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ABSTRACT

Contrastive learning has been at the bedrock of unsupervised learning in recent
years, allowing training with massive unlabeled data for both task-specific and
general (foundation) models. A prototypical loss in contrastive training is InfoNCE
and its variants. In this paper we show that the embedding of the features which
emerge from InfoNCE training can be well approximated by a multivariate Gaus-
sian distribution. We justify this claim by taking two approaches. First, we show
that under certain alignment and concentration assumptions, finite projections of a
high dimensional representation approach multivariate Gaussian distribution, as the
representation dimensions approach infinity. Next, under less strict assumptions,
we show that adding a small regularization term (which vanishes asymptotically)
that promotes low feature norm and high feature entropy, we reach similar asymp-
totic results. We demonstrate experimentally, in a synthetic setting, CIFAR-10 and
on pretrained foundation models, that the features indeed follow almost precise
Gaussian distribution. One can use the Gaussian model to easily derive analytic
expressions in the representation space and to obtain very useful measures, such as
likelihood, data entropy and mutual information. Hence, we expect such theoretical
grounding to be very useful in various applications involving contrastive learning.

1 INTRODUCTION

Self-supervised learning with contrastive objectives has transformed modern representation learning,
enabling scalable training of encoders without labels (Oord et al., 2018; Chen et al., 2020a; He et al.,
2020; Radford et al., 2021). Among these objectives, the InfoNCE loss balances two pressures:
positive pairs are aligned while the batch is repelled to encourage uniformity (Wang & Isola, 2020).
This uniformity is often described geometrically as “spreading out” the data on the hypersphere
(Chen & He, 2021), but a deeper probabilistic question remains: What is the actual distribution of
representations trained with InfoNCE?

Answering this is not only of theoretical interest. A Gaussian characterization is directly
motivated by recent empirical findings that “more Gaussian” representations can yield bet-
ter downstream performance (Eftekhari & Papyan, 2025); it also provides a principled jus-
tification for practical methods that already model contrastive representations as Gaus-
sians for classification, uncertainty estimation, prompt learning, and test-time adaptation
(Baumann et al., 2024; Morales-Álvarez et al., 2024; Lu et al., 2022). Moreover, assuming Gaus-
sian structure makes entropy, likelihoods, Mahalanobis distances, and KL divergences avail-
able in closed form, which underpins many OOD, calibration, and density-based diagnos-
tics (Lee et al., 2018; Tosh et al., 2021). These benefits are already exploited in applied work, but
largely without a unifying theoretical foundation (Betser et al., 2025; Fort et al., 2021). At the same
time, numerous empirical studies report that contrastive features and their low-dimensional projec-
tions are close to Gaussians (Tian et al., 2020a; Chen et al., 2020b; Bardes et al., 2022), motivating
a precise population-level explanation of why such Gaussian structure emerges in the first place.

Analyzing the population InfoNCE objective, we identify that under different assumptions the
population law becomes isotropic and yields Gaussian low-dimensional projections. First, an
alignment-plateau assumption reduces training to a constrained uniformity problem on Sd−1. With a
norm-concentration assumption both the normalized (to unit norm) and unnormalized representations
have Gaussian projections (Sec. 4.1); Finally, under the weaker “attainable alignment at unifor-
mity” assumption, the same asymptotic conclusion holds: adding a small convex regularizer selects

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration. Contrastive learning yields (approximately) Gaussian representations.

the uniform solution, and the required regularization vanishes as the dimension grows (Sec. 4.2).
We validate our main conclusions on different data types (synthetic, CIFAR-10 (Krizhevsky et al.,
2009) and MS-COCO (Lin et al., 2014)) and different models (linear encoder, MLP + activations,
CLIP (Radford et al., 2021) and Dino Caron et al. (2021)).

Our main contributions are:

• Bounded alignment. In the infinite-negatives regime, alignment is upper-bounded by augmenta-
tion mildness, with additional dependence on the mean representation.

• Uniformity on the sphere. Under either of two alignment related assumptions, the law of the
normalized representations asymptotically converges to the uniform law on the sphere.

• Gaussian projections. We show that fixed-k projections are asymptotically Gaussian for normal-
ized representations. This includes any subset of k coordinates, considered separately or jointly.
For the unnormalized representations the same holds.

• Practical guidance. We suggest that a small regularizer can steer representations toward isotropy
and Gaussianity in practice.

• Empirical evidence. The main assumptions of our study are validated empirically. In addition,
we demonstrate the emerging Gaussian statistics, as dimension grows, on synthetic and real data.

2 RELATED WORK

Contrastive learning and InfoNCE. The InfoNCE loss (Oord et al., 2018) is the standard objective
in self-supervised representation learning, underpinning frameworks such as SimCLR (Chen et al.,
2020a), CLIP (Radford et al., 2021), and DINO (Caron et al., 2021). It balances two forces: alignment
of positive pairs and batch-wise repulsion that encourages uniformity (Wang & Isola, 2020; Chen
& He, 2021). Related concentration phenomena have also been documented (Caron et al., 2021;
Draganov et al., 2025). Yet, despite these insights, the probabilistic law governing the representations
remains unclear. In particular, there is little theoretical understanding of the distributional geometry
of the raw, unnormalized representations, specifically their asymptotic laws. The direct encoder
outputs are used in downstream tasks (Fort et al., 2021), such as image synthesis (Ramesh et al.,
2022), conformity quantification (Levi & Gilboa, 2025), and representation regularization (Bardes
et al., 2022). Understanding their distribution is essential for improving downstream applications.
Some empirical studies observe that representations are approximately Gaussian (Tian et al., 2020a;
Fort et al., 2021), but lack an explanatory theory. Our work fills this gap, providing a thorough
characterization of the asymptotic laws of both normalized and unnormalized representations.

A complementary line of work studies identifiability of representations, includ-
ing in the context of contrastive objectives. These works analyze which struc-
tural assumptions on the data-generating model ensure that its latent variables
can be uniquely recovered (up to symmetries) by optimizing a contrastive loss
(Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Zimmermann et al., 2021; Roeder et al., 2021).
In this setting, the focus is on when class-conditional or component-level structure remains identifiable
in the learned representation. A second line of work analyzes contrastive learning from a task-driven
perspective, showing when representations become linearly separable or cluster according to class
labels (Saunshi et al., 2019; HaoChen et al., 2021); these results characterize the class-conditional
geometry of the embeddings. By contrast, our work does not study recovery or class structure. Instead,
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we analyze the marginal distribution induced by the population InfoNCE functional and show that
its minimizers follow a strongly Gaussian law. This concerns the overall embedding distribution,
aggregated over all samples, and is orthogonal to whether mixture components or semantic clusters
remain distinguishable.

Regularization and design choices can promote isotropic, near-Gaussian representations, for instance
via whitening-style objectives, neural collapse, or Gaussian-mixture structure (Ermolov et al., 2021;
Papyan et al., 2020; Fort et al., 2021), with related NLP work (Zhuo et al., 2023). We introduce a light
convex regularizer that biases training toward isotropy at finite d yet vanishes in the high-dimensional
limit, providing a lightweight mechanism that complements InfoNCE’s natural Gaussianization.

Mathematical tools. Independently of contrastive learning, a classical line of work stud-
ies high-dimensional uniform measures on the sphere and their connection to Gaussians,
sometimes referred to as the “soap-bubble effect” (Vershynin, 2018; Wegner, 2021). Simi-
lar geometry is exploited in hyperspherical variational families and radial Bayesian priors
(Davidson et al., 2018; Farquhar et al., 2020), which exploit the geometry of (approximately) uni-
form hyperspherical distributions. These results are not specific to InfoNCE, but they provide
geometric intuition for why spherical uniformity and Gaussian structure are closely related.

We draw on classical tools from probability, spherical harmonic analysis, and information theory: (i)
Maximal correlation (Hirschfeld-Gebelein-Rényi, HGR) and its data-processing inequality, which
upper-bound the alignment achievable under augmentations (Hirschfeld, 1935; Gebelein, 1941;
Rényi, 1959); (ii) a polar (radial-angular) chain rule for KL divergence, which separates angular
regularization from radial structure (Dupuis & Ellis, 2011; Cover, 1999); and (iii) the Maxwell-
Poincaré spherical CLT, yielding Gaussian fixed-k projections for the uniform law on Sd−1 (Maxwell,
1860; Poincaré, 1912; Diaconis & Freedman, 1987). While uncommon in latent-space analysis, these
tools are particularly useful for our setting.

3 SETUP

Data domain. Let (X ,B(X )) be a standard Borel space (a standard setting in probability) with a
base probability pbase. We draw X0 ∼ pbase as a single data item (e.g., an image).

Pairs via augmentation. Contrastive learning is built around pairs of related examples rather than
individual samples. To form such pairs, we use an augmentation channel A, which takes a base
sample X0 ∼ pbase and produces stochastic variations of it. Formally, given X0, we draw two
independent augmentations

X,Y ∼ A(· | X0). (1)
Here X and Y are two different “views” of the same underlying example X0 (e.g., two differently
cropped or color-jittered images). We denote by pX the marginal distribution of a single augmentation
X , and by pXY the joint distribution of a pair (X,Y ). It is assumed that pX is nonatomic (achievable
in practice by infinitesimal dither if needed).

InfoNCE loss. Let f : X → Rd, d ≥ 2, be a Borel-measurable encoder that maps inputs to
representations. Training is performed using the InfoNCE loss, which operates on normalized
representations:

f̂(x) :=

{
f(x)/∥f(x)∥, ∥f(x)∥ > 0,

c0, ∥f(x)∥ = 0,
c0 ∈ Sd−1 fixed, (2)

where c0 is arbitrary. Given a minibatch of N paired augmentations {(xi, yi)}Ni=1 drawn i.i.d. from
pXY , let ui := f̂(xi) and vi := f̂(yi). The empirical InfoNCE loss is

LInfoNCE = − 1

N

N∑
i=1

log
exp

(
1
τ ⟨ui, vi⟩

)∑N
j=1 exp

(
1
τ ⟨ui, vj⟩

) , (3)

with a fixed temperature τ > 0. Since ui and vj are unit-normalized, ⟨ui, vj⟩ equals cosine similarity.
The numerator measures the similarity of the positive pair (ui, vi). The denominator compares each
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anchor ui to all candidates {vj}Nj=1, where j ̸= i serve as negatives. This softmax encourages ui to
rank its true partner highest while remaining distinct from negatives, preventing collapse.

Population InfoNCE. The empirical InfoNCE loss in (Eq. 3) depends on the batch size N . As
N →∞, the empirical averages converge to expectations. Let

µ := f̂∗pX , π := (f̂ , f̂)∗pXY , (4)

be the marginal distribution of representations and the joint distribution of positive pairs, respectively.
Here f̂∗pX denotes the pushforward measure of pX by f̂ , which is the distribution of f̂(X). As shown
by Wang & Isola (2020, Theorem 1, Eq. (2)), in the infinite-negatives limit N →∞ the empirical
InfoNCE loss (up to the additive logN term) converges to the following population functional. With
α = 1/τ for fixed τ > 0:

L(µ, π) = −αE(u,v)∼π[u·v] + Φ(µ), Φ(µ) := Eu∼µ logEv∼µ exp
(
αu·v

)
. (5)

The first term measures alignment of positive pairs, while the second is a uniformity potential
depending only on µ.

3.1 AUGMENTATION MILDNESS.

We now introduce a new term which quantifies the degree of augmentation. The augmentation channel
A limits how much positive-pair alignment can be induced. We quantify this with the augmentation
mildness parameter

η2 := sup
g∈L2(pX)
Var(g)>0

Var
(
E[g(X) | X0]

)
Var(g(X))

∈ [0, 1], (6)

which measures how predictable functions of the view X are from the base X0. This quantity
equals the squared Hirschfeld-Gebelein-Rényi (HGR) maximal correlation between X and X0

(Appendix A.1). Intuitively, η2 = 0 when X is (effectively) independent of X0 (very strong/noisy
augmentations), and η2 = 1 when X is fully determined by X0 (no augmentation noise).
Example. Consider the Gaussian channelX = AX0+

√
1−A2 ε, where ε ∼ N (0, 1) is independent

of X0 ∼ N (0, 1). Since X and X0 are jointly Gaussian with Pearson correlation A, the maximal
correlation is ρm(X,X0) = |A|, and hence η2 = A2 (more details in Appendix A.2).
Proposition 1 (Augmentation-controlled alignment bound). Let X,Y ∼ A(· | X0) be conditionally
independent given the base sample X0, and let u = f̂(X), v = f̂(Y ) be normalized representations
in Sd−1, i.e., ∥u∥ = ∥v∥ = 1. Then

E(u,v)∼π[u · v] ≤ η2 + (1− η2) ∥m(µ)∥2, m(µ) := E[u] = E[v], (7)

where η2 = ρ2m(X,X0) is the squared HGR maximal correlation between the view and the base, and
µ is the marginal law of u.

The proof appears in Appendix A.3. This upper bound links the alignment of positive pairs to the
structure of the augmentation channel via maximal correlation. While HGR is well established in
statistical dependence analysis (Huang & Xu, 2020; Zhang et al., 2024), it has not previously been
used to control alignment in contrastive learning. Existing works (e.g., Tian et al. (2020b)) analyze
augmentations empirically, but do not derive bounds of this form.

4 GAUSSIANITY FROM INFONCE

We study why minimizing the population InfoNCE objective (Eq. 5) yields (approximately) Gaus-
sian low-dimensional projections of learned representations, for both normalized representations on
the sphere and unnormalized representations in Rd. Our analysis proceeds along two complementary
routes, which differ in the strength of the assumptions they require.

Empirical idealization. We first analyze an idealized regime with infinite data, ambient dimension
d→∞, and sufficient optimization. Guided by empirical observations, we assume an alignment
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plateau and thin-shell concentration; these assumptions enable a simple derivation of Gaussian pro-
jections.

Regularized route. To weaken the assumptions, we then study a regularized variant of the population
objective. Replacing exact plateau behavior with a milder alignment assumption and introducing a
vanishing convex regularizer ensures a unique minimizer and again yields Gaussian low-dimensional
projections. This route requires strictly weaker assumptions than the empirical idealization.

4.1 GAUSSIAN PROJECTIONS AT ALIGNMENT PLATEAU

We work in the population setting (Eq. 5) with positive pairs as defined earlier.

Assumption 1 (Alignment plateau). After sufficient training, the positive-pair alignment saturates at
a ceiling; concretely,

E(u,v)∼π[u·v] = η2 + rplat, (8)

where rplat ≤ 0 is a constant error term representing the difference between the alignment value at
plateau and the maximal correlation defined by the augmentations (η2).

Empirically, alignment saturation has been reported in some contrastive-learning settings (Wang &
Isola, 2020; Fang et al., 2024), which motivates considering a plateau model as a plausible scenario
rather than a universal requirement. In our experiments (Fig. 2, Appendix Figs. 7, 8), we frequently
observe high alignment alongside improving uniformity with larger dimensions and batch sizes,
suggesting that alignment may saturate before uniformity in at least some regimes. An extension that
places the plateau at the alignment bound (Eq. 7) is discussed in Appendix D.

Corollary 1 (Gaussian k-projections at the plateau). Suppose the alignment plateau condition (Eq. 8)
holds, and consider the population objective (Eq. 5). Let µ∗ denote the global minimizer supported
on Sd−1. Then, in the limit d → ∞, for every fixed k ≥ 1 the k-dimensional marginal of u ∼ µ∗

satisfies √
d uk ⇒ N (0, Ik), (9)

where uk denotes the projection of u onto a fixed k-dimensional coordinate subspace and Ik is the
k × k identity matrix.

The proof is provided in Appendix C.1 and follows from two lemmas. The first establishes that Φ(µ)
attains a global minimum at the uniform law (Wang & Isola, 2020), while the second invokes the
central limit theorem on the sphere (Diaconis & Freedman, 1987) to deduce Gaussian projections.

4.1.1 GAUSSIAN PROJECTIONS FOR UNNORMALIZED REPRESENTATIONS.

So far we analyzed normalized representations on the sphere. We now extend the result to the original,
unnormalized encoder outputs z = f(X) ∈ Rd. Write z = ru, where r = ∥z∥ is the representation
radius and u = z/∥z∥ ∈ Sd−1 the normalized direction (Eq. (Eq. 2)).

Assumption 2 (Thin-shell concentration). We assume the representation radius concentrates in a
thin shell:

r

r0
−−−→
d→∞

1, r0 ∈ (0,∞). (10)

Norm concentration is widely observed in contrastive learning: unnormalized representations cluster
around a characteristic radius (Wang & Isola, 2020; HaoChen et al., 2021; Levi & Gilboa, 2025; Betser
et al., 2025). This thin-shell effect is further promoted by weight decay, which penalizes norm growth
and stabilizes a common scale. In particular, Draganov et al. (2025) show that appropriate weight
decay suppresses norm inflation and tightens the dispersion of representation norms, lending empirical
support to Assumption 2. Consistent with these reports, our experiments exhibit progressively sharper
radius histograms as dimension and batch size increase (Figs. 3, 4, 10).

Proposition 2 (Gaussian projections for unnormalized representations). Let z = f(x) ∈ Rd be the
unnormalized representation u := z/∥z∥. Assume u ∼ σ (the uniform distribution on Sd−1) and that
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Figure 2: Uniformity vs. alignment across settings. A simple encoder trained on synthetic Laplace
data exhibits (i) near-optimal alignment across all configurations and (ii) steadily improving unifor-
mity as batch size and dimensionality grow.

Assumption 2 holds, i.e., r −−−→
d→∞

r0 ∈ (0,∞). Then for any fixed k-dimensional subspace,
√
d zk ⇒ N

(
0, r20Ik

)
(d→∞), (11)

where zk denotes the orthogonal projection of z onto that subspace and Ik is the k × k identity.

See proof in Appendix C.2.

4.2 GAUSSIAN PROJECTIONS USING REGULARIZATION

We now relax the two separate assumptions from the previous section and replace them with a single,
weaker requirement regarding the achievable alignment with a uniform marginal (Assumption 3).
We work in a regularized setting, where the regularization vanishes as d → ∞. In a way that will
be made precise, we show that the uniform distribution gets arbitrarily close to optimality or even
reaches optimality. As before, this has direct implications to its low-dimensional projections, which
are approximately Gaussian (Theorem 2). This result shows that Gaussianity can be obtained without
relying on the stronger thin-shell or plateau conditions.

We constrain f to take values in B ⊆ Rd, which is either some closed ball centered at 0 with positive
radius or Rd. We take the original loss and add two new losses: one to penalize large squared norms,
and the other to encourage high entropy (We comment that both are commonly regarded as desirable
goals, irrespective of our setup). Specifically, for fixed β, λ > 0,

J(f) = Φ(µ)− αE(u,v)∼π[u · v] + β(−H(ρ) + λEZ∼ρ∥Z∥2) , (12)

where ρ = f∗pX is the unnormalized pushforward probability. Define the truncated Gaussian γBλ ,

γBλ (dz) = cB,λe
−λ∥z∥2

1B(z)dz , c−1
B,λ =

∫
B

e−λ∥z∥
2

dz . (13)

If ρ≪ γBλ , then

KL(ρ∥γBλ ) =
∫

log
dρ

dz
dρ−

∫
log

dγBλ
dz

dρ = −H(ρ) + λEρ∥Z∥2 + log c−1
B,λ , (14)

that is, equality up to an additive constant. Since ρ(B) = 1, if ρ ̸≪ γBλ , then both KL(ρ∥γBλ ) and
−H(ρ) are +∞. Thus, it is equivalent to minimize

J(f) = Φ(µ)− αE(u,v)∼π[u · v] + βKL(ρ∥γBλ ) , (15)

and we thereby also implicitly restrict ρ to satisfy ρ≪ γBλ and in particular ρ(B) = 1.

Our goal is to prove that for β ≥ β0, taking the angular probability as σ approaches optimality and
the optimal radial probability is that of γBλ . If B = Rd, this means that a Gaussian ρ approaches
optimality. Furthermore, as d→∞, β0 → 0.

This will be done in several steps. First, ρ can be decomposed into a radial part and an angular part.
We show that the radial part can be chosen optimally in a straightforward way.
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Proposition 3. Let ρ(dz) = µ(du)κ(dr | u) and γBλ (dz) = σ(du)ξ(dr | u) in polar coordinates
z = ru. Then κ = ξ is an optimal choice, yielding KL(ρ∥γBλ ) = KL(µ∥σ).

The proof is given in Appendix B.1. The above proposition reduces the optimization problem for
unnormalized embedding to normalized embeddings only. It also describes an optimal probability
for embedding norms, in contrast to the original InfoNCE loss, which is completely oblivious to
embedding norms.

It is important to note that because we are working with a standard Borel space with a nonatomic pX ,
any probability ρ ∈ P(B) has ρ = g∗pX for some encoding g. In addition, any µ ∈ P(Sd−1) has
µ = h∗pX for some encoding, and since B contains a ball around 0, there is an encoding f s.t h = f̂ .
Thus we can legitimately speak about “choosing” ρ or µ, since suitable encodings exist that induce
them. In addition, we may also define:
Definition 1. For every µ ∈ P(Sd−1),

Align(µ) = sup
f

{
E[f̂(X) · f̂(Y )] : f measurable, (f̂)∗pX = µ

}
, (16)

As was noted, the supremum is always taken on a nonempty set. We can write

J̃(µ) = Φ(µ)− αAlign(µ) + βKL(µ∥σ) , (17)

and it holds that inf{f̂ :f̂∗pX=µ} J(f) = J̃(µ) , and consequently inff J(f) = infµ∈P(Sd−1) J̃(µ) .

The reason is that Align(µ) can be approximated arbitrarily well by an encoding, and the KL
divergence is optimized by taking the radial distribution given in Proposition 3. We can therefore
focus on optimizing J̃(µ).

The assumption for which we will prove our result is the following:

Assumption 3. It holds that α(η2 −Align(σ))
d→∞−−−→ 0.

We will require one more technical lemma before proceeding to prove the result.
Lemma 1. If d ≥ 2, then KL(µ∥σ) ≥ C(d− 1)∥m(µ)∥2, where C > 0 is a universal constant.

Proof is provided in Appendix B.2. To understand the constant, see (Vershynin, 2018, Proposi-
tion 2.6.1).

Theorem 1. Let d ≥ 2. There is a universal constant C > 0 s.t. for β ≥ β0 = α(1−η2)
C(d−1) ,

• Under Assumption 3, J̃(σ)− infµ J̃(µ)
d→∞−−−→ 0.

• Assuming further that Align(σ) = η2 yields that J̃(σ) = minµ J̃(µ).

Proof. Write δ(d) = η2 − Align(σ). For every µ, we have that Φ(µ) − Φ(σ) ≥ 0 (Wang & Isola,
2020, Theorem 1). In addition,

Align(µ)−Align(σ) ≤ η2 + (1− η2)∥m(µ)∥2 − (η2 − δ(d)) = (1− η2)∥m(µ)∥2 + δ(d) (18)

by Proposition 1. Lastly,

KL(µ∥σ)−KL(σ∥σ) = KL(µ∥σ) ≥ C(d− 1)∥m(µ)∥2 (19)

by Lemma 1. Therefore,

J̃(µ)− J̃(σ) = (Φ(µ)− Φ(σ))− α(Align(µ)−Align(σ)) + β(KL(µ∥σ)−KL(σ∥σ))
≥ −α(1− η2)∥m(µ)∥2 − αδ(d) + βC(d− 1)∥m(µ)∥2

= (−α(1− η2) + βC(d− 1)) ∥m(µ)∥2 − αδ(d) ≥ −αδ(d) , (20)

where the last inequality is by the choice of β.

If we assume that αδ(d) d→∞−−−→ 0, then J̃(σ)− infµ J̃(µ) ≤ αδ(d), so J̃(σ)− infµ J̃(µ)
d→∞−−−→ 0.

If we assume further that Align(σ) = η2, then δ(d) = 0, and since J̃(σ) ≤ J̃(µ) for every µ,
J̃(σ) = minµ J̃(µ), completing the proof.
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Figure 3: Synthetic data experiments. Left: radius statistics vs. batch size (curves: representation
dimension) showing thin-shell concentration strengthening with d and N . Top middle/right: norm
histograms across batch sizes illustrating radius tightening. Bottom: normality diagnostics - AD
(lower is better; normality if < 0.752) and DP (higher p is better; normality if p > 0.05) - with
averages comfortably in the normal range and 100% per-coordinate compliance.

Since the optimal radial component of the distribution is known, we can draw conclusions w.r.t. ρ as
well. For example, we can directly obtain the following corollary.
Corollary 2. LetB = Rd (d ≥ 2) and β ≥ β0. If Align(σ) = η2, where σ is the uniform distribution
on Sd−1 and η2 is the augmentation mildness, then N (0, (2λ)−1Id) is an optimal choice for ρ.

5 EXPERIMENTS

We conduct experiments under three different regimes: (i) synthetic data with a simple linear encoder,
(ii) the CIFAR-10 dataset with both an MLP + activation encoder and a SimCLR-style contrastive
encoder, and (iii) pretrained models, including several foundation-scale encoders. In all settings, we
evaluate both normalized and unnormalized representations, mirroring our theoretical analysis. The
experiments are designed to validate the assumptions underlying our analysis and to illustrate the
emergence of Gaussian behavior in both regimes. We observe stable trends across runs, and all figures
are shown for a representative seed. Full implementation details appear in Appendix E.1.

Metrics. We monitor norm concentration via the coefficient of variation (CV) of the representation
norms:

CV =
std(∥zi∥)
mean(∥zi∥)

. (21)

A low CV indicates a tightened norm distribution and is consistent with thin-shell behavior. To
assess Gaussianity of individual coordinates, we apply two standard one-dimensional normality
tests: (i) the Anderson–Darling (AD) test (Anderson & Darling, 1954), where AD < 0.752 indi-
cates failure to reject the null hypothesis of Gaussianity, and (ii) the D’Agostino–Pearson (DP)
test (D’agostino & Pearson, 1973), where p > 0.05 indicates failure to reject the null. In both cases,
the null hypothesis is that each coordinate is Gaussian; the alternative is that it is non-Gaussian.
Taken together, these coordinate-wise tests and the global CV measure play complementary roles:
AD/DP probe marginal normality of individual coordinates, while CV probes the high-dimensional
radial law through norm concentration. This combination provides a strong finite-sample indicator of
approximate Gaussianity and effectively rules out natural alternatives such as Student-t, Laplace, or
Gaussian mixture distributions, which would typically fail at least one of these diagnostics.

Synthetic datasets. To validate our diagnostics in controlled settings, we evaluate two synthetic
families: (i) a Laplace(0,1) distribution in R1024, and (ii) a Gaussian mixture with 25 equally weighted
components (each with random means), also in R1024. Each dataset contains 10k samples, and we
train linear encoders with varying representational dimensions and batch sizes. Figure 3 (left) shows
that for the Laplace case the representation norms tighten as batch size (x-axis) and dimensionality
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Figure 4: CIFAR-10 training dynamics. A two-layer MLP trained with InfoNCE on CIFAR-10
exhibits increasing Gaussianity over training. Left: representation norms concentrate as indicated by
declining CV, (Eq. (Eq. 21)). Middle: the AD statistic decreases from non-Gaussian levels into the
normal range. Right: the fraction of coordinates passing the DP normality test rises steadily.

(colored curves) increase: the mean norm decreases and the norms concentrate, as quantified by the
decreasing CV. This monotonic decrease in CV is consistent with the thin-shell behavior predicted by
our asymptotic analysis. Histograms of ∥zi∥ for different batch sizes further illustrate the emergence
of norm concentration. We repeat the experiment on the synthetic 25-component Gaussian mixture.
Despite the clear non-Gaussian structure in the input space, the learned marginal representations
again display strong Gaussian signatures. As reported in Table 1, all coordinates pass the AD and DP
normality thresholds, and the CV values are low. Thus, even when the underlying data-generating
process is a mixture, the resulting representations remain approximately Gaussian at the marginal
level, consistent with our theoretical characterization of the population InfoNCE minimizers.

CIFAR-10. We train a two-layer MLP with a single ReLU nonlinearity using the InfoNCE objective
on CIFAR-10. At regular intervals we evaluate on the test set, tracking radius concentration via the
coefficient of variation (CV) and normality via AD and DP. Fig. 4 reports: (left) norms concentrate
over training, CV declines; (middle) the AD statistic drops from a non-Gaussian level into the normal
range; and (right) the fraction of coordinates passing normality (DP p > 0.05) increases steadily. This
experiment shows how norm concentration and Gaussianity of representations increase as training
proceeds. Overall, both thin-shell concentration and Gaussianity strengthen as training progresses.

Table 1: Gaussianity diagnostics across datasets and training regimes. Rows report five metrics:
norm concentration via the coefficient of variation (CV, Eq. 21), and two normality test: Anderson-
Darling (AD) and D’Agostino-Pearson (DP), summarized by the average test statistic (Avg.) and
the percentage of coordinates whose statistics fall in the Gaussian-acceptance region (Norm. Feat.).
Columns correspond to different data sources and training configurations: synthetic Laplace and
Gaussian-mixture inputs (linear encoder), multiple CIFAR-10 regimes (supervised vs. contrastive,
low/high augmentation, no/high weight decay, all with ResNet-18 encoder), and two ImageNet-R
variants (Sketch, Painting, encoded with CLIP). Results are of the unnormalized embeddings.

Metric
CIFAR-10 Synthetic ImageNet-R

Sup. Contrastive Contrastive Contrastive
Sup. Contr. Low Aug. High Aug. No WD High WD Laplace Mix Sketch Painting

CV 0.50 0.09 0.12 0.13 0.09 0.10 0.08 0.08 0.14 0.14
AD Avg. 3.3 0.43 0.39 0.49 0.41 0.42 0.38 0.39 0.41 0.40
AD Norm. Feat. 6.2% 96.1% 93.7% 92.1% 94.5% 93.7% 100% 100% 94.8% 95.3%
DP Avg. 0.041 0.39 0.46 0.32 0.46 0.45 0.49 0.46 0.44 0.43
DP Norm. Feat. 3.9% 94.5% 93.7% 91.5% 92.1% 91.5% 100% 100% 93.3% 94.2%

InfoNCE vs. Supervised training. We use the CIFAR-10 dataset and ResNet-18 (He et al., 2016) for
a controlled comparison between supervised and contrastive learning. We use an initialized ResNet-18
model in both cases, with a 2 layer MLP (following SimCLR (Chen et al., 2020a) setting). In Table 1,
we show that supervised training does not induce any Gaussianity while contrastive learning does. We
also add ablations on augmentation strength (low/high, regular experiment is standard augmentations)
and weight decay strength (none/strong (1e− 3), regular experiment is standard - 1e− 4). Results
show that in all settings the representations are approximately Gaussian, while stronger augmentations
lead to lower alignment values and no weight decay leads to high norm values.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Normality test scores for pretrained models. Each cell shows Unnormalized / Normalized.
The Avg. column contains the average score for all features, and Norm. Feat. represents the percentage
of features passing the normal distribution test. Thresholds are indicated in brackets, with the sign
showing whether higher or lower results imply normality.

Anderson-Darling (< 0.752) D’Agostino-Pearson (> 0.05)
Avg. Norm. Feat. Avg. Norm. Feat.

Self-supervised
CLIP Img 0.4749 / 0.4917 96.8% / 96.0% 0.4163 / 0.3988 99.6% / 99.4%
CLIP Txt 0.5345 / 0.5368 94.0% / 93.6% 0.3775 / 0.3773 99.4% / 99.7%

Dino 0.4415 / 0.4400 97.0% / 97.1% 0.4533 / 0.4544 99.2% / 99.3%

Supervised ResNet 10.01 / 9.638 0.0% / 0.0% 2.2×10−6 / 3.2×10−6 0.0% / 0.0%
DenseNet 2.982 / 2.8538 42.2% / 41.6% 0.1550 / 0.1442 49.3% / 49.0%

Pretrained models. We generalize our evaluations to supervised and self-supervised vision backbones
to assess whether Gaussian structure appears across common representation-learning paradigms, not
only in the unimodal InfoNCE settings. Our supervised baselines are ResNet34 He et al. (2016) and
DenseNet Huang et al. (2017), pretrained on ImageNet-1k Deng et al. (2009). Our self-supervised
models include CLIP (Radford et al., 2021) (ViT-L/14) and DINO (Caron et al., 2021) (ViT-B/16).
Although CLIP and DINO are not pure instances of the unimodal population InfoNCE objective
they remain dominant SSL approaches and provide a natural testbed for examining whether our
theoretical predictions manifest in practice. For CLIP, we analyze image and text encoders separately
due to the known modality gap (Liang et al., 2022). Normality diagnostics (AD and DP) on the MS-
COCO validation set (Lin et al., 2014) are reported in Table 2. We find that modern self-supervised
models exhibit near-Gaussian low-dimensional projections, whereas standard supervised models
deviate substantially. Additionally, we observe thin-shell concentration across all models (Fig. 6,
Appendix E). We add experiments on images from ImageNet-R (Hendrycks et al., 2020), sketch and
painting domains, to verify this phenomenon is not limited to natural images. Results are in Table 1,
showing Gaussian behavior in these settings as well. These empirical regularities provide motivation
for extending the population InfoNCE analysis to multimodal and self-distillation-based objectives.

6 DISCUSSION AND CONCLUSION

We showed that InfoNCE trained representations admit an asymptotic Gaussian law, via two routes:
an alignment-plateau analysis with thin-shell concentration, and a regularized surrogate with milder
assumptions. Experiments on synthetic data, CIFAR-10, and pretrained models (MS-COCO and
ImageNer-R) are consistent with these assumptions and the Gaussian hypothesis, revealing norm
concentration, alignment saturation, and near-Gaussian projections, and indicating that the Gaussian
approximation remains accurate and informative well before the infinite-dimensional limit. This
Gaussian view justifies common modeling choices (e.g., likelihood scoring, OOD detection) and
suggests that explicit isotropy promoting regularizers may act as principled surrogates for InfoNCE’s
implicit bias. However, limitations remain: our results are asymptotic, relying on high-dimensional
limits and idealized assumptions that may not capture all practical regimes. We therefore view our
asymptotic framework as a principled starting point rather than a complete description of all practical
regimes. For finite dimension d and batch size N , projections are close to Gaussian, with deviations
vanishing as d,N →∞. Quantitative bounds follow from classical Berry-Esseen (Vershynin, 2018)
rates in high dimension and uniform laws of large numbers for empirical objectives (Wellner et al.,
2013). In particular, the minimizer of the empirical InfoNCE loss deviates from the population
minimizer by O(N−1/2) according to Wang & Isola (2020, Thm. 1), and the distribution of fixed-k
projections deviates from Gaussian by O(d−1) according to Diaconis & Freedman (1987) (see
Theorem 2 in Appendix C.1). Thus, for large but finite d,N , the Gaussian limit provides a represen-
tative and empirically useful approximation. In addition, we do not analyze optimization dynamics or
prove that training attains these minimizers in practice; our results are asymptotic and characterize
the population optima under the stated assumptions. Overall, we provide a principled asymptotic
explanation for Gaussianity in contrastive representations, grounding empirical observations and
opening new directions for analysis and practical design.
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ETHICS STATEMENT

This work is theoretical and empirical in nature, focused on understanding the statistical behavior of
representations trained with contrastive learning. We do not foresee direct negative societal impacts.
Potential downstream applications of Gaussian modeling (e.g., density estimation, OOD detection)
could influence decisions in safety-critical domains, and care must be taken to ensure robustness and
fairness.

REPRODUCIBILITY

We provide detailed descriptions of theoretical assumptions, proofs, and experimental protocols.
Datasets (Laplace synthetic data, CIFAR-10 (Krizhevsky et al., 2009), and MS-COCO (Lin et al.,
2014)) are publicly available. Architectures, hyperparameters, and training settings are fully specified
(Appendix E.1), and code for experiments will be released to ensure reproducibility.
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LLM USAGE

Portions of this manuscript, including text editing, reference search, ideation, mathematical deriva-
tions, and summarization, were assisted by a large language model. The model was used interactively
to refine exposition, suggest formulations, and check consistency of notation, but all results, proofs,
and experiments were implemented and validated by the authors. All mathematical claims, experi-
mental details, and citations were independently verified. No content was included without author
review and approval.

OVERVIEW

This appendix provides complete proofs for all propositions, corollaries, lemmas, and theorems,
along with additional derivations that did not fit in the main text. We also include supplementary
experiments and implementation details. The appendices are organized as follows:

A. Proof and details of the alignment bound.

B. Proofs of some regularization surrogate-related claims.
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C. Proof of the alignment-plateau approach. These include general claims, some are used in
the regularization surrogate proof as well.

D. Discussion about exact alignment bound at plateau.
E. Experiment details.

A HGR MAXIMAL CORRELATION AND THE ALIGNMENT BOUND

A.1 HGR DEFINITION AND BASIC PROPERTIES

The Hirschfeld-Gebelein-Rényi (HGR) maximal correlation (Hirschfeld, 1935; Gebelein, 1941;
Rényi, 1959) between random variables A and B is

ρm(A,B) := sup
E[ϕ(A)]=E[ψ(B)]=0
Var(ϕ)=Var(ψ)=1

E[ϕ(A)ψ(B)] ∈ [0, 1]. (22)

An equivalent “explained-variance” characterization (Gebelein, 1941; Rényi, 1959) is

ρ2m(A,B) = sup
g∈L2(pA)

Var(g(A))>0

Var
(
E[g(A) | B]

)
Var(g(A))

. (23)

Here pA is the marginal law of A, and L2(pA) denotes the square-integrable (measurable) functions
of A under pA. The numerator is the variance explained by the optimal L2 predictor E[g(A) | B] and
the denominator is its total variance. Hence, the ratio is a (generalized) coefficient of determination,
i.e., the fraction of variance of g(A) predictable from B, in [0, 1].

HGR satisfies a (multiplicative) data-processing inequality (DPI): if A−B − C is a Markov chain,
then

ρm(A,C) ≤ ρm(A,B) ρm(B,C) (Rényi, 1959; Anantharam et al., 2013). (24)
We work on a standard Borel space; conditional expectations exist in L2. Our representations are
normalized (u, v ∈ Sd−1), hence bounded and in L2.

A.2 GAUSSIAN EXAMPLE

If two random variables A and B are jointly Gaussian, then the HGR maximal correlation between
them equals the absolute value of their Pearson correlation coefficient:

ρm(A,B) = |A|, A :=
Cov(A,B)√
Var(A)Var(B)

. (25)

This is a special case where the supremum in the HGR definition is achieved by simple linear
functions. More precisely, the optimal transformations are just standardized versions of A and B
themselves. In other words, nonlinear functions cannot increase correlation beyond the linear one
when the joint distribution is Gaussian. This result is well established; see, for example, Bryc &
Dembo (2005).

A.3 PROOF OF THE ALIGNMENT BOUND

We prove the inequality
E[u · v] ≤ η2 + (1− η2) ∥m(µ)∥2, (26)

for normalized representations u = f̂(X) and v = f̂(Y ) on Sd−1, where m(µ) := E[u] = E[v] is
their common mean.

Step 1: mean-residual decomposition. Since u and v share the same marginal µ, their means
coincide:

m(µ) := E[u] = E[v]. (27)
Define residuals

ũ := u−m(µ), ṽ := v −m(µ), (28)
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so that E[ũ] = E[ṽ] = 0. Expanding the inner product yields

E[u · v] = E
[
(m(µ) + ũ) · (m(µ) + ṽ)

]
= ∥m(µ)∥2 + E[ũ · ṽ]. (29)

The cross terms vanish because E[ũ] = E[ṽ] = 0, so

E[m(µ) · ṽ] = m(µ) · E[ṽ] = 0, (30)

and
E[ũ ·m(µ)] = E[ũ] ·m(µ) = 0. (31)

Step 2: bound the residual correlation via HGR. Fix a coordinate k ∈ {1, . . . , d} and set

gk(X) := ũk, hk(Y ) := ṽk. (32)

Then E[gk(X)] = E[hk(Y )] = 0 and, by the Markov structure X − X0 − Y the DPI for HGR
maximal correlation gives

ρm(X,Y ) ≤ ρm(X,X0) ρm(X0, Y ) =
√
η2
√
η2 = η2, (33)

as in Anantharam et al. (2013).

For any real-valued, square-integrable functions g(X), h(Y ) with zero mean, we can apply the
definition of HGR maximal correlation (Eq. (Eq. 22)) together with the Cauchy-Schwarz inequality
to obtain: ∣∣E[g(X)h(Y )

]∣∣ ≤ ρm(X,Y )
√
Var(g)Var(h). (34)

This inequality holds even when g and h are not normalized, since any such functions can be rescaled
to have unit variance. In our case, the random variables X and Y are conditionally independent given
X0, and identically drawn from the same augmentation channel A(· | X0). Therefore, the Markov
chain X ← X0 → Y holds, and the multiplicative data-processing inequality (Eq. (Eq. 33)) gives:

ρm(X,Y ) ≤ ρm(X,X0) ρm(Y,X0) = η2. (35)

Substituting (Eq. 35) into (Eq. 34) yields:∣∣E[g(X)h(Y )
]∣∣ ≤ η2

√
Var(g)Var(h). (36)

Applying (Eq. 36) to (gk, hk) and summing over coordinates,

E[ũ·ṽ] =

d∑
k=1

E[ũkṽk] ≤ η2

d∑
k=1

√
Var(ũk)Var(ṽk) ≤ η2

√√√√ d∑
k=1

Var(ũk)

√√√√ d∑
k=1

Var(ṽk), (37)

where the last step is Cauchy-Schwarz for sequences.

Step 3: compute the marginal variances. Because ∥u∥ = ∥v∥ = 1 and m(µ) = E[u] = E[v],

d∑
k=1

Var(ũk) = E
[
∥ũ∥2

]
= E

[
∥u−m(µ)∥2

]
= E

[
∥u∥2

]
− ∥m(µ)∥2 = 1− ∥m(µ)∥2, (38)

and identically
d∑
k=1

Var(ṽk) = 1− ∥m(µ)∥2. (39)

Step 4: conclude. Combine (Eq. 37)-(Eq. 39) to get

E[ũ · ṽ] ≤ η2
(
1− ∥m(µ)∥2

)
. (40)
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B REGULARIZED SURROGATE PROOFS

B.1 PROOF OF PROPOSITION 3

Proof. For any encoder f with angular law µ the KL term satisfies (by the KL chain rule, see e.g.
Dupuis & Ellis, 2011, Theorem B.2.1)

KL(ρ∥γBλ ) = KL(µ∥σ) +

∫
KL

(
κ(· | u) ∥ ξ(· | u)

)
µ(du), (41)

where ρ(dz) = µ(du)κ(dr | u) and γBλ (dz) = σ(du)ξ(dr | u) in polar coordinates z = ru.
Thus, at fixed µ, the KL term is minimized by choosing κ(· | u) = ξ(· | u) µ-a.s., and then
KL(ρ∥γBλ ) = KL(µ∥σ).

B.2 PROOF OF LEMMA 1

Proof. We can assume µ ≪ σ, otherwise KL(µ∥σ) = +∞ and the claim is trivial. The claim is
also trivially true if m(µ) = 0, so assume m(µ) ̸= 0. By the Donsker-Varadhan variational formula
(Dupuis & Ellis, 2011, Lemma 1.4.3)

KL(µ∥σ) = sup
φ

{
Eu∼µ[φ(u)]− logEu∼σ

[
eφ(u)

]}
, (42)

where the supremum is taken over bounded measurable functions φ : Sd−1 → R. Taking φ(u) =
tw · u for some unit vector w ∈ Rd and t ∈ R, we have

KL(µ∥σ) ≥ Eu∼µ[tw · u]− logEu∼σ
[
etw·u] = tw ·m(µ)− logEu∼σ

[
etw·u] . (43)

Suppose we showed that
logEu∼σ

[
etw·u] ≤ t2/a (44)

for some a > 0 for every choice of t and w. Then picking t = a
2∥m(µ)∥ and w = m(µ)/∥m(µ)∥,

we have

KL(µ∥σ) ≥ tw ·m(µ)− t2/a =
a

2
∥m(µ)∥2 − a

4
∥m(µ)∥2 =

a

4
∥m(µ)∥2 . (45)

It is left to show (Eq. 44) with a = 4C(d− 1). Now, since g(u) = w · u is 1-Lipschitz on the sphere,
then by a corollary of Lévy’s isoperimetric inequality, for all s ≥ 0,

σ (|g| ≥ s) ≤ 2e−
1
2 (d−1)s2 , (46)

where we used the fact that the median of g is 0. Since Eg = 0, this implies that for some universal
C ′ > 0,

logEetg ≤ 2C ′2t2

d− 1
(47)

(Vershynin, 2018, Proposition 2.6.1). This satisfies (Eq. 44) with a = d−1
2C′2 , and takingC = 1/(8C ′2),

we are done.

C ALIGNMENT-PLATEAU PROOFS

C.1 NORMALIZED REPRESENTATIONS

Lemma 2 (At the plateau the loss reduces to uniformity). Under Assumption 1, the population
InfoNCE objective (Eq. 5) takes the form

J (µ) = Φ(µ) − αE[u·v] = Φ(µ) − α
(
η2 + rplat

)
. (48)

hence minimizing J over probability laws µ on Sd−1 is equivalent to minimizing Φ(µ). Moreover,
Φ(µ) is uniquely minimized by the uniform law σ on Sd−1.

Proof. At the plateau, E[u·v] is the constant in (Eq. 8), so the alignment term is independent of µ,
leaving the uniformity potential Φ(µ) as the only objective. By Wang & Isola (2020, Appendix A),
Φ is uniquely minimized at the uniform distribution on the sphere, i.e. µ = σ. For consistency, the
plateau value in (Eq. 8) must be feasible at µ = σ.
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Figure 5: vMF exponential tilt distribution for different concentration scales κ.

Remark. In Eq. (Eq. 8), rplat ≤ 0. By Eq. (Eq. 7) at µ = σ (m(µ) = 0) the alignment ceiling is η2;
the plateau value is not guaranteed to be feasible at µ = σ and must be verified.
Lemma 3 (Maxwell-Poincaré (Diaconis & Freedman, 1984)). Let Ud be uniform on Sd−1 and fix
k ∈ N. Then √

d(Ud,1, . . . , Ud,k) ⇒ N (0, Ik) (d→∞). (49)

A concrete rate of convergence was given by Diaconis & Freedman (1987).
Theorem 2. (Diaconis & Freedman, 1987) If 1 ≤ k ≤ d− 4, then

dTV

(√
d(Ud,1, . . . , Ud,k), Z

)
≤ 2(k + 3)

d− k − 3
, (50)

where Z ∼ N (0, Ik).

Clearly, Lemma 3 and Theorem 2 hold for any k indices, or for any orthonormal projection of Ud to
k dimensions. Combining Lemmas 2 and 3, we get Corollary 1.

C.2 UNNORMALIZED REPRESENTATIONS

We now prove Proposition 2 by reducing to the normalized case established above.

Proof. Let z = f(X) ∈ Rd denote the unnormalized representation and write its polar decomposition
as z = r u with r = ∥z∥ > 0 and u := z/∥z∥ ∈ Sd−1. By Lemma 2, at the alignment plateau
the population objective reduces to minimizing Φ(µ), whose unique minimizer is the uniform law
σ on Sd−1. Hence the angular component of any global minimizer satisfies u ∼ σ on Sd−1.
Assumption 2 further gives thin-shell concentration of the radius: r P−−−→

d→∞
r0 ∈ (0,∞).

For any fixed k ≥ 1 and any fixed k-dimensional subspace, let Pk be the corresponding orthogonal
projector and set uk := Pku. By the Maxwell-Poincaré spherical CLT (Lemma 3),

√
d uk ⇒ N (0, Ik) (d→∞). (51)

Let zk := Pkz = r uk. Since r P−−−→
d→∞

r0 and (Eq. 51) holds, Slutsky’s theorem (Van der Vaart,

2000) yields √
d zk = r

√
d uk ⇒ N

(
0, r20Ik

)
(d→∞). (52)

This proves Proposition 2.

D EXACT ALIGNMENT BOUND IN PLATEAU DISCUSSION

The following analysis begins from the alignment ceiling (Eq. 7): under a generalized plateau
assumption (extending Assumption 1), the expected alignment is determined by the augmentation
mildness η2 and the squared mean norm ∥m(µ)∥2, up to a negligible residual (noted as rplat in Eq.
(Eq. 8)). Substituting this relation into the population InfoNCE objective (Eq. 5) yields the surrogate

Jq(µ) = Φ(µ) − q ∥m(µ)∥2, q = α(1− η2), (53)
where Φ(µ) is the uniformity potential of Wang & Isola (2020). Thus, at the plateau, the population
loss reduces to a trade-off between uniformity and the mean vector length.
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Stationary points. The surrogate involves the spherical convolution operator P with kernel eαξ·η ,
which diagonalizes in spherical harmonics by the Funk-Hecke theorem (Atkinson & Han, 2012).
Analyzing the Euler-Lagrange condition shows that in high dimensions Ph must asymptotically take
an exponential tilt form Ph(ξ) ∝ exp(βw · ξ). Inverting this relation via Gegenbauer expansions
and their decay properties (Szeg, 1939) indicates that, under mild regularity, the stationary density h
is well-approximated in its leading modes by either the uniform law or a von Mises–Fisher (vMF) tilt
(Mardia & Jupp, 2009). This captures the dominant low-degree structure in high dimensions, though
more complex stationary forms cannot be excluded.

Implications. Consequently, in high dimension the stationary points of the plateau surrogate are
well-approximated by either the uniform distribution (when m(µ) = 0) or a von Mises-Fisher
(vMF) tilt aligned with an axis w (when m(µ) ̸= 0); see Fig. 5. The vMF concentration parameter
κ quantifies the strength of angular concentration around w (larger κ ⇒ narrower cone). This
perspective helps explain why contrastive encoders often yield nearly uniform representations,
with occasional vMF-like bias. For example, in CLIP, where a narrow-cone structure (a modality-
dependent angular bias) has been observed (Liang et al., 2022).

E EXPERIMENTAL DETAILS

E.1 IMPLEMENTATION DETAILS

Code and reproducibility. Code will be released upon publication. All experiments were imple-
mented in PyTorch with torchvision. Training was performed on a single 3090 NVIDIA RTX
GPU with CUDA 11.8.

Synthetic Data Experiments

• Dataset. Laplace(0, 1) vectors of dimensions - ddata = 1024. We use a set of 20k samples
for training, and 5k samples for testing.

• Representation dimensions. The dimensions of representations vary: d ∈
{32, 64, 128, 256}.

• Batch size. Batch size in our experiments varies: N ∈ {8, 16, 32, 48, 64, 96, 128}.
• Training objective. InfoNCE loss with temperature τ ∈ {0.1, 0.2} . We report results for
τ = 0.1, but note that results are similar.

• Augmentations. Each synthetic sample x is perturbed to form two correlated views

x1 = Ax+
√
1−A2 ε1, x2 = Ax+

√
1−A2 ε2, (54)

where ε1, ε2 ∼ N (0, I) are independent. The parameter A ∈ (0, 1) controls the correlation
between views. After this linear Gaussian mixing, we apply light, independent jitter:
additive Gaussian noise with std 0.2, feature dropout with probability 0.1, and random
multiplicative scaling by exp(N (0, 0.12)). Unless otherwise stated, we useA = 0.6 (results
for A ∈ {0.2, 0.5, 0.8} appear in Fig. 11).

• Optimization. Optimizer: Adam. Learning rate = 10−3. We ran 50-250 epochs depending
on setup; unless stated otherwise, we report results at 150 epochs.

• Evaluation metrics. norm concentration (CV), mean norm values, Gaussianity diagnostics
(AD/DP) tests and uniformity vs. alignment comparison (based on cosine similarity).

CIFAR-10 Experiments

• Dataset. CIFAR-10, training set size 50k, test set size 10k.

• Augmentations. We apply the standard SimCLR-style augmentation pipeline: a random
resized crop to 32 × 32 pixels with scale uniformly sampled from (0.2, 1.0), a random
horizontal flip, color jitter with strengths (0.8, 0.8, 0.8, 0.2), and random conversion to
grayscale with probability 0.2r.
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Figure 6: Thin-shell concentration across pretrained models. Radius distributions of representa-
tions from supervised models (DenseNet, ResNet) and contrastive models (CLIP, DINO). All models
exhibit thin-shell concentration, with contrastive methods showing tighter clustering (lower CV,
(Eq. 21)).

• Architecture. ResNet-18 encoder (pretrained on ImageNet (Deng et al., 2009)) with a
two-layer MLP projection head (hidden dim = 512, output dim = 128).

• Training objective. InfoNCE with temperature τ = 0.1.

• Optimization. Adam optimizer, learning rate = 10−3, weight decay = 10−4, batch size
= 256, epochs = 100.

• Evaluation metrics. norm concentration (CV), Gaussianity diagnostics (AD/DP) tests.

Pretrained Model Diagnostics

• Models. CLIP (ViT-L/14, text and image modalities), DINO (ViT-B/32), ResNet-34 and
DenseNet.

• Datasets. Full MS-COCO validation set (5k images).

• Feature extraction. Last-layer embeddings; whitening applied when noted.

• Evaluation metrics. norm concentration (CV), Gaussianity diagnostics (AD/DP) tests and
uniformity before and after whitening.

E.2 ADDITIONAL EXPERIMENTS

Figure 7: Alignment and uniformity vs. batch size. Histogram view of cosine similarities for
positive pairs (alignment) and negatives (uniformity), corresponding to Fig. 2. As batch size increases,
alignment remains high while uniformity improves, with negative-pair similarities concentrating near
zero. The middle panel is a zoom of the left; the right panel shows that at very low dimensionality,
increasing batch size yields little uniformity gain.

Figs. 7 and 8 provide alternative visualizations of Fig. 2, presenting the same experiments with a
different display. Both figures plot the distributions of cosine similarities for positive pairs (alignment)
and for negatives (uniformity). As batch size (Fig. 7) or dimensionality (Fig. 8) increases, uniformity
improves (negative-pair similarities concentrate near zero) while alignment remains consistently
high across settings. These complementary views reinforce the observation from the main body:
uniformity continues to improve with larger batches and higher dimensions, whereas alignment
appears to saturate early.
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Figure 8: Alignment and uniformity vs. dimensionality. Histogram view of cosine similarities for
positive pairs (alignment) and negatives (uniformity), corresponding to Fig. 2. As dimensionality
increases, alignment stays high while uniformity improves, pushing negative-pair similarities toward
zero. The middle panel is a zoom of the left; the right panel highlights that with very small batch
sizes, increasing dimensionality offers limited uniformity improvement.
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Figure 9: Whitening and uniformity: unnormalized representations. Cosine similarity histograms
of negatives for CLIP (image, text) and DINO, before (raw) and after whitening. Unnormalized
representations benefit from whitening, with distributions pushed closer to zero, reflecting enhanced
uniformity.

Additionally, we assess uniformity in several pretrained models before and after whitening. Whitening
consistently increases uniformity, indicating that these representations, which are already close to
uniform (and approximately Gaussian; see Table 2), become more isotropic once decorrelated and
rescaled. This effect holds consistently across pretrained models (CLIP image, CLIP text, and DINO),
for both normalized and unnormalized representations, see Figs. 9, 10. Thus, a simple post hoc
projection via whitening can further enhance uniformity in practice.

We examine the correlation between the data distribution and the representation distribution. Using
Laplace data as input and observing Gaussian representations at the output, we can compute likeli-
hoods for both input and output sets. Comparing these scores reveals strong correlation (Fig. 11),
indicating that the distribution is indeed “pushed forward” through the encoder. This correlation
remains stable across different augmentation strengths, showing that this “pushforward” behavior is
insensitive to the level of augmentation.
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Figure 10: Whitening and uniformity: normalized representations. Cosine similarity histograms
of negatives for CLIP (image, text) and DINO, before (normalized) and after whitening. Normalized
representations are already close to uniform; whitening provides a modest but consistent improvement.

Figure 11: Encoder “pushforward”. On synthetic data, the encoder maps Laplace-distributed inputs
to approximately Gaussian representations. Because both source and target families admit tractable
likelihoods, we can score entire sets and observe consistently high correlation across different
augmentation strengths.
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