an optimal choice for the input of1147

ICL.1148

LLM Context Window Extension Recently, there has been rising interest in extending the context1149

window of existing pre-trained LLMs. Common approaches include augmenting external memory1150

modules (Tworkowski et al., 2023; Wang et al., 2023c), which add extra modules to memorize long past1151

contexts but requires complex training, manipulating attention mechanisms (Han et al., 2023; Xiao et al.,1152

2023) or the positional encoding (Chen et al., 2023a; Peng et al., 2023b). However, these require LLM1153

modifications. Our method, applicable to black-box LLMs and extendable context windows, is orthogonal1154

to this direction.1155

Comparison of CoT-Influx with Previous Methods We summarize the advantage of our CoT-Influx1156

compared with previous prompting strategies in Table 20. Gradient-free indicates the methods do not need1157

to be backward through LLMs. Unlimited-token represents the original input prompt for these methods,1158

which are not limited by the context window length of LLMs. Difficulty-aware refers to whether the1159

method takes the difficulty of problems into consideration of their prompt design. Dynamic #Shots means1160

we do not need to set a target shot number, and the pruned input shot numbers are different across various1161

questions. Our CoT-Influx demonstrates a significant advantage over all previous methods.1162
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Table 20: Comparison of the advantages of different prompting strategies.

Methods Frozen LLMs Automated Gradient-free Unlimited-token Transferable Interpretable Difficulty-aware Dynamic #Shots

Fine-Tuning % ! % % % % % %

Manual Prompt ! % ! % ! ! % %

Soft Prompt Tuning ! ! % % % % % %

Prompt Retrieval ! ! ! % ! ! % %

AutoPrompt (Shin et al., 2020) ! ! % % ! ! % %

RLPrompt (Deng et al., 2022) ! ! ! % ! ! % %

Context Extension ! ! ! ! ! ! % %

LLMLingua (Jiang et al., 2023b) ! ! ! ! ! ! % %

CoT-Influx(Ours) ! ! ! ! ! ! ! !

E Prompt Settings 1163

In this section, we show the prompt we used in this work for reproducibility. The prompt for evaluating 1164

the difficulty and reasoning steps of each example are: 1165

Prompt for difficulty and reasoning steps estimation:

We would like you to evaluate and rate the difficulty and complexity of the following question. You should first give
an overall score on a scale of 1 to 10, where a higher score indicates higher difficulty and complexity. You should
then evaluate the answer and give how many reasoning steps are in the answer. You must just give the score and the
number of reasoning steps without any other reasons. The reply format should be ’Score’: [score], ’Steps: [#steps]’
## Question: {Given question}
## Answer: {Given answer}
## Evaluation:

1166

The prompt for GPT-4 Compression on prompts is shown as follows. Note that we encode the 1167

restriction of token limits in both the prompt and API by setting the max_new_token. However, the prompt 1168

compression results still fail to follow the restrictions for most cases. This disadvantage of uncontrollable 1169

token length is also discussed in previous work (Jiang et al., 2023b). 1170

Prompt for GPT-4-based compression:

Please compress the following examplars for few-shot in-context learning on math reasoning. The complete exemplars
could be removed if they are redundant, and the tokens within each exemplar can also be pruned. ’The answer is’ in
each examplar should be retained and please keep less than {Given token} tokens in total:
{Given examplars}

1171
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