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Abstract

Understanding the inner workings of neural001
embeddings, particularly in models such as002
BERT, remains a challenge because of their003
high-dimensional and opaque nature. This pa-004
per proposes a framework for uncovering the005
specific dimensions of vector embeddings that006
encode distinct linguistic properties (LPs). We007
introduce the Linguistically Distinct Sentence008
Pairs (LDSP-10) dataset, which isolates ten key009
linguistic features such as synonymy, negation,010
tense, and quantity. Using this dataset, we an-011
alyze BERT embeddings with various statisti-012
cal methods, including the Wilcoxon signed-013
rank test, mutual information, and recursive014
feature elimination, to identify the most influ-015
ential dimensions for each LP. We introduce016
a new metric, the Embedding Dimension Im-017
portance (EDI) score, which quantifies the rel-018
evance of each embedding dimension to a LP.019
Our findings show that certain properties, such020
as negation and polarity, are robustly encoded021
in specific dimensions, while others, like syn-022
onymy, exhibit more complex patterns. This023
study provides insights into the interpretability024
of embeddings, which can guide the develop-025
ment of more transparent and optimized lan-026
guage models, with implications for model bias027
mitigation and the responsible deployment of028
AI systems. 1029

1 Introduction030

Word embeddings are central to natural language031

processing (NLP), enabling machines to repre-032

sent and interpret text in continuous vector spaces.033

From early models like Word2Vec (Mikolov et al.,034

2013) and GloVe (Pennington et al., 2014), to ad-035

vanced models like GPT-2 (Radford et al., 2019)036

and BERT (Devlin et al., 2019), embeddings have037

evolved to capture complex linguistic nuances.038

BERT, in particular, leverages bidirectional trans-039

formers to generate contextualized word represen-040

1Code will be released upon publication.

Figure 1: Dimensions of BERT embeddings that encode
the most information about each LP. Relevance is de-
termined by Embedding Dimension Importance (EDI)
scores above 0.8, a threshold chosen in relation to the
general EDI score distribution.

tations, enhancing syntactic and semantic under- 041

standing (Rogers et al., 2020). 042

Despite these advancements, embeddings are 043

often seen as "black boxes," where the high- 044

dimensional nature of the spaces they occupy 045

makes interpretation difficult (Belinkov and Glass, 046

2019). The field of interpretable embeddings seeks 047

to address these challenges by making the dimen- 048

sions of embeddings more transparent and mean- 049

ingful (Faruqui et al., 2015a; Incitti et al., 2023; 050

Snidaro et al., 2019). However, most systems 051

still rely on popular embedding models like GPT, 052

BERT, Word2Vec, and GloVe, which prioritize per- 053

formance over interpretability (Cao, 2024; Lipton, 054

2017). 055

Our research introduces a generalizable frame- 056

work for identifying specific embedding dimen- 057

sions in models like BERT and GPT-2 that encode 058

distinct LPs. This work responds to the grow- 059

ing need for interpretable models, especially for 060

tasks like bias mitigation (Bolukbasi et al., 2016; 061

Mehrabi et al., 2021), task-specific optimization 062

(Guyon and Elisseeff, 2003; Voita et al., 2019), and 063

more system controllability (Bau et al., 2019). 064
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Control Synonym Quantity Tense Intensifier Voice Definiteness Factuality Polarity Negation
BERT 0.5033 0.7033 0.95 0.94 0.9867 0.9667 0.8967 0.9833 0.9700 0.9333
GPT-2 0.57 0.6267 0.9733 0.9567 0.9367 0.9867 0.9433 0.9667 0.9533 0.93

MP-Net 0.54 0.5267 0.9533 0.93 0.8733 0.86 0.8567 0.9667 0.9533 0.9367

Table 1: Evaluation 1 (§ 5.2) accuracy for different LPs across BERT, GPT-2, and MP-Net. A simple logistic
classifier is able to perform at these levels of accuracy on the highest EDI subset of dimensions of embeddings from
each of these models.

We present the LDSP-10 dataset, which consists065

of sentence pairs isolating nine LPs, designed to066

probe embedding spaces and identify the dimen-067

sions most influential for each property. We an-068

alyze these sentence pairs using statistical tests,069

mutual information, and feature selection methods.070

We propose the Embedding Dimension Impor-071

tance (EDI) score, which aggregates these analy-072

ses to quantify the relevance of each dimension to073

specific LPs.074

This paper makes three contributions. First, is075

the introduction of the LDSP-10 dataset, consisting076

of sentence pairs that isolate nine LPs. Second is077

a generalizable framework and quantifiable metric078

(EDI score) for identifying influential embedding079

dimensions, applicable to different models and lin-080

guistic features. Third is a comprehensive analysis081

of BERT, GPT-2, and MPNet embeddings, reveal-082

ing key dimensions related to each LP.083

2 Related Works084

Research on interpretable embeddings can be di-085

vided into two categories: interpretable embed-086

dings and representation analysis. The former fo-087

cuses on designing models that naturally produce088

interpretable representations, while the latter in-089

volves post-hoc analysis to uncover how existing090

embeddings encode human-interpretable features.091

2.1 Interpretable Embeddings092

Several approaches have been proposed to cre-093

ate interpretable word embeddings. Early efforts094

like Murphy et al. (2012) used matrix factoriza-095

tion techniques to generate sparse, interpretable096

embeddings. Faruqui et al. (2015b) introduced097

Sparse Overcomplete Word Vectors (SPOWV),098

which used a dictionary learning framework for099

more interpretable, sparse embeddings. Other100

methods, such as Guillot et al. (2023) and Sub-101

ramanian et al. (2018), explored how sparsification102

techniques could disentangle properties within em-103

beddings, making them more interpretable.104

Approaches to embedding interpretability105

also involve aligning dimensions with human-106

understandable concepts. For instance, Panigrahi 107

et al. (2019) used Latent Dirichlet Allocation 108

(LDA) to produce embeddings where each 109

dimension corresponds to a specific word sense, 110

and Benara et al. (2024) employed LLM-powered 111

yes/no question-answering techniques to generate 112

interpretable embeddings. Despite these innova- 113

tions, popular models like Word2Vec, GloVe, and 114

BERT remain dominant in NLP but often lack 115

inherent interpretability. As a result, methods for 116

post-hoc analysis are needed to interpret these 117

embeddings. 118

2.2 Representation Analysis 119

Representation analysis focuses on understanding 120

how knowledge is structured within embeddings 121

and how individual neurons contribute to encoding 122

specific properties (Sajjad et al., 2022). Senel et al. 123

(2017) demonstrated how individual dimensions 124

correspond to specific semantic properties, and Zhu 125

et al. (2018) emphasized the value of sentence-level 126

embeddings in capturing nuanced semantic proper- 127

ties. Research has also explored the linguistic fea- 128

tures encoded within embeddings. Conneau et al. 129

(2018) developed a set of ten probing tasks that 130

evaluate how sentence embeddings capture various 131

linguistic features, such as syntactic structures and 132

semantic roles. Adi et al. (2017) complemented 133

this work by proposing classification tasks that re- 134

veal the effectiveness of sentence embeddings in 135

encoding attributes like sentence length and word 136

order. 137

Recent research has analyzed individual neurons 138

in embedding spaces, often using methods like 139

neuron-ranking, where a probe is used to rank neu- 140

rons based on their relevance to a specific linguistic 141

feature (Dalvi et al., 2019; Durrani et al., 2020; 142

Torroba Hennigen et al., 2020). Antverg and Be- 143

linkov (2022) analyzed these methods, separating 144

representational importance from functional utility 145

and introducing interventions to evaluate whether 146

encoded information is actively utilized. 147

Building on this foundation, Durrani et al. (2024) 148

introduced Linguistic Correlation Analysis (LCA), 149
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which identifies salient neurons that encode specific150

linguistic features. Their findings indicated redun-151

dancy in information encoding across neurons, en-152

hancing robustness in representation learning. Sim-153

ilarly, Gurnee et al. (2023) proposed sparse prob-154

ing methods to address polysemanticity, illustrating155

how features are distributed across neurons in trans-156

former models. Additionally, Torroba Hennigen157

et al. (2020) presented intrinsic probing, introduc-158

ing a Gaussian framework to identify dimensions159

encoding LPs. Together, these findings suggest160

that linguistic attributes are often encoded in focal161

dimensions, providing insights into how different162

models represent linguistic knowledge.163

Our work builds on these ideas by using the164

LDSP-10 dataset to isolate linguistic features,165

which provides a focused method for assessing166

how embedding dimensions capture these prop-167

erties. We move beyond traditional probing and168

neuron-ranking techniques to offer a more targeted169

examination of embedding interpretability.170

3 Linguistically Distinct Sentence Pairs171

(LDSP-10) Dataset172

We curated a dataset of 1000 LDSPs for each of173

the 10 LPs we wanted to investigate. The dataset174

was generated using Google’s gemini-1.5-flash175

model API. This model was selected due to its reli-176

ability and cost-efficiency while being able to pro-177

duce consistent outputs across a variety of linguis-178

tic contexts. The model was prompted with a set179

of reference LDSPs as well as a description of the180

LP to ensure a high-quality outputs. These outputs181

were generated in batches of 100 LDSPs at a time.182

To ensure reproducibility and transparency, the de-183

tailed prompts used to generate the dataset are pro-184

vided in Appendix A. These prompts included ex-185

plicit examples of each LP, along with clear in-186

structions tailored to the gemini-1.5-flash API187

to encourage outputs adhering to the desired prop-188

erties.189

During the dataset creation process, the order190

of the sentences in the LDSP was not always con-191

sistent with the intended property distinction. We192

made modifications to the prompt to explicitly en-193

force the correct ordering. This adjustment ensured194

that the generated outputs reliably aligned with our195

expectations. Manual validation was conducted to196

assess the quality of the generated data. The evalu-197

ation revealed that more than 99% of the sampled198

sentence pairs adhered to the minimal distinctions199

Property Sentence Pair

Control They sound excited.
The farmer has 20 sheep.

Synonym The music was calming.
The music was soothing.

Quantity I ate two cookies.
I ate several cookies.

Tense The river flows swiftly.
The river flowed swiftly.

Intensifier The task is easy.
The task is surprisingly easy .

Voice The team won the game.
The game was won by the team.

Definiteness The bird flew away.
A bird flew away .

Factuality The car is red.
The car could be red.

Polarity She passed the exam.
She failed the exam.

Negation The project is successful.
The project is not successful.

Table 2: Sample linguistically distinct sentence pairs
(LDSPs) from each of the LPs tested in this study.
LDSP-10 dataset contains 1000 sentence pairs per LP.
Control LDSPs are randomly chosen from the dataset,
intended to be unrelated, as a baseline for our analysis.

expected for their LP. The system exhibited a low 200

rate of syntactic or content biases, with errors oc- 201

curring primarily in cases involving more complex 202

distinctions, such as polarity and factuality. 203

The LPs tested were chosen to explore various 204

semantic and syntactic relationships. We gener- 205

ated LDSPs for definiteness, factuality, intensifier, 206

negation, polarity, quantity, synonym, and tense. 207

In addition, we generated a control group, which 208

contains sentence pairs of completely unrelated 209

sentences. This is used to compare to the LDSPs 210

and contextualize our observed results. Example 211

LDSPs can be found in Table 2, with more detailed 212

definitions found in Appendix B. For more informa- 213

tion about the dataset generation pipeline, please 214

refer to Appendix A. 215

4 Dimension-Wise Embedding Analysis 216

4.1 Wilcoxon Signed-Rank Test 217

The Wilcoxon signed-rank test is employed in our 218

analysis to assess whether there exists a significant 219

difference in embedding dimensions across paired 220

sentence representations. This non-parametric test 221

is particularly useful when the data does not con- 222

form to the normality assumptions required by para- 223

metric tests such as the paired t-test. Given that 224

sentence embeddings often exhibit complex, non- 225

Gaussian distributions, the Wilcoxon test provides 226

a robust approach to evaluating the statistical sig- 227

nificance of differences in embedding dimensions. 228

Formally, let X1, X2 ∈ Rd be the embedding 229

representations of two paired sentences. We define 230
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the difference vector as:231

D = X1 −X2, (1)232

where D = {d1, d2, ..., dd} contains the differ-233

ences for each embedding dimension. The null234

hypothesis for the Wilcoxon test is given by:235

H0 : median(D) = 0, (2)236

which posits that there is no significant shift in the237

embedding dimensions between the two sentence238

representations.239

The test proceeds by ranking the absolute values240

of the nonzero differences, assigning ranks Ri to241

each |di|. The Wilcoxon test statistic W is com-242

puted as the sum of ranks corresponding to positive243

differences:244

W =
∑
di>0

Ri. (3)245

The significance of W is then assessed using either246

critical values from the Wilcoxon distribution or by247

computing a p-value.248

We employ the Wilcoxon test in our framework249

to analyze whether certain dimensions of the em-250

beddings exhibit systematic shifts between sen-251

tence pairs. Overall, the Wilcoxon signed-rank test252

provides a rigorous statistical method for validating253

the role of embedding dimensions in differentiating254

sentence pairs, ensuring that our conclusions are255

drawn from statistically significant evidence rather256

than random variations.257

4.2 Mutual Information (MI)258

To further investigate the relationship between em-259

bedding dimensions and each LP and inspired by260

Pimentel et al. (2020), we employed mutual in-261

formation (MI) analysis. Mutual information is a262

measure of the mutual dependence between two263

variables, quantifying the amount of information264

obtained about one variable by observing the other265

(Zeng, 2015).266

For discrete random variables X and Y , the mu-267

tual information MI(X;Y ) is defined as:268

MI(X;Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
,269

where PXY (x, y) is the joint probability distribu-270

tion of X and Y , and PX(x) and PY (y) are the271

marginal probability distributions of X and Y , re-272

spectively. In our context, X represents the values273

of a particular embedding dimension, and Y repre- 274

sents S1 (0) or S2 (1). 275

To apply mutual information analysis, we dis- 276

cretize the embedding dimensions using quantile- 277

based binning with 10 bins. This number was se- 278

lected as a balance between the preservation of 279

information content and the avoidance of excessive 280

complexity in the estimation of the MI score and 281

is a common practice in similar analyses (Steuer 282

et al., 2002). 283

4.3 Recursive Feature Elimination 284

We initially examined each embedding dimension’s 285

predictive capability with simple logistic regres- 286

sion. Unlike more flexible techniques, logistic re- 287

gression imposes a linear decision boundary, which 288

was unable to capture the complex patterns defin- 289

ing most linguistic contrasts within the generated 290

embeddings. To capture these relationships, we 291

applied Recursive Feature Elimination (RFE) us- 292

ing scikit-learn’s implementation with logistic 293

regression as the base estimator (Zeng et al., 2009). 294

Embedding pairs were split into their constituent 295

parts, with sentence1 embeddings labeled as class 296

0 and sentence2 embeddings as class 1, enabling 297

a binary classification setup to highlight dimen- 298

sions that distinguish the two positions. The RFE 299

procedure iteratively trained a model, assigned im- 300

portance weights to features, and removed the least 301

important ones until the top 20 features remained. 302

The dataset was divided into training (80%) and 303

testing (20%) sets with a fixed random seed to 304

ensure consistency. RFE was initialized with a lo- 305

gistic regression classifier (max 1000 iterations), 306

and the selected 20 features were used to train a 307

final logistic regression model. The model’s perfor- 308

mance was evaluated on the test set using accuracy 309

as the metric. 310

4.4 EDI Score Calculation 311

To quantify the contribution of of each embedding 312

dimension to a LP, we introduce the Embedding 313

Dimension Importance (EDI) Score, which is com- 314

puted for each dimension d and each LP lp as fol- 315

lows: 316

EDId,lp = w1 ·− log pd,lp+w2 ·Md,lp+w3 ·Rd,lp 317

where pd,lp is the p-value obtained from the 318

Wilcoxon signed-rank test results. Md,lp is the 319

mutual information score. Rd,lp is the absolute 320

value of the logistic regression weights after the 321
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recursive feature elimination if d remains in the322

reduced feature set for LP lp; otherwise, Rd,lp = 0.323

pd,lp, Md,lp, Rd,lp are min-max scaled before the324

EDI score weighted to calculation to enforce EDI325

scores to be ∈ [0, 1]. Lastly, w1 = 0.6, w2 = 0.2,326

and w3 = 0.2. Wilcoxon’s test was weighted the327

most heavily, as it calculates the statistical signifi-328

cance of the differences observed, which our testing329

showed was a strong predictor of importance.330

5 Evaluation331

5.1 Linguistic Property Classifier332

To verify the feasibility of using sentence pairs,333

we calculated embedding difference vectors Di =334

emb(S1i)−emb(S2i) and evaluated them as predic-335

tors of LP. To this end, we trained an LP classifier336

that assigns any given embedding difference vector337

to one of the tested LPs. The primary goal of this338

classifier is to assess how well different LPs can339

be separated in the embedding space. The model340

was trained using an 80-20 training-test split on the341

entire LDSP-10 dataset.342

5.2 EDI Score Evaluation343

To systematically assess the effectiveness of EDI344

scores, we implement a structured evaluation345

framework consisting of a baseline test and three346

evaluations experiments. For more details on the347

algorithms for each evaluation method, refer to348

Appendix C.349

For the baseline, we train a logistic regression350

classifier on the full set of embedding dimensions.351

Given a binary classification task for each LP, the352

classifier is trained to distinguish between the two353

sentences in the LDSP using all available embed-354

ding dimensions, serving as an upper bound against355

which subsequent evaluations are compared.356

Evaluation 1 explores how dimensions with high357

EDI scores replicate the performance of the full-358

dimensional classifier. We first rank all dimensions359

by their EDI score in descending order. Starting360

with the highest-ranked dimension, we train a lo-361

gistic regression classifier, as in the baseline eval-362

uation, but only with this single feature. We it-363

eratively add the next highest-ranked dimension,364

retraining the classifier and evaluating the test ac-365

curacy until we reach at least 95% of the baseline366

accuracy.367

Evaluation 2 verifies that dimensions with low368

EDI scores do not encode information relevant to369

the LP. We identify the 100 lowest-ranked dimen-370

Figure 2: Distribution of BERT embedding dimension 0
of control LDSPs for S1 and S2. For control, all dimen-
sions had equivalent Wilcoxon p-values, so dimension
0 represents the most and least significant p-value.

sions and train a logistic classifier to distinguish 371

between the two sentences using only those dimen- 372

sions. We record the accuracy on a test dataset 373

to determine whether it remains close to random 374

chance, as expected, to ensure that these dimen- 375

sions lack significance in encoding the LP. 376

Evaluation 3 examines cross-property general- 377

ization, exploring whether high-EDI-score dimen- 378

sions for one LP are specialized rather than broadly 379

informative across different properties. We use the 380

highest-ranked EDI score dimensions of other prop- 381

erties to predict the current property. We expect the 382

performance of this classifier to be generally lower 383

than the baseline and the high EDI Score accuracy. 384

6 Results 385

In this section, we focus on BERT embeddings 386

as a case study for applying our framework. We 387

focus on showing visualizations for control, nega- 388

tion, and intensifier, but all other LPs and related 389

tables/plots can be found in Appendix . The results 390

for GPT-2 and MPNet were similar, and can be 391

reviewed in detail in Appendix E and Appendix F. 392

6.1 Control and Synonym 393

The control LDSPs consists of completely unre- 394

lated sentence pairs. As expected, the results show 395

that there are no significant dimensions in BERT 396

embeddings that encode any relationships. Figure 397

5 illustrates very little agreement the Wilcoxon 398

signed-rank test, RFE, and mutual information. 399

The Wilcoxon test p-values show no dimensions 400
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Figure 3: Distribution of BERT embedding dimensions
544 (top) and 489 (bottom), lowest and highest p-values
respectively, of negation LDSPs for S1 and S2. There
is a discernible shift to the right in dimension 544, for
sentences that are negated.

with significant differences in their means, as401

shown in Figure 2. The maximum EDI score of402

0.3683 is the lowest of all other properties. The403

embeddings of the two sentences are expected to be404

far in embedding space because of their unrelated405

nature, which aligns with these observed results.406

Despite having sentences that were very close407

or equivalent in meaning, the results of the anal-408

ysis for the synonym LDSPs were very close to409

the completely unrelated sentences of control. The410

Wilcoxon test shows no significant dimensions that411

encode meaningful differences between the sen-412

tences. The maximum EDI score of 0.8751 is fol-413

lowed by a steep drop-off.414

6.2 Negation and Polarity415

The negation LDSPs showed very strong results,416

with 13 dimensions with an EDI score of 0.8 or417

above. The maximum EDI score of 0.9987 for418

dimensions 544 is one of the strongest out of any419

LP. Figure 6 illustrates this, with high agreement420

between the Wilcoxon signed-rank test, RFE, and421

mutual information test results. Figure 3 highlights422

the distributional shift in some dimensions, which423

compared to the control highlights a discernible,424

binary relationship in the data.425

Polarity is very similar to negation and had sim-426

ilarly strong results. With a maximum EDI score427

of 0.9977 for dimension 431, and over 20 dimen-428

sions with EDI scores over 0.8, it was also one of429

the strongest relationships that we observed. The430

singular switch to an antonym in the sentence com-431

Figure 4: Distribution of BERT embedding dimensions
445 (top) and 489 (bottom), lowest and highest p-values
respectively, of intensifier LDSPs for S1 and S2. Inten-
sified sentences have values in dimension 445 that tend
to be lower, as seen by the distributional shift to the left.

pletely reverses the meaning of the sentence, ex- 432

plaining the strong binary relationship between the 433

sentences. 434

6.3 Intensifier 435

Adding a word to increase the emphasis of a verb 436

changes the meaning of the sentence to a lesser 437

degree than a complete reversal, so the results of 438

the intensifier LDSPs reflect a slightly weaker rela- 439

tionship than negation. There are fewer dimensions 440

with multiple test agreement, as shown in Figure 7, 441

as well as a slighter distributional shift, as shown by 442

the most significant p-value Wilcoxon test results 443

(Figure 4). With a maximum EDI score of 0.8911, 444

the encoding is relatively weaker, but noticeable. 445

6.4 Other Linguistic Properties 446

Largely syntactical changes, such as those observed 447

in definiteness, led to strong EDI scores as well. 448

Definiteness had the highest dimensional EDI score, 449

with dimension 180 receiving a score of 1.0. A sim- 450

ple switch from a definite to an indefinite article is a 451

distinct change in structure. As articles are present 452

in most English sentences, a singular dimension 453

with a perfect EDI score is expected. 454

Voice, another syntactical property, had pairs 455

of sentences with shuffled word orders and verb 456

changes. The results show that this is encoded in 457

relatively few dimensions, with only 3 dimensions 458

scoring above 0.9. 459

The quantity LDSPs involve changes in the syn- 460

tax and semantics. Similar to the intensifier results, 461
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Figure 5: Combined analysis graph for control: shows
the top 25 important dimensions selected by each of
the three methods in § 4. Bar height represents mutual
information (MI); bars above the dashed line are in the
top 25 MI scores. Blue bars signify the lowest Wilcoxon
test p-values. Green triangles indicate a dimension that
was selected by recursive feature elimination (RFE) with
num_features set to 25. In the case for control, all
dimensions had equivalent Wilcoxon p-values, so the
first 25 are selected.

Figure 6: Combined analysis graph for negation. Cir-
cled bars represent dimensions that all three tests agree
to be highly important. For more details, refer to Figure
5.

the EDI scores at large were relatively lower for462

these properties, but still much stronger than the463

control.464

Tense represented a large semantic change, as465

well as a structural one in the conjugation of verbs.466

Although the maximum EDI score of 0.9405 was467

not as high as other properties, 18 embeddings468

scored above 0.8, indicating an encoding of this469

property over many dimensions.470

For more details and visualizations of all proper-471

ties, refer to Appendix D.472

6.5 Evaluation Results473

The LP classifier achieved a test accuracy of 0.863474

with a confusion matrix as shown in Figure 8,475

demonstrating that the embedding difference vec-476

tors contain sufficient separable information to dis-477

tinguish between different LPs. Moreover, the478

strong performance of the classifier supports the479

Figure 7: Combined analysis graph for intensifier. Sim-
ilar to figures 5 and 6.

validity of our pairwise minimal-perturbation ap- 480

proach, indicating that small controlled changes in 481

sentence pairs effectively capture linguistic distinc- 482

tions in the embedding space. 483

In the high EDI score evaluation, we observed 484

that across most LPs, only less than 12 of the 485

highest-ranked dimensions were required to re- 486

cover at least 95% of the baseline classifier’s accu- 487

racy, with some properties (i.e. factuality) requiring 488

as few as four dimensions. This indicates that the 489

information necessary for classifying each LP is 490

concentrated in a relatively small subset of embed- 491

ding dimensions. Conversely, the low EDI score 492

evaluation confirmed that dimensions with low 493

scores contribute minimally to classification per- 494

formance. Even when using the 100 lowest-ranked 495

dimensions, the resulting classifier performed con- 496

sistently worse than classifiers using much fewer 497

(4-38) of the highest-ranked dimensions (Figures 498

10, 11). This demonstrates the EDI score’s validity 499

as a measure of whether a given dimension encodes 500

information relevant to an LP. 501

Finally, the cross-property evaluation demon- 502

strated that using the top-ranked dimensions from 503

another LP generally resulted in lower classifica- 504

tion performance compared to using the high-EDI 505

dimensions of the target property, showing that the 506

EDI score effectively identifies dimensions that en- 507

code information specific to each LP. Interestingly, 508

we found that certain properties with conceptual 509

similarities performed best for each other. For ex- 510

ample, in the polarity classification task, the top 511

EDI dimensions from negation achieved the high- 512

est accuracy among all cross-property evaluations, 513

reaching 0.895 (Figure 10). This result aligns with 514

the intuition that negative sentiment—typically 515

represented by the second sentence in polarity 516

pairs—is often expressed through negation, rein- 517

forcing the semantic connection between these LPs. 518
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Figure 8: Confusion matrix for the LP classifier (§ 5.1).
All LPs, except control and synonym, are accurately clas-
sified by the model. Control’s randomness ensures that
its different vectors contain no consistent separability,
similarly with synonym’s unordered pairings.

Figure 9: Evaluation plot for control. The blue dot indi-
cates that with just 1 high-EDI dimension, the classifier
was able to achieve performance better than the baseline.
However, in the case of control, all the accuracies are
near 0.5 (random-choice accuracy), as expected.

7 Discussion519

The results of this study provide a clear demon-520

stration of the ability to extract specific LPs within521

high-dimensional embeddings. Our analysis shows522

that certain LPs are robustly encoded in distinct523

embedding dimensions, as evidenced by high524

Embedding Dimension Importance (EDI) scores525

and agreement across multiple analytical methods.526

These methods were chosen after rigorous exper-527

imentation, where principal component analysis,528

simple logistic regression, and other methods were529

rejected due to their inability to capture the nu-530

anced, non-linear information encoded in these em-531

beddings. Negation yielded one of the the highest532

maximum EDI scores and a significant number of533

dimensions with high interpretability. This sup-534

ports the notion that negation is a well-structured535

and salient linguistic feature in BERT embeddings.536

Figure 10: Evaluation plot for polarity. The blue line
tracks the test accuracy of the classifier as we increased
the number of top EDI-scored dimensions, showing
that 8 dimensions were enough to achieve near-baseline
accuracy. The top-performing cross property is negation
which contains semantic similarities to polarity.

Figure 11: Evaluation plot for intensifier. Incremen-
tally added 19 high-EDI dimensions until the classifier
reached near-baseline performance. Low-EDI perfor-
mance (red dashed line) was nearly half.

In contrast, some properties exhibited minimal 537

evidence of dimension-specific encoding, which 538

we hypothesize to be due to a lack of a binary 539

or clear-cut way of encoding these relationships. 540

Synonymy showed low maximum EDI scores and 541

inconsistent results across our methods. Synonym 542

pairs in our dataset could be permuted without af- 543

fecting the consistency of the data, and 0-1 labels 544

for our classifiers and mutual information were 545

meaningless; therefore, our methods are unable to 546

extract the dimensional distribution of synonym 547

encodings. 548

In summary, this study underscores the hetero- 549

geneous nature of linguistic encoding in BERT em- 550

beddings, with some properties exhibiting clear, 551

interpretable patterns while others remain elusive. 552

The proposed EDI score and analytical frame- 553

work provide valuable tools for advancing the in- 554

terpretability of embeddings, with implications 555

for bias mitigation, model optimization, and the 556

broader goal of responsible AI deployment. 557
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8 Limitations558

While our study provides insight into the inter-559

pretability of embedding dimensions, it is con-560

strained primarily due to data availability. Generat-561

ing high-quality LDSPs with LLM-based tools is562

difficult, as ensuring diversity, minimal redundancy,563

and high linguistic quality becomes significantly564

more difficult with more data generated. Overly565

simplistic, repetitive outputs are difficult to avoid,566

despite careful prompt engineering.567
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prompt_template = """

You are generating a dataset of
Linguistically Distinct Sentence Pairs
(LDSPs).
Each LDSP will differ in one key linguistic
property while maintaining the same overall
meaning.

Below are some examples of LDSPs

Linguistic Property: negation
LDSP: ('The box is on the counter', 'The
box is not on the counter')

Linguistic Property: tense
LDSP: ('The box is on the counter', 'The
box was on the counter')

You will generate {num_ldsps} distinct
LDSPs of various topics, 100 at a time.

You will generate them as two columns of a
CSV. One column for first sentence of the
LDSP, and the other column for the second.
Each row is a new LDSP, so you will
generate {num_ldsps} rows in total.

Generate no other text. Vary the sentence
structure.

The property for which you will be
generating LDSPs will be
{linguistic_property}.

Property Description: {property_description}

An example LDSP for this property is
{example_ldsp}

Generate the first 100 LDSPs.

"""

Figure 13: The prompt template used to generate LDSPs
with the gemini-1.5-flash model API.

B Linguistic Property Definitions 753

We tested LDSPs for the following linguistic prop- 754

erties: 755

• Definiteness involves the use of definite or 756

indefinite articles within a sentence, such as 757

the compared to a, respectively. 758

• Factuality refers to the degree of truth implied 759

by the structure of the sentence. 760

• Intensifier refers to the degree of emphasis 761

present within a sentence. 762

• Negation occurs when a not is added to a sen- 763

tence, negating the meaning. 764

• Polarity this is similar to a negation, and oc- 765

curs when an antonym is added, reversing the 766

meaning of the sentence completely. 767

• Quantity a switch from an exact number used 768

to numerate the items to a grouping word. 769

• Synonym both sentences have the same mean- 770

ing, with one word being replaced by one of 771

its synonyms. 772

• Tense one sentence is constructed in the 773

present tense, while the other is in the past 774

tense. 775

C Evaluation Algorithms 776

To systematically assess the efficacy of EDI (Em- 777

bedding Dimension Importance) scores, we con- 778

duct a structured evaluation using logistic regres- 779

sion classifiers. Our evaluation consists of three 780

key evaluation algorithms: 781

Algorithm 1 Evaluation 1: High EDI Score

Require: Ranked dimensions D =
{d1, d2, ..., d768} sorted by descending
EDI score

Ensure: Accuracy curve Ak as a function of di-
mensions used

1: Initialize k ← 1, Ak ← 0
2: while Ak < 0.95Abaseline do
3: Select top k dimensions: Xk = X[:, D1:k]
4: Train logistic regression on Xk

5: Compute test accuracy Ak ←
Evaluate(θ,Xtest, ytest)

6: k ← k + 1
7: end while
8: return Ak
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Algorithm 2 Evaluation 2: Low EDI Score
Require: Ranked dimensions D =
{d1, d2, ..., d768} sorted by ascending
EDI score

Ensure: Test accuracy Alow using lowest-EDI di-
mensions

1: Select bottom k = 100 dimensions: Xlow =
X[:, D1:100]

2: Train logistic regression on Xlow
3: Compute test accuracy Alow ←

Evaluate(θ,Xtest, ytest)
4: return Alow

Algorithm 3 Evaluation 3: Cross-Property

Require: Current property P0 dataset (X, y), set
of other properties P = {P1, P2, ..., P9},
where each Pi has ranked EDI dimensions DPi

Ensure: Accuracy scores {AP1 , AP2 , ..., AP9}
1: for each property P ∈ P do
2: Retrieve top k = 25 dimensions from P :

D1:25
P

3: Extract these dimensions from current data:
XP

train = Xtrain[:, D
1:25
P ]

4: Train logistic regression on XP
train

5: Compute test accuracy AP ←
Evaluate(θ,XP

test, ytest)
6: end for
7: return {AP }P∈P

These evaluations provide a comprehensive un-782

derstanding of how EDI scores relate to classifica-783

tion accuracy, ensuring that high EDI dimensions784

contain useful linguistic information while low EDI785

dimensions do not. The cross-property evaluation786

further confirms that high-EDI dimensions are spe-787

cialized rather than general indicators of LPs.788

D Additional Linguistic Property Results789

for BERT Embeddings790

D.1 Control791

Table 3 highlights the top 10 EDI scores for the792

control. The baseline evaluation results for con-793

trol showed an accuracy of 0.5200, close to ran-794

dom chance. The Low EDI score test yielded795

an accuracy of 0.4575. The High EDI score test796

demonstrated quick improvements, achieving 95%797

of baseline accuracy with a single dimension, as798

the baseline accuracy was low, as illustrated in Fig-799

ure 9. The greatest cross-property accuracy was800

achieved by voice, at 0.5325.801

Dimension EDI Score
209 0.3683
526 0.2639
578 0.2434
235 0.2342
186 0.2315
515 0.2196
724 0.2167
760 0.2000
327 0.1958
551 0.1913

Table 3: Top 10 BERT EDI scores for the Control.

Dimension EDI Score
180 1.0000
123 0.8824
319 0.8819
385 0.8639
109 0.8155
497 0.7974
683 0.7948
172 0.7926
430 0.7907
286 0.7862

Table 4: Top 10 BERT EDI scores for Definiteness.

D.2 Definiteness 802

Definiteness had some of the strongest results out 803

of any LP. Figure 14 highlight the difference be- 804

tween the most prominent dimensions for this prop- 805

erty. Table 4 highlights the top 10 EDI scores, 806

while Figure 16 illustrates the high level of agree- 807

ment between our various tests. 808

The baseline evaluation results for definite- 809

nessshowed an accuracy of 0.9450. The Low EDI 810

score test yielded an accuracy of 0.5425, very close 811

to random chance. The High EDI score test was 812

able to achieve 95% of baseline accuracy with 25 813

dimensions, as illustrated in Figure 15. The greatest 814

cross-property accuracy was achieved by intensi- 815

fier, at 0.8425. 816

D.3 Factuality 817

Factuality had strong results. Figure 17 highlights 818

the stark difference between the most prominent 819

dimensions encoding this property. Table 5 high- 820

lights the top 10 EDI scores, while Figure 19 il- 821

lustrates the high level of agreement between our 822

various tests. 823

The baseline evaluation results for factuality 824

showed an accuracy of 0.9975. The Low EDI score 825

test yielded an accuracy of 0.5975, approximately 826

random. The High EDI score test demonstrated 827

very quick improvements, achieving 95% of base- 828

line accuracy with 4 dimensions, as illustrated in 829

12



Figure 14: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Definiteness.

Figure 15: High EDI score evaluation results for BERT
Embeddings of definiteness.

Figure 18. The greatest cross-property accuracy830

was achieved by tense, at 0.9650.831

D.4 Intensifier832

Table 6 highlights the top 10 EDI scores for intensi-833

fier. The baseline evaluation results for intensifier834

showed an accuracy of 0.9925. The Low EDI score835

test yielded an accuracy of 0.5150, close to random836

chance. The High EDI score test demonstrated837

incremental improvements, achieving 95% of base-838

line accuracy with 19 dimensions, as illustrated in839

Figure 11. The greatest cross-property accuracy840

was achieved by quantity, at 0.8550.841

Dimension EDI Score
577 0.9740
43 0.9386

210 0.9249
745 0.8954
539 0.8887
387 0.8869
60 0.8727
16 0.8617
54 0.8609
97 0.8538

Table 5: Top 10 BERT EDI scores for Factuality.

Figure 16: BERT Mutual Information of Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Definiteness

Figure 17: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Factuality.

D.5 Negation 842

Table 7 highlights the top 10 EDI scores for nega- 843

tion. The baseline evaluation results for negation 844

showed an accuracy of 0.9925. The Low EDI score 845

test yielded an accuracy of 0.5800, close to random 846

chance. The High EDI score test demonstrated 847

incremental improvements, achieving 95% of base- 848

line accuracy with 11 dimensions, as illustrated in 849

Figure 20. The greatest cross-property accuracy 850

was achieved by tense, at 0.9100. 851

Dimension EDI Score
686 0.8911
663 0.8832
139 0.8805
605 0.8790
269 0.8650
441 0.8612
144 0.8535
692 0.8468
445 0.8385
442 0.8221

Table 6: Top 10 BERT EDI scores for Intensifier.
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Figure 18: High EDI score evaluation results for BERT
Embeddings of factuality.

Figure 19: Mutual Information of Embedding Dimen-
sions overlaid with Wilcoxon test and RFE results for
Factuality

D.6 Polarity852

Polarity, as it is similar to negation, had extremely853

strong results. Figure 21 highlights the differences854

between the most prominent dimensions encoding855

this property. Table 8 highlights the top 10 EDI856

scores, while Figure 22 illustrates the extremely857

high level of agreement between our various tests.858

The baseline evaluation results for polarity859

showed an accuracy of 0.9775. The Low EDI score860

test yielded an accuracy of 0.5575, close to random861

chance. The High EDI score test demonstrated862

incremental improvements, achieving 95% of base-863

line accuracy with 8 dimensions, as illustrated in864

Figure 10. The greatest cross-property accuracy865

was achieved by negation, at 0.8950.866

Dimension EDI Score
544 0.9987
251 0.9277
171 0.9236
451 0.9101
737 0.8891
281 0.8812
96 0.8624

692 0.8512
85 0.8501

642 0.8461

Table 7: Top 10 BERT EDI scores for Negation.

Figure 20: High EDI score evaluation results for BERT
Embeddings of Negation.

Dimension EDI Score
431 0.9947
623 0.9867
500 0.9675
461 0.9200
96 0.9063

505 0.8910
594 0.8745
407 0.8492
397 0.8459
613 0.8445

Table 8: Top 10 BERT EDI scores for Polarity.

D.7 Quantity 867

Quantity had more moderate results compared to 868

polarity and negation. Figure 23 highlights the dif- 869

ference between the most prominent dimensions 870

encoding this property. Table 9 highlights the top 871

10 EDI scores, while Figure 25 illustrates the mod- 872

erate level of agreement the tests. 873

The baseline evaluation results for quantity 874

showed an accuracy of 1.0000. The Low EDI score 875

test yielded an accuracy of 0.6425. The High EDI 876

score test demonstrated incremental improvements, 877

achieving 95% of baseline accuracy with 9 dimen- 878

sions, as illustrated in Figure 24. The greatest cross- 879

property accuracy was achieved by intensifier, at 880

0.9025. 881

Dimension EDI Score
463 0.9316
457 0.9155
390 0.9050
243 0.8866
192 0.8777
735 0.8545
489 0.8525
67 0.8430

304 0.8384
723 0.8217

Table 9: Top 10 BERT EDI scores for Quantity.
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Figure 21: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Polarity.

Figure 22: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Polarity

D.8 Synonym882

Table 10 highlights the top 10 EDI scores for syn-883

onym. Figure 26 highlights the differences between884

the most prominent dimensions that encode this885

property.886

The baseline evaluation results for synonym887

showed an accuracy of 0.7400. The Low EDI score888

test yielded an accuracy of 0.4625, slightly above889

random chance. The High EDI score test demon-890

strated very slow improvements, achieving 95% of891

baseline accuracy with 392 dimensions, as illus-892

trated in Figure 27. The greatest cross-property893

accuracy was achieved by quantity, at 0.6175.894

D.9 Tense895

Tense had moderate results. Figure 28 highlights896

the differences between the most prominent dimen-897

sions encoding this property. Table 11 highlights898

the top 10 EDI scores, while Figure 31 illustrates899

the level of agreement the tests.900

The baseline evaluation results for tense showed901

an accuracy of 0.9975. The Low EDI score test902

yielded an accuracy of 0.4625, close to random903

Figure 23: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Quantity.

Figure 24: High EDI score evaluation results for BERT
Embeddings of quantity.

chance. The High EDI score test demonstrated 904

incremental improvements, achieving 95% of base- 905

line accuracy with 11 dimensions, as illustrated in 906

Figure 29. The greatest cross-property accuracy 907

was achieved by control, at 0.9150. 908

D.10 Voice 909

Voice had relatively few dimensions with very high 910

EDI scores. Figure 30 highlights the differences 911

between the most prominent dimensions encod- 912

ing this property. Table 12 highlights the top 10 913

EDI scores, while Figure 33 illustrates the level of 914

agreement the tests. 915

Dimension EDI Score
676 0.8751
203 0.7744
701 0.6916
654 0.6897
463 0.6889
544 0.6602
91 0.6598

437 0.6557
446 0.6543
487 0.6415

Table 10: Top 10 BERT EDI scores for Synonym.
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Figure 25: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Quantity

Figure 26: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Synonym.

The baseline evaluation results for voice showed916

an accuracy of 1.0000. The Low EDI score test917

yielded an accuracy of 0.5200, close to random918

chance. The High EDI score test demonstrated919

incremental improvements, achieving 95% of base-920

line accuracy with 30 dimensions, as illustrated in921

Figure 32. The greatest cross-property accuracy922

was achieved by definiteness, at 0.8400.923

E GPT-2924

This section will contain the visualizations of the925

results for GPT-2 embeddings. Full detailed results,926

Dimension EDI Score
641 0.9405
586 0.9369
335 0.9162
38 0.9113

684 0.8977
522 0.8908
470 0.8880
548 0.8821

4 0.8812
653 0.8627

Table 11: Top 10 BERT EDI scores for Tense.

Figure 27: High EDI score evaluation results for BERT
Embeddings of synonym.

Figure 28: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Tense.

including full EDI scores as well as additional vi- 927

sualization, will be available on GitHub upon pub- 928

lication. 929

E.1 Linguistic Property Classifier 930

The results from the Linguistic Property Classifier 931

for GPT-2 embeddings is shown in Figure 34. 932

E.2 Control 933

Figure 35 highlights the difference between the 934

most prominent dimensions encoding this property. 935

Figure 37 illustrates the level of agreement between 936

the tests. 937

Dimension EDI Score
653 0.9722
523 0.9552
766 0.9376
27 0.8875

111 0.8783
286 0.8586
222 0.8437
693 0.8404
16 0.8182
95 0.8113

Table 12: Top 10 BERT EDI scores for Voice.
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Figure 29: High EDI score evaluation results for BERT
Embeddings of tense.

Figure 30: BERT Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Voice.

The baseline evaluation results for control938

showed an accuracy of 0.4725, close to chance.939

The Low EDI score test yielded an accuracy of940

0.4400. The High EDI score test demonstrated941

strong performance, achieving 95% of baseline ac-942

curacy with just a single dimension, as the baseline943

accuracy was close to random chance, as illustrated944

in Figure 36. The highest cross-property accuracy945

was achieved by voice, at 0.5450.946

E.3 Definiteness947

Figure 38 highlights the difference between the948

most prominent dimensions encoding this property.949

Figure 40 illustrates the level of agreement between950

the tests.951

The baseline evaluation results for definiteness952

showed an accuracy of 0.9575. The Low EDI953

score test yielded an accuracy of 0.5000. The High954

EDI score test demonstrated strong performance,955

achieving 95% of baseline accuracy with just a956

single dimension, as illustrated in Figure 39. The957

highest cross-property accuracy was achieved by958

intensifier, at 0.9400, followed closely by factuality959

(0.9325) and synonym (0.9275).960

Figure 31: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Tense

Figure 32: High EDI score evaluation results for BERT
Embeddings of voice.

E.4 Factuality 961

Figure 41 highlights the difference between the 962

most prominent dimensions encoding this property. 963

Figure 43 illustrates the level of agreement between 964

the tests. 965

The baseline evaluation results for factuality 966

showed an accuracy of 1.0000. The Low EDI 967

score test yielded an accuracy of 0.6800. The High 968

EDI score test demonstrated strong performance, 969

achieving 95% of baseline accuracy with just a 970

single dimension, as illustrated in Figure 42. The 971

highest cross-property accuracy was achieved by 972

negation, at 0.9975. 973

E.5 Intensifier 974

Figure 44 highlights the difference between the 975

most prominent dimensions encoding this property. 976

Figure 46 illustrates the level of agreement between 977

the tests. 978

The baseline evaluation results for intensifier 979

showed an accuracy of 1.0000. The Low EDI score 980

test yielded an accuracy of 0.5825. The High EDI 981

score test demonstrated steady improvement, reach- 982

ing 95% of baseline accuracy with 4 dimensions, as 983

illustrated in Figure 45. The highest cross-property 984

accuracy was achieved by definiteness, at 0.9600. 985
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Figure 33: Mutual Information of BERT Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Voice

Figure 34: Linguistic Property Classifier results for
GPT-2.

E.6 Negation986

Figure 47 highlights the difference between the987

most prominent dimensions encoding this property.988

Figure 49 illustrates the level of agreement between989

the tests.990

The baseline evaluation results for negation991

showed an accuracy of 0.9850. The Low EDI score992

test yielded an accuracy of 0.5450. The High EDI993

score test demonstrated steady improvement, reach-994

ing 95% of baseline accuracy with 6 dimensions, as995

illustrated in Figure 48. The highest cross-property996

accuracy was achieved by intensifier, at 0.9475.997

E.7 Polarity998

Figure 50 highlights the difference between the999

most prominent dimensions encoding this property.1000

Figure 52 illustrates the level of agreement between1001

the tests.1002

The baseline evaluation results for polarity1003

showed an accuracy of 0.9975. The Low EDI1004

score test yielded an accuracy of 0.4700. The High1005

EDI score test demonstrated slow improvement,1006

Figure 35: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Control.

Figure 36: High EDI score evaluation results for GPT-2
Embeddings of Control.

reaching 95% of baseline accuracy with 28 dimen- 1007

sions, as illustrated in Figure 51. The highest cross- 1008

property accuracy was achieved by quantity, at 1009

0.8300. 1010

E.8 Quantity 1011

Figure 53 highlights the difference between the 1012

most prominent dimensions encoding this property. 1013

Figure 55 illustrates the level of agreement between 1014

the tests. 1015

The baseline evaluation results for quantity 1016

showed an accuracy of 0.9975. The Low EDI score 1017

test yielded an accuracy of 0.6875. The High EDI 1018

score test demonstrated steady improvement, reach- 1019

ing 95% of baseline accuracy with 8 dimensions, as 1020

illustrated in Figure 54. The highest cross-property 1021

accuracy was achieved by polarity, at 0.9300. 1022

E.9 Synonym 1023

Figure 56 highlights the difference between the 1024

most prominent dimensions encoding this property. 1025

Figure 58 illustrates the level of agreement between 1026

the tests. 1027

The baseline evaluation results for synonym 1028

showed an accuracy of 0.6300. The Low EDI 1029
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Figure 37: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Control.

Figure 38: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Definiteness.

score test yielded an accuracy of 0.3575. The High1030

EDI score test demonstrated gradual improvement,1031

reaching 95% of baseline accuracy with 26 dimen-1032

sions, as illustrated in Figure 57. The highest cross-1033

property accuracy was achieved by intensifier at1034

0.5350.1035

E.10 Tense1036

Figure 59 highlights the difference between the1037

most prominent dimensions encoding this property.1038

Figure 61 illustrates the level of agreement between1039

the tests.1040

The baseline evaluation results for tense showed1041

an accuracy of 0.9950. The Low EDI score test1042

yielded an accuracy of 0.4500. The High EDI score1043

test demonstrated slow improvement, reaching 95%1044

of baseline accuracy with 76 dimensions, as illus-1045

trated in Figure 60. The highest cross-property1046

accuracy was observed with definiteness at 0.7525.1047

E.11 Voice1048

Figure 62 highlights the difference between the1049

most prominent dimensions encoding this property.1050

Figure 64 illustrates the level of agreement between1051

Figure 39: High EDI score evaluation results for GPT-2
Embeddings of Definiteness.

Figure 40: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Definiteness.

the tests. 1052

The baseline evaluation results for voice showed 1053

an accuracy of 1.0000. The Low EDI score test 1054

yielded an accuracy of 0.5325, around random 1055

chance. The High EDI score test demonstrated 1056

significant improvement, reaching 95% of baseline 1057

accuracy with just a single dimension, as illustrated 1058

in Figure 63. The highest cross-property accuracy 1059

was observed with intensifier at 0.9900. 1060

F MPNet 1061

This section will contain the visualizations of the 1062

results for MPNet embeddings. Full detailed re- 1063

sults, including full EDI scores as well as addi- 1064

tional visualization, will be available on GitHub 1065

upon publication. 1066

F.1 Linguistic Property Classifier 1067

The results from the Linguistic Property Classifier 1068

for MPNet embeddings is shown in Figure 65. 1069

F.2 Control 1070

Figure 66 highlights the difference between the 1071

most prominent dimensions encoding this property. 1072

Figure ?? illustrates the level of agreement between 1073

the tests. 1074

The baseline evaluation results for control 1075
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Figure 41: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Factuality.

Figure 42: High EDI score evaluation results for GPT-2
Embeddings of Factuality.

showed an accuracy of 0.4800, which is close to1076

random chance. The Low EDI score test yielded1077

an accuracy of 0.4125. The High EDI score test1078

demonstrated weak performance, achieving 95%1079

of baseline accuracy with just a single dimension,1080

but that is because the baseline accuracy was super1081

close to chance, as illustrated in Figure 67. The1082

highest cross-property accuracy was achieved by1083

tense, at 0.5175.1084

F.3 Definiteness1085

Figure 69 highlights the difference between the1086

most prominent dimensions encoding this property.1087

Figure 71 illustrates the level of agreement between1088

the tests.1089

The baseline evaluation results for definiteness1090

showed an accuracy of 0.9000. The Low EDI1091

score test yielded an accuracy of 0.4000. The High1092

EDI score test demonstrated strong performance,1093

achieving 95% of baseline accuracy with just a1094

single dimension, as illustrated in Figure 70. The1095

highest cross-property accuracy was achieved by1096

intensifier, at 0.6750.1097

Figure 43: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Factuality.

Figure 44: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Intensifier.

F.4 Factuality 1098

Figure 72 highlights the difference between the 1099

most prominent dimensions encoding this property. 1100

Figure 74 illustrates the level of agreement between 1101

the tests. 1102

The baseline evaluation results for factuality 1103

showed an accuracy of 0.9975. The Low EDI 1104

score test yielded an accuracy of 0.4825. The High 1105

EDI score test demonstrated steady performance, 1106

achieving 95% of baseline accuracy with 16 di- 1107

mensions, as illustrated in Figure 73. The highest 1108

cross-property accuracy was achieved by quantity, 1109

at 0.8875. 1110

F.5 Intensifier 1111

Figure 75 highlights the difference between the 1112

most prominent dimensions encoding this property. 1113

Figure 77 illustrates the level of agreement between 1114

the tests. 1115

The baseline evaluation results for intensifier 1116

showed an accuracy of 0.9000. The Low EDI 1117

score test yielded an accuracy of 0.4200. The High 1118

EDI score test demonstrated slow performance, 1119
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Figure 45: High EDI score evaluation results for GPT-2
Embeddings of Intensifier.

Figure 46: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Intensifier.

achieving 95% of baseline accuracy with 347 di-1120

mensions, as illustrated in Figure 76. The highest1121

cross-property accuracy was achieved by quantity,1122

at 0.6825.1123

F.6 Negation1124

Figure 78 highlights the difference between the1125

most prominent dimensions encoding this property.1126

Figure 80 illustrates the level of agreement between1127

the tests.1128

The baseline evaluation results for negation1129

showed an accuracy of 0.9750. The Low EDI1130

score test yielded an accuracy of 0.6025. The High1131

EDI score test demonstrated steady improvement,1132

reaching 95% of baseline accuracy with 26 dimen-1133

sions, as illustrated in Figure 79. The highest cross-1134

property accuracy was achieved by factuality, at1135

0.8900.1136

F.7 Polarity1137

Figure 81 highlights the difference between the1138

most prominent dimensions encoding this property.1139

Figure 83 illustrates the level of agreement between1140

the tests.1141

The baseline evaluation results for polarity1142

showed an accuracy of 0.9850. The Low EDI score1143

test yielded an accuracy of 0.6900. The High EDI1144

score test demonstrated fast improvement, reaching1145

Figure 47: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Negation.

Figure 48: High EDI score evaluation results for GPT-2
Embeddings of Negation.

95% of baseline accuracy with 6 dimensions, as 1146

illustrated in Figure 82. The highest cross-property 1147

accuracy was achieved by negation, at 0.9575. 1148

F.8 Quantity 1149

Figure 84 highlights the difference between the 1150

most prominent dimensions encoding this property. 1151

Figure 86 illustrates the level of agreement between 1152

the tests. 1153

The baseline evaluation results for quantity 1154

showed an accuracy of 0.9950. The Low EDI 1155

score test yielded an accuracy of 0.5025. The High 1156

EDI score test demonstrated steady improvement, 1157

reaching 95% of baseline accuracy with 20 dimen- 1158

sions, as illustrated in Figure 85. The highest cross- 1159

property accuracy was achieved by negation and 1160

polarity, at 0.8525. 1161

F.9 Synonym 1162

Figure 87 highlights the difference between the 1163

most prominent dimensions encoding this property. 1164

Figure 89 illustrates the level of agreement between 1165

the tests. 1166

The baseline evaluation results for synonym 1167

showed an accuracy of 0.6025. The Low EDI score 1168
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Figure 49: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Negation.

Figure 50: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Polarity.

test yielded an accuracy of 0.4225. The High EDI1169

score test demonstrated quick improvement, reach-1170

ing 95% of baseline accuracy with 7 dimensions, as1171

illustrated in Figure 88. The highest cross-property1172

accuracy was achieved by tense at 0.5650.1173

F.10 Tense1174

Figure 90 highlights the difference between the1175

most prominent dimensions encoding this property.1176

Figure 92 illustrates the level of agreement between1177

the tests.1178

The baseline evaluation results for tense showed1179

an accuracy of 0.9925. The Low EDI score test1180

yielded an accuracy of 0.5200. The High EDI score1181

test demonstrated gradual improvement, reaching1182

95% of baseline accuracy with 17 dimensions, as1183

illustrated in Figure 91. The highest cross-property1184

accuracy was observed with quantity at 0.8425.1185

F.11 Voice1186

Figure 93 highlights the difference between the1187

most prominent dimensions encoding this property.1188

Figure 95 illustrates the level of agreement between1189

the tests.1190

Figure 51: High EDI score evaluation results for GPT-2
Embeddings of Polarity.

Figure 52: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Polarity.

The baseline evaluation results for voice showed 1191

an accuracy of .9175. The Low EDI score test 1192

yielded an accuracy of 0.3875. The High EDI score 1193

test demonstrated slow improvement, reaching 95% 1194

of baseline accuracy with 263 dimensions, as illus- 1195

trated in Figure 94. The highest cross-property 1196

accuracy was observed with definiteness at 0.6225. 1197
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Figure 53: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Quantity.

Figure 54: High EDI score evaluation results for GPT-2
Embeddings of quantity.

Figure 55: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Quantity

Figure 56: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Synonym.

Figure 57: High EDI score evaluation results for GPT-2
Embeddings of Synonym.

Figure 58: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Synonym.

Figure 59: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Tense.
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Figure 60: High EDI score evaluation results for GPT-2
Embeddings of Tense.

Figure 61: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Tense.

Figure 62: GPT-2 Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Voice.

Figure 63: High EDI score evaluation results for GPT-2
Embeddings of Voice.

Figure 64: Mutual Information of GPT-2 Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Voice.

Figure 65: Linguistic Property Classifier results for
MPNet.

Figure 66: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Control.
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Figure 67: High EDI score evaluation results for MPNet
Embeddings of Control.

Figure 68: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Control.

Figure 69: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Definiteness.

Figure 70: High EDI score evaluation results for MPNet
Embeddings of Definiteness.

Figure 71: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Definiteness.

Figure 72: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Factuality.

Figure 73: High EDI score evaluation results for MPNet
Embeddings of Factuality.

Figure 74: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Factuality.
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Figure 75: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Intensifier.

Figure 76: High EDI score evaluation results for MPNet
Embeddings of Intensifier.

Figure 77: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Intensifier.

Figure 78: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Negation.

Figure 79: High EDI score evaluation results for MPNet
Embeddings of Negation.

Figure 80: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Negation.

Figure 81: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Polarity.
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Figure 82: High EDI score evaluation results for MPNet
Embeddings of Polarity.

Figure 83: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Polarity.

Figure 84: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Quantity.

Figure 85: High EDI score evaluation results for MPNet
Embeddings of quantity.

Figure 86: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Quantity

Figure 87: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Synonym.

Figure 88: High EDI score evaluation results for MPNet
Embeddings of Synonym.

Figure 89: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Synonym.
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Figure 90: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Tense.

Figure 91: High EDI score evaluation results for MPNet
Embeddings of Tense.

Figure 92: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Tense.

Figure 93: MPNet Dimensional Embedding values for
the Wilcoxon test results with the most significant p-
values for Voice.

Figure 94: High EDI score evaluation results for MPNet
Embeddings of Voice.

Figure 95: Mutual Information of MPNet Embedding
Dimensions overlaid with Wilcoxon test and RFE results
for Voice.
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