
Published in Transactions on Machine Learning Research (12/2024)

An analysis of the noise schedule for score-based gener-
ative models

Stanislas Strasman†, Antonio Ocello*, Claire Boyer+, ◦, Sylvain Le Corff†, and Vincent Lemaire†

†LPSM, Sorbonne Université, UMR CNRS 8001, Paris, France.
*CMAP, École Polytechnique, Institut Polytechnique de Paris, France.
+LMO, Université Paris-Saclay, UMR CNRS 8628, Orsay, France.
◦IUF, Institut Universitaire de France.

Reviewed on OpenReview: https://openreview.net/forum?id=BlYIPa0Fx1¬eId=
BlYIPa0Fx1

Abstract

Score-based generative models (SGMs) aim at estimating a target data distribution
by learning score functions using only noise-perturbed samples from the target.
Recent literature has focused extensively on assessing the error between the target
and estimated distributions, gauging the generative quality through the Kullback-
Leibler (KL) divergence and Wasserstein distances. Under mild assumptions on the
data distribution, we establish an upper bound for the KL divergence between the
target and the estimated distributions, explicitly depending on any time-dependent
noise schedule. Under additional regularity assumptions, taking advantage of
favorable underlying contraction mechanisms, we provide a tighter error bound
in Wasserstein distance compared to state-of-the-art results. In addition to being
tractable, this upper bound jointly incorporates properties of the target distribution
and SGM hyperparameters that need to be tuned during training. Finally, we
illustrate these bounds through numerical experiments using simulated and CIFAR-
10 datasets, identifying an optimal range of noise schedules within a parametric
family.

1 Introduction

Recent years have seen impressive advances in machine learning and artificial intelligence, with one of
the most notable breakthroughs being the success of diffusion models, introduced by Sohl-Dickstein
et al. (2015). Diffusion models in generative modeling refer to a class of algorithms that generate new
samples given training samples of an unknown distribution πdata. This method is now recognized
for its ability to produce high-quality images that appear genuine to human observers (see e.g.,
Ramesh et al., 2022, for text-to-image generation). Its range of applications is expanding rapidly,
yielding impressive outcomes in areas such as computer vision (Li et al., 2022; Lugmayr et al., 2022)
or natural language generation (Gong et al., 2023), among others, see Yang et al. (2023) for a
comprehensive overview of the latest advances in this topic.

1

https://openreview.net/forum?id=BlYIPa0Fx1¬eId=BlYIPa0Fx1
https://openreview.net/forum?id=BlYIPa0Fx1¬eId=BlYIPa0Fx1

Published in Transactions on Machine Learning Research (12/2024)

Score-based generative models (SGMs). Generative diffusion models aim at creating synthetic
instances of a target distribution when only a genuine sample (e.g., a dataset of real-life images) is
accessible. It is crucial to note that the complexity of real data prohibits a thorough depiction of
the distribution πdata through standard non-parametric density estimation strategies. Score-based
Generative Models (SGMs) are probabilistic models designed to address this challenge using two
main phases. The first phase, the noising phase (also referred to as the forward phase), involves
progressively perturbing the empirical distribution by adding noise to the training data until its
distribution approximately reaches an easy-to-sample distribution π∞. The second phase involves
learning to reverse this noising dynamics by sequentially removing the noise, which is referred to as
the sampling phase (or backward phase). Reversing the dynamics during the backward phase would
require in principle knowledge of the score function, i.e., the gradient of the logarithm of the density
at each time step of the diffusion. To circumvent this issue, the score function is learned based
on the evolution of the noised data samples and using a deep neural network architecture. When
applying these learned reverse dynamics to samples from π∞, we obtain a generative distribution
that approximates πdata.

Related works. Significant attention has been paid to understanding the sources of errors that
affect the quality of data generation associated with SGMs (Block et al., 2020; De Bortoli, 2022;
Lee et al., 2022; 2023; Chen et al., 2023a;b). In particular, a key area of interest has been the
derivation of upper bounds for distances or pseudo-distances between the training and generated
sample distributions. Note that all the mathematical theory for diffusion models developed so far
covers general time discretizations of time-homogeneous SGMs (see Song and Ermon, 2019, in the
variance-preserving case), which means that the strength of the noise is prescribed to be constant
during the forward phase. De Bortoli et al. (2021); Chen (2023) provided upper bounds in terms of
total variation, by assuming smoothness properties of the score and its derivatives. On the other
hand, the upper bounds in total variation and Wasserstein distances provided by Lee et al. (2023);
Gao et al. (2023) also require smoothness assumptions on the data distribution, either involving
non-explicit constants, or focusing on iteration complexity sharpness. More recently, Conforti
et al. (2023); Benton et al. (2024) established an upper bound in terms of Kullback–Leibler (KL)
divergence avoiding strong assumptions about the score regularity, and relying on mild conditions
about the data distribution (e.g., assumed to be of finite Fisher information w.r.t. the Gaussian
distribution). Regarding time-inhomogeneous SGMs, the central role of the noise schedule has
already been exhibited in numerical experiments, see for instance Chen (2023); Nichol and Dhariwal
(2021); Guo et al. (2023). However, a rigorous theoretical analysis of it is still missing.

Contributions. In this paper, we conduct a thorough mathematical analysis of the role of the noise
schedule in score-based generative models. We propose a unified framework for time-inhomogeneous
SGMs, to conduct joint theoretical analyses in KL and Wasserstein metrics, with state-of-the-art
set of assumptions, using exponential integration of the backward process. In our opinion, these
upper-bounds provide numerical insights into proper SGM training.

• We establish an upper bound on the Kullback-Leibler divergence between the data distri-
bution and the law of the SGM. This bound holds under the mildest assumptions used in
the SGM literature and explicitly depends on the noise schedule used to train the SGM.
The proof follows the same steps as Conforti et al. (2023). However, it requires to establish
a Kullback-Leibler upper bound for an inhomogeneous forward diffusion which involves

2

Published in Transactions on Machine Learning Research (12/2024)

determining a non-asymptotic rate of convergence for the mixing time using Fokker-Planck
equations and a log-Sobolev inequality that depends on the noise schedule, and not only on
the diffusion time horizon, see Lemma B.1. In addition, taking into account the backward
contraction for the diffusion process (Proposition C.1) provides state-of-the-art results on
mixing time convergence for SGM under the Ornstein-Uhlenbeck forward process, whether
inhomogeneous or not.

• By making additional assumptions on the Lipschitz and strong log-concavity properties
of the score function, we establish a bound in terms of Wasserstein distance explicitly
depending on the noise schedule. This extends the similar result for the KL in the Gaussian
setting. These results are in the same line of work as Bruno et al. (2023); Gao et al. (2023),
incorporating to the time inhomogeneous setting a refinement of the mixing time error
based on an analysis of the modified score function.

• We illustrate, through numerical experiments, the upper bounds obtained in practice in
regard of the effective empirical KL divergences and Wassertein metrics. These simula-
tions highlights the relevancy of the upper bound, reflecting in practice the effect of the
noise schedule on the quality of the generative distribution. Additionally, the simulations
conducted provide theoretically-inspired guidelines for improving SGM training. For repro-
ducibility purposes, the code for the numerical experiments is available at https://github.
com/StanislasStrasman/Noise_Schedule_for_Score-based_Generative_Models.

2 Mathematical framework for SGMs

Forward process. Denote as β : [0, T] 7→ R>0 the noise schedule, assumed to be continuous and
non decreasing. Although originally developed using a finite number of noising steps (Sohl-Dickstein
et al., 2015; Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021), most recent approaches
consider time-continuous noise perturbations through the use of stochastic differential equations
(SDEs) (Song et al., 2021). Consider, therefore, a forward process given by

d−→X t = −β(t)
2σ2
−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ πdata . (1)

We denote by pt the density of −→X t at time t ∈ (0, T]. Note that, up to the time change t 7→∫ t

0 β(s)/2ds, this process corresponds to the standard Ornstein–Uhlenbeck (OU) process, solution to

d−→X t = − 1
σ2
−→
X tdt+

√
2dBt,

−→
X 0 ∼ πdata ,

see, e.g., Karatzas and Shreve (2012, Chapter 3). Due to the linear nature of the drift with respect
to (Xt)t, it is well-known that an exact simulation can be performed for this process (Section E.1.2).
The stationary distribution π∞ of the forward process is the Gaussian distribution with mean 0 and
variance σ2Id. In the literature, when β(t) is constant equal to 2 (meaning that there is no time
change), this diffusion process is referred to as the Variance-Preserving SDE (VPSDE, De Bortoli
et al., 2021; Conforti et al., 2023; Chen et al., 2023b), leading to the so-called Denoising Diffusion
Probabilistic Models (DDPM, Ho et al., 2020). Understanding the effects of the general diffusion
model (1), in particular when reversing the dynamic, remains a challenging problem, to which we
devote the rest of our analysis.

3

 https://github.com/StanislasStrasman/Noise_Schedule_for_Score-based_Generative_Models
 https://github.com/StanislasStrasman/Noise_Schedule_for_Score-based_Generative_Models

Published in Transactions on Machine Learning Research (12/2024)

Backward process. The corresponding backward process is given by{
d←−X t = η(t,←−X t)dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞,

with
{

β̄(t) := β(T − t)
η(t,←−X t) := β̄(t)

2σ2
←−
X t + β̄(t)∇ log pT −t

(←−
X t

)
.

We consider the marginal time distribution of the forward process divided by the density of its
stationary distribution, introducing

∀x ∈ Rd, p̃t(x) := pt(x)/φσ2(x), (2)

where φσ2 denote the density function of π∞, a Gaussian distribution with mean 0 and variance
σ2Id. Thus, the backward process can be rewritten as

d←−X t = η̄
(
t,
←−
X t

)
dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞, (3)

where η̄(t,←−X t) := − β̄(t)
2σ2
←−
X t + β̄(t)∇ log p̃T −t(

←−
X t). The benefit of using the renormalization p̃t in

our analysis results in considering the backward equation as a perturbation of an OU process. This
trick is crucial to highlight the central role of the relative Fisher information in the performance of
the SGM. It has already been used by Conforti et al. (2023).

Score estimation. Simulating the backward process means knowing how to operate the score.
However, the (modified) score function ∇ log p̃t(x) = ∇ log pt(x) +x/σ2 cannot be evaluated directly,
because it depends on the unknown data distribution. To work around this problem, the score
function ∇ log pt needs to be estimated. In Hyvärinen and Dayan (2005), the authors proposed to
estimate the score function associated with a distribution by minimizing the expected L2-squared
distance between the true score function and the proposed approximation. In the context of diffusion
models, this is typically done with the use of a deep neural network architecture sθ : [0, T]×Rd 7→ Rd

parameterized by θ ∈ Θ, and trained to minimize:

Lexplicit(θ) = E
[∥∥∥sθ

(
τ,
−→
X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2
]
, (4)

with τ ∼ U(0, T) independent of the forward process (−→X t)t≥0. However, this estimation problem
still suffers from the fact that the regression target is not explicitly known. A tractable optimization
problem sharing the same optima can be defined though, through the marginalization over πdata of
pτ (see Vincent, 2011; Song et al., 2021):

Lscore(θ) = E
[∥∥∥sθ

(
τ,
−→
X τ

)
−∇ log pτ

(−→
X τ |X0

)∥∥∥2
]
, (5)

where τ is uniformly distributed on [0, T], and independent of X0 ∼ πdata and −→X τ ∼ pτ (·|X0). This
loss function is appealing as it only requires to know the transition kernel of the forward process. In
(1), this is a Gaussian kernel with explicit mean and variance.

Discretization. Once the score function is learned, it remains that, in most cases, the backward
dynamics no longer enjoys a linear drift, which makes its exact simulation challenging. To address

4

Published in Transactions on Machine Learning Research (12/2024)

this issue, one solution is to discretize the continuous dynamics of the backward process. In this way,
Song et al. (2021) propose an Euler-Maruyama (EM) discretization scheme in which both the drift
and the diffusion coefficients are discretized recursively (see (50)). The Euler Exponential Integrator
(EI, see Durmus and Moulines, 2015), as already used in Conforti et al. (2023), only requires to
discretize the part associated with the modified score function. Introduce s̃θ(t, x) := sθ(t, x) + x/σ2

and consider the regular time discretization 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . Then, (←−X θ
t)t∈[0,T] is such

that, for t ∈ [tk, tk+1],

d←−X θ
t = β̄(t)

(
− 1

2σ2
←−
X θ

t + s̃θ

(
T − tk,

←−
X θ

tk

))
dt+

√
β̄(t)dBt,

←−
X θ

0 ∼ π∞ . (6)

This scheme can be seen as a refinement of the classical EM one as it handles the linear drift term
by integrating it explicitly. In addition, (←−X θ

t)t∈{t0,...,tN } can be sampled exactly, see Appendix A.
We consider therefore such a scheme in our further theoretical developments.

3 Non-asymptotic Kullback-Leibler bound

In this section, we provide a theoretical analysis of the effect of the noise schedule used when
training an SGM. Its impact is scrutinized through a bound on the KL divergence between the data
distribution and the generative one.

Statement. The data distribution πdata is assumed to be absolutely continuous with respect to
the Gaussian measure π∞. Define the relative Fisher information I(πdata|π∞) by

I(πdata|π∞) :=
∫ ∥∥∥∥∇ log

(
dπdata

dπ∞

)∥∥∥∥2
dπdata ,

and consider the following assumptions.

H1 The noise schedule β is continuous, positive, non decreasing and such that
∫∞

0 β(t)dt =∞.

H2 The data distribution is such that I(πdata|π∞) <∞.

H3 The NN parameter θ ∈ Θ and the schedule β satisfy

E

[
exp

{
1
2

∫ T

0
β̄(t)

∥∥∥(s̃(T − t,←−X t

)
− s̃θ

(
T − t,

←−
X t

))∥∥∥2
dt
}]

<∞ ,

with s̃(t, x) :=∇ log p̃t(x) and p̃t defined in (2).

Assumption H1 is necessary to ensure that the forward process converges to the stationary distribution
when the diffusion time tends to infinity. Assumption H2 is inherent to the data distribution, as it
involves only the L2-integrability of the score function. Such a kind of hypothesis has already been
considered in the literature, see Conforti et al. (2023). We stress that, in this section, we do not
require extra assumptions about the smoothness of the score function. Lastly, Assumption H3 is a
condition on the approximation of the score by the neural network s̃θ, weighted by the level of noise
in play. We are now in position to provide an upper bound for the relative entropy between the
distribution π̂

(β,θ)
N of samples obtained from (6), and the target data distribution πdata.

5

Published in Transactions on Machine Learning Research (12/2024)

Theorem 3.1. Assume that H1, H2 and H3 hold. Then,

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ EKL

1 (β) + EKL
2 (θ, β) + EKL

3 (β) ,

where

EKL
1 (β) = KL (πdata||π∞) exp

{
− 1
σ2

∫ T

0
β(s)ds

}
,

EKL
2 (θ, β) =

N−1∑
k=0

E
[∥∥∥∇ log p̃T −tk

(−→
XT −tk

)
− s̃θ

(
T − tk,

−→
XT −tk

)∥∥∥2
] ∫ T −tk

T −tk+1

β(t)dt ,

EKL
3 (β) = 2hβ(T)I(πdata|π∞) ,

with h := supk∈{1,...,N}(tk − tk−1) small enough and t0 := 0.

The obtained bound is composed of three terms, all depending on the noise schedule, through either
its integrated version over the diffusion time, or its final value at time T . The result was derived for
the EI discretization scheme, but it could be adapted to the Euler scheme up to minor technicalities.
Remark also that using Pinsker’s inequality, the obtained bound could be transferred in terms of
total variation.

Dissecting the upper bound. The upper bound of Theorem 3.1 involves three different types
of error that affect the training of an SGM. The term EKL

1 represents the mixing time of the OU
forward process, arising from the practical limitation of considering the forward process up to a finite
time T . Indeed, EKL

1 is shrinked to 0 when T grows to infinity. Note that the multiplicative term
in EKL

1 corresponds to the KL divergence between πdata and π∞ which is ensured to be finite by
Assumption H2. The second term EKL

2 corresponds to the approximation error, which stems from the
use of a deep neural network to estimate the score function. Note that if we assume that the error of
the score approximation is uniformly (in time) bounded by Mθ (see De Bortoli et al., 2021, Equation
(8)), the term EKL

2 admits as a crude bound Mθ

∫ T

0 β(t)dt, with the disadvantage of exploding when
T → +∞. Otherwise, by considering Conforti et al. (2023, Assumption H3), one can make this
bound finer and finite, by balancing the quality of the score approximation, the discretization grid
and the final time T . Finally, EKL

3 is the discretization error of the EI discretization scheme. This
last term vanishes as the discretization grid is refined (i.e., h→ 0).

Comparison with existing bounds. Under perfect score approximation,

and infinitely precise discretization (i.e., when EKL
2 (θ, β) = EKL

3 (β) = 0), we recover that the Variance
Preserving SDE (VPSDE, De Bortoli et al., 2021; Conforti et al., 2023; Chen et al., 2023b) converges
exponentially fast to the target distribution. Beyond this idealized setting, the bound established in
Theorem 3.1 recovers that of Conforti et al. (2023, Theorem 1) when choosing β(t) = 2, σ2 = 1,
T = 1, and using a discretization step size h ≤ 1.

Refined analysis of the mixing time error Still assuming “perfect score approximation” and
infinitely precise discretization (i.e., EKL

2 (θ, β) = EKL
3 (β) = 0), one can assess the sharpness of

the term EKL
1 (β) in the upper bound of Theorem 3.1. In particular, when restricting the data

distribution to be Gaussian N (µ0,Σ0), one can exploit the backward contraction assuming that

6

Published in Transactions on Machine Learning Research (12/2024)

λmax(Σ0) ≤ σ2, where λmax(Σ0) denotes the largest eigenvalue of Σ0. In this specific case, we can
obtain a refined version for EKL

1 (see Proposition C.1), given by

KL (πdata∥π∞QT) ≤ KL (πdata∥π∞) exp
(
− 2
σ2

∫ T

0
β(s)ds

)
, (7)

where (Qt)0≤t≤T is the Markov semi-group associated with the backward SDE. This idea is exploited
in Section 4 to establish Wasserstein bounds for more general data distributions than Gaussian, but
requiring extra regularity of the score.

4 Non-asymptotic Wasserstein bound

In the literature, much attention is paid to derive upper bounds with other metrics such as the W2
distance, which has the advantage to be a distance and to have easier-to-handle and implementable
estimators. In Lee et al. (2023), the authors obtain a control for the 2-Wasserstein and total variation
distances. However, those results rely on additional assumptions on πdata (which is assumed to have
bounded support for instance in De Bortoli (2022)).

Regularity assumptions. We consider extra regularity assumptions about the modified marginal
density p̃t at any time of the diffusion.

H4 (i) For all t ≥ 0, there exists Ct ≥ 0 such that for all x, y ∈ Rd,

(∇ log p̃t(y)−∇ log p̃t(x))⊤(x− y) ≥ Ct ∥x− y∥2
.

(ii) For all t ≥ 0, there exists Lt ≥ 0 such that ∇ log p̃t is Lt-Lipschitz continuous.

The strong log-concavity (i) (see, e.g., Saumard and Wellner, 2014) plays a crucial role in terms of
contraction of the backward SDE. Classical distributions satisfying H4(i) include logistic densities
restricted to a compact set, or Gaussian laws with a positive definite covariance matrix, see Saumard
and Wellner (2014) for other examples. We observe, notably, that when the density of the data
distribution is log-concave, this property propagates within the probability flow (p̃t)0≤t≤T (see
Proposition D.1). Similar conclusions can be drawn regarding the Lipschitz continuity of the score
(Proposition D.2). This property is formalized in the Lemma 4.1 for Gaussian distributions.
Lemma 4.1. Assume that πdata is a Gaussian distribution N (µ0,Σ0), such that Σ0 is invertible
and λmax(Σ0) < σ2. Let mt := exp(−

∫ t

0 β(s)/2σ2ds). Then, the probability flow p̃t given by (1)
initialized at πdata is Ct-strongly log concave, with

Ct :=
m2

t

(
σ2 − λmax(Σ0)

)
m2

tλmax(Σ0) + σ2 (1−m2
t) .

In addition, the associated score ∇ log p̃t is Lt-Lipschitz continuous with

Lt := min
{

1
σ2 (1−m2

t) ; 1
λmin(Σ0)m2

t

}
+ 1
σ2 .

This result, restricted to the Gaussian case, sets the focus on the importance of calibrating the
parameter σ2 depending on the covariance structure of the data distribution, in order to enhance
strong log concavity of the probability flow through the diffusion.

7

Published in Transactions on Machine Learning Research (12/2024)

Error bound. To establish a 2-Wasserstein bound explicitly depending on the noise schedule,
we consider the following additional assumptions, respectively about uniform approximation of the
score, and Lipschitz continuity in time of the renormalized score.

H5 There exists ε ≥ 0 such that sup
k∈{0,..,N−1}

∥∥s̃ (T − tk, X̄θ
tk

)
− s̃θ

(
T − tk, X̄θ

tk

)∥∥
L2
≤ ε .

H6 For a regular discretization {tk, 0 ≤ k ≤ N} of [0, T] of constant step size h, there exists
M ≥ 0 such that

sup
k∈{0,..,N−1}

sup
tk≤t≤tk+1

∥s̃ (T − t, x)− s̃ (T − tk, x)∥L2
≤Mh(1 + ∥x∥) .

We now have all the ingredients to present our theoretical guarantee in terms of Wasserstein distance.
Theorem 4.2. Assuming H4, H5 and H6 and that the time step h is small enough, it holds that

W2

(
πdata, π̂

(β,θ)
N

)
≤ EW2

1 (β) + EW2
2 (θ, β) (8)

with EW2
1 (β) =W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)
σ2

(
1 + Ctσ

2)dt
)
,

EW2
2 (θ, β) =

N−1∑
k=0

(∫ tk+1

tk

L̄tβ̄(t)dt
)(√

2hβ(T)
σ

+ hβ(T)
2σ2 +

∫ tk+1

tk

2L̄tβ̄(t)dt
)
B

+ εTβ(T) +MhTβ(T) (1 + 2B) ,
B = (E[∥X0∥2] + σ2d)1/2 , and for all t ∈ [0, T], L̄t = LT −t .

In Theorem 4.2, we exploit the contraction entailed by Assumption H4(i) of the backward diffusion
processes on top of that of the forward phase. This idea leads to an improvement of all the existing
bounds in Wasserstein metrics, by refining their mixing time term. The previous result can be
established when the target distribution has a Lipschitz continuous score and is strongly log-concave:
by propagating these properties, the constants Lt and Ct can be characterized as a function of
L0 and C0 (see Propositions D.1 and D.2). The propagation of the log-concave property was also
established in Saremi et al. (2023).
Corollary 4.3. Assume that ∇ log p̃data is L0-Lipschitz, that log p̃data is C0-strongly concave such
that C0 > 1/σ2. Under Assumption H5 and H6, with a time step h small enough,

W2

(
πdata, π̂

(β,θ)
N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)
σ2

(
1 + Ctσ

2)dt
)

+ c1
√
h+ c2h+ εTβ(T) ,

with c1 = L0β(T)T
√

2β(T)/σ and c2 = β(T)T
(
L0
(
1/(2σ2) + 2L0

)
β(T)B +M(1 + 2B)

)
.

This provides an easy-to-handle upper bound in Wasserstein distance, encompassing the three types
of error (e.g., mixing time, score approximation and discretization error), for Lipschitz scores and
strongly-log concave distributions. We remark that it also exhibits an extra term in

√
h compared

to the more general KL bound obtained under milder assumptions. Note however that this term is
in line with what can be found in the literature for Wasserstein bounds for SDE approximation (see
Alfonsi et al., 2015).

8

Published in Transactions on Machine Learning Research (12/2024)

Discussion and comparison with other works. Theorem 4.2 requires more stringent
assumptions on the regularity of the score function than Theorem 3.1. However, these assumptions
are not specific to our setting. In particular, the strong log-concavity assumption has proven to be
a key property for the fast convergence of sampling algorithms (see Dalalyan, 2017; Durmus and
Moulines, 2017; Dwivedi et al., 2019). While this is a strong assumption to require on the data
density, this can be mitigated.

In Benton et al. (2024), the authors propose quantitative bounds for the Kullback-Leibler divergence
only assuming a finite second moments of the data distribution and do not use any smoothness
assumption. The authors use early stopping and stop the backward sampling at small time δ > 0 to
avoid the score explosion in the neighborhood of 0. In another line of work, Chen et al. (2023a)
used a high-probability bound on the Hessian matrix of pt to avoid additional assumptions (such as
a bounded support) on the data distribution to obtain Kullback-Leibler upper bounds. These works
offer promising perspective to obtain Wasserstein bounds under weaker assumptions.

The analysis of the modified score functions in the Gaussian case reveals that by properly adjusting
the variance of the stationary distribution of the forward process and rescaling the target distribution,
we can attain the desired properties for the score function. This observation is specific to the Gaussian
case as one can easily derive values for C0 and L0 with the eigenvalues of covariance matrix of the
target distribution. However, we would like to strengthen the fact that a similar preprocessing has
been applied to more complex distributions in Section 5.

5 Evaluation of the theoretical upper bounds

The goal of this section is to numerically illustrate the validity of the theoretical bounds ob-
tained in Theorem 3.1 and Theorem 4.2. More precisely, we aim at unraveling the contribu-
tions of each error term of the upper bounds. We consider a simulation design where the target

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 1: Noise schedule βa over time
for a ∈ {−10,−9, .., 10} with the linear
schedule a = 0 shown as a dashed line.

distribution is known, and the associated constants of inter-
est (i.e., the strong log concavity parameter, the Lipschitz
constant,W2 (πdata, π∞), I (πdata|π∞) or KL (πdata||π∞))
can be evaluated. The error bounds are assessed for dif-
ferent choices of noise schedules of the form

βa(t) ∝ (eat − 1)/(eaT − 1), (9)

with a ∈ R ranging from −10 to 10 with a unit step
size. We set T = 1 and adjust schedules so that they
all start at β(0) = 0.1 and end at β(1) = 20 (see Figure
1). This choice has been made so that when a = 0 the
schedule is linear and matches exactly the classical VPSDE
implementation (Song and Ermon, 2019; Song et al., 2021).

5.1 Gaussian setting

Target distributions. We consider the setting where the true distribution πdata is Gaussian in
dimension d = 50 with mean 1d and different choices of covariance structure:

1. (Isotropic, denoted by π(iso)
data) Σ(iso) = 0.5Id.

9

Published in Transactions on Machine Learning Research (12/2024)

2. (Heteroscedastic, denoted by π(heterosc)
data) Σ(heterosc) ∈ Rd×d is a diagonal matrix such that

Σ(heterosc)
jj = 1 for 1 ≤ j ≤ 5, and Σ(heterosc)

jj = 0.01 otherwise.

3. (Correlated, denoted by π(corr)
data) Σ(corr) ∈ Rd×d is a full matrix whose diagonal entries are

equal to one and the off-diagonal terms are Σ(corr)
jj′ = 1/

√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.

SGM simulations. We simulate π̂(βa,θ)
N from SGM using the forward process defined in (1) with

t 7→ βa(t) for the noise schedule. The score is learned via a dense neural network with 3 hidden layers
of width 256 over 150 epochs (see Figure 11) trained to optimize Lexplicit (4). This is feasible because
the score is analytically derived when πdata is Gaussian (Lemma E.1). Numerical experiments have
also been run with the commonly used conditional loss Lscore, without changing the nature of the
conclusions, see Appendix F. For backward process simulation, we use an Euler-Maruyama scheme
with 500 steps, as being the most encountered discretization in practice (with these discretization
steps the difference with Exponential Integrator scheme is minimal as highlighted in the appendix).
For each value of a, and each data distribution, we train the SGM using n = 10000 training samples.

KL bound. In Figure 2 (top), we compare the empirical KL divergence between πdata and
samples from π̂

(βa,θ)
N to the upper bound from Theorem 3.1. We refer the reader to Appendix E.2.1

for implementation details. For Gaussian distributions, both the bound and KL divergence can
be computed using closed-form expressions (see Lemma E.2 and E.4). In all scenarios the noise
schedule significantly impacts the value of KL(πdata∥π̂(βa,θ)

N), and thereby the quality of the learned
distribution. Moreover, in all three cases taking into acccount the contraction argument (7) is key
to properly align the upper bound trend with the generation results. In all these experiments, the
KL upper bound indicates possible values for a improving over the classical linear noise schedule.

2-Wasserstein bound. In Figure 2 (bottom), we compare the empiricalW2 distance between πdata

and samples from π̂
(βa,θ)
N to the upper bound from Theorem 4.2. For Gaussian distributions, both the

bound and theW2 distance can be computed using closed-form expressions (see Lemma 4.1, E.3, and
E.5). For the isotropic case, the proposedW2 upper bound reflects the SGM performances, as already
highlighted by the KL bound. However, in non-isotropic cases, the raw distributions π(heterosc)

data and
π

(corr)
data do not directly satisfy Assumption 4 (i) when the variance of the stationary distribution is

set to 1. Therefore, scaling the distributions in play becomes crucial for the theoretical W2 upper
bound to hold. That is why we propose the following preprocessing: train an SGM with centered
and standardized samples of covariance Σ(stand) rescaled in turn by a factor 1/(2λmax(Σ(stand)))1/2.
This choice ensures that λmax

(
Σ(scaled)) < σ2 = 1, for Σ(scaled) the resulting covariance matrix,

and thus the strong log-concavity of p̃0 = pdata/φσ2 . We call π̂(βa,θ)
N,scaled the resulting generative

distribution, and the evaluated metrics is adjusted (see (51)) to ensure a fair numerical comparison.
After this preprocessing, not only the W2 upper bound of Theorem 4.2 aligns with the empirical
performances but the SGM performances can be also boosted (see degraded empirical performances
on raw distributions in Appendix E.2.2). This highlights the importance of properly calibrating the
training sample to the stationary distribution of the SGM. Note that data normalization does not
only enforce the strong log-concavity of the modified score at time 0, but can lower the ratio L0/C0.
To see this, consider the heteroscedastic case, for which λmin(Σ(heterosc))/λmax(Σ(heterosc)) = 100,
whereas λmin(Σ(scaled))/λmax(Σ(scaled)) = 1 after scaling. This Gaussian set-up reveals that data

10

Published in Transactions on Machine Learning Research (12/2024)

10 5 0 5 10
Values of a

6

7

8

9

10

U
pp

er
 b

ou
nd

 (K
L)

0.1

0.2

0.3

0.4

K
L

di
ve

rg
en

ce

Upper-bound
Upper-bound (no contraction)
KL(data,) (NN)

KL(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

82

84

86

88

90

92

94

U
pp

er
 b

ou
nd

 (K
L)

0.0

0.5

1.0

1.5

2.0

K
L

di
ve

rg
en

ce

10 5 0 5 10
Values of a

10

11

12

13

14

15

16

17

U
pp

er
 b

ou
nd

 (K
L)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

K
L

di
ve

rg
en

ce

10 5 0 5 10
Values of a

40

60

80

100

120

U
pp

er
 b

ou
nd

 (W
2)

0.2

0.3

0.4

0.5

0.6

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

20

30

40

50

U
pp

er
 b

ou
nd

 (W
2)

0.36

0.38

0.40

0.42

0.44

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

10000

20000

30000

40000

50000

U
pp

er
 b

ou
nd

 (W
2)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Figure 2: Comparison of the empirical KL divergence (mean ± std over 30 runs) (top) and W2

distance (mean ± std over 10 runs)(bottom) between πdata and π̂
(β,θ)
N (orange) and the related

upper bounds (blue) from Theorem 3.1 and Theorem 4.2 across parameter a for noise schedule βa,
d = 50. In the KL case, the upper bounds in lighter blue are the theoretical upper bounds without
taking into the contraction argument (7). We also show the metrics for the linear VPSDE model
(dashed line) and our model (dotted line) with exact score evaluation.

renormalization improves the conditioning of the covariance matrix, and thereby the conditioning of
SGM training. In particular, this is captured in the upper bound of Theorem 4.2 by limiting the
growth of Lt and inducing a more balanced second term.

We now consider a varying dimension in {5, 10, 25, 50}, and we compare the empirical W2 distance
obtained by (i) β0 the classical VPSDE (Song et al., 2021), with a linear noise schedule (i.e., a = 0),
(ii) βcos the SGM with cosine schedule (Nichol and Dhariwal, 2021), and (iii) βa⋆ the SGM with
parametric schedule with a = a⋆ approximately minimizing the upper bound from Theorem 3.1. In
Figure 3, we observe that the SGMs run with βa⋆ consistently outperforms those run with linear
schedule β0 slightly improving the data generation quality. It displays lower average W2 distances
between πdata and the generated sample distribution, but also reduces the standard deviation of
the resulting W2 distances yielding more stable generation (see Table 2). These performances are
comparable to, and often surpass, those achieved with state-of-the-art schedules like the cosine
schedule, particularly in higher dimensions.

5.2 More general target distributions

Beyond Gaussian distributions, numerical analysis in terms of KL divergence is not
tractable as standard estimators of the KL terms do not scale well with dimen-

11

Published in Transactions on Machine Learning Research (12/2024)

5 10 25 50

0.05

0.10

0.15

0.20

0.25

0.30
2

di
st

an
ce

Linear schedule
Cosine schedule

a * (W2 bound)

5 10 25 50

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2
di

st
an

ce

Linear schedule
Cosine schedule

a * (W2 bound)

5 10 25 50
0.0

0.2

0.4

0.6

0.8

1.0

2
di

st
an

ce

Linear schedule
Cosine schedule

a * (W2 bound)

(a) Isotropic setting (b) Rescaled heterosc. setting (c) Rescaled correlated setting

Figure 3: Comparison of the empirical W2 distance (mean value ± std over 10 runs) between πdata

and the generative distribution π̂(β,θ)
N across various dimensions. The distributions compared include

SGMs with different noise schedules: βa⋆ (blue solid), β0 (yellow dashed), and βcos (orange dotted).

sion. On the contrary, there exist computationally-efficient estimators of Wasser-
stein distances, as for instance the sliced W2 estimate (Flamary et al., 2021).

10 0 10 20
Values of a

15

20

25

U
pp

er
 b

ou
nd

 (W
2)

0.20

0.25

0.30

0.35

S
lic

ed
-

2
di

st
an

ce

Param. sched. a

Cosine sched. cos

Figure 4: Upper bound and sliced 2-Wasserstein
distance on a Funnel dataset in dimension 50.

We use the latter to assess the relevancy of Theo-
rem 4.2 when the target distribution corresponds
to a 50-dimensional Funnel distribution defined
as: πdata(x) = φa2(x1)

∏d
j=2 φexp(2bx1)(xj),

with a = 1 and b = 0.5 (see Section E.2.3 for
more details and additional experiments on a
Gaussian mixture model). As previously, the
samples are standardized and rescaled. In Fig-
ure 4, empirical results demonstrate that the
minimum of the upper bound closely aligns with
that of the empirical sliced 2-Wasserstein dis-
tance between the simulated and training data.
Moreover, implementing SGM with the optimal
parameter a yields consistent improvements of
the data generation quality across different met-
rics w.r.t. to classical noise schedule competitors
(linear or cosine). These experiments not only
support the relevance of the theoretical upper bound beyond the assumptions required in Section 4,
but also the validity of theoretically-inspired data preprocessing for improving SGM training with
arbitrary target distributions.

When dealing with high-dimensional real-world datasets, directly evaluating our theoretical up-
per bounds (Theorems 3.1 and 4.2) becomes more challenging because relevant quantities (dis-
tances and constants) are either poorly estimated or unavailable. As a first step toward real
data, we evaluate the impact of the noise schedule on the sampling quality of models pre-
trained using CIFAR-10 dataset. In Figure 5, we display the FID score with 50,000 generated
samples using Euler-Maruyama discretization scheme for various noise schedules drawn from
the parametric family in Equation (9). Additional implementation details are available in Ap-
pendix E.3. Although the assumptions underpinning our results cannot be verified in this set-
ting, the empirical performance trends mirror closely those observed in the simulated settings.

12

Published in Transactions on Machine Learning Research (12/2024)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

4

6

8

10

12

14

16

18

FI
D

Sc
or

es

FID Score param. sched. a

FID Score cosine sched. cos

Figure 5: FID Scores using 50,000 generated
samples for the parametric and cosine schedules
(CIFAR-10 dataset).

This consistency highlights that analyzing and
optimizing noise schedules could be a promising
direction for improving SGM-based generation
in more complex scenarios.

6 Discussion

In this paper, we propose a unified framework to
analyze the impact of the noise schedule for time-
inhomogeneous SGMs, providing upper bounds
in KL and Wasserstein metrics. The KL upper
bound follows the steps of recent works using the
mildest assumptions used in the SGM literature.
We also provide an improved upper bound in
the Gaussian setting with numerical experiments highlighting the impact of the backward contraction
of the forward noise process. Following Bruno et al. (2023); Gao et al. (2023), under additional
assumptions on the Lipschitz and strong log-concavity properties of the score function, we establish
upper bounds for the Wasserstein distance. This bound highlights the role of the noise schedule
and provides a detailed analysis based on the modified score function. Our results are supported by
numerical experiments in simple settings to highlight the several terms of the upper bounds and the
role of the noise schedule. There are many perspectives to this work. Studying multi-dimensional
noise schedules is of particular interest. Indeed, they could be useful to understand how to deal
with target distributions with complex covariance structures, and thereby an alternative solution
to data normalization issues. Establishing upper bounds for Wasserstein distances under milder
assumptions remains an exciting open problem, which would shed light on the performances and
limitations of score-based generative models. A specific perspective would be to adapt our result
using early-stopping to avoid the explosion of error terms in the neighborhood of 0 and to provide
other assumptions to control the corresponding error close to 0.

Acknowledgements

We would like to thank Gabriel Victorino Cardoso for his valuable insights and thoughtful help on
the numerical experiments involving real-world datasets.

Antonio Ocello was funded by the European Union (ERC-2022-SYG-OCEAN-101071601). Views
and opinions expressed are however those of the author only and do not necessarily reflect those of
the European Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

References
Aurélien Alfonsi, Benjamin Jourdain, and Arturo Kohatsu-Higa. Optimal transport bounds between

the time-marginals of a multidimensional diffusion and its euler scheme. Electronic Journal of
Probability, 2015.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014.

13

Published in Transactions on Machine Learning Research (12/2024)

Paolo Baldi. Stochastic Calculus. Springer International Publishing AG, 1 edition, 2017. ISBN
978-3319622255.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear
convergence bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-
encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

Stefano Bruno, Ying Zhang, Dong-Young Lim, Ömer Deniz Akyildiz, and Sotirios Sabanis. On
diffusion-based generative models and their error bounds: The log-concave case with full conver-
gence estimates. arXiv preprint arXiv:2311.13584, 2023.

Djalil Chafai. Entropies, convexity, and functional inequalities. Kyoto Journal of Mathematics, 44
(2), 2004. ISSN 2156-2261. doi: 10.1215/kjm/1250283556.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pages 4735–4763. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions, 2023b.

Ting Chen. On the importance of noise scheduling for diffusion models. arXiv preprint
arXiv:2301.10972, 2023.

Jean-François Collet and Florent Malrieu. Logarithmic sobolev inequalities for inhomogeneous markov
semigroups. European Series in Applied and Industrial Mathematics (ESAIM): Probability and
Statistics, 12:492–504, 2008. ISSN 1292-8100. doi: 10.1051/ps:2007042.

Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. Score diffusion models without early
stopping: finite fisher information is all you need, 2023.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(3):651–676,
2017.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
Transactions on Machine Learning Research, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

P. Del Moral, M. Ledoux, and L. Miclo. On contraction properties of markov kernels.
Probability Theory and Related Fields, 126(3):395–420, 2003. ISSN 0178-8051. doi: 10.1007/
s00440-003-0270-6.

Alain Durmus and Éric Moulines. Quantitative bounds of convergence for geometrically ergodic
markov chain in the wasserstein distance with application to the metropolis adjusted langevin
algorithm. Statistics and Computing, 25:5–19, 2015.

14

Published in Transactions on Machine Learning Research (12/2024)

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted langevin
algorithm. The Annals Applied Probability, 27(3):1551–1587, 2017.

Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
hastings algorithms are fast. Journal of Machine Learning Research, 20(183):1–42, 2019.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):
1–8, 2021.

G. Franzese, S. Rossi, L. Yang, A. Finamore, D. Rossi, M. Filippone, and P. Michiardi. How much
is enough? a study on diffusion times in score-based generative models. Entropy, 25:633, 2023.
doi: 10.3390/e25040633.

Xuefeng Gao, Hoang M. Nguyen, and Lingjiong Zhu. Wasserstein convergence guarantees for a
general class of score-based generative models, 2023.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. In Proceedings of International Conference on
Learning Representations, 2023.

Qiushan Guo, Sifei Liu, Yizhou Yu, and Ping Luo. Rethinking the noise schedule of diffusion-based
generative models. visible on Open Review, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer
Science & Business Media, 2012.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, volume 35,
pages 8595–8607, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for general
data distributions. In International Conference on Algorithmic Learning Theory, pages 946–985.
PMLR, 2023.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting
Chen. Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing,
479:47–59, 2022.

15

Published in Transactions on Machine Learning Research (12/2024)

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 8162–8171.
PMLR, 18–24 Jul 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Saeed Saremi, Ji Won Park, and Francis Bach. Chain of log-concave markov chains. arXiv preprint
arXiv:2305.19473, 2023.

Adrien Saumard and Jon A. Wellner. Log-concavity and strong log-concavity: A review. Statistics
Surveys, 8(none):45 – 114, 2014. doi: 10.1214/14-SS107.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations (ICLR), 2021.

Michel Talagrand. Transportation cost for gaussian and other product measures. Geometric &
Functional Analysis GAFA, 6(3):587–600, 1996.

Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines, Arnaud
Doucet, Alain Durmus, and Christian P Robert. NEO: Non equilibrium sampling on the orbits of
a deterministic transform. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/76tTYokjtG-abstract.html.

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661–1674, 2011. doi: 10.1162/NECO_a_00142.

Qing Wang, Sanjeev R. Kulkarni, and Sergio Verdu. Divergence estimation for multidimensional
densities via k-nearest-neighbor distances. IEEE Transactions on Information Theory, 55(5):
2392–2405, 2009. doi: 10.1109/TIT.2009.2016060.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

16

https://proceedings.neurips.cc/paper/2021/hash/76tTYokjtG-abstract.html
https://proceedings.neurips.cc/paper/2021/hash/76tTYokjtG-abstract.html

Published in Transactions on Machine Learning Research (12/2024)

A Notations and assumptions.

Consider the following notations, used throughout the appendices. For all d ≥ 1, µ ∈ Rd and
definite positive matrices Σ ∈ Rd×d, let φµ,Σ be the probability density function of a Gaussian
random variable with mean µ and variance Σ. We also use the notation φσ2 = φ0,σ2Id

. When
the context is clear, we may indifferently use the measure and the associated density w.r.t. the
reference measure. For all twice-differentiable real-valued function f , let ∆f be the Laplacian of f .
For all matrix A ∈ Rm×n, ∥A∥Fr is the Frobenius norm of A, i.e., ∥A∥Fr = (

∑m
i=1
∑n

j=1 |Ai,j |2)1/2.
For all time-dependent real-valued functions h : t 7→ ht or f : t 7→ f(t), we write h̄t = hT −t and
f̄(t) = f(T − t) for all t ∈ [0, T].

Let π0 be a probability density function with respect to the Lebesgue measure on Rd and α : R→ R
and g : R→ R be two continuous and increasing functions. Consider the general forward process

d−→X t = −α(t)−→X tdt+ g(t)dBt,
−→
X 0 ∼ π0 , (10)

and introduce p̃t : x 7→ pt(x)/φσ2(x), where pt is the probability density function of −→X t. The
backward process associated with (10) is referred to as (←−X t)t∈[0,T] and given by

d←−X t =
{(

ᾱ(t)− ḡ2(t)
σ2

)
←−
X t + ḡ2(t)∇ log p̃T −t

(←−
X t

)}
dt+ ḡ(t)dB̄t

←−
X 0 ∼ pT , (11)

with B̄ a standard Brownian motion in Rd. Moreover, consider

σ2
t := exp

(
−2
∫ t

0
α(s)ds

)∫ t

0
g2(s) exp

(
2
∫ s

0
α(u)du

)
ds. (12)

The approximate EI discretization of (11) considered in this paper is, for tk ≤ t ≤ tk+1, 0 ≤ k ≤ N−1,

d←−X θ
t =

{
ᾱ(t)←−X θ

t + ḡ2(t)sθ(T − tk,
←−
X θ

tk
)
}

dt+ ḡ(t)dB̄t .

Sampling from this backward SDE is possible recursively for k ∈ {0, . . . , N −1}, with (Zk)1≤k≤N
i.i.d∼

N (0, Id). For k ∈ {0, . . . , N − 1}, writing τk = T − tk,

←−
X θ

tk+1
= e

−
∫ τk+1

τk
α(s)ds←−

X θ
tk

+ sθ(τk,
←−
X θ

tk
)e

−
∫ τk+1

τk
α(s)ds

∫ τk+1

τk

g2(t)e
∫ t

τk
α(v)dv

dt

+
(

e
−2
∫ τk+1

τk
α(s)ds

∫ τk

τk+1

e
2
∫ t

τk
α(s)ds

g2(t)dt
)1/2

Zk+1 .

We denote by QT ∈ P(C([0, T],Rd)) the path measure associated with the backward diffusion and
by (Qt)0≤t≤T its Markov semi-group. We also write ←−X∞

T ∼ π∞QT and, for each time step tk for
0 ≤ k ≤ N , ←−X∞

tk
∼ π∞Qtk

. For each time step tk for 0 ≤ k ≤ N , the kernel associated with the
backward discretization is denoted by QN,θ

tk
, so that we have X̄θ

tk
∼ π∞Q

N,θ
tk

.

In Appendix C, these notations are used for the specific case where α : t 7→ β(t)/(2σ2) and
g : t 7→ β(t)1/2 and the associated backward discretization is given in (31).

17

Published in Transactions on Machine Learning Research (12/2024)

B Proofs of Section 3

B.1 Proof of Theorem 3.1

We are interested in the relative entropy of the training data distribution πdata with respect to the
generated data distribution π̂

(β,θ)
N . Leveraging the time-reverse property we have:

KL
(
πdata

∥∥∥π̂(β,θ)
N

)
= KL

(
pTQT

∥∥∥π̂(β,θ)
N

)
.

By the data processing inequality,

KL
(
pTQT

∥∥∥π̂(β,θ)
N

)
≤ KL

(
pTQT

∥∥∥π∞QN,θ
T

)
.

where QT and QN,θ
T denote the path measures of, respectively, the backward process and the SGM

generation. Writing the backward time τt = T − t and its discretized version τk = T − tk, with
0 = t0 < t1 < . . . < tN = T , we have (by Lemma B.5) that

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT ∥π∞) + 1

2

∫ T

0

1
β̄(t)

E

[∥∥∥∥∥−β̄(t)
2σ2

←−
X t + β̄(t)∇ log p̃τt

(←−
X t

)

−
(
− β̄(t)

2σ2
←−
X t + β̄(t)s̃θ

(
τk,
←−
X tk

))∥∥∥∥∥
2]

dt .

From there, the KL divergence can be split into the theoretical mixing time of the forward OU
process and the approximation error for the score function made by the neural network, as follows:

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT ∥π∞) + 1

2

∫ T

0

1
β̄(t)

E

[∥∥∥∥∥β̄(t)
(
s̃
(
τt,
←−
X t

)
− s̃θ(τk,

←−
X tk

)
)∥∥∥∥∥

2]
dt .

By using the regular discretization of the interval [0, T], one can disentangle the last term as follows:

KL
(
πdata

∥∥∥π̂(β,θ)
N

)
≤ KL (pT ∥π∞) + 1

2

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τt,

←−
X t

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥2
]

dt

≤ E1(β) + E2(θ, β) + E3(β) ,

where

E1(β) = KL (pT ∥φσ2) , (13)

E2(θ, β) =
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τk,

←−
X tk

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥2
]

dt , (14)

E3(β) =
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τt,

←−
X t

)
− s̃

(
τk,
←−
X tk

)∥∥∥2
]

dt . (15)

18

Published in Transactions on Machine Learning Research (12/2024)

Finishing the proof of Theorem 3.1 amounts to obtaining upper bounds for E1(β), E2(θ, β) and
E3(β). This is done in Lemmas B.1, B.2 and B.3, so that E1(β) ≤ E1(β), E2(θ, β) ≤ E2(θ, β) and
E3(β) ≤ E3(β).
Lemma B.1. For any noise schedule β,

E1(β) = KL (pT ∥π∞) ≤ KL (πdata∥π∞) exp
(
− 1
σ2

∫ T

0
β(s)ds

)
.

Proof. The proof follows the same lines as Franzese et al. (2023, Lemma 1). The Fokker-Planck
equation associated with (1) is

∂tpt(x) = β(t)
2σ2 div (xpt(x)) + β(t)

2 ∆pt(x) = β(t)
2 div

(
1
σ2xpt(x) +∇pt(x)

)
,

for t ∈ [0, T], x ∈ Rd. Combing this with the derivation under the integral theorem, we get

∂

∂t
KL (pt∥φσ2) = ∂

∂t

∫
Rd

log pt(x)
φσ2(x)pt(x)dx

=
∫
Rd

∂

∂t
pt(x) log pt(x)

φσ2(x)dx+
∫
Rd

pt(x)∂tpt(x)
pt(x) dx

=
∫
Rd

∂

∂t
pt(x) log pt(x)

φσ2(x)dx+
∫
Rd

∂

∂t
pt(x)dx

=
∫
Rd

β(t)
2 div

(x
σ2 pt(x) +∇pt(x)

)
log pt(x)

φσ2(x)dx

= β(t)
2

∫
Rd

div (−∇ logφσ2(x) pt(x) +∇pt(x)) log pt(x)
φσ2(x)dx

= −β(t)
2

∫
Rd

(−∇ logφσ2(x) pt(x) +∇pt(x))⊤∇ log pt(x)
φσ2(x)dx

= −β(t)
2

∫
Rd

pt(x) (−∇ logφσ2(x) +∇ log pt(x))⊤∇ log pt(x)
φσ2(x)dx

= −β(t)
2

∫
Rd

pt(x)
∥∥∥∥∇ log pt(x)

φσ2(x)

∥∥∥∥2
dx .

Using the Stam-Gross logarithmic Sobolev inequality given in Proposition B.6, we get

∂

∂t
KL (pt∥φσ2) ≤ −β(t)

σ2 KL (pt∥φσ2) .

Applying Grönwall’s inequality, we obtain

KL (pT ∥φσ2) ≤ KL (p0∥φσ2) exp
{
− 1
σ2

∫ T

0
β(s)ds

}
,

which concludes the proof.

19

Published in Transactions on Machine Learning Research (12/2024)

Lemma B.2. For all θ and all β,

E2(θ, β) =
N∑

k=1
E
[∥∥∥∇ log p̃tk

(−→
X tk

)
− s̃θ

(
tk,
−→
X tk

)∥∥∥2
] ∫ tk+1

tk

β̄(t)dt ,

where E2(θ, β) is defined by (14).

Proof. By definition of E2(θ, β),

E2(θ, β) =
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T −tk

(←−
X tk

)
− s̃θ

(
T − tk,

←−
X tk

)∥∥∥2
]

dt

=
N−1∑
k=0

E
[∥∥∥∇ log p̃T −tk

(←−
X tk

)
− s̃θ

(
T − tk,

←−
X tk

)∥∥∥2
] ∫ tk+1

tk

β̄(t)dt

=
N−1∑
k=0

E
[∥∥∥∇ log p̃tk

(−→
X tk

)
− s̃θ

(
tk,
−→
X tk

)∥∥∥2
] ∫ tk+1

tk

β̄(t)dt ,

where the last equality comes from the fact that the forward and backward processes have same
marginals since −→XT ∼ pT .

Lemma B.3. Assume that H1 holds. For all T, σ > 0, θ and all β,

E3(β) ≤ 2hβ(T) max
{
hβ(T)

4σ2 ; 1
}
I(πdata|π∞) ,

where E3(β) is defined by (15).

Proof. By Lemma B.7, with Yt := ∇ log p̃T −t(
←−
X t),

dYt = β̄(t)
2σ2 Ytdt+

√
β̄(t)ZtdBt .

By applying Itô’s lemma to the function x 7→ ∥x∥2, we obtain

d∥Yt∥2 =
(
β̄(t)
σ2 ∥Yt∥2 + β̄(t)∥Zt∥2

Fr

)
dt+

√
β̄(t)Y ⊤

t ZtdBt .

Fix δ > 0. From Baldi (2017, Theorem 7.3, p.193), we have that
(∫ t

0 g(s)Y ⊤
s ZsdBs

)
t∈[0,T −δ]

is a
square integrable martingale if

E

[∫ T −δ

0
g2(s)

∥∥Y ⊤
s Zs

∥∥2 ds
]
<∞ .

From the Cauchy-Schwarz inequality, we get that

E
[∥∥Y ⊤

s Zs

∥∥2
2

]
≤ E

[
∥Ys∥2

2 ∥Zs∥2
Fr

]
≤ E

[
∥Ys∥4

2

]1/2
E
[
∥Zs∥4

Fr

]1/2
.

20

Published in Transactions on Machine Learning Research (12/2024)

Applying Lemma B.8 and B.9, we get that both E[∥Ys∥4
2] and E[∥Zs∥4

2] are bounded by a quantity
depending on σ−8

T −t. As the term σ−8
T −t is uniformly bounded in [0, T − δ] and by Fubini’s theorem,

E[
∫ T

0 g2(s)∥Y ⊤
s Zs∥2ds] =

∫ T

0 g2(s)E[∥Y ⊤
s Zs∥2]ds <∞. Therefore, (

∫ t

0 g(s)Y
⊤

s ZsdBs)t∈[0,T −δ] is a
square integrable martingale. Therefore, we have

E
[
∥Yt∥2]− E

[
∥Ytk
∥2] = E

[∫ t

tk

β̄(s)
σ2 ∥Ys∥2ds+

∫ t

tk

β̄(s)∥Zs∥2
Frds

]
,

and

E
[
∥Yt − Ytk

∥2
]

= E

[∥∥∥∥∫ t

tk

β̄(s)
2σ2 Ysds+

∫ t

tk

√
β̄(s)ZsdBs

∥∥∥∥2]

≤ 2E
[∥∥∥∥∫ t

tk

β̄(s)
2σ2 Ysds

∥∥∥∥2]
+ 2E

[∫ t

tk

∥∥∥∥√β̄(s)ZsdBs

∥∥∥∥2
]

≤ 2E


∥∥∥∥∥∥ 1

2σ

∫ t

tk

√
β̄(s)

√
β̄(s)
σ

Ysds

∥∥∥∥∥∥
2+ 2E

[∫ t

tk

∥∥∥∥√β̄(s)ZsdBs

∥∥∥∥2
]

≤ 1
2σ2

∫ tk+1

tk

β̄(s)dsE
[∫ tk+1

tk

β̄(s)
σ2 ∥Ys∥2

ds

]
+ 2E

[∫ tk+1

tk

β̄(s) ∥Zs∥2
Fr ds

]

≤ 2 max
{∫ tk+1

tk
β̄(s)ds

4σ2 , 1
}(

E
[
∥Ytk+1∥2]− E

[
∥Ytk
∥2]) . (16)

Without loss of generality, we have that tN−1 = T −δ. Then, the discretization error can be bounded
as follows

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T −t

(←−
X t

)
−∇ log p̃T −tk

(←−
X tk

)∥∥∥2
]

dt

=
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[
∥Yt − Ytk

∥2
]

dt

≤ 2
N−1∑
k=0

∫ tk+1

tk

β̄(t) max
{∫ tk+1

tk
β̄(s)ds

4σ2 , 1
}(

E
[
∥Ytk+1∥2]− E

[
∥Ytk
∥2]) dt

≤ 2
N−1∑
k=0

max
{∫ tk+1

tk
β̄(s)ds

4σ2 , 1
}(

E
[
∥Ytk+1∥2]− E

[
∥Ytk
∥2]) ∫ tk+1

tk

β̄(t)dt

≤ 2
N−1∑
k=0

max


(∫ tk+1

tk
β̄(s)ds

)2

4σ2 ,

∫ tk+1

tk

β̄(s)ds

(E [∥Ytk+1∥2]− E
[
∥Ytk
∥2])

≤ 2 max
0≤k≤N−1

max


(∫ tk+1

tk
β̄(s)ds

)2

4σ2 ,

∫ tk+1

tk

β̄(s)ds


E

[∥∥∥∇ log p̃T −tN−1

(←−
X tN−1

)∥∥∥2
]
.

21

Published in Transactions on Machine Learning Research (12/2024)

By H1, t 7→ β(t) is increasing, so that t 7→ β̄(t) is decreasing. Therefore, using that since ←−X 0 ∼ pT ,
←−
XT −δ and −→X δ have the same distribution, yields,

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T −t

(←−
X t

)
−∇ log p̃T −tk

(←−
X tk

)∥∥∥2
]

dt

≤ 2 max
0≤k≤N−1

{
max

{(
(tk+1 − tk)β̄(tk)

)2

4σ2 , (tk+1 − tk)β̄(tk)
}}

× E
[∥∥∥∇ log p̃T −tN−1

(←−
X tN−1

)∥∥∥2
]

≤ 2 max
0≤k≤N−1

{
max

{
h2β̄2(tk)

4σ2 , hβ̄(tk)
}}
I(pTQT −δ|π∞)

≤ 2hβ̄(0) max
{
hβ̄(0)
4σ2 , 1

}
I(pTQT −δ|π∞)

≤ 2hβ(T) max
{
hβ(T)

4σ2 , 1
}
I(pTQT −δ|π∞) .

Finally, following the steps of the proof of Conforti et al. (2023, Lemma 2), we can consider the
limit when δ goes to zero, under Assumption H2, concluding the proof.

B.2 Technical results

Lemma B.4. Assume that H1 and H2 hold. Let (−→X t)t≥0 be a weak solution to the forward process
(1). Then, the stationary distribution of (−→X t)t≥0 is Gaussian with mean 0 and variance σ2Id.

Proof. Consider the process

X̄t = exp
(

1
2σ2

∫ t

0
β(s)ds

)
−→
X t .

Itô’s formula yields

−→
X t = exp

(
− 1

2σ2

∫ t

0
β(s)ds

)(
−→
X 0 +

∫ t

0

√
β(s) exp

(∫ s

0
β(u)/(2σ2)du

)
dBs

)
. (17)

First, we have that

lim
t→∞

exp
(
− 1

2σ2

∫ t

0
β(s)ds

)
−→
X 0 = 0 .

Secondly, we have that the second term in the r.h.s. of (17), by property of the Wiener integral, is
Gaussian with mean 0 and variance σ2

t Id, where

σ2
t = exp

(
− 1
σ2

∫ t

0
β(s)ds

)∫ t

0
β(s)e

∫ s

0
β(u)/σ2duds = σ2

(
1− exp

(
− 1
σ2

∫ t

0
β(s)ds

))
.

By H1, limt→∞ σ2
t = σ2, which concludes the proof.

22

Published in Transactions on Machine Learning Research (12/2024)

Lemma B.5. Let T > 0 and b1, b2 : [0, T]× C([0, T],Rd)→ Rd be measurable functions such that
for i ∈ {1, 2},

dX(i)
t = bi

(
t, (X(i)

s)s∈[0,T]

)
dt+

√
β(T − t)dBt (18)

admits a unique strong solution with X(i)
0 ∼ π(i)

0 . Suppose that (bi(t, (X(i)
s)s∈[0,t]))t∈[0,T] is progres-

sively measurable, with Markov semi-group (P (i)
t)t≥0. In addition, assume that

E

[
exp

{
1
2

∫ T

0

1
β(T − s)

∥∥∥∥b1

(
s,
(
X(1)

u

)
u∈[0,s]

)
− b2

(
s,
(
X(1)

u

)
u∈[0,s]

)∥∥∥∥2
ds
}]

<∞ . (19)

Then,

KL
(
π

(1)
0 P

(1)
T ∥π

(2)
0 P

(2)
T

)
≤ KL

(
π

(1)
0 ∥π

(2)
0

)
+ 1

2

∫ T

0

1
β(T − t)E

[∥∥∥∥b1

(
s,
(
X(1)

u

)
u∈[0,s]

)
− b2

(
s,
(
X(1)

u

)
u∈[0,s]

)∥∥∥∥2
]

dt . (20)

Proof. Consider the probability space (Ω, (Ft)0≤t≤T ,P) and for i ∈ {1, 2}, let µ(i) be the distribution
of (X(i)

t)t∈[0,T] on the Wiener space (C([0, T];Rd),B(C([0, T];Rd))) with X(i)
0 ∼ π(i)

0 . Define u(t, ω)
as

u(t, ω) := β(T − t)−1/2
(
b1

(
t,
(
X(1)

u

)
u∈[0,t]

)
− b2

(
t,
(
X(1)

u

)
u∈[0,t]

))
,

and define dQ/dP(ω) = MT (ω) where, for t ∈ [0, T],

Mt(ω) = exp
{
−
∫ t

0
u(s, ω)⊤dBs −

1
2

∫ t

0
∥u(s, ω)∥2ds

}
.

From (19), the Novikov’s condition is satisfied (Karatzas and Shreve, 2012, Chapter 3.5.D), thus the
process (Mt)0≤t≤T is a martingale. Applying Girsanov theorem, dB̄t = dBt + u(t, (X(1)

s)s∈[0,t])dt is
a Brownian motion under the measure Q. Therefore,

dX(1)
t = b1

(
t,
(
X(1)

u

)
u∈[0,t]

)
dt+

√
β(T − t)dBt = b2

(
t,
(
X(1)

u

)
u∈[0,t]

)
dt+

√
β(T − t)dB̄t .

Using the uniqueness in law of (18), the law of X(1) under P is the same as the one of X̄(2) under Q,
with X̄(2) solution of (18) with i = 2 and X̄

(2)
0 = π

(1)
0 . Denote by µ̄(2) the law of X̄(2). Therefore,

µ(1)(A) = P(X(1) ∈ A) = Q(X̄(2) ∈ A) =
∫
1A(X̄(2)(ω))Q(dω) ,

which implies that

dµ̄(2)

dµ(1) = MT .

23

Published in Transactions on Machine Learning Research (12/2024)

Hence, we obtain that

KL
(
µ(1)

∥∥∥µ(2)
)

= KL
(
π

(1)
0

∥∥∥π(2)
0

)
+ E

[
log
(

dµ(1)

dµ̄(2)

)]
= KL

(
π

(1)
0

∥∥∥π(2)
0

)
+ E

[∫ t

0
u(s, ω)⊤dBs + 1

2

∫ t

0
∥u(s, ω)∥2ds

]
= KL

(
π

(1)
0

∥∥∥π(2)
0

)
+ 1

2

∫ T

0

1
β(T − t)E

[∥∥∥b1(t, (X(1)
s)s∈[0,t])− b2(t, (X(1)

s)s∈[0,t])
∥∥∥2
]

dt ,

which concludes the proof.

Lemma B.6. Let p be a probability density function on Rd. For all σ2 > 0,

KL (p∥φσ2) =
∫
p(x) log p(x)

φσ2(x) dx ≤ σ2

2

∫ ∥∥∥∥∇ log p(x)
φσ2(x)

∥∥∥∥2
p(x) dx.

Proof. Define fσ2 : x 7→ p(x)/φσ2(x). Since ∇2 logφσ2(x) = −σ−2Id, the Bakry-Emery criterion
is satisfied with constant σ2−1, see Bakry et al. (2014); Villani (2021); Talagrand (1996). By the
classical logarithmic Sobolev inequality,∫

fσ2(x) log fσ2(x)φσ2(x)dx ≤ σ2

2

∫
∥∇fσ2(x)∥2

fσ2(x) φσ2(x)dx ,

which concludes the proof.

Lemma B.7. Define Yt := ∇ log p̃T −t(
←−
X t) and Zt := ∇2 log p̃T −t(

←−
X t), where {←−X t}t≥0 is a weak

solution to (10). Then,

dYt =
(
ḡ2(t)
σ2 − ᾱ(t)

)
Ytdt−

2
σ2

(
ḡ2(t)
2σ2 − ᾱ(t)

)
←−
X tdt+ ḡ(t)ZtdB̄t . (21)

Proof. The Fokker-Planck equation associated with the forward process (10) is

∂tpt(x) = α(t)div (xpt(x)) + g2(t)
2 ∆pt(x) , (22)

for x ∈ Rd. First, we prove that p̃t satisfies the following PDE

∂t log p̃t(x) = d

(
ᾱ(t)− ḡ2(t)

2σ2

)
+ ⟨∇ log p̃t(x), x⟩

(
ᾱ(t)− ḡ2(t)

σ2

)
+ ∥x∥

2

σ2

(
ḡ2(t)
2σ2 − ᾱ(t)

)
+ ḡ2(t)

2
∆p̃t(x)
p̃t(x) .

(23)

Using that ∇ logφσ2(x) = −x/σ2, we have

div(xpt(x)) = d pt(x) + pt(x) x⊤∇ log pt(x)

= φσ2(x)
(
d p̃t(x) + p̃t(x)∇ log p̃t(x)⊤x− ∥x∥

σ2

)
= φσ2(x)

(
d p̃t(x) +∇p̃t(x)⊤x− ∥x∥

σ2 p̃t(x)
)
.

24

Published in Transactions on Machine Learning Research (12/2024)

Then, since ∆φσ2(x) = (φσ2(x)/σ2)
(
∥x∥2/σ2 − d

)
, we get

∆pt(x) = p̃t(x)∆φσ2(x) + 2∇p̃t(x)⊤∇φσ2(x) + φσ2(x)∆p̃t(x)

= φσ2(x)
(
p̃t(x)
σ2

(
∥x∥2

σ2 − d
)
− 2
σ2∇p̃t(x)⊤x+ ∆p̃t(x)

)
.

Combining these results with (22), we obtain

∂tp̃t(x) = d p̃t(x)
(
α(t)− g2(t)

2σ2

)
+∇p̃t(x)⊤x

(
α(t)− g2(t)

σ2

)
+ p̃t(x)∥x∥

2

σ2

(
g2(t)
2σ2 − α(t)

)
+ g2(t)

2 ∆p̃t(x) .

Hence, diving by p̃t yields (23).

The previous computation, together with the fact that ∆p̃t/p̃t = ∆ log p̃t + ∥∇ log p̃t∥2, yields that
the function ϕt(x) := log p̃T −t(x) is a solution to the following PDE

∂tϕt(x) = −d
(
ᾱ(t)− ḡ2(t)

2σ2

)
−∇ϕt(x)⊤x

(
ᾱ(t)− ḡ2(t)

σ2

)
(24)

− ∥x∥
2

σ2

(
ḡ2(t)
2σ2 − ᾱ(t)

)
− ḡ2(t)

2
(
∆ϕt(x) + ∥∇ϕt(x)∥2) . (25)

Following the lines of Conforti et al. (2023, Proposition 1), we get that, since α and g are continuous
and non-increasing, the map pt, solution to (22), belongs to C1,2((0, T] × Rd). By (11), as Yt =
∇ϕt(

←−
X t), we can apply Itô’s formula and obtain, writing γ̄(t) = ᾱ(t)− ḡ(t)2/σ2,

dYt =
[
∂t∇ϕt

(←−
X t

)
+∇2ϕt

(←−
X t

)(
γ̄(t)←−X t + ḡ2(t)∇ϕt

(←−
X t

))
+ ḡ2(t)

2 ∆∇ϕt

(←−
X t

)]
dt

+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t

=
[
∇
(
∂tϕt

(←−
X t

)
+ ḡ2(t)

2

(
∆ϕt

(←−
X t

)
+
∥∥∥∇ϕt

(←−
X t

)∥∥∥2
))

+ γ̄(t)∇2ϕt

(←−
X t

)←−
X t

]
dt

+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t ,

using that 2∇2ϕt(x)∇ϕt(x) = ∇∥∇ϕt(x)∥2. Using (24), we get

dYt =
[
−γ̄(t)∇ψt

(←−
X t

)
+ 2
σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t + γ̄(t)∇2ϕt

(←−
X t

)←−
X t

]
dt

+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t ,

with ψt (x) := ∇ϕt(x)⊤x. With the identity ∇
(
x⊤∇ϕt(x)

)
= ∇ϕt(x) +∇2ϕt(x)x, we have

dYt =
[(

ḡ2(t)
σ2 − ᾱ(t)

)
∇ϕt

(←−
X t

)
+ 2
σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

]
dt+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t

=
[(

ḡ2(t)
σ2 − ᾱ(t)

)
Yt + 2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

]
dt+ ḡ(t)ZtdB̄t ,

which concludes the proof.

25

Published in Transactions on Machine Learning Research (12/2024)

Lemma B.8. Let Yt := ∇ log p̃T −t(
←−
X t), with ←−X satisfying (11). There exists a constant C > 0

such that

E
[
∥Yt∥4

]
≤ C

(
σ−4

T −tE
[
∥N∥4

]
+ σ−8E

[∥∥∥−→X 0

∥∥∥4
])

, (26)

with N ∼ N (0, Id) and σ2
t as in (12).

Proof. The transition density qt(y, x) associated with the semi-group of the process (10) is given by

qt(y, x) =
(
2πσ2

t

)−d/2 exp

−
∥∥∥x− y exp

(
−
∫ t

0 α(s)ds
)∥∥∥2

2σ2
t

 .

Therefore, we have

∇ log pT −t(x) = 1
pT −t(x)

∫
p0(y)∇xqT −t(y, x)dy

= 1
pT −t(x)

∫
p0(y)

y exp
(
−
∫ T −t

0 α(u)du
)
− x

σ2
T −t

qT −t(y, x)dy .

This, together with the definition of p̃, yields

∇ log p̃T −t

(−→
XT −t

)
= σ−2

T −tE
[
−→
X 0e−

∫ T −t

0
α(u)du −

−→
XT −t

∣∣∣∣−→XT −t

]
+ σ−2−→XT −t .

Using Jensen’s inequality for conditional expectation, there exists a constant C > 0 (which may
change from line to line) such that∥∥∥∇ log p̃T −t

(−→
XT −t

)∥∥∥4
≤ C

(
σ−8

T −t

∥∥∥∥E [−→X 0e−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]∥∥∥∥4
+ σ−8

∥∥∥−→XT −t

∥∥∥4
)

≤ C

(
σ−8

T −tE

[∥∥∥∥−→X 0e−
∫ T −t

0
α(s)ds −

−→
XT −t

∥∥∥∥4
∣∣∣∣∣−→XT −t

]
+ σ−8

∥∥∥−→XT −t

∥∥∥4
)
.

Note that −→X t has the same law as exp(−
∫ t

0 α(s)ds)−→X 0 + σtN , with N ∼ N (0, Id). This means that
we have that

E
[∥∥∥∇ log pT −t

(−→
XT −t

)∥∥∥4
]
≤ Cσ−4

T −t

(
E
[
∥N∥4

]
+ E

[∥∥∥−→X 0

∥∥∥4
])

.

Finally,

E
[
∥Yt∥4

]
= E

[∥∥∥∇ log p̃T −t

(←−
X t

)∥∥∥2
]

= E
[∥∥∥∇ log p̃T −t

(−→
XT −t

)∥∥∥4
]

≤ σ−4
T −tE

[
∥N∥4

]
≤ C

(
σ−4

T −tE
[
∥N∥4

]
+ σ−8E

[∥∥∥−→X 0

∥∥∥4
])

,

which concludes the proof.

26

Published in Transactions on Machine Learning Research (12/2024)

Lemma B.9. Let Zt := ∇2 log p̃T −t(
←−
X t), where {←−X t}t≥0 is a weak solution to (11). There exists a

constant C > 0 such that

E
[
∥Zt∥4

]
≤ C

(
σ−8

T −t + σ−8) (E [∥Z∥8
2

]
+ d4

)
, (27)

with Z ∼ N (0, Id) and σ2
t as in (12).

Proof. Let qt(y, x) be the transition density associated to the semi-group of the process (10). Write

∇2 log pT −t(x)

= ∇

 1
pT −t(x)

∫
p0(y)ye

−
∫ T −t

0
α(s)ds − x

σ2
T −t

qT −t(y, x)dy


= −∇pT −t(x)

p2
T −t(x)

∫ p0(y)ye
−
∫ T −t

0
α(s)ds − x

σ2
T −t

qT −t(y, x)dy

⊤

+ 1
pT −t(x)∇

∫
p0(y)ye

−
∫ T −t

0
α(s)ds − x

σ2
T −t

qT −t(y, x)dy

= 1
σ2

T −t pT −t(x)

(
−
∫ (

∇pT −t(x)
pT −t(x)

)ye−
∫ T −t

0
α(s)ds − x

σ2
T −t

⊤

qT −t(y, x)p0(y)dy

− Id +
∫ 1
σ2

T −t

(
ye

−
∫ T −t

0
α(s)ds − x

)(
ye

−
∫ T −t

0
α(s)ds − x

)⊤

qT −t(y, x)p0(y)dy
)
.

Therefore,

∇2 log p̃T −t

(−→
XT −t

)
= − 1

σ2
T −t

E

∇pT −t

(−→
XT −t

)
pT −t

(−→
XT −t

)
(−→X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)⊤
∣∣∣∣∣∣−→XT −t

+ Id


+ σ−4

T −tE

[(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)⊤
∣∣∣∣∣−→XT −t

]
+ σ−2Id

= −σ−4
T −t

(
E
[
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

])(
E
[
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

])⊤

+
(
σ−2 − σ−2

T −t

)
Id

+ σ−4
T −tE

[(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)⊤
∣∣∣∣∣−→XT −t

]
.

27

Published in Transactions on Machine Learning Research (12/2024)

There exists a constant C > 0 (which may change from line to line) such that

E
[∥∥∥∇2 log pT −t

(−→
XT −t

)∥∥∥4

Fr

]

≤ C

σ16
T −t

E

∥∥∥∥∥E
[
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]
E
[
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]⊤
∥∥∥∥∥

4

Fr


+ C

(
σ−8

T −t + σ−8) d4

+ C

σ16
T −t

E

∥∥∥∥∥E
[(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)⊤
∣∣∣∣∣−→XT −t

]∥∥∥∥∥
4

Fr

 .
As in the previous proof, we note that −→X t has the same law as e−

∫ t

0
α(s)ds−→

X 0+σtZ, with Z ∼ N (0, Id)
independent of −→X 0. Therefore, using Jensen’s inequality,

E

∥∥∥∥∥E
[
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]
E
[
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]⊤
∥∥∥∥∥

4

Fr


≤ E

[∥∥∥∥E [−→X 0e
−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]∥∥∥∥4

2

∥∥∥∥E [−→X 0e
−
∫ T −t

0
α(s)ds −

−→
XT −t

∣∣∣∣−→XT −t

]∥∥∥∥4

2

]

≤ E

[
E

[∥∥∥∥−→X 0e
−
∫ T −t

0
α(s)ds −

−→
XT −t

∥∥∥∥8

2

∣∣∣∣∣−→XT −t

]]
≤ σ8

t E
[
∥Z∥8

2

]
and

E

∥∥∥∥∥E
[(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)⊤
∣∣∣∣∣−→XT −t

]∥∥∥∥∥
4

Fr


≤ E

E
∥∥∥∥∥
(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)(
−→
X 0e

−
∫ T −t

0
α(s)ds −

−→
XT −t

)⊤
∥∥∥∥∥

4

Fr

∣∣∣∣∣∣−→XT −t


= E

[∥∥∥∥(−→X 0e
−
∫ T −t

0
α(s)ds −

−→
XT −t

)∥∥∥∥8

2

]
≤ σ8

t E
[
∥Z∥8

2

]
.

Hence, we can conclude that

E
[
∥Zt∥4

Fr

]
= E

[∥∥∥∇2 log p̃T −t

(−→
XT −t

)∥∥∥4

Fr

]
≤ C

(
σ−8

T −t + σ−8) (E [∥Z∥8
2

]
+ d4

)
.

28

Published in Transactions on Machine Learning Research (12/2024)

C Proofs of Section 4

C.1 Gaussian case: proof of Lemma 4.1

In the case where πdata is the Gaussian probability density with mean µ0 and variance Σ0, we have

∇ log p̃t(x) = −
(
m2

t Σ0 + σ2
t Id

)−1 (x−mtµ0) + σ−2x ,

with mt = exp
(
−
∫ t

0 β(s)ds/(2σ2)
)

and σt = σ2(1−m2
t). Let −→Σ t = m2

t Σ0 + σ2
t Id be the covariance

of the forward process −→X t and bt = −→Σ −1
t mtµ0 so that

∇ log p̃t(x) = Atx+ bt with At = −
(−→Σt

−1 − σ−2Id

)
. (28)

Note that, if we denote by λ1
0 ≤ · · · ≤ λd

0 the eigenvalues of Σ0, which are positive as Σ0 is positive
definite, we have that the eigenvalues of At are

λi
t := − 1

m2
tλ

i
0 + σ2

t

+ 1
σ2 .

It is straightforward to see that λ1
t ≤ · · · ≤ λd

t . Moreover, we always have that in this case

(∇ log p̃t(x)−∇ log p̃t(y))⊤ (x− y) ≤ λd
t ∥x− y∥

2
,

∥∇ log p̃t(x)−∇ log p̃t(y)∥ ≤ max
{∣∣λ1

t

∣∣ , ∣∣λd
t

∣∣} ∥x− y∥ ,
which entails that we can define

Lt := max
{∣∣λ1

t

∣∣ , ∣∣λd
t

∣∣} , Ct := −λd
t ,

and apply Proposition C.2.

The condition λd
t ≤ 0, or equivalently σ2 ≥ λmax(Σ0), yields a contraction in 2–Wasserstein distance

in the backward process as well in the forward process from Proposition C.2. This shows that, in
specific cases, with an appropriate calibration of the variance of the stationary law with respect to
the initial law, we have a contraction both in the forward and in the backward flows.

As a consequence, note that

W2 (πdata, π∞QT)2 ≤ W2 (pT , π∞)2 exp
(
− 1
σ2

∫ T

0
β(t)(1 + 2Ctσ

2)dt
)
.

Using Talagrand’s T2 inequality for the Gaussian measure W2 (µ, π∞)2 ≤ 2σ2KL(µ∥π∞) and
Lemma B.1 we get

W2 (πdata, π∞QT)2 ≤ 2σ2KL (πdata∥π∞) exp
(
− 2
σ2

∫ T

0
β(t)(1 + 2Ctσ

2)dt
)
.

Proposition C.1. Assume that πdata is a Gaussian distribution N (µ0,Σ0) such that λmax(Σ0) ≤ σ2

where λmax(Σ0) denotes the largest eigenvalue of Σ0. Then,

KL (πdata∥π∞QT) ≤ KL (πdata∥φσ2) exp
(
− 2
σ2

∫ T

0
β(s)ds

)
.

29

Published in Transactions on Machine Learning Research (12/2024)

Proof. In this Gaussian case, the backward process is linear (see (28)) and the associated infinitesimal
generator writes, for g ∈ C2,

←−
L tg(x) = ∇g(x)⊤

(
− β̄(t)

2σ2 + β̄(t)(Ātx+ b̄t)
)

+ 1
2 β̄(t)∆g(x),

where Āt = AT −t and b̄t = bT −t.

Our objective is to monitor the evolution of the Kullback-Leibler divergence, KL(pTQt∥φσ2Qt), for
t ∈ [0, T]. We follow Del Moral et al. (2003, Section 6) (see also Collet and Malrieu, 2008). Let
qt = pTQt and ϕt = φσ2Qt two densities that satisfy the Fokker-Planck equation, involving the dual
operator ←−L ∗

t of the infinitesimal generator ←−L

∂tqt =←−L ∗
t qt, q0(x) = pT (x)

∂tϕt =←−L ∗
tϕt, ϕ0(x) = φσ2(x).

Let ft = qt/ϕt. By definition of KL(qt∥ϕt) =
∫

ln (ft(x)) qt(x)dx we have

∂tKL (qt∥ϕt) =
∫

ln (ft(x)) ∂tqt(x)dx+
∫
∂t ln (ft(x)) qt(x)dx

=
∫

ln (ft(x)) ∂tqt(x)dx−
∫
ft(x)∂tϕt(x)dx .

By employing the Fokker-Planck equation and the adjoint relation, which states that∫
f(x)←−L ∗

t (g)(x)dx =
∫ ←−
L tf(x)g(x)dx we obtain

∂tKL (qt∥ϕt) =
∫ ←−
L ln (ft) (x)qt(x)dx−

∫ ←−
L ft(x)ϕt(x)dx .

The infinitesimal generator ←−L satisfies the change of variables formula (see Bakry et al., 2014) so
that

←−
L t(ln(f)) = 1

f

←−
L tf −

1
2f2
←−Γ t(f, f) ,

where←−Γ t is the “carré du champ” operator associated with←−L t defined by←−Γ t(f, f)(x) = β(t)|∇f(x)|2.
We then obtain

∂tKL (qt∥ϕt) =
∫ ←−
L ft(x) qt(x)

ft(x)dx−
∫
β(t)

2
|∇ft(x)|2

f2
t (x) qt(x)dx−

∫ ←−
L ft(x)ϕt(x)dx

= −β(t)
2

∫
|∇ft(x)|2

ft(x) ϕt(x)dx . (29)

To obtain a control of the Kullback-Leibler divergence we need a logarithmic Sobolev inequality
for the distribution of density ϕt = φσ2Qt. In this Gaussian case, if ←−X 0 ∼ N (0, σ2) then for all
t ∈ [0, T] the law of ←−X t is a centered Gaussian with covariance matrix ←−Σ t given by

←−Σ t = σ2 exp
(∫ t

0
− β̄(s)

σ2 + 2β̄sĀsds
)

+
∫ t

0
β(s) exp

(∫ t

s

− β̄(u)
σ2 + 2β̄(u)Āudu

)
ds ,

30

Published in Transactions on Machine Learning Research (12/2024)

where we use the matrix exponential. As mentioned before, if λmax(Σ0) ≤ σ2, the eigenvalues of As,
for s ∈ [0, T], are negative. We can easily deduce that λmax(←−Σ t) ≤ σ2. We recall the logarithmic
Sobolev inequality for a normal distribution (see Chafai, 2004, Corollary 9)

KL(qt∥ϕt) ≤
1
2

∫ 1
ft(x)∇ft(x)⊤←−Σ t∇ft(x)ϕt(x)dx ≤ λmax(←−Σt)

2

∫
|∇ft(x)|2

ft(x) ϕt(x)dx .

Plugging this into (29) we get

∂tKL(qt∥ϕt) ≤ −
β(t)
σ2 KL(qt∥ϕt) .

Therefore, recalling that q0 = pT and ϕ0 = φσ2

KL (qT ∥φσ2QT) ≤ KL(pT ∥φσ2) exp
(
−
∫ T

0

β(s)
σ2 ds

)
.

We conclude using Lemma B.1.

C.2 Proof of Theorem 4.2

EI scheme. Using the fact that∫ t

tk

e−
∫ t

s
β̄(v)/(2σ2)dv

β̄(s)ds = 2σ2
(

1− e
−
∫ t

tk
β̄(v)/(2σ2)dv

)
,

the Exponential Integrator scheme that we consider consists in the following discretization, recursively
given with respect to the index k,

←−
X t = e

−
∫ t

tk
β̄(s)/(2σ2)ds

X̄tk
+ 2σ2

(
1− e

−
∫ t

tk
β̄(s)/(2σ2)ds

)
∇ log p̃T −tk

(
X̄tk

)
+ σ

√(
1− e

−
∫ t

tk
β̄(s)/σ2ds

)
Zk , (30)

where Zk are i.i.d. Gaussian random vectors N (0, Id). In particular, we have that

X̄θ
t = e

−
∫ t

tk
β̄(s)/(2σ2)ds

X̄θ
tk

+ 2σ2
(

1− e
−
∫ t

tk
β̄(s)/(2σ2)ds

)
sθ

(
T − tk, X̄θ

tk

)
+ σ

√(
1− e

−
∫ t

tk
β̄(s)/σ2ds

)
Zk , (31)

and X̄θ
0 ∼ N

(
0, σ2Id

)
. Note that

W2

(
πdata, π̂

(β,θ)
N

)
≤ W2 (πdata, π∞QT) +W2

(
π∞QT , π∞Q

N,θ
T

)
, (32)

where
W2 (πdata, π∞QT) =W2 (pTQT , π∞QT) ,

which corresponds to the discrepancy between the same process (3) with two different initializations.
The first term of (32) is upper bounded by Proposition C.2.

31

Published in Transactions on Machine Learning Research (12/2024)

Proposition C.2. Assume that W2 (πdata, π∞)2
< +∞. The marginal distribution at the end of

the forward phase satisfies

W2 (pT , π∞)2 ≤ W2 (πdata, π∞)2 exp
(
−
∫ T

0

β(t)
σ2 dt

)
. (33)

Assume that H4(ii) holds. Then,

W2 (πdata, π∞QT)2 ≤ W2 (pT , π∞)2 exp
(
−
∫ T

0

β(t)
σ2

(
1− 2Ltσ

2)dt
)

≤ W2 (πdata, π∞)2 exp
(
−
∫ T

0

β(t)
σ2

(
2− 2Ltσ

2) dt
)
. (34)

Moreover, under Assumption H4(i), we have

W2 (πdata, π∞QT)2 ≤ W2 (pT , π∞)2 exp
(
−
∫ T

0

β(t)
σ2

(
1 + 2Ctσ

2) dt
)

≤ W2 (πdata, π∞)2 exp
(
−
∫ T

0

β(t)
σ2

(
2 + 2Ctσ

2) dt
)
. (35)

Proof of Proposition C.2. Let x ∈ Rd (resp. y ∈ Rd) and denote by −→Xx (resp. −→X y) the solution of
(1), with initial condition −→Xx

0 = x (resp. −→Xx
0 = y). Applying the chain rule, we get∥∥∥−→Xx

t −
−→
X y

t

∥∥∥2
= ∥x− y∥2 + 2

∫ t

0
− β̄(s)

2σ2

∥∥∥−→Xx
s −
−→
X y

s

∥∥∥2
ds .

Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T]

∥∥∥−→Xx
t −
−→
X y

t

∥∥∥2
]
≤ exp

(
−
∫ T

0

β̄(t)
σ2 dt

)
∥x− y∥2

.

From this, we can show contraction (33) in 2–Wasserstein distance by taking the infimum over all
couplings.

Now, let x ∈ Rd (resp. y ∈ Rd) and denote by ←−Xx (resp. ←−X y) the solution of (3), with initial
condition ←−Xx

0 = x (resp. ←−Xx
0 = y). Applying the chain rule and using Cauchy-Schwarz inequality,

we get∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2
= ∥x− y∥2 + 2

∫ t

0
− β̄(s)

2σ2

∥∥∥←−Xx
s −
←−
X y

s

∥∥∥2
ds

+ 2
∫ t

0
β̄(s)

(
∇ log p̃T −s

(←−
Xx

s

)
−∇ log p̃T −s

(←−
X y

s

))⊤ (←−
Xx

s −
←−
X y

s

)
ds

≤ ∥x− y∥2 −
∫ t

0

β̄(s)
σ2

(
1− 2L̄sσ

2) ∥∥∥←−Xx
s −
←−
X y

s

∥∥∥2
ds .

32

Published in Transactions on Machine Learning Research (12/2024)

Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T]

∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2
]
≤ exp

(
−
∫ T

0

β̄(t)
σ2

(
1− 2L̄tσ

2) dt
)
∥x− y∥2

.

From this, we can show contraction (34) in 2–Wasserstein distance by taking the infimum over all
couplings.

To establish (35) note that, under Assumption H4(i), we have∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2
= ∥x− y∥2 + 2

∫ t

0
− β̄(s)

2σ2

∥∥∥←−Xx
s −
←−
X y

s

∥∥∥2
ds

+ 2
∫ t

0
β̄(s)

(
∇ log p̃T −s

(←−
Xx

s

)
−∇ log p̃T −s

(←−
X y

s

))⊤ (←−
Xx

s −
←−
X y

s

)
ds

≤ ∥x− y∥2 −
∫ t

0

β̄(s)
σ2

(
1 + 2C̄sσ

2) ∥∥∥←−Xx
s −
←−
X y

s

∥∥∥2
ds .

Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T]

∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2
]
≤ exp

(
−
∫ T

0

β̄(t)
σ2

(
1 + 2C̄tσ

2)dt
)
∥x− y∥2

.

From this, we can show contraction (35) in the 2–Wasserstein distance by taking the infimum over
all couplings.

Note that a similar assumption as Assumption H4(i) is used in De Bortoli et al. (2021, Proposition
10,11,12), in particular to bound the conditional moments of ←−X 0 given ←−X t for t > 0. However, in
this paper the authors also require additional assumptions, in particular that the score of πdata has
a linear growth.

Second term. The second term of (36) can be handled as follows

W2

(
π∞QT , π∞Q

N,θ
T

)
≤
∥∥∥←−X∞

T − X̄θ
T

∥∥∥
L2
.

To upper bound ∥←−X∞
T − X̄θ

T ∥L2 , we aim at controlling ∥←−X∞
tk+1
− X̄θ

tk+1
∥L2 by ∥←−X∞

tk
− X̄θ

tk
∥L2 to

resort subsequently to a telescopic sum.
Proposition C.3. Assume that H4, H5 and H6 hold. Consider the regular discretization {tk, 0 ≤
k ≤ N} of [0, T] of constant step size h such that for all tk with 0 ≤ k ≤ N − 1,

h <
2C̄t

β̄(tk)
(
maxtk≤s≤tk+1 L̄s

)
L̄t

m̃tk+1

m̃tk

,

where m̃t := exp(−
∫ t

0 β̄(s)ds/(2σ2)), mt := exp(−
∫ t

0 β(s)ds/(2σ2)). Then,∥∥∥←−X∞
T − X̄θ

T

∥∥∥
L2
≤ εTβ(T) +MhTβ(T) (1 + 2B)

+
N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)(√

2hβ(T)
σ

+mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B ,

33

Published in Transactions on Machine Learning Research (12/2024)

where M is defined in H6 and B := (E[∥X0∥2] + σ2d)1/2.

Proof. Using (31) and the triangular inequality, we have

∥∥∥←−X∞
tk+1
− X̄θ

tk+1

∥∥∥
L2

=
∥∥∥∥m̃tk+1

m̃tk

←−
X∞

tk
−
m̃tk+1

m̃tk

X̄θ
tk

+
∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(←−
X∞

t

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt
∥∥∥∥

L2

≤
∥∥∥∥m̃tk+1

m̃tk

←−
X∞

tk
−
m̃tk+1

m̃tk

X̄θ
tk

+
∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(←−
X∞

tk

)
−∇ log p̃T −t

(
X̄θ

tk

))
dt
∥∥∥∥

L2

+
∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(←−
X∞

t

)
−∇ log p̃T −t

(←−
X∞

tk

))
dt
∥∥∥∥

L2

(36)

+
∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(
X̄θ

tk

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt
∥∥∥∥

L2

.

Using the strong concavity and Lipschitz properties of the modified score function, we have that the
first term of r.h.s. of (36) can be bounded as follows

∥∥∥∥m̃tk+1

m̃tk

←−
X∞

tk
−
m̃tk+1

m̃tk

X̄θ
tk

+
∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(←−
X∞

tk

)
−∇ log p̃T −t

(
X̄θ

tk

))
dt
∥∥∥∥2

=
m̃2

tk+1

m̃2
tk

∥∥∥←−X∞
tk
− X̄θ

tk

∥∥∥2
+
∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(←−
X∞

tk

)
−∇ log p̃T −t

(
X̄θ

tk

))
dt
∥∥∥∥2

+
m̃tk+1

m̃tk

2
∫ tk+1

tk

m̃t

m̃tk

β̄(t)
[←−
X∞

tk
− X̄θ

tk

]⊤ [
∇ log p̃T −t

(←−
X∞

tk

)
−∇ log p̃T −t

(
X̄θ

tk

)
dt
]

≤
∥∥∥←−X∞

tk
− X̄θ

tk

∥∥∥2
(
m̃2

tk+1

m̃2
tk

+
(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2
m̃tk+1

m̃tk

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt
)
.

Using the Lipschitz property of the modified score and Proposition C.6, the second term of the r.h.s.
of (36) can be controlled as follows

∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(←−
X∞

t

)
−∇ log p̃T −t

(←−
X∞

tk

))
dt
∥∥∥∥

L2

≤
(∫ tk+1

tk

LT −t
m̃t

m̃tk

β̄(t)dt
)

sup
tk≤t≤tk+1

∥∥∥←−X∞
t −

←−
X∞

tk

∥∥∥
L2

≤
(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)

2
(

1
σ

√
hβ(T) + exp

(
−
∫ tk

0

β̄(s)
σ2

(
1 + C̄sσ

2)ds
))

B .

34

Published in Transactions on Machine Learning Research (12/2024)

Using Assumption H5, we can control the third term of the r.h.s. of (36) as follows

∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(
X̄θ

tk

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt
∥∥∥∥

L2

≤
∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −tk

(
X̄θ

tk

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt
∥∥∥∥

L2

+
∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T −t

(
X̄θ

tk

)
−∇ log p̃T −tk

(
X̄θ

tk

))
dt
∥∥∥∥

L2

≤ ε
∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+
∫ tk+1

tk

m̃t

m̃tk

β̄(t)
∥∥∇ log p̃T −t

(
X̄θ

tk

)
−∇ log p̃T −tk

(
X̄θ

tk

)∥∥dt

≤ ε
∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+ hM
(

1 +
∥∥X̄θ

tk

∥∥
L2

)∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt .

Note that −→X t has the same law as mtX0 + σ
√

(1−m2
t)G, with G a standard Gaussian random

variable independent of X0. We have that ←−X∞
0 ∼ N (0, σ2Id). Define (←−X t)t∈[0,T] satisfying (3) but

initialized at

←−
X 0 = mTX0 +

√
(1−m2

T)←−X∞
0 ,

with X0 ∼ πdata. Employing Proposition C.5 and (42), we obtain

∥∥X̄θ
tk

∥∥
L2
≤
∥∥∥X̄θ

tk
−
←−
X∞

tk

∥∥∥
L2

+
∥∥∥←−X∞

tk
−
←−
X tk

∥∥∥
L2

+
∥∥∥←−X tk

∥∥∥
L2
≤
∥∥∥X̄θ

tk
−
←−
X∞

tk

∥∥∥
L2

+ 2B .

Therefore, combining the previous bounds, together with (36), we obtain

∥∥∥←−X∞
tk+1
− X̄θ

tk+1

∥∥∥
L2

≤
∥∥∥←−X∞

tk
− X̄θ

tk

∥∥∥(m̃2
tk+1

m̃2
tk

+
(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2
m̃tk+1

m̃tk

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt
)1/2

+
(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)(

1
σ

√
2hβ(T) +mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B

+ ε

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+ hM

(
1 +

∥∥∥X̄θ
tk
−
←−
X∞

tk

∥∥∥
L2

+ 2B
)∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt .

By the assumption on h and Proposition C.4,

0 < 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 1 ,

35

Published in Transactions on Machine Learning Research (12/2024)

and, using that
√

1− x ≤ 1− x/2 for x ∈ [0, 1], we conclude that∥∥∥←−X∞
tk+1
− X̄θ

tk+1

∥∥∥
L2

≤
∥∥∥←−X∞

tk
− X̄θ

tk

∥∥∥ m̃2
tk+1

m̃2
tk

×

(
1 + 1

2
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt+

m̃2
tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt
)

+
(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)(

1
σ

√
2hβ(T) +mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B

+ ε

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+ hM (1 + 2B)
∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt .

Define

δk :=
m̃2

tk+1

m̃2
tk

(
1 + 1

2
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt
)

≤

(
1 + 1

2
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt
)
.

By Proposition C.4, δk ≤ 1 for any 0 ≤ k ≤ N − 1 , which yields

∥∥∥←−X∞
T − X̄θ

T

∥∥∥
L2
≤

N−1∏
k=0

δk

∥∥∥←−X∞
0 − X̄θ

0

∥∥∥
L2

+
(
εhβ(T) +Mh2β(T) (1 + 2B)

)N−1∑
k=0

N−1∏
ℓ=k

δℓ

+
N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)(

1
σ

√
2hβ(T) +mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B

N−1∏
ℓ=k

δℓ

≤ εTβ(T) +MhTβ(T) (1 + 2B)

+
N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)(

1
σ

√
2hβ(T) +mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B .

36

Published in Transactions on Machine Learning Research (12/2024)

Final bound. Finally, combining the results of Proposition C.2 and Proposition C.3, we conclude
that

W2

(
πdata, π̂

(β,θ)
N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)
σ2

(
1 + Ctσ

2) dt
)

+
N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)(

1
σ

√
2hβ(T) +mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B

+ εTβ(T) +MhTβ(T) (1 + 2B) .

C.3 Technical results for Wasserstein upper bound

Proposition C.4. Assume that H4 and H6 hold. Consider the regular discretization {tk, 0 ≤ k ≤ N}
of [0, T] of constant step size h. Assume that h > 0 is such that for all tk with 0 ≤ k ≤ N − 1,

h <
2C̄t

β̄(tk)
(
maxtk≤s≤tk+1 L̄s

)
L̄t

m̃tk+1

m̃tk

, (37)

where m̃t := exp(−
∫ t

0 β̄(s)ds/(2σ2)), mt := exp(−
∫ t

0 β(s)ds/(2σ2)). Then, for all 0 ≤ k ≤ N − 1,

0 < 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 1 .

In addition, if

h <
2C̄t

M + β̄(tk)
(
maxtk≤s≤tk+1 L̄s

)
L̄t

m̃tk+1

m̃tk

, (38)

then, for all 0 ≤ k ≤ N − 1,

0 < 1 + 1
2
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt < 1 .

Proof. Denote ϵ1 and ϵ2 the following quantities

ϵ1 = 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt , (39)

ϵ2 = 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt . (40)

37

Published in Transactions on Machine Learning Research (12/2024)

First, we prove that ϵ1 is positive. Completing the square, we obtain

ϵ1 =
(

1− m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

+ 2 m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

=
(

1− m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

+ 2 m̃tk

m̃tk+1

∫ tk+1

tk

(
L̄t − C̄t

) m̃t

m̃tk

β̄(t)dt.

The first term if the r.h.s. of the previous equality is a square, therefore always positive. The second
term is always positive as well, as L̄t ≥ C̄t for any t, as the Lipschitz constant and the log-concavity
coefficient of the score function respectively. Moreover, the previous is always strictly positive as

m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt > 0 .

Secondly, proving that the previous quantity is smaller than 1 is equivalent to show that

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 0 .

As β̄(t) is a decreasing function, we obtain the following bound

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

≤
(
m̃tk

m̃tk+1

max
tk≤s≤tk+1

L̄sβ̄(tk)h
)

m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

= m̃tk

m̃tk+1

∫ tk+1

tk

((
m̃tk

m̃tk+1

max
tk≤s≤tk+1

L̄sβ̄(tk)h
)
L̄t − 2C̄t

)
m̃t

m̃tk

β̄(t)dt .

This means that, if we have

m̃tk

m̃tk+1

(
max

tk≤s≤tk+1
L̄s

)
β̄(tk)hL̄t − 2C̄t < 0

for tk ≤ t ≤ tk+1, we have ϵ1 < 1. Isolating h in the previous inequality, we obtain that it is
equivalent to the condition (37).

Now we focus on ϵ2. This quantity is clearly positive as the ϵ2 ≥ ϵ1. Moreover, following the same
lines as to prove that ϵ1 < 1, we have

ϵ2 − 1 ≤ m̃tk

m̃tk+1

∫ tk+1

tk

(
m̃tk

m̃tk+1

(
max

tk≤s≤tk+1
L̄s

)
β̄(tk)hL̄t + m̃tk

m̃tk+1

Mh− 2C̄t

)
m̃t

m̃tk

β̄(t)dt .

38

Published in Transactions on Machine Learning Research (12/2024)

This means that, if we have

m̃tk

m̃tk+1

(
max

tk≤s≤tk+1
L̄s

)
β̄(tk)hL̄t + m̃tk

m̃tk+1

Mh− 2C̄t < 0

for tk ≤ t ≤ tk+1, we have ϵ2 < 1. Isolating h in the previous inequality, we obtain that it is
equivalent to the condition (38).

Proposition C.5. Assume that H2 holds. For all t ≥ 0,

sup
0≤t≤T

∥∥∥←−X t

∥∥∥
L2
≤ sup

0≤t≤T

(
m2

tE
[
∥X0∥2

]
+ (1−m2

t)σ2d
)1/2

≤
(
E
[
∥X0∥2

]
+ σ2d

)1/2
,

where mt = exp(−
∫ t

0 β(s)ds/2σ2).

Proof. Recall the following equality in law

−→
X t = mtX0 + σ

√
(1−m2

t)G .

with X0 ∼ πdata and G ∼ N (0, Id).

Therefore, for any t ∈ [0, T]

E
[∥∥∥←−XT −t

∥∥∥2
]

= E
[∥∥∥−→X t

∥∥∥2
]
≤ m2

tE
[
∥X0∥2

]
+ σ2 (1−m2

t

)
E
[
∥G∥2

]
≤ m2

tE
[
∥X0∥2

]
+ σ2 (1−m2

t

)
d .

Proposition C.6. Assume that H2 holds. For all tk ≤ t ≤ tk+1,

sup
tk≤t≤tk+1

∥∥∥←−X∞
t −

←−
X∞

tk

∥∥∥
L2
≤
(

1
σ

√
2hβ(T) +mT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

)
B , (41)

sup
0≤t≤T

∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2
≤
([
∥X0∥2

]
+ σ2d

)1/2
exp

(
−
∫ T

0

β̄(s)
2σ2 ds

)
, (42)

where mt = exp(−
∫ t

0 β(s)ds/2σ2) and B = (E[∥X0∥2] + σ2d)1/2.

Proof. Note that −→X t has the same distribution as mtX0 + σ
√

(1−m2
t)G where G ∼ N (0, Id) is

independent of X0. We have that ←−X∞
0 = G ∼ N (0, σ2Id). Define (←−X t)t∈[0,T] satisfying (3) but

initialized at
←−
X 0 = mTY +

√
(1−m2

T)G , (43)

with Y ∼ πdata independent of G (G being shared by ←−X 0 and ←−X∞
0).

39

Published in Transactions on Machine Learning Research (12/2024)

On the one hand, following the same proof as in Proposition C.2, we have that∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2
≤
∥∥∥←−X∞

0 −
←−
X 0

∥∥∥
L2

exp
(
−
∫ t

0

β̄(s)
2σ2

(
1 + 2C̄sσ

2) ds
)

≤
([
∥Y ∥2

]
+ σ2d

)1/2
mT ,

where we have used (43) as well as the fact that

∥X0 −G∥L2
=
([
∥Y ∥2

]
+
[
∥G∥2

])1/2
= B .

Therefore,

sup
0≤t≤T

∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2
≤
([
∥Y ∥2

]
+ σ2d

)1/2
exp

(
−
∫ T

0

β̄(s)
2σ2 ds

)
,

corresponding to (42).

On the other hand, we have that∥∥∥←−X∞
t −

←−
X∞

tk

∥∥∥
L2
≤
∥∥∥←−X t −

←−
X tk

∥∥∥
L2

+
∥∥∥(←−X∞

t −
←−
X t

)
−
(←−
X∞

tk
−
←−
X tk

)∥∥∥
L2

.

The process (←−X∞
t −

←−
X t)t≥0 is determined by the following ODE:

d
(←−
X∞

t −
←−
X t

)
=
(
− β̄(t)

2σ2

(←−
X∞

t −
←−
X t

)
+ 2β̄(t)

(
∇ log p̃T −t

(←−
X∞

t

)
−∇ log p̃T −t

(←−
X t

)))
dt .

Then,∥∥∥(←−X∞
t −

←−
X t

)
−
(←−
X∞

tk
−
←−
X tk

)∥∥∥
L2

=
∥∥∥∥∫ t

tk

(
− β̄(s)

2σ2

(←−
X∞

s −
←−
X s

)
+ 2β̄(s)

(
∇ log p̃T −s

(←−
X∞

s

)
−∇ log p̃T −s

(←−
X s

)))
ds
∥∥∥∥

L2

≤ sup
tk≤t≤tk+1

∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt

≤ BmT

∫ tk+1

tk

(
1

2σ2 + 2L̄t

)
β̄(t)dt .

Write (−→X t)t∈[0,T] the time reversal of (←−X t)t∈[0,T], which clearly satisfies (1). Using the following
equality in law

−→
XT −tk

= mT −tk

mT −t

−→
XT −t +

(
1−

(
mT −tk

mT −t

)2
)1/2

σG ,

40

Published in Transactions on Machine Learning Research (12/2024)

with G ∼ N (0, Id), we get∥∥∥←−X t −
←−
X tk

∥∥∥
L2

=
∥∥∥−→XT −tk

−
−→
XT −t

∥∥∥
L2

=
(

1−
(
mT −tk

mT −t

)2
)1/2([∥∥∥−→XT −t

∥∥∥2
]

+ σ2d

)1/2

≤

(
1−

(
mT −tk

mT −t

)2
)1/2√

2B ,

where we have applied Proposition C.5 in the last inequality. Since

1−
(
mT −tk

mT −t

)2
= 1− exp

(
− 1
σ2

∫ T −tk

T −t

β(s)ds
)

= 1
σ2

∫ T −tk

T −t

exp
(
− 1
σ2

∫ T −u

T −t

β(s)ds
)
β(u)du

≤ 1
σ2hβ(T) ,

which concludes the proof of (41).

D Discussion on the hypotheses

Proposition D.1. Assume that log πdata is C∗-strongly concave and that C∗ > 1/σ2. Then, the
modified score function log p̃t(x) is, for any t ∈ (0, T], Ct-strongly concave, with

mt = exp
(
− 1

2σ2

∫ t

0
β(s)ds

)
,

Ct = 1
m2

t/C∗ + σ2 (1−m2
t) −

1
σ2 .

Moreover, we have that Ct ≤ C∗ − 1/σ2 for any t ≥ 0.

Proof. This result is also proved in Saremi et al. (2023). We provide an alternative proof here for
completeness. For all 1 ≤ t ≤ T , −→X t has the same law has mtX0 + σ

√
1−m2

tZ where X0 ∼ πdata
and Z ∼ N (0, Id) are independent. Therefore, writing p0 = πdata,

pt(y) =
∫
Rd

(2πσ2 (1−m2
t

)
)−d/2 exp

{
−∥y − x0mt∥2

2σ2 (1−m2
t)

}
p0(x0)dx0 . (44)

This implies that

log pt(y) = −d2 log
(
2πσ2 (1−m2

t

))
+ log

(∫
Rd

exp
{
−∥y − x0mt∥2

2σ2 (1−m2
t)

}
p0(x0)dx0

)

= −d2 log
(
2πσ2 (1−m2

t

))
+ log

(∫
Rd

exp
{
− ∥y − u∥2

2σ2 (1−m2
t)

}
p0

(
u

mt

)
du
)

+ d

2σ2

∫ t

0
β(s)ds .

41

Published in Transactions on Machine Learning Research (12/2024)

Since log p0 is C∗-strongly concave, the function x 7→ p0 (u/mt) is C∗/m
2
t -strongly log-concave. More-

over, we have that the function y 7→ exp{−∥y∥2/(2σ2(1−m2
t))} is (σ2(1−m2

t)−1-strongly log-concave.
Applying Saumard and Wellner (Proposition 7.1 2014), since pt is a convolution of the previous two
functions up to terms independent in space, we have that log pt is

(
m2

t/C∗ + σ2 (1−m2
t

))−1-strongly
concave. Note that if C∗ ≥ 1/σ2,

C∗

m2
t + σ2C∗ (1−m2

t) ≥
1
σ2 .

This entails that log p̃t is Ct-strongly concave, with

Ct = 1
m2

t/C∗ + σ2 (1−m2
t) −

1
σ2 .

Finally, finding the maximum t 7→ Ct, is equivalent to find the maximum of the following function
on [0, 1]:

ψ : z 7→ C∗

z + σ2C∗(1− z) −
1
σ2 .

We have that ψ(0) = C∗ − 1/σ2, ψ(1) = 0 and for all z ∈ [0, 1],

ψ′(z) = σ2 − 1/C∗

(z/C∗ + σ2(1− z))2 ,

which is negative since C∗ ≥ 1 ≤ 1/σ2. Therefore, we get 0 ≤ Ct ≤ C∗ − 1/σ2.

Proposition D.2. If log πdata is L∗-smooth, then for all 0 ≤ t ≤ T , ∇ log p̃t is Lt-Lipschitz in the
space variable with

Lt = min
{

1
σ2 (1−m2

t) ; L∗

m2
t

}
+ 1
σ2 .

Moreover, if L∗ > 1/σ2, we can choose Lt as follows:

Lt = min
{

1
σ2 (1−m2

t) ; L∗

m2
t

}
− 1
σ2 .

Moreover, in this case, we have that Lt ≤ L∗ for any t ≥ 0.

Proof. In the proof of Proposition D.1, we proved that, if log πdata is C∗-strongly concave, log pt is(
m2

t/C∗ + σ2 (1−m2
t

))−1-strongly concave i.e.,

∇2 (− log pt) (x) ≽ 1
m2

t/C∗ + σ2 (1−m2
t)Id .

For p0 := πdata, we have that pt is given by (44). This means that pt is the density of the sum of
two independent random variables X1 +X0 of density respectively q0 and q1, such that

q0(x) := 1
md

t

p0

(
u

md
t

)
= e−ϕ0(x) ,

q1(x) := 1
(2πσ2 (1−m2

t))d/2 exp
{
− ∥y∥2

2σ2 (1−m2
t)

}
= e−ϕ1(x) ,

42

Published in Transactions on Machine Learning Research (12/2024)

for two functions ϕ0 and ϕ1. Therefore, as in the proof of Saumard and Wellner (Proposition 7.1
2014), we get

∇2 (− log pt) (x) = −Var(∇ϕ0(X0)|X0 +X1 = x) + E[∇2ϕ0(X0)|X0 +X1 = x]
= −Var(∇ϕ1(X1)|X0 +X1 = x) + E[∇2ϕ1(X1)|X0 +X1 = x] .

Since ∇ log p0 is L∗-Lipschitz and from the definition of q1,

∇2ϕ0 ≼
L∗

m2
t

Id , ∇2ϕ1 ≼
1

σ2 (1−m2
t)Id .

Hence,

∇2 (− log pt) (x) ≼ min
{

1
σ2 (1−m2

t) ; L0

m2
t

}
Id .

Therefore, since the difference between ∇ log pt and ∇ log p̃t is a linear function, we can choose Lt

as follows:

Lt = min
{

1
σ2 (1−m2

t) ; L∗

m2
t

}
+ 1
σ2 .

Clearly we have that 0 ≤ m2
t ≤ 1, therefore 1/m2

t ≥ 1 and 1/
(
1−m2

t

)
≥ 1. This means that, if

L∗ ≥ 1/σ2,

min
{

1
σ2 (1−m2

t) ; L∗

m2
t

}
≥ 1
σ2 .

Thus, we can choose Lt to be

Lt = min
{

1
σ2 (1−m2

t) ; L∗

m2
t

}
− 1
σ2 .

Finally, since m0 = 1, we have that L0 = L∗ − 1/σ2. This function increases up to the point
where L∗/m

2
t = (σ2(1−m2

t)−1, achieved for m2
t∗ = (σ2L∗)/(σ2L∗ + 1). At this point, we have that

Lt∗ = L∗. After this point the Lipschitz constant decreases to 0, as mt → 0 for t→∞. This means
that for any t, Lt is bounded by L∗.

Proposition D.3. Assume that log πdata is L∗-smooth and C∗-strongly concave. Consider the
regular discretization {tk, 0 ≤ k ≤ N} of [0, T] of constant step size h. By choosing h > 0 such that
for all tk with 0 ≤ k ≤ N − 1,

h ≤ min
{

log(2)2σ2

β(T) ; σ2C∗ − 1
σ2C∗ (σ2L∗ + 1)L∗β(T) ; σ2C∗ − 1

(σ2L∗ − 1)L∗β(T)

}
, (45)

then, for all 0 ≤ k ≤ N − 1,

0 < 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− 2 m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 1 .

43

Published in Transactions on Machine Learning Research (12/2024)

In addition, if

h ≤ min
{

log(2)2σ2

β(T) ; σ2C∗ − 1
σ2M + β(T)L∗ (σ2L∗ − 1) ;

σ2C∗ − 1
σ2C∗

m2
T

(
1−m2

T

)
σ2M (1−m2

T) + β(T)L∗m2
T

;
(
σ2C∗ − 1

)
L∗

σ2C∗ (σ2L∗ + 1) (M + β(T)L2
∗)

}
, (46)

then, for all 0 ≤ k ≤ N − 1,

0 < 1 + 1
2
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt
)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt < 1 .

Proof. Define ϵ1 and ϵ2 as in (39)-(40). From Proposition C.4, we have that ϵi ∈ (0, 1), for i = 1, 2,
if we have (37)-(38).

First, we prove that (45) implies (37). From Proposition D.2, we have that Lt is bounded by L∗

everywhere. Moreover, since m̃tk+1/m̃tk
= exp

(
−
∫ tk+1

tk
β̄(s)/2σ2ds

)
, we can find h small enough

such that 2m̃tk
/m̃tk+1 ≥ 1. This is equivalent to

∫ tk+1
tk

β̄(s)/2σ2ds ≤ log(2) and it is implied by

h ≤ log(2)2σ2

β(T) .

Now, we study the function t 7→ Ct/Lt. From the proof of the Proposition D.1, we have that

Ct = 1
m2

t/C∗ + σ2 (1 +m2
t) −

1
σ2 ,

which is a decreasing function. Moreover, from the proof of the Proposition D.2, we have that

Lt = min
{

1
σ2 (1−m2

t) ; L∗

m2
t

}
− 1
σ2 ,

which is an increasing function from 0 up to t∗, such that m2
t∗ = σ2L∗

σ2L∗+1 and decreasing for t ≥ t∗.
On the one hand, this means that for t ∈ [0, t∗], the function t 7→ Ct/Lt is decreasing, therefore
reaching its minimum

(
σ2C∗ − 1

)
/
(
σ2L∗ − 1

)
in 0, which is a positive quantity. On the other hand,

for t ≥ t∗, we have that

Ct

Lt
= 1
m2

t/C∗ + σ2 (1 +m2
t)

1
σ2

(
σ2C∗ − 1

)
m2

t

C∗

σ2 (1−m2
t

)
m2

t

≥ 1
σ2
σ2C∗ − 1

C∗

(
1−m2

t

)
≥ 1
σ2
σ2C∗ − 1

C∗

(
1−m2

t∗

)
= σ2C∗ − 1
σ2C∗ (σ2L∗ + 1) .

44

Published in Transactions on Machine Learning Research (12/2024)

Therefore, combining the previous inequalities, we have that condition (45) implies (37).

Secondly, we prove (46) implies (38). Take h to satisfy

h ≤ log(2)2σ2

β(T) .

We now need to study the function t 7→ Ct

M+β(T)L∗L̄t
. On the one hand, this function is decreasing

for t ∈ [0, t∗], therefore reaching its minimum σ2C∗−1
σ2M+β(T)L∗(σ2L∗−1) in 0, which is a positive quantity.

On the other hand, for t ≥ t∗, we have that

Ct

M + β(T)L∗Lt
= 1
m2

t/C∗ + σ2 (1 +m2
t)

1
σ2

(
σ2C∗ − 1

)
m2

t

C∗

σ2 (1−m2
t

)
σ2M (1−m2

t) + β(T)L∗m2
t

≥ 1
σ2
σ2C∗ − 1

C∗

m2
t

(
1−m2

t

)
σ2M (1−m2

t) + β(T)L∗m2
t

.

Controlling from below the previous quantity, boils down to control from below the function
ψ(y) = y(1−y)

σ2M(1−y)+β(T)L∗y for y ∈ [m2
t∗ ,m2

T]. We see that ψ in this interval can be bounded by
min{ψ

(
m2

t∗

)
, ψ
(
m2

T

)
}. Therefore, we get

Ct

M + β(T)L∗Lt
≥ σ2C∗ − 1

σ2C∗
min

{
m2

T

(
1−m2

T

)
σ2M (1−m2

T) + β(T)L∗m2
T

; L∗

(σ2L0 + 1) (M + β(T)L2
∗)

}
.

Therefore, combining the previous inequalities, we have that condition (46) implies (38).

E Details on numerical experiments

This section is divided into two parts. The first part is dedicated to providing detailed implementation
choices for the numerical experiments presented in Section 5. The second part displays additional
experiments and more details about the experiments of Section 5. All experiments were conducted
on a local computer CPU equipped with an Apple M3 processor (8GB of unified memory). This
setup is sufficient to replicate the experiments of this paper.

E.1 Implementation choices

E.1.1 Exact score and metrics in the Gaussian case

Lemma E.1. Assume that the forward process defined in (1) :

d−→X t = −β(t)
2σ2
−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ π0,

is initialised with π0 the Gaussian probability density function with mean µ0 and variance Σ0. Then,
the score function of (1) is:

∇ log pt : x 7→ −(m2
t Σ0 + σ2

t Id)−1(x−mtµ0) ,

where pt is the probability density function of −→X t, mt = exp{−
∫ t

0 β(s)ds/(2σ2)} and σ2
t = σ2(1−m2

t).

45

Published in Transactions on Machine Learning Research (12/2024)

Proof. Note that −→X t has the same law as mtX0 + σtZ where Z ∼ N (0, Id) is independent of X0.
Therefore −→X t ∼ N (mtµ0,

−→Σt) with −→Σt = m2
t Σ0 + σ2

t Id which concludes the proof.

Lemma E.2. Let µ1, µ2 in Rd and Σ1 and Σ2 be two definite positive matrices in Rd×d. Then,

KL(φµ1,Σ1∥φµ2,Σ2) = 1
2

(
log |Σ2|
|Σ1|

− d+ Tr
(
Σ−1

2 Σ1
)

+ (µ2 − µ1)⊤ Σ−1
2 (µ2 − µ1)

)
. (47)

Lemma E.3. Let µ1, µ2 in Rd and Σ1 and Σ2 be two definite positive matrices in Rd×d. Then,

W2
2 (φµ1,Σ1 , φµ2,Σ2) = ∥µ2 − µ1∥2 + Tr

(
Σ1 + Σ2 − 2

(
Σ1/2

2 Σ2Σ1/2
1

)1/2
)
. (48)

Lemma E.4. The relative Fisher information between X0 ∼ N (µ0,Σ0) and X∞ ∼ N (0, σ2Id) is
given by:

I (φµ0,Σ0∥φσ2) = 1
σ4

(
Tr (Σ0) + ∥µ0∥2

)
− 2d
σ2 + Tr

(
Σ−1

0
)
.

Proof. The relative Fisher information between X0 and X∞ is given by

I (φµ0,Σ0∥φσ2) =
∫ ∥∥∥∥∇ log

(
φµ0,Σ0(x)
φσ2(x)

)∥∥∥∥2
φµ0,Σ0(x)dx .

Write

∇ log φµ0,Σ0(x)
φσ2(x) = x

σ2 − Σ−1
0 (x− µ0) ,

so that, ∥∥∥∥∇ log φµ0,Σ0(x)
φσ2(x)

∥∥∥∥2
=
∥∥∥ x
σ2 − Σ−1

0 (x− µ0)
∥∥∥2

=
(x
σ2 − Σ−1

0 (x− µ0)
)⊤ (x

σ2 − Σ−1
0 (x− µ0)

)
= ∥x∥

2

σ4 −
2
σ2x

⊤Σ−1
0 (x− µ0) + (x− µ0)⊤Σ−2

0 (x− µ0) .

First,

E
[
∥X0∥2

σ4

]
= 1
σ4

(
Tr (Σ0) + ∥µ0∥2) .

Then,

E
[

2
σ2X

T
0 Σ−1

0 (X0 − µ0)
]

= 2
σ2

(
Tr
(
Σ−1

0 E
[
X0X

⊤
0
])
− µ⊤

0 Σ−1
0 µ0

)
.

46

Published in Transactions on Machine Learning Research (12/2024)

Using that E
[
X0X

⊤
0
]

= Σ0 + µ0µ
⊤
0 yields

E
[

2
σ2X

⊤
0 Σ−1

0 (X0 − µ0)
]

= 2
σ2

(
Tr
(
Σ−1

0
(
Σ0 + µ0µ

⊤
0
))
− µ⊤

0 Σ−1
0 µ0

)
= 2
σ2

(
d+ Tr

(
Σ−1

0 µ0µ
⊤
0
)
− µ⊤

0 Σ−1
0 µ0

)
= 2d
σ2 .

Finally,

E
[
(X0 − µ0)⊤Σ−2

0 (X0 − µ0)
]

= E
[
Tr
(
(X0 − µ0)⊤Σ−2

0 (X0 − µ0)
)]

= E
[
Tr
(
Σ−2

0 (X0 − µ0)(X0 − µ0)⊤)]
= Tr

(
Σ−2

0 E
[
(X0 − µ0)(X0 − µ0)⊤])

= Tr
(
Σ−2

0 Σ0
)

= Tr
(
Σ−1

0
)
,

which concludes the proof.

Proposition E.5. Under the same assumptions as in Lemma E.1, the Euclidean norm of the score
function admits the following upper bound for t1 ≤ t2:

sup
t1≤t≤t2

∥∇ log pt1(x)−∇ log pt(x)∥ ≤ (t2 − t1) max {∥µ0∥κ2;κ1} (1 + ∥x∥) ,

with

κ1 :=
m2

t1
β(t2)

σ2

∣∣λmin − σ2
∣∣∣∣(σ2 +m2

t1
(λmin − σ2)

) (
σ2 +m2

t2
(λmin − σ2)

)∣∣ ,
and

κ2 :=
mt1

β(t2)
2σ2

∣∣mt1mt2

(
λmin − σ2)− σ2

∣∣∣∣(σ2 +m2
t1

(λmin − σ2)
) (
σ2 +m2

t2
(λmin − σ2)

)∣∣ ,
where λmin is the smallest eigenvalue of Σ0.

Proof. Let t1 ≤ t2,

∥∇ log pt1(x)−∇ log pt2(x)∥ =
∥∥−(m2

t1
Σ0 + σ2

t1
Id)−1(x−mt1µ0) + (m2

t2
Σ0 + σ2

t2
Id)−1(x−mt2µ0)

∥∥
≤
∥∥∥(mt1

(
m2

t1
Σ0 + σ2

t1
Id

)−1 −mt2

(
m2

t2
Σ0 + σ2

t2
Id

)−1
)
µ0

∥∥∥
+
∥∥∥((m2

t1
Σ0 + σ2

t1
Id

)−1 −
(
m2

t2
Σ0 + σ2

t2
Id

)−1
)
x
∥∥∥ .

47

Published in Transactions on Machine Learning Research (12/2024)

Writing Mt =
(
m2

t Σ0 + σ2
t Id

)−1 we have, for t1 ≤ t2,

∥Mt1 −Mt2∥ ≤
∣∣∣∣ 1
m2

t1
λmin + σ2

t1

− 1
m2

t2
λmin + σ2

t2

∣∣∣∣
≤

∣∣∣∣∣
(
m2

t2
−m2

t1

) (
λmin − σ2)(

σ2 +m2
t1

(λmin − σ2)
) (
σ2 +m2

t2
(λmin − σ2)

) ∣∣∣∣∣
≤ (t2 − t1)

m2
t1

β(t2)
σ2

∣∣λmin − σ2
∣∣∣∣(σ2 +m2

t1
(λmin − σ2)

) (
σ2 +m2

t2
(λmin − σ2)

)∣∣︸ ︷︷ ︸
κ1

.

Moreover, for t1 ≤ t2,

∥mt1Mt1 −mt2Mt2∥ ≤
∣∣∣∣ mt1

m2
t1
λmin + σ2

t1

− mt2

m2
t2
λmin + σ2

t2

∣∣∣∣
≤

∣∣∣∣∣
(
mt1m

2
t2
−mt2m

2
t1

) (
λmin − σ2)+ σ2 (mt1 −mt2)(

σ2 +m2
t1

(λmin − σ2)
) (
σ2 +m2

t2
(λmin − σ2)

) ∣∣∣∣∣
≤

|mt2 −mt1 |
∣∣mt1mt2 (λmin − σ2)− σ2

∣∣∣∣(σ2 +m2
t1

(λmin − σ2)
) (
σ2 +m2

t2
(λmin − σ2)

)∣∣
≤ (t2 − t1)

mt1
β(t2)
2σ2

∣∣mt1mt2

(
λmin − σ2)− σ2

∣∣∣∣(σ2 +m2
t1

(λmin − σ2)
) (
σ2 +m2

t2
(λmin − σ2)

)∣∣︸ ︷︷ ︸
κ2

.

Finally,

∥∇ log pt1(x)−∇ log pt2(x)∥ ≤ (t2 − t1) ∥µ0∥κ2 + (t2 − t1)κ1 ∥x∥
≤ (t2 − t1) max {∥µ0∥κ2;κ1} (1 + ∥x∥) .

E.1.2 Stochastic differential equation exact simulation

In certain cases, exact simulation of stochastic differential equations is possible. In particular, due to
the linear nature of the drift the forward process (1) can be simulated exactly. Indeed, the marginal
distribution of (1) at time t writes as

−→
X t = mtX0 + σtZ ,

with Z ∼ N (0, Id) independent of X0, X0 ∼ π0, mt = exp{−
∫ t

0 β(s)ds/(2σ2)} and σ2
t = σ2(1 −

exp{−
∫ t

0 β(s)/σ2ds}). Therefore, sampling from the forward process only necessitates access to
samples from π0 and N (0, Id).

48

Published in Transactions on Machine Learning Research (12/2024)

E.1.3 Noise schedules

Linear and parametric noise schedules. In Section 5, we introduced parametric noise schedules
of the form

βa(t) ∝ (eat − 1)/(eaT − 1) ,

with a ∈ R ranging from −10 to 10 (see Figure 6). For all a, with a time horizon of T = 1, the
initial and final values have been set to match exactly the schedule prescribed by Song et al. (2021)
(i.e. βa(0) = 0.1 and βa(1) = 20) when a = 0 (linear schedule).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 6: Evolution of noise schedules βa w.r.t. time, for different values of parameter between −10
to 10. The linear case a = 0 (Song and Ermon, 2019; Song et al., 2021) is dashed.

As shown in Section E.1.2 mt and σt are the two quantities of interest in the calibration of the
noising procedure of the forward proces. Their values for different choices of a are displayed in
Figure 7.

Cosine noise schedule. We consider the cosine schedule introduced in Nichol and Dhariwal
(2021) for which the forward process is defined for t ∈ {1, ..., T} as

Xt :=
√
ᾱtX0 +

√
1− ᾱtZ ,

with X0 ∼ πdata, Z ∼ N (0, Id) and with

ᾱt = f(t)
f(0) ; f(t) = cos

(
t/T + s

1 + s

π

2

)2
.

To use this noise schedule in the SDE setting we notice that the forward process writes, for t ∈ [0, T],
−→
X t = mtX0 + σtZ ,

49

Published in Transactions on Machine Learning Research (12/2024)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

mt σt

Figure 7: Evolution of mt and σt over time, for different choices of a in the noise schedule βa used
in see Section 5. The stationary distribution of the forward process σ2 is set to 1. The range for a
spans from -10 to 10, with the dashed line representing the linear schedule as proposed originally in
the VPSDE models (Song et al., 2021).

with mt = exp{−
∫ t

0 β(s)ds/(2σ2)}, σ2
t = σ2(1−m2

t) and Z ∼ N (0, Id). Therefore, we can simply
identify βcos by solving

−
∫ t

0

βcos(s)
2σ2 ds = log (ᾱt) ,

which yields the following noising function:

βcos(t) := σ2 π

T (s+ 1) tan
(
π (s+ t/T)

2 (s+ 1)

)
. (49)

Finally, to ensure fair comparison with the linear schedule and the parametric schedules defined in
Section 5, we set in all our experiments s = 0.021122 so that βcos(0) ≈ βa(0) = 0.1 for any a.

E.1.4 Discretization details of the diffusion SDE

In contrast to the forward process, described in Equation (1), which is simulated exactly, the
backward process needs to be discretized. Recall that the backward process of (1) is given by:

d←−X t = − β̄(t)
2σ2
←−
X t + β̄(t)∇ log pT −t

(←−
X t

)
dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞.

Consider time intervals 0 ≤ tk ≤ t ≤ tk+1 ≤ T , with tk =
∑k

ℓ=1 γℓ and T =
∑N

k=1 γk.

In our theoretical analysis, we have considered the Exponential Integrator discretization, defined
recursively for t ∈ [tk, tk+1] by

d←−XEI
t = β̄(t)

(
− 1

2σ2
←−
XEI

t +∇ log pT −tk

(
T − tk,

←−
XEI

tk

))
dt+

√
β̄(t)dBt,

←−
XEI

0 ∼ π∞ .

50

Published in Transactions on Machine Learning Research (12/2024)

0.0 0.2 0.4 0.6 0.8 1.0

0

25

50

75

100

125

150

175

200 Linear schedule
Cosine schedule

Figure 8: Evolution of noising functions under the cosine schedule (orange, βcos) compared to the
linear schedule (β0, blue) over time with σ2 = 1 and s = 0.021122. Additionally, since β0 increases
unboundedly near T , we clip its value to 200 for better visualization.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Linear schedule
Cosine schedule

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Linear schedule
Cosine schedule

mt σt

Figure 9: Evolution of mt and σt for both the cosine schedule (orange) and the linear schedule (blue)
w.r.t. time, with s = 0.021122 and σ2 = 1. We clip the value of βcos by 200 for better visualization.

In the numerical experiments, we have given priority to the Euler-Maruyama discretization, which
is widely used, and defined recursively for t ∈ [tk, tk+1] by

d←−XEM
t = − β̄(tk)

2σ2
←−
XEM

tk
+ β̄(tk)∇ log pT −tk

(←−
XEM

tk

)
dt+

√
β̄(tk)dBt,

←−
XEM

0 ∼ π∞ . (50)

51

Published in Transactions on Machine Learning Research (12/2024)

To ensure transparency, the graphs presented in Figure 2 of Section 5.1 are reproduced in Figure
10 using an Exponential Integrator discretization scheme. As expected for fine discretization steps
(here 500 steps were used) the two schemes produce nearly identical results.

10 5 0 5 10
Values of a

6

7

8

9

10

U
pp

er
 b

ou
nd

 (K
L)

0.1

0.2

0.3

0.4

K
L

di
ve

rg
en

ce

Upper-bound
Upper-bound (no contraction)
KL(data,) (NN)

KL(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

82

84

86

88

90

92

94

U
pp

er
 b

ou
nd

 (K
L)

0.0

0.5

1.0

1.5

2.0

K
L

di
ve

rg
en

ce

10 5 0 5 10
Values of a

10

11

12

13

14

15

16

17

U
pp

er
 b

ou
nd

 (K
L)

0.0

0.5

1.0

1.5

K
L

di
ve

rg
en

ce

10 5 0 5 10
Values of a

40

60

80

100

120

U
pp

er
 b

ou
nd

 (W
2)

0.2

0.3

0.4

0.5

0.6

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

20

30

40

50

U
pp

er
 b

ou
nd

 (W
2)

0.36

0.38

0.40

0.42

0.44

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

10000

20000

30000

40000

50000

U
pp

er
 b

ou
nd

 (W
2)

0.5

1.0

1.5

2.0

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Figure 10: Comparison of the empirical KL divergence (mean ± std over 30 runs) (top) and W2

distance (mean ± std over 10 runs) (bottom) between πdata and π̂
(β,θ)
N (orange) and the related

upper bounds (blue) from Theorem 3.1 and Theorem 4.2 across parameter a for noise schedule βa,
d = 50 with Exponential Integrator discretization scheme. We also show the metrics for the
linear VPSDE model (dashed line) and our model (dotted line) with exact score evaluation.

E.1.5 Implementation of the score approximation in the Gaussian setting

Although the score function is explicit when πdata is Gaussian (see Lemma E.1), we implement SGMs
as done in applications, i.e., we train a deep neural network to witness the effect of the noising function
on the approximation error. We train a neural network architecture sθ(t, x) ∈ [0, T] × Rd 7→ Rd

using the actual score function as a target:

Lexplicit(θ) = E
[∥∥∥sθ

(
τ,
−→
X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2
]

= E
[∥∥∥sθ

(
τ,
−→
X τ

)
− (m2

τ Σ0 + σ2
τ Id)−1(−→X τ +mτµ0)

∥∥∥2
]
,

where t → mt and t → σt are defined in Lemma E.1 and τ ∼ U(0, T) is independent of −→X . The
neural network architecture chosen for this task is described in Figure 11. The width of each dense
layer mid_features is set to 256 throughout the experiments.

52

Published in Transactions on Machine Learning Research (12/2024)

x

t

Li
n

ea
r

la
ye

r
T

im
e

em
b

ed
d

in
g

d

R
eL

U

R
eL

U

R
eL

U

Li
n

ea
r

la
ye

r

o
u

tp
u

t

d

m
id

_f
ea

tu
re

s
m

id
_f

ea
tu

re
s

Figure 11: Neural network architecture. The input layer is composed of a vector x in dimension
d and the time t. Both are respectively embedded using a linear transformation or a sine/cosine
transformation (Nichol and Dhariwal, 2021) of width mid_features. Then, 3 dense layers of
constant width mid_features followed by ReLu activations and skip connections regarding the time
embedding. The output layer is linear resulting in a vector of dimension d.

E.2 Details on the experiments and additional results

E.2.1 Illustration of the KL bound in the Gaussian setting

Target distributions. We investigate the relevancy of the upper bound from Theorem 3.1
for different noise schedules in the Gaussian setting. We use as a training sample 104 samples
with distribution N (1d,Σ) for d the dimension of the target distribution with different choices of
covariance structure.

1. (Isotropic) Σiso = 0.5Id.

2. (Heteroscedastic) Σheterosc ∈ Rd×d is a diagonal matrix such that Σheterosc
jj = 1 for 1 ≤ j ≤ d,

and Σheterosc
jj = 0.01 otherwise.

3. (Correlated) Σcorr ∈ Rd×d is a full matrix whose diagonal entries are equal to one and the
off-diagonal terms are given by Σcorr

jj′ = 1/
√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.

The resulting data distributions are respectively denoted by π(iso)
data , π(heterosc)

data and π
(corr)
data .

Upper bound evaluation. We leverage the Gaussian nature of the target distribution to compute
explicitly all the terms in the bound. On the one hand, the relative entropy in EKL

1 , KL (πdata∥π∞)

53

Published in Transactions on Machine Learning Research (12/2024)

is computed using the analytical formula for KL-divergence between two random Gaussian variable
(Lemma E.2). On the other, the relative Fisher information in EKL

3 , I(πdata|π∞), is computed using
Lemma (E.4). Moreover, as the noise schedule function βa and its primitive are analytically known,
every occurrences of either of them are explicitly computed. Finally, it remains to estimate the
expectation in EKL

2 (θ, β). This is done via Monte Carlo estimation on 500 samples from the forward
process (see Section E.1.2) for every step forward:

1
500

N−1∑
k=0

500∑
i=1

∥∥∥∇ log p̃T −tk

(−→
X

(i)
T −tk

)
− s̃θ

(
T − tk,

−→
X

(i)
T −tk

)∥∥∥2 ∫ T −tk

T −tk+1

βa(t)dt .

SGM data generation in dimension 50. In Figures 2 (top) of the main paper, we represent
the following quantities in the same graph, in dimension d = 50, for different values of a.

• In blue the upper bound from Theorem 3.1. The dark blue color is used to refer to the
upper bound with the contraction argument in equation (7) from Proposition C.1 while the
ligther blue bound is the same bound without the contraction argument.

• In orange (dotted line) the KL divergence between the target distribution πdata and the
empirical mean and covariance of the data generated using the true score function from
Lemma E.1.

• In orange (plain line) we represent KL(πdata∥π̂(βa,θ)
N) for a ∈ {−10,−9,−8, . . . , 10}. That

is, the KL divergence between the target distribution πdata and the empirical mean and
covariance of the data generated using the neural network architecture described in Figure
11 to approximate the score function.

• In orange (dashed line) we represent KL(πdata∥π̂(β0,θ)
N). That is, the KL divergence between

the target data πdata and the empirical mean and covariance of the data generated by the
linear schedule VPSDE presented in Song et al. (2021) with the neural network architecture
described in Figure 11.

We generate 10 000 samples. The batch size is set to 64 and neural networks are optimized with
Adam. All the KL divergences written above are computed using Lemma E.2. Due to the stochastic
nature of our experiments, they are repeated 30 times so that the corresponding mean value and
standard deviations of these results are respectively depicted using plain and fill-in-between plots.

To disentangle the effect of each error term it is possible to plot the mixing time error EKL
1 (β), the

approximation error EKL
2 (θ, β) and the discretization error EKL

3 (β) on a same graph for different
values of a. However, for the schedule choice presented in Figure 1 as β(T) is set to be 20 for every
a values it is pointless to display EKL

3 (β) as it would not vary for different choices of schedule from
βa. The three error terms for Theorem 3.1, corresponding to the example in Figure 2 (top) are
provided below in Figure 12.

Optimal schedule versus classical choices. We investigate the gain from using the parametric
schedule with a⋆ minimising the upper bound from Theorem 3.1 for d ∈ {5, 10, 25, 50} compared to
using the linear and cosine schedules (see Appendix E.1.3) in the isotropic and correlated settings

54

Published in Transactions on Machine Learning Research (12/2024)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

0

2

4

6

8

10

E
rr

or
 C

on
tri

bu
tio

ns

Mixing time error KL
1 ()

Mixing time error (no contraction)
Approximation error KL

2 (,)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

0

2

4

6

8

10

12

14

E
rr

or
 C

on
tri

bu
tio

ns

Mixing time error KL
1 ()

Mixing time error (no contraction)
Approximation error KL

2 (,)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

0

2

4

6

8

10

12

14

E
rr

or
 C

on
tri

bu
tio

ns

Mixing time error KL
1 ()

Mixing time error (no contraction)
Approximation error KL

2 (,)

(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Figure 12: Error terms contribution from Theorem 3.1 displayed from the same examples as in
Figure 2 (top).

(as mentioned in Section 5.1, up to rescaling the heteroscedastic setting boils down to an isotropic
setting).

To determine the optimal value a⋆, upper bounds were initially calculated across various dimensions
for a range of a values from {−10,−9, . . . , 10}. This initial calculation aimed to identify a preliminary
minimum value. Subsequently, the search was refined around these preliminary values using finer
step-sizes of 0.25 to more precisely locate a⋆.

Results are given in tabular form in Table 1 and in Figure 13. The parametric schedule optimized
to minimize the upper bound βa⋆ consistently surpasses the linear schedule, delivering significant
improvements. This enhanced performance is shown by lower average Kullback-Leibler divergence
between πdata and the generated sample distribution, as well as a reduction in the standard deviation
of these divergences, which contributes to more stable generation. These results are competitive
with or even exceed those obtained with state-of-the-art schedules such as the cosine schedule,
particularly in higher dimensions d = 25 and d = 50. However, one should note that this comparison
may not be entirely fair, as the cosine schedule increases unboundedly near T , whereas we capped
the parametric schedule at β(T) = 20 to align with the linear schedule described in Song et al.
(2021).

E.2.2 Illustration of the Wasserstein bound in the Gaussian setting

Target distributions. The target distributions are Gaussian and are the same as for the the
Kullback-Leibler bound: π(iso)

data , π(heterosc)
data and π

(corr)
data .

Upper bound evaluation. We leverage the Gaussian nature of the target distribution to compute
explicitly all the terms in the bound from Theroem 4.2. For the mixing time EW2

1 , the strong
log-concavity constant C̄t is derived using Lemma 4.1 and W2(πdata, π∞) is derived using Lemma
E.3. For EW2

2 , the analytical expressions for L̄t is given in Lemma 4.1 and an upper bound to M is
derived in Proposition E.5. All non analytically solvable integrals estimated numerically using the
trapezoidal rule, implemented with the built-in PyTorch function torch.trapezoid. To estimate ε,
we use Monte-Carlo simulations with 500 samples (in the same manner as for the Kullback-Leibler

55

Published in Transactions on Machine Learning Research (12/2024)

Dimension 5 10 25 50

Isotropic

Upper bound min a⋆ 1.75 1.00 1.50 2.00
Generation value in a⋆ 0.001607 ± 0.000462 0.005343 ± 0.001155 0.026724 ± 0.004046 0.095981 ± 0.005485
VPSDE (linear sched.) 0.001935 ± 0.000405 0.005594 ± 0.001377 0.031748 ± 0.006158 0.105592 ± 0.019529

Cosine schedule 0.001390 ± 0.000296 0.005097 ± 0.001064 0.026900 ± 0.001859 0.099917 ± 0.004375
% gain (vs VPSDE) +16.93 % +4.48 % +15.80 % +9.10 %
% gain (vs Cosine) -15.61 % -4.83 % +0.66 % +3.94 %

Correlated

Upper bound min a⋆ 2.25 1.75 1.75 2.25
Generation value in a⋆ 0.001861 ± 0.000880 0.005871 ± 0.001165 0.033156 ± 0.003785 0.109649 ± 0.008056
VPSDE (linear sched.) 0.002568 ± 0.002708 0.006210 ± 0.001816 0.038434 ± 0.010313 0.134716 ± 0.016541

Cosine schedule 0.001197 ± 0.000332 0.005515 ± 0.000775 0.040430 ± 0.003475 0.110515 ± 0.004646
% gain (vs VPSDE) +27.53 % +5.46 % +13.74 % +18.63 %
% gain (vs Cosine) -55.47 % -6.46 % +17.98 % +0.78 %

Parameters Learning rate 1e-4 1e-4 1e-3 1e-3
Epochs 20 30 75 150

Table 1: Comparison of the KL divergence between the target value and the generated value at a⋆

(the minimum value of the upper bound from Theorem 3.1) with the KL divergence between the
generated value by VPSDE with linear schedule and the target distribution. We display average KL
divergences plus or minus standard deviations over 10 runs. The target distributions are chosen to
be Gaussian with different covariance structures: isotropic (π(iso)

data), heteroscedastic (π(heterosc)
data) and

correlated (π(corr)
data).

5 10 25 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

K
L

di
ve

rg
en

ce

Linear schedule
Cosine schedule

a * (KL bound)

5 10 25 50
0.000

0.025

0.050

0.075

0.100

0.125

0.150

K
L

di
ve

rg
en

ce

Linear schedule
Cosine schedule

a * (KL bound)

(a) Isotropic setting π(iso)
data (b) Correlated setting π(corr)

data

Figure 13: Comparison of the empirical KL divergence (mean value ± std over 10 runs) between πdata
and the generative distribution π̂ for different values of the dimension. The generative distributions
considered are π̂(βa⋆ ,θ)

N) obtained by the time-inhomogeneous SGM for βa⋆ (blue plain), π̂(β0,θ)
N

obtained by a standard linear VPSDE model (yellow dashed) and π̂(βcos,θ)
N obtained by using a cosine

schedule (orange dotted).

bound):

sup
k∈{0,...,N−1}

√√√√ 1
500

500∑
i=1

∥∥∥∇ log p̃T −tk

(−→
X

(i)
T −tk

)
− s̃θ

(
T − tk,

−→
X

(i)
T −tk

)∥∥∥2
.

56

Published in Transactions on Machine Learning Research (12/2024)

SGM data generation dimension 50. In Figures 14 (and Figures 2 (bottom) of the main
paper) we represent on the same graph, in dimension d = 50, for different values of a:

• in blue the upper bound from Theorem 4.2.

• in orange (dotted line) the W2 distance between the target distribution πdata and the
empirical mean and covariance of the data generated using the true score function from
Lemma E.1.

• in orange (plain line) we represent W2(πdata, π̂
(βa,θ)
N) for a ∈ {−10,−9,−8, .., 10}. That

is, the W2 distance between the target distribution πdata and the empirical mean and
covariance of the data generated using the neural network architecture described in Figure
11 to approximate the score function

• in orange (dashed line) we reprensent W2(πdata, π̂
(β0,θ)
N). That is, the W2 distance between

the target data πdata and the empirical mean and covariance of the data generated by the
linear schedule VPSDE presented in Song et al. (2021) with the neural network architecture
described in Figure 11.

First results. We generate 10 000 samples. The batch size is set to 64 and neural networks are
optimized with Adam. All the W2 distances written above are computed using Lemma E.3. Due to
the stochastic nature of our experiments, they are repeated ten times so that the corresponding mean
value and standard deviations of these results are respectively depicted using plain and fill-in-between
plots.

10 5 0 5 10
Values of a

40

60

80

100

120

U
pp

er
 b

ou
nd

 (W
2)

0.2

0.3

0.4

0.5

0.6

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

5000

10000

15000

U
pp

er
 b

ou
nd

 (W
2)

0.2

0.4

0.6

0.8

1.0

1.2

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

Values of a

200

400

600

800

1000

1200

U
pp

er
 b

ou
nd

 (W
2)

0

1

2

3

4

5

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Figure 14: Comparison of the empirical 2-Wasserstein distance (mean value ± std over 10 runs)
between πdata and π̂

(βa,θ)
N (in orange) and the upper bound from Theorem 4.2 (in blue) w.r.t. the

parameter a used in the definition of the noise schedule βa, for d = 50. We also represent the
2-Wasserstein distances obtained with the linear VPSDE model (dashed line) and the one obtained
with the parametric model (dotted line) when the score is not approximated but exactly evaluated.
The data distribution πdata is chosen Gaussian, corresponding to (a) π(iso)

data , (b) π(heterosc)
data and (c)

π
(corr)
data .

Performances obtained from raw distributions for π(iso)
data , π(heterosc)

data and π(corr)
data are displayed in Figure

14. In the isotropic case (Figure 14 (a)) the curve for the upper bound (blue line) points a global
minimum near the minimal values obtain by W2(πdata, π̂

(βa,θ)
N) (plain orange line), which underlines

57

Published in Transactions on Machine Learning Research (12/2024)

that the upper bound is indeed informative in such a case. However, the upper bounds obtained
for the heteroscedastic and correlated settings (Figure 14 (b,c)) are not in line with the generation
results.

These observed discrepancies can be linked to the conditioning of the covariance matrices. In both
heteroscedastic and correlated cases, the largest eigenvalue of the covariance matrices is not smaller
than the variance stationary distribution of the forward process (set to σ2 = 1 in those experiments)
violating the requirements of Lemma 4.1 (λmax

(
Σ(heterosc)) = 1 and λmax

(
Σ(corr)) ≈ 15). This

induces the default of strong log-concavity of the renormalized densities p̃t. In this way, the Gaussian
scenario highlights the critical influence of the covariance matrix conditioning on SGMs. Additionally,
a smaller λmin (Σ) would increase Lt and M , which in turn would increase the bound from Theorem
4.2.

Data preprocessing. As frequently done in practice, we expect better conditioning by running SGMs
on a standardized distribution. In this way, note that if X0 ∼ πdata we consider the centered
standardized distribution Xstand = D (X0 − µ) with D = diag(σ1, . . . , σd) ∈ Rd×d a diagonal matrix
with diagonal entries σj corresponding to the standard deviation of the j-th component of X0 and
with µ = [E [X0,1] , ...,E [X0,d]]⊤. A last transformation shrinks the data into a rescaled version of
Xstand defined as Xscale = κD (X0 − µ) with κ := 1/(2λmax

(
Σ(stand)

)
)1/2, where λmax

(
Σ(stand)

)
is

the largest eigenvalue of the covariance matrix of Xstand. We then train SGMs to approximate the
distribution of Xscale. By doing so we ensure the applicability of Lemma 4.1 (with σ2 = 1), as the
largest eigenvalue of the covariance matrix of Xscale is no larger than 0.5.

Adapted upper bound. We can finally adapt the upper bound from Theorem 4.2 to a rescaled setting
by noting that

W2 (πdata, π̃) ≤ 1
κ

(
max

1≤j≤d
σj

)
W2

(
πscale, π̂

(βa,θ)
N,scale

)
, (51)

where

• πscale is the distribution of scaled sample Xscale

• π̂
(βa,θ)
N,scale corresponds to the distribution of SGM trained on Xscale

• π̃ is the distribution of the descaled generated samples, i.e., the distribution of D−1X/κ+µ

with X ∼ π̂(βa,θ)
N,scale.

Therefore, we can evaluate the upper bound of Theorem 4.2 for scaled samples (r.h.s. of (51)), and
transfer it up to a constant to descaled generated samples (l.h.s. of (51)).

Results with scaled data preprocessing. The results are detailed in Figure 15 for the heteroscedastic
case (e) π(heterosc)

scale and the correlated case (f) π(corr)
scale , and are discussed extensively in Section 5.1 of

the main paper. Note that the minima of the evaluated bounds now align closely with the empirical
metrics. However, the upper bound profile for the correlated case has been shifted up. This increase
was anticipated due to the effect of rescaling by the largest eigenvalue of Σcorr

(stand), approximately 15,
which reduces the magnitude of the values in π

(corr)
scale . This tends to increase the values of Lt and

M through the effect on λmin(Σ(corr)
(stand)) as explained above. Despite this effect, these experiments

confirm the overall utility of the bound for selecting the appropriate noise schedule. The effect of

58

Published in Transactions on Machine Learning Research (12/2024)

data rescaling on the Lispschitz continuity and log concavity of the true score function ∇ log pt are
illustrated in Figure 16 on the Heteroscedastic setting.

10 5 0 5 10
Values of a

20

30

40

50

U
pp

er
 b

ou
nd

 (W
2)

0.36

0.38

0.40

0.42

0.44

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

10 5 0 5 10
Values of a

10000

20000

30000

40000

50000

U
pp

er
 b

ou
nd

 (W
2)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2
di

st
an

ce

2(data,) (NN)

2(data,) (exact score)
VPSDE (NN)

(d) Heteroscedastic rescaled setting (e) Correlated rescaled setting

Figure 15: Comparison of the empirical 2-Wasserstein distance on rescaled datasets for (d) π(heterosc)
scale ,

(e) π(corr)
scale .

Optimal schedule versus classical choices. We investigate the gain from using SGM with the
schedule a⋆ minimising the upper bound from Theorem 4.2 for d ∈ {5, 10, 25, 50} compared to the
linear and cosine schedules (see Appendix E.1.3). To determine the optimal value a⋆, upper bounds
were initially calculated across various dimensions for a range of a values from {−10,−9, . . . , 10}.
This initial calculation aimed to identify a preliminary minimum value. Subsequently, the search
was refined around these preliminary values using finer step-sizes of 0.25 to more precisely locate a⋆.

Results for the isotropic, heteroscedastic, and correlated cases are presented in both tabular form in
Table 2 and visually in Figure 3 within the main paper. These findings are discussed in Section 5.1
of the main paper.

E.2.3 Numerical experiments on more complex synthetic data

In the context of complex data distributions, the Kullback-Leibler bound (Theorem 3.1) appears
to be of limited practical applicability. Specifically, EKL

2 (θ, β) implies that for each noise schedule
tested, a distinct score approximation s̃θ(t, x) must be trained. This requirement renders the bound
computationally intensive and therefore not realistically usable. Additionally, EKL

3 (β) is independent
of the schedule choice over (0, T), as it depends solely on its final value β(T) which is set constant
in our empirical setting (for all a, βa(T) = 20). As a consequence, the last remaining error term to
analyse the bound through the lens of noise schedules is the mixing time EKL

1 (β). However, relying
exclusively on EKL

1 (β) would suggest selecting a schedule t 7→ β(t) that maximises
∫ T

0 β(t)dt. As
demonstrated in Section 5.1, this approach clearly fails to yield the schedule choices near the optimal
solution.

Therefore, a more reliable choice would be to use the W2 bound of Theorem 4.2 for which most of
the terms can be computed explicitly with reasonable computational cost in the Gaussian setting.

59

Published in Transactions on Machine Learning Research (12/2024)

Dimension 5 10 25 50

Isotropic

Upper bound min a⋆ 4.5 4.25 3.75 4.25
Generation value in a⋆ 0.039241 ± 0.012572 0.059274 ± 0.009438 0.130829 ± 0.014245 0.233812 ± 0.010584
VPSDE (linear sched.) 0.036995 ± 0.004663 0.063939 ± 0.010876 0.141601 ± 0.020447 0.256384 ± 0.032709

Cosine schedule 0.030996 ± 0.003254 0.060649 ± 0.007117 0.131234 ± 0.004794 0.251959 ± 0.005588
% gain (vs VPSDE) -6.07 % +7.30 % +7.61 % +8.79 %
% gain (vs Cosine) -26.60 % +2.26 % +0.31 % +7.20 %

Heterosc.
(with rescaling)

Upper bound min a⋆ 4.00 3.25 2.00 2.75
Generation value in a⋆ 0.096592 ± 0.003062 0.143224 ± 0.004899 0.242493 ± 0.004769 0.372292 ± 0.004694
VPSDE (linear sched.) 0.098889 ± 0.003604 0.147478 ± 0.009638 0.249144 ± 0.011394 0.385612 ± 0.009333

Cosine schedule 0.096437 ± 0.002380 0.143701 ± 0.002460 0.250520 ± 0.004448 0.374868 ± 0.003243
% gain (vs VPSDE) +2.32 % +2.89 % +2.67 % +3.46 %
% gain (vs Cosine) -0.16 % +0.33 % +3.20 % +0.69 %

Correlated
(with rescaling)

Upper bound min a⋆ 8.00 8.75 10.50 11.00
Generation value in a⋆ 0.066548 ± 0.013873 0.107291 ± 0.028454 0.261075 ± 0.029533 0.676151 ± 0.123277
VPSDE (linear sched.) 0.072068 ± 0.019861 0.138240 ± 0.031119 0.302986 ± 0.045539 0.897584 ± 0.079860

Cosine schedule 0.048276 ± 0.008605 0.112898 ± 0.011284 0.391753 ± 0.030112 0.765524 ± 0.022376
% gain (vs VPSDE) +7.65 % +22.36 % +13.81 % +24.68 %
% gain (vs Cosine) -37.77 % +4.96 % +33.31 % +11.67 %

Parameters Learning rate 1e-4 1e-4
1e-3

(1e-4 for Corr.)
1e-3

(1e-4 for Corr.)
Epochs 20 30 75 150

Table 2: Comparison of theW2 distance between the target value and the generated value at a⋆ (the
minimum value of the upper bound from Theorem 4.2) with the W2 distance between the generated
value by VPSDE and the target distribution. We display averages plus or minus standard deviations
over 10 runs. The target distributions are chosen to be Gaussian with different covariance structures:
isotropic, heteroscedastic (with rescaling applied), and correlated (with rescaling applied).

0.2 0.4 0.6 0.8 1.0
Diffusion time t

2

4

6

8

10
Anisotropic distribution (original)
Anisotropic distribution (rescaled)

Figure 16: Comparison of the ratio strong concavity / Lipschitz continuity for the true score function
∇ log pt in the Heteroscedastic setting before rescaling (Figure 14 (b)) and after rescaling (Figure 15
(d)) throughout diffusion time t ∈ (0, T].

In particular, we leverage the Gaussian framework to estimate the constant terms and apply the
rescaling defined in Appendix E.2.2 to ensure that Ct is non negative for t ∈ (0, T]. More precisely,

60

Published in Transactions on Machine Learning Research (12/2024)

• Lt and Ct are given in Lemma 4.1 and are computed using the empirical covariance matrix
associated with πscale (and using when applicable the refinements in Propositions D.1 and
D.2),

• M is derived with Proposition E.5 with appropriate empirical estimators,

• W2(πdata, π∞) is computed using closed-form formulas for Gaussian distributions, involving
empirical estimators of the mean and covariance of πscale,

• the term ε is deliberately omitted to avoid the prohibitively high computational costs
associated with training distinct models for different noise schedules.

The experiments are run using the same neural network architecture as in the Gaussian illustrations
of Appendices E.2.1 and E.2.2 (i.e., a dense neural network with 3 hidden layers of width 256). The
network was trained over 200 epochs for a ∈ {−10,−9, . . . , 19, 20}. Contrary to the Gaussian case,
conditional score matching Lscore(θ) (5) is used, as being closer to what is done in practice (explicit
scores are now out of reach). To assess the quality of the data generation three metrics are used:

(a) an estimator of the KL-divergence based on k-nearest neighbors (Wang et al., 2009) with ⌈
√
d⌉

neighbors,

(b) the sliced 2-Wasserstein distance (Flamary et al., 2021) with 2000 projections,

(c) the negative log likelihood computed on 1000 samples defined as − 1
1000

∑1000
i=1 log πdata(xi) with

(xi)1≤i≤1000 samples from the generated distribution and πdata the probability density function
to be estimated.

Funnel distribution. The first distribution considered is the Funnel distribution (Thin et al.,
2021) in dimension 50, defined as

πdata(x) = φa2(x1)
d∏

j=2
φexp(2bx1)(xj) ,

with a = 1 and b = 0.5. To ensure the applicability of Theorem 4.2 and Lemma 4.1 the samples
are standardized and rescaled according to the method described in Appendix E.2.2. The results,
illustrated in Figures 4 and 17, show that the upper bounds effectively mirror the generation
outcomes across the three metrics considered. Moreover, the generation results for the parametric
schedule a⋆ (the one that minimizes the upper bound) outperforms in all three metrics both the
linear and cosine schedules (see Table 3).

Gaussian mixture models. The second distribution considered is a Gaussian mixture model
with 25 modes in dimension 50, defined as

πdata(x) = 1
25

∑
(j,k)∈{−2,...,2}2

φµjk,Σd
(x)

with φµjk,Σd
denoting the probability density function of the Gaussian distribution with covariance

matrix Σd = diag (0.01, 0.01, 0.1, ..., 0.1) and mean vector µjk = [j, k, 0, 0, 0..., 0]⊤. The results shown
in Figure 18 and Table 3 confirm the relevance of the upper bound even for non-Gaussian datasets.

61

Published in Transactions on Machine Learning Research (12/2024)

10 0 10 20
Values of a

15

20

25

U
pp

er
 b

ou
nd

 (W
2)

4

6

8

10

 K
N

N
 a

pp
ro

x.
 K

ul
lb

ac
k-

Le
ib

le
rParam. sched. a

Cosine sched. cos

10 0 10 20
Values of a

15

20

25

U
pp

er
 b

ou
nd

 (W
2)

80

85

90

95

100

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

Negative log-likelihood
Cosine schedule

(b) KL divergence with k-nearest neighbors estimate (c) Negative log-likelihood

Figure 17: Upper bound and empirical distances between the data distribution and the generated
samples for different metrics on a Funnel dataset in dimension 50.

10 0 10 20
Values of a

10.0

12.5

15.0

17.5

20.0

22.5

U
pp

er
 b

ou
nd

 (W
2)

0.04

0.06

0.08

0.10

S
lic

ed
-

2
di

st
an

ce

Param. sched. a

Cosine sched. cos

10 0 10 20
Values of a

10.0

12.5

15.0

17.5

20.0

22.5

U
pp

er
 b

ou
nd

 (W
2)

2.0

2.5

3.0

3.5

4.0

4.5

 K
N

N
 a

pp
ro

x.
 K

ul
lb

ac
k-

Le
ib

le
rParam. sched. a

Cosine sched. cos

10 0 10 20
Values of a

10.0

12.5

15.0

17.5

20.0

22.5

U
pp

er
 b

ou
nd

 (W
2)

30

35

40

45

50

55

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

Param. sched. a

Cosine sched. cos

(a) Sliced-W2 distance (b) k-nearest neighbors estimator (c) Negative log-likelihood

Figure 18: Upper bound and empirical distances between the data distribution and the generated
samples for different metrics on a mixture of 25 Gaussian variables dataset in dimension 50.

E.3 Numerical experiments on real-world datasets

To evaluate the impact of the noise schedule on the performance of score-based generative models we
evaluate the parametric family βa introduced in Equation (9) using CIFAR 10 dataset. We suggest
to analyse the FID (Fréchet Inception Distance) score on 50 000 samples generated for different
noise schedules (different values of a in βa, see Figure 1) on CIFAR 10.

We use pretrained models from Karras et al. (2022) with the recommended hyperparameters designed
to replicate the experiments in Song et al. (2021) corresponding to our linear schedule (a = 0) as
shown in Figure 1. In particular, we let T = 1, β(0) = 0.1, β(T) = 20, 1000 discretization steps and
sample over the diffusion [ϵ, 1] with ϵ = 10−3.

The training process in Karras et al. (2022) is slightly different, though equivalent, to the original
implementation. In particular, the networks are not trained to directly estimate ∇ log pt(

−→
X t).

Instead, a denoiser function Dθ(X,σ) is trained to isolate the noise from the signal for some noise
level (see Equations (2) and (3) in Karras et al. (2022)). With appropriate rescaling this denoiser

62

Published in Transactions on Machine Learning Research (12/2024)

Metric Sliced-Wasserstein k-nn (Kullback-Leibler) NLL

Funnel distribution

Generation value in a⋆ 0.218498 ± 0.049882 4.242455 ± 0.450224 82.25179 ± 3.12809
VPSDE (linear sched.) 0.240664 ± 0.036578 6.048403 ± 0.726221 87.02893 ± 3.40642

Cosine schedule 0.221851 ± 0.054309 4.927209 ± 0.510968 83.73294 ± 3.53262
% gain (vs VPSDE) +9.21 % +29.88 % +5.49 %
% gain (vs Cosine) +1.51 % +13.91 % +1.77 %

Gaussian mixture models

Generation value in a⋆ 0.043388 ± 0.005222 2.433759 ± 0.180652 35.033176 ± 1.97863
VPSDE (linear sched.) 0.057763 ± 0.004450 3.063054 ± 0.126697 40.49867 ± 3.13705

Cosine schedule 0.046816 ± 0.008402 2.541213 ± 0.158563 34.76353 ± 2.20980
% gain (vs VPSDE) +24.91 % +20.55 % +13.49 %
% gain (vs Cosine) +7.32 % +4.23 % -0.77 %

Parameters Learning rate 1e-3 1e-3 1e-3
Epochs 200 200 200

Table 3: Comparison of the sliced-W2 distance, KL divergence coupled with k-nearest neighbors
estimate and negative log-likelihood between the target distribution and the SGM-generated one.
For the latter, the SGM is either trained with linear, cosine and βa⋆ schedules. We display averages
plus or minus standard deviations over 10 runs. The target distributions are chosen are Funnel and
Gaussian mixture models.

can be used in the VP setting by letting

sθ(−→X t, t) = σ2
t

mt

(
Dθ

(−→
X t

mt
,
σt

mt

)
−
−→
X t

mt

)
,

where sθ is the score approximation as defined in our paper, mt = exp{−
∫ t

0 β(s)ds/(2σ2)} and
σ2

t = σ2(1−m2
t). This formulation bridges the denoising approach with score-based methods in the

VP framework.

Figure 19 displays the FID score for samples generated using the Euler-Maruyama discretization of
the backward process for different choices of βa with a ∈ {−10,−9, . . . , 10} and cosine schedule βcos.
Although the assumptions of our results cannot be verified in such a setting, it is interesting to
note that the empirical performance follows the same dynamics as in the toy numerical experiments.
This indicates that the analysis and optimization of noise schedules is an interesting problem to be
explored further for complex cases.

F Conditional training in the Gaussian setting

Section 5.1 of this paper is dedicated to the illustration of the theoretical upper bounds and their
relevance in the Gaussian setting (i.e., when πdata is Gaussian). This choice has been motivated by
the fact that, under this setting, all constants in the upper bounds from Theorem 3.1 and Theorem
4.2 are either analytically available or could be precisely estimated (see Appendices E.2.1 and E.2.2).

In particular, both upper bounds display error terms proportional to Lexplicit(θ) (4), which has
motivated the use of explicit score matching during the training. To do so, we used a deep neural
architecture (see Figure 11) trained to minimize Lexplicit(θ) (4) using as a target the true score
function. This is possible because in the Gaussian setting, the true score function is analytically
known (Lemma E.1). However, in most applications the score function is not available, because

63

Published in Transactions on Machine Learning Research (12/2024)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

4

6

8

10

12

14

16

18

FI
D

Sc
or

es

FID Score param. sched. a

FID Score cosine sched. cos

Figure 19: FID scores on 50 000 generated samples using pre-trained models from Karras et al.
(2022) with different noise schedules from the parametric family (9) and cosine schedule.

the data distribution is not known and has to be learned. This is the reason why, in practice
we rely on conditional score matching (i.e., the minimization of Lscore(θ) (5)). This approach is
particularly relevant given the relationship between the explicit and conditional score functions:
Lexplicit (θ) = Lscore (θ)− E

[
∥∇ log pτ (−→X τ)−∇ log pτ (−→X τ |X0)∥2

]
.

Consequently, all the theoretical upper bounds discussed in Sections 3 and 4 can be adjusted by a
constant (with respect to θ) to account for discrepancies between the score function learned through
Lscore or Lexplicit.

The rest of this section demonstrates the numerical effects of employing conditional score matching
instead of explicit score matching, following the numerical set-up of Appendices E.2.1 and E.2.2. In
Figure 20, the Kullback-Leibler upper bound from Theorem 3.1 is depicted in varying shades of
blue, while the empirical KL(πdata||π̂(βa,θ)

N) across parameters a ∈ {−10,−9,−8, ..., 10} is shown in
varying shades of orange.

In Figure 20, three learning scenarios are presented: one using explicit score matching (which exactly
matches the results of Figure 2 (top)), another with conditional score matching over 150 epochs,
and a third with 300 epochs. Both the generation results and the upper bounds show diminished
performance as the curves are shifted upwards. Nonetheless, the overall curve shapes are similar, and
the optimal points remain closely aligned. Interestingly, both the upper bounds and the generation
outcomes in the conditional scenarios demonstrate more pronounced peaks near the minimum values.
This suggests that precise noise schedule selection may yield even better performance gain when
SGMs are trained using conditional score matching.

Additionally, Figure 21 demonstrates that increasing the number of training iterations when using
conditional score matching provides results more and more similar to that obtained with explicit
score matching. This effect is noticeable in both the KL divergence and the W2 distance.

64

Published in Transactions on Machine Learning Research (12/2024)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

6

7

8

9

10

11

12

13

U
pp

er
 b

ou
nd

 (K
L)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

K
L

di
ve

rg
en

ce

KL(data,) (exact score)

KL(data,) (NN) (explicit 150 epochs)

KL(data,) (NN) (conditional 150 epochs)

KL(data,) (NN) (conditional 300 epochs)
Upper bound (explicit)
Upper bound (conditional 150 epochs)
Upper bound (conditional 300 epochs)

Isotropic setting

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

84

86

88

90

92

94

U
pp

er
 b

ou
nd

 (K
L)

0

1

2

3

4

5

K
L

di
ve

rg
en

ce

KL(data,) (exact score)

KL(data,) (NN) (explicit 150 epochs)

KL(data,) (NN) (conditional 150 epochs)

KL(data,) (NN) (conditional 300 epochs)
Upper bound (explicit)
Upper bound (conditional 150 epochs)
Upper bound (conditional 300 epochs)

Heteroscedastic setting

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

12

14

16

18

20

U
pp

er
 b

ou
nd

 (K
L)

0.0

0.5

1.0

1.5

2.0

2.5

K
L

di
ve

rg
en

ce

KL(data,) (exact score)

KL(data,) (NN) (explicit 150 epochs)

KL(data,) (NN) (conditional 150 epochs)

KL(data,) (NN) (conditional 300 epochs)
Upper bound (explicit)
Upper bound (conditional 150 epochs)
Upper bound (conditional 300 epochs)

Correlated setting

Figure 20: Comparison of the empirical KL divergence (mean value ± std over 10 runs) between
πdata and π̂

(βa,θ)
N (in orange) and the upper bound of Theorem 3.1 (in blue) w.r.t. the parameter a

used in the definition of the noise schedule βa, for d = 50.

65

Published in Transactions on Machine Learning Research (12/2024)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

6

7

8

9

10

11

12

13

U
pp

er
 b

ou
nd

 (K
L)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

K
L

di
ve

rg
en

ce

KL(data,) (exact score)

KL(data,) (NN) (explicit 150 epochs)

KL(data,) (NN) (conditional 300 epochs)

KL(data,) (NN) (conditional 1000 epochs)
Upper bound (explicit)
Upper bound (conditional 300 epochs)
Upper bound (conditional 1000 epochs)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Values of a

40

60

80

100

120

140

160

180

U
pp

er
 b

ou
nd

 (W
2)

0.2

0.4

0.6

0.8

1.0

1.2

2
di

st
an

ce

2(data,) (exact score)

2(data,) (NN) (explicit 150 epochs)

2(data,) (NN) (conditional 300 epochs)

2(data,) (NN) (conditional 1000 epochs)
Upper bound (explicit)
Upper bound (conditional 300 epochs)
Upper bound (conditional 1000 epochs)

Figure 21: Comparison of the empirical KL divergence (top) and the W2 distance (bottom) (mean
value ± std over 10 runs) between πdata = π

(iso)
data and π̂

(βa,θ)
N (in orange) and the upper bound

of Theorem 3.1 (top) and of Theorem 4.2 (bottom) (in blue) w.r.t. the parameter a used in the
definition of the noise schedule βa, for d = 50.

66

	Introduction
	Mathematical framework for SGMs
	Non-asymptotic Kullback-Leibler bound
	Non-asymptotic Wasserstein bound
	Evaluation of the theoretical upper bounds
	Gaussian setting
	More general target distributions

	Discussion
	Notations and assumptions.
	Proofs of Section 3
	Proof of Theorem 3.1
	Technical results

	Proofs of Section 4
	Gaussian case: proof of Lemma 4.1
	Proof of Theorem 4.2
	Technical results for Wasserstein upper bound

	Discussion on the hypotheses
	Details on numerical experiments
	Implementation choices
	Exact score and metrics in the Gaussian case
	Stochastic differential equation exact simulation
	Noise schedules
	Discretization details of the diffusion SDE
	Implementation of the score approximation in the Gaussian setting

	Details on the experiments and additional results
	Illustration of the KL bound in the Gaussian setting
	Illustration of the Wasserstein bound in the Gaussian setting
	Numerical experiments on more complex synthetic data

	Numerical experiments on real-world datasets

	Conditional training in the Gaussian setting

