
Perturbation Type Categorization for Multiple Adversarial Perturbation
Robustness

Pratyush Maini1 Xinyun Chen2 Bo Li3 Dawn Song2

1Carnegie Mellon University
2University of California, Berkeley

3University of Illinois at Urbana-Champaign

Abstract

Recent works in adversarial robustness have pro-
posed defenses to improve the robustness of a sin-
gle model against the union of multiple perturba-
tion types. However, these methods still suffer sig-
nificant trade-offs compared to the ones specifi-
cally trained to be robust against a single perturba-
tion type. In this work, we introduce the problem
of categorizing adversarial examples based on their
perturbation types. We first theoretically show on a
toy task that adversarial examples of different per-
turbation types constitute different distributions—
making it possible to distinguish them. We sup-
port these arguments with experimental validation
on multiple ℓp attacks and common corruptions.
Instead of training a single classifier, we propose
PROTECTOR, a two-stage pipeline that first cat-
egorizes the perturbation type of the input, and
then makes the final prediction using the classifier
specifically trained against the predicted perturba-
tion type. We theoretically show that at test time the
adversary faces a natural trade-off between fool-
ing the perturbation classifier and the succeeding
classifier optimized with perturbation-specific ad-
versarial training. This makes it challenging for an
adversary to plant strong attacks against the whole
pipeline. Experiments on MNIST and CIFAR-10
show that PROTECTOR outperforms prior adversar-
ial training-based defenses by over 5% when tested
against the union of ℓ1, ℓ2, ℓ∞ attacks. Addition-
ally, our method extends to a more diverse attack
suite, also showing large robustness gains against
multiple ℓp, spatial and recolor attacks.

1 INTRODUCTION

Machine learning models have been shown to be vulnerable
to different types of adversarial examples—inputs with a
small magnitude of perturbation added to mislead the classi-
fier’s prediction [Szegedy et al., 2013]. Consequently, many
defenses have been proposed to improve their robustness, a
majority of which focus on achieving robustness against a
specific perturbation type [Goodfellow et al., 2015, Madry
et al., 2018, Kurakin et al., 2017, Tramèr et al., 2018, Dong
et al., 2018, Zhang et al., 2019, Carmon et al., 2019]. How-
ever, as ML models get adopted in real-world applications, it
becomes important for the defenses to be robust against dif-
ferent types of perturbations given the flexibility of practical
attackers. In addition, prior work showed that when models
are trained to be robust against one perturbation type, the ro-
bustness is typically not preserved against attacks of a dif-
ferent type [Schott et al., 2018, Kang et al., 2019].

Motivated by the need for robustness against diverse pertur-
bation types, recent works have attempted to train models
that are robust against multiple perturbation types [Tramèr
and Boneh, 2019, Maini et al., 2020, Laidlaw et al., 2021].
These works consider perturbations restricted by their ℓp
norms (p ∈ {1, 2,∞}) or spatial and color transforma-
tions. The proposed methods improve the overall robustness
against multiple perturbation types. However, when evaluat-
ing the robustness against each individual perturbation type,
the robustness of models trained by these methods is still
considerably worse than those trained on a single perturba-
tion type. Given these empirical observations, in this work
we aim to answer: Are different types of perturbations sep-
arable? Can we categorize them to improve robustness to
multiple adversarial perturbations?

To address these questions and explore the properties of
different perturbation types, we introduce the problem of
categorizing adversarial examples based on their perturba-
tion types. We present theoretical analysis on a toy task to
show that when we add different types of perturbations to
benign samples of a given ground-truth class, their new dis-

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<pratyushmaini@cmu.edu>?Subject=Your UAI 2022 paper

tributions are distinct and separable. We experimentally val-
idate our theoretical results on both (mathematically) well-
defined perturbation regions such as ℓp balls, as well as var-
ious common corruptions [Hendrycks and Dietterich, 2019].
We find that deep networks are able to categorize different
perturbation types with high accuracy (> 95%). Further,
our perturbation classifier shows high generalization accu-
racy (∼ 90%) to unseen common corruptions, i.e., correctly
predicting their categories (weather, noise, blur, or digital)
without training on them. While in this work we focus on
improving worst-case adversarial robustness, applications
of categorizing perturbation types extend beyond it—such
as detecting systematic distribution shifts (e.g. presence of
snow for self-driving cars [Michaelis et al., 2020]). Further,
using a perturbation classifier as the discriminator may im-
prove the effectiveness and variety of adversarial examples
produced by generative models [Wong and Kolter, 2021,
Xiao et al., 2018a, Song et al., 2018].

Based on our theoretical analysis, we propose PROTECTOR,
a two-stage pipeline that performs Perturbation Type Cat-
egorization to Improve Robustness against multiple pertur-
bations. First, the top-level perturbation classifier predicts
the perturbation type of the input. Then, among the second-
level predictors, PROTECTOR selects the one that is the most
robust to the predicted perturbation type to make the final
prediction. We theoretically show that there exists a natural
tension between attacking the perturbation classifier and the
second-level predictors. Specifically, strong attacks against
the second-level predictors make it easier for the perturba-
tion classifier to predict the adversarial perturbation type; on
the other hand, fooling the perturbation classifier requires
planting weaker (or less representative) attacks against the
second-level predictors. As a result, even an imperfect per-
turbation classifier significantly improves the model’s over-
all robustness to multiple perturbation types. We also sup-
plement our theoretical statements on the toy task with ex-
perimental validation in the exact same setting.

Empirically1, we first show that the perturbation classifier
generalizes well on classifying a wide range of adversar-
ial perturbations. Then we compare PROTECTOR with re-
cent defenses against multiple attack types on MNIST and
CIFAR-10. Even though we do not utilize adversarial train-
ing [Goodfellow et al., 2015] to train the perturbation clas-
sifier, an ensemble of diverse perturbation classifiers along
with adding small noise to inputs help make PROTECTOR
robust against adaptive attacks. Specifically, we combine
predictions of perturbation classifiers that classify adversar-
ial examples in their image and Fourier domains [Yin et al.,
2019a]. This further increases the tension between attack-
ing top-level and second-level components by reducing the
space of successful adversarial attacks. PROTECTOR out-
performs prior approaches by over 5% against the union of

1Code for reproducing our experiments can be found at
https://github.com/sunblaze-ucb/adversarial-protector.

ℓ1, ℓ2 and ℓ∞ attacks. From the suite of 15 different attacks
tested, the average improvement over all the attacks w.r.t.
the state-of-art baseline defense is ∼ 15% on both MNIST
and CIFAR-10. Training a model to be robust against multi-
ple attacks typically imposes a significant tradeoff against
the accuracy on benign samples, but PROTECTOR attains
∼ 7% greater benign test accuracy on CIFAR-10 as com-
pared to recent works [Laidlaw et al., 2021, Maini et al.,
2020]. We further demonstrate how our defense naturally
extends beyond ℓp perturbation types, where we assess the
robustness of our model against the union of ℓ∞, ℓ2, spa-
tial [Wong et al., 2019, Xiao et al., 2018b] and recolor [Bhat-
tad et al., 2020, Laidlaw and Feizi, 2019] attacks on CIFAR-
10. Our defense exceeds the robustness of recent work [Laid-
law et al., 2021] by over 13% against all attacks. In addition,
PROTECTOR provides the flexibility to plug in and integrate
new defenses against individual perturbation types into the
existing framework as second-level predictors, thus the de-
fense performance of PROTECTOR can be continuously im-
proved with the development of more advanced defenses
against single perturbation types.

2 RELATED WORK

Adversarial examples. Among the different types of adver-
sarial attacks studied in prior work [Szegedy et al., 2013,
Goodfellow et al., 2015, Madry et al., 2018, Hendrycks
et al., 2019, Bhattad et al., 2020], the majority constrain the
perturbation within a small ℓp region around the original in-
put. To improve model robustness in the presence of such
adversaries, most existing defenses utilize adversarial train-
ing [Goodfellow et al., 2015], which augments the training
dataset with adversarial examples. Till date, different vari-
ants of adversarial training algorithms remain the most suc-
cessful defenses against adversarial attacks [Carmon et al.,
2019, Zhang et al., 2019, Wong et al., 2020, Rice et al., 2020,
Wang et al., 2020]. Other types of defenses include input
transformation [Guo et al., 2018, Buckman et al., 2018] and
network distillation [Papernot et al., 2016], but were ren-
dered ineffective under stronger adversaries [He et al., 2017,
Carlini and Wagner, 2017a, Athalye et al., 2018, Tramer
et al., 2020].

Defenses against multiple perturbation types. Some re-
cent works have focused on defending against a union of
norm bounded ℓp attacks. Schott et al. [2018], Kang et al.
[2019] showed that models that were trained for a given ℓp-
norm bounded attack are not robust against attacks in a dif-
ferent ℓq region. Schott et al. [2018] proposed the use of
multiple variational autoencoders to achieve robustness to
multiple ℓp attacks on MNIST. Tramèr and Boneh [2019]
used simple aggregations of multiple adversaries to achieve
non-trivial robust accuracy against ℓ1, ℓ2, ℓ∞ attacks. Maini
et al. [2020] proposed MSD that takes gradient steps in the
union of multiple ℓp regions to improve multiple perturba-
tion robustness. Most recently, Laidlaw et al. [2021] pro-

https://github.com/sunblaze-ucb/adversarial-protector

posed a defense against unseen perturbations using percep-
tual adversarial training. They evaluate their work against
ℓ∞, ℓ2, spatial, recolor adversaries.

Detection of adversarial examples. Multiple prior works
have focused on detecting adversarial examples [Feinman
et al., 2017, Lee et al., 2018, Ma et al., 2018, Cennamo et al.,
2020, Fidel et al., 2019, Yin et al., 2019b]. However, most
of these methods were rendered ineffective in the presence
of adaptive adversaries [Carlini and Wagner, 2017a, Tramer
et al., 2020]. In comparison, our work focuses on a more
challenging problem of categorizing perturbation types. To
this end, Yin et al. [2019a] proposed the examination of
Fourier transforms of adversarial examples to determine the
adversarial attack and corruption types.

3 SEPARABILITY OF PERTURBATION
TYPES

In this section, we formally illustrate the setup of perturba-
tion categorization. In Theorem 1, we show the existence of
a classifier that can separate adversarial examples belong-
ing to different perturbation types. We focus on ℓp attacks
(that can be fully specified mathematically) on a simplified
binary classification task for the convenience of theoretical
analysis. However, PROTECTOR can also improve the em-
pirical robustness of models trained on common image clas-
sification benchmarks against both ℓp and non-ℓp attacks.
We will discuss the empirical examination in Section 6.

3.1 PROBLEM SETTING

Data distribution. We consider a distribution D of inputs
sampled from the union of two multi-variate Gaussian dis-
tributions such that the input-label pairs (x, y) can be de-
scribed as:

y
u.a.r∼ {−1,+1},

x0∼N (yα, σ2), x1, . . . , xd
i.i.d∼ N (yη, σ2),

(1)

where x = [x0, x1, . . . , xd] ∈ Rd+1 and η = α√
d

. This set-
ting demonstrates the distinction between a feature x0 that
is strongly correlated with the label, and d weakly corre-
lated features that are (independently) normally distributed
with the mean yη and the variance σ2. In our work, we as-
sume that α

σ > 10 (x0 is strongly correlated) and d > 100
(remaining d features are weakly correlated, but together
represent a strongly correlated feature). This setting was
adapted from Ilyas et al. [2019], and more discussion can
be found in Appendix A.

Perturbation types. We focus our theoretical discussion on
adversaries constrained within a fixed ℓp region of radius ϵp
around the original input, for ℓp ∈ S = {ℓ1, ℓ∞}. Such ad-
versaries are frequently studied in existing work for finding

the optimal first-order perturbation for different attack types.
Let ℓ(·, ·) be the cross-entropy loss, and ∆S =

⋃
ℓp∈S ∆ℓp,ϵ

for the ℓp threat model, ∆ℓp,ϵp , of radius ϵp. Then, for a
model fθ, the optimal perturbation δ∗ is given by:

δ∗ = arg max
δ∈∆S

ℓ(fθ(x+ δ), y). (2)

3.2 SEPARABILITY OF ℓp PERTURBATIONS

Consider a classifier M trained with the objective of cor-
rectly classifying inputs x ∈ D. The goal of the adversary is
to fool M by finding the optimal perturbation δA ∀A ∈ S.
The theorem below shows that the distributions of adversar-
ial inputs within different ℓp regions can be separated with
a high accuracy.

Theorem 1 (Separability of perturbation types). Given a
binary Gaussian classifier M trained on D, consider Dy

p

to be the distribution of optimal adversarial inputs (for a
class y) against M , within ℓp regions of radius ϵp, where
ϵ1 = α, ϵ∞ = α/

√
d. Distributions Dy

p (p ∈ {1,∞}) can
be accurately separated by a binary Gaussian classifier
Cadv with a misclassification probability Pe ≤ 10−24.

The proof sketch is as follows. We first calculate the optimal
weights of a binary Gaussian classifier M trained on D.
Accordingly, for any input x ∈ D, we find the optimal
adversarial perturbation δA ∀A ∈ {ℓ1, ℓ∞} against M . We
discuss how these perturbed inputs x + δA also follow a
normal distribution, with shifted means. Finally, for data
points of a given label, we show that Cadv is able to predict
the correct perturbation type with a very low error. We
present the formal proof in Appendix B.

4 PROTECTOR: PERTURBATION TYPE
CATEGORIZATION FOR ROBUSTNESS

We illustrate the PROTECTOR pipeline in Figure 1. PROTEC-
TOR performs the classification task as a two-stage process.
Given an input, PROTECTOR first utilizes a perturbation
classifier Cadv to predict its perturbation type. Then, based
on the predicted type, PROTECTOR uses the corresponding
second-level predictor MA to provide the final prediction,
where MA is specially trained to be robust against the attack
A ∈ S . Formally, let fθ be the PROTECTOR model, then:

fθ(x) = MA(x); s.t. A = argmaxCadv(x). (3)

4.1 ADVERSARIAL TRADE-OFF

In Section 3.2, we showed that the optimal perturbations of
different attack types belong to different data distributions,
and can be separated by a simple classifier. However, in the
white-box setting, the adversary has knowledge of both the

Perturbation
Classifier

Specialized
Robust

Predictors

(a)

Perturbation
Classifier

Specialized
Robust

Predictors

(b)

Figure 1: An overview of PROTECTOR. (a) The perturbation classifier Cadv categorizes representative attacks of different
types. (b) An illustration of the trade-off in Theorem 2. An adversarial example fooling Cadv (the ℓ∞ sample marked in
red) becomes weaker to attack the second-level MA models. Stronger or more representative attacks (marked green) are
correctly categorized.

perturbation classifier (Cadv) and specialized robust models
(MA). This allows it to adapt the attack to fool the entire
pipeline instead of individual models alone. To validate the
robustness of PROTECTOR, we provide a theoretical justi-
fication in Theorem 2, showing that PROTECTOR naturally
offers a trade-off between fooling Cadv and the individual
models MA. This makes it difficult for adversaries to stage
successful attacks against PROTECTOR.

Note that there are some overlapping regions among differ-
ent perturbation constraints. For example, every adversary
could set δp = 0 as a valid perturbation, in which case Cadv

can not correctly classify all attacks. However, such pertur-
bations are not useful to the adversary, because any MA can
correctly classify unperturbed inputs with a high probability.
In the following theorem, we examine the robustness of PRO-
TECTOR in the presence of such strong dynamic adversaries.

Theorem 2 (Adversarial trade-off). Given a data distribu-
tion D, adversarially trained models Mℓp,ϵp , and an attack
classifier Cadv that distinguishes perturbations of different
ℓp attack types for p ∈ {1,∞}; the probability of a success-
ful attack by the strongest adversary over the PROTECTOR
pipeline is Pe < 0.01 for ϵ1 = α+ 2σ and ϵ∞ = α+2σ√

d
.

Here, the worst-case adversary refers to an adaptive adver-
sary that has full knowledge of the defense strategy. In Ap-
pendix C.2, we discuss how ϵ1, ϵ∞ are set so that the ℓ1 and
ℓ∞ adversaries can fool Mℓ∞,ϵ∞ and Mℓ1,ϵ1 models respec-
tively with a high success rate. To prove Theorem 2, we first
show that when trained on D, an adversarially robust model
MA can achieve robust accuracy > 99% against the attack
type it was trained for, and < 2% against an alternate attack.
By “alternate” we mean that for an ℓq attack, the prediction
is made by the Mℓp,ϵp model. Then, we analyze the modi-
fied distributions of the inputs perturbed by different ℓp at-
tacks. Based on this, we construct a simple decision rule
for the perturbation classifier Cadv . Finally, we compute the

perturbation induced by the worst-case adversary. We show
that there exists a trade-off between fooling the Cadv (to al-
low the alternate Mℓp,ϵp model to make the final prediction
for an ℓq attack ∀p, q ∈ {1,∞}; p ̸= q), and fooling the al-
ternate Mℓp,ϵp model itself. We provide an illustration of
the trade-off in Figure 4b, and a formal proof and experi-
mental validation on the toy task in Appendix C.

5 TRAINING AND INFERENCE

We now extend PROTECTOR to deep neural networks trained
on common image classification benchmarks. Following
prior work on defending against multiple perturbation types,
we evaluate on MNIST [LeCun et al., 2010] and CIFAR-10
[Krizhevsky, 2012] datasets. Here, we present the training
details, the formulation of an ensemble of perturbation clas-
sifiers, and adaptive white-box attacks against PROTECTOR.

5.1 DATASET CREATION

To train our perturbation classifier Cadv , we create a dataset
that includes adversarial examples of different perturbation
types. We perform adversarial attacks against each of the
individual MA models used in PROTECTOR to curate the
training and test sets. In the case of ℓp examples, we use the
PGD attack [Madry et al., 2018], and for spatial [Xiao et al.,
2018b] and recolor [Laidlaw and Feizi, 2019] attacks, we
use their original attack formulation. The time for creating
the dataset against each MA is the same as running a single
epoch of adversarial training. Since most recent works typ-
ically train their models for ∼200 epochs, the dataset cre-
ation time is insignificant when compared with the cost of
training an MA model.

Combining perturbation types. When training PROTEC-
TOR to be robust against a set S of multiple (k) attacks, we

(a)

PeUWXUbaWLRQ�

COaVVLfLeU�

BRXQdaU\

�

COaVV�0
COaVV�1

AddLQg�VPaOO�UaQdRP
QRLVe�WR�['�UecRYeUV�WKe
cRUUecW�OabeO�SUedLcWLRQ

[

+�OaU
ge�į'

'�
['[''

+�V
Pa
OO�į
'�

COaVV
�0

�

COaVV
�1

(b)

Figure 2: (a) PCA for different adversarial perturbations on
MNIST. (b) Illustration of the effect of random noise on
generating adversarial examples. The notion of small, large
perturbations is only used to illustrate the scenario in Fig-
ure 2b, and neither perturbation region subsumes the other.

combine certain perturbation types under the same label to
improve the overall robustness. This is beneficial when: (a)
a specialized model MA also shows a high degree of robust-
ness to a different attack B ∈ S, s.t. A ≠ B; (b) two differ-
ent attack types A,B ∈ S have similar characteristics. For
instance, in case of ℓp attacks, we perform binary classifi-
cation between A = {{ℓ1, ℓ2}, ℓ∞}. We hypothesize that
compared to ℓ∞ adversarial examples, ℓ1 and ℓ2 adversarial
examples show similar characteristics. To provide an intu-
itive illustration, we randomly sample 10K adversarial ex-
amples generated with PGD attacks on MNIST, and present
their Principal Component Analysis (PCA) in Figure 2a.
We observe that the first two principal components for ℓ1
and ℓ2 adversarial examples are largely overlapping, while
those for ℓ∞ are clearly from a different distribution.2 For
the MNIST dataset, we use the Mℓ2 ,Mℓ∞ models in PRO-
TECTOR, and we use Mℓ1 ,Mℓ∞ models for CIFAR-10. The
choice is made based on the robustness of {Mℓ2 ,Mℓ1} mod-
els against {ℓ1, ℓ2} attacks respectively, as will be depicted
in Table 2. Similarly, when defending against the union of

2The visualization only serves as motivation. It does not sug-
gest that ℓ1, ℓ2 examples are not separable.

ℓp and non-ℓp perturbation types on CIFAR-10, we classify
A = {{ℓ∞, ℓ2,ReColor},StAdv} attacks based on the ro-
bustness of each MA against every attack B ∈ S. We re-
port the robustness of PROTECTOR with varying number of
second-level predictors in Appendix J.3.

5.2 TRAINING

Past works [Maini et al., 2020, Tramèr and Boneh, 2019]
on robustness to multiple attack types require intensive hy-
perparameter tuning to balance different attack types when
one attack is stronger than others. We find that a similar
phenomenon plagues the adversarial training (AT) of Cadv .
Therefore, we train Cadv over a static dataset, which is fast
and stable. Specifically, using a single GTX 1080Ti GPU,
Cadv can be trained within 5 and 30 minutes on MNIST and
CIFAR-10 respectively (given that we already have access
to perturbation-specific robust models). On the other hand,
training state-of-the-art models robust to a single perturba-
tion type requires up to 2 days to train on the same amount
of GPU power, and existing defenses against multiple (k)
perturbation types take k times as long as the training time
for robustness against a single perturbation type. Instead,
even when the individual MA are unavailable, we can train
the k models in parallel to improve training speed.

A key advantage of PROTECTOR’s design is that it can build
upon existing defenses against individual perturbation types.
Specifically, we leverage the adversarially trained models
developed in prior work [Zhang et al., 2019, Carmon et al.,
2019] as MA models in our pipeline. The architecture of
Cadv is also similar to a single MA model. See Appendix D
for more details.

5.3 INFERENCE PROCEDURE

Ensemble of diverse perturbation classifiers. While Cadv

learns the ability to distinguish between different attack
types, it is not immune to the presence of adaptive adver-
saries that try to fool Cadv and the MA models together. To
improve model robustness against such adversaries, we at-
tempt to increase the trade-off in PROTECTOR that was de-
scribed in Section 4.1. We use an ensemble (average of pre-
diction logits) of two perturbation classifiers that classify
adversarial examples in different domains – via the Fourier
and image domains.3 Owing to this diversity, the classifi-
cation landscape of each Cadv is different. Intuitively, the
trade-off between fooling the two stages of PROTECTOR
confines the adversary in a very small region for generat-
ing successful adversarial attacks when using an ensemble
of perturbation classifiers. In Appendix G, we show how
the adversarial examples can be visually separated in the

3Adversaries can still back-propagate through the Fourier trans-
formation steps.

Fourier domain [Yin et al., 2019a] and discuss further im-
plementation details of the ensemble.

Constraining the adversary using random noise. While
past work has [Hu et al., 2019] suggested that adding ran-
dom noise does not help defend against adversarial inputs,
it is the unique exhibition of the trade-off described in The-
orem 2 that adversarial attacks against PROTECTOR, on the
contrary, are likely to fail when added with random noise.
Intuitively, the trade-off between fooling the two stages of
PROTECTOR confines the adversary in a very small region
for crafting successful attacks.

Consider the illustrative example in Figure 2b. The input
(x, y = 0) is subjected to an ℓ∞ attack. Assume that the
Mℓ∞,ϵ∞ model is a perfect classifier for adversarial exam-
ples within a fixed ϵ∞ region. The dotted line shows the
decision boundary for Cadv, which correctly classifies in-
puts subjected to ℓ∞ perturbations δ′′ as ℓ∞ attacks (green),
but misclassifies samples with smaller perturbations. When
the adversary adds a large perturbation δ′′, the prediction
of Mℓ1 for the resulted input x′′ becomes wrong, but the
perturbation classifier also categorizes it as an Mℓ∞ attack,
thus the final prediction of PROTECTOR is still correct since
it will be produced by M∞,ϵ∞ model instead. On the other
hand, when the adversary adds a small perturbation δ′ to
fool the perturbation classifier, adding a small amount of
random noise can recover the correct prediction with a high
probability. Note that every point on the boundary of the
noise region (yellow circle) is correctly classified by the
pipeline. In this way, adding random noise exploits an adver-
sarial trade-off for PROTECTOR to achieve a high accuracy
against adversarial examples, in the absence of adversarial
training. In our implementation, we sample random noise
z ∼ N (0, I), and add ẑ = ϵ2 · z/|z|2 to the model input.

5.4 ADAPTIVE ATTACKS AGAINST PROTECTOR

Gradient propagation. Since the final prediction in Equa-
tion 3 only depends on a single MA model, the pipeline
does not allow gradient flow across the two levels. This
can make it difficult for gradient-based adversaries to attack
PROTECTOR. Therefore, we utilize a combination of predic-
tions from each individual MA model by modifying fθ(x)
in Equation 3 as follows:

c = softmax(Cadv(x));

fθ(x) =
∑
A∈S

cA ·MA(x),
(4)

where cA denotes the probability of the input x being clas-
sified as the perturbation type A by Cadv. Equation 4 is
only used for the purpose of generating adversarial exam-
ples and performing gradient-based attack optimization. For
consistency, we still use Equation 3 to compute the model
prediction at inference (final forward-propagation). We do
not see any significant performance advantages of either

choice during inference, and briefly report a comparison in
Appendix I.1.

Separately attacking Cadv and MA. We also experiment
with other strategies of aggregating the predictions of dif-
ferent components, e.g., tuning the loss to balance direct
attacks on Cadv and each MA model. We find that this at-
tack formulation performs worse than attacking the entire
pipeline with Equation 4. We provide a discussion on this
attack in Appendix I.

6 EXPERIMENTS

In this section, we present our results on MNIST and CIFAR-
10 datasets, both for the perturbation classifier Cadv alone,
and for the entire PROTECTOR pipeline.

6.1 PERTURBATION CATEGORIZATION BY Cadv

Categorizing ℓp perturbations. First, we justify our choice
of ϵp radii by empirically quantifying the overlapping re-
gions of different types of adversarial attacks. We observe
that the empirical overlap is exactly 0% in all cases on both
MNIST and CIFAR-10, and we present the full analysis in
Appendix H.1. We then evaluate the categorization perfor-
mance of Cadv on a dataset of adversarial examples which
are generated against the six models we use as the baseline
defenses in our experiments. Note that Cadv is only trained
on adversarial examples against the two MA models that
are part of PROTECTOR.

Next, we evaluate the test set generalization across the var-
ious datasets created. We observe that Cadv transfers well
across the board. First, Cadv generalizes to adversarial ex-
amples against new models, i.e., it preserves a high accuracy,
even if the adversarial examples are generated against mod-
els that are unseen during training. Further, Cadv also gener-
alizes to new attack algorithms. As discussed in Section 5.1,
we only include PGD adversarial examples in our training
set for Cadv . However, on adversarial examples generated by
the AutoAttack library, the classification accuracy of Cadv

still holds up. In particular, the accuracy is > 95% across all
the individual test sets created. These results suggest two im-
portant findings that validate our results in Theorem 1 — in-
dependent of (a) the model to be attacked; and (b) the algo-
rithm for generating the optimal adversarial perturbation, the
optimal adversarial images for a given ℓp region follow simi-
lar distributions. We present the full results in Appendix H.2.

Categorizing common corruptions. CIFAR-10-C is a
benchmark consisting of 19 different types of common cor-
ruptions [Hendrycks and Dietterich, 2019]. For each image
in the original CIFAR-10 test set, CIFAR-10-C includes im-
ages with different corruptions. To train the corruption clas-
sifier, we split CIFAR-10-C, so that each corruption type
has 9K training samples, and 1K for testing. For corruptions

Table 1: Generalization results when Cadv is trained on dif-
ferent Noise, Blur, Weather and Digital corruptions (Sever-
ity=5). Test is performed on Speckle Noise + Gaussian
Blur + Spatter + Saturate.

Trained On Accuracy
Impulse + Defocus Blur + Snow + Brightness 70.4%
+ Gaussian + Glass Blur + Fog + Contrast 80.1%
+ Shot + Motion Blur + Frost + Elastic Trans 85.6%
+ Zoom Blur + JPEG Compression + Pixelate 93.5%
+ Speckle + Gaussian Blur + Spatter + Saturate 99.8%

of the highest severity, we observe that our corruption classi-
fier achieves greater than 99% test accuracy on the test split.
Details about the architecture are deferred to Appendix D.
This demonstrates that our perturbation classifier is applica-
ble to both ℓp adversarial perturbations and semantic com-
mon corruptions. We discuss detailed results of corruption
classification at various severity levels in Appendix H.3.

Generalization to unseen corruptions. We further eval-
uate the generalization of the perturbation classifier to un-
seen corruption types. Specifically, different from the above
setting of classifying corruption types, now our classifier
categorizes all corruption types into 4 categories — noise,
blur, digital, and weather (as defined in the CIFAR-10-
C benchmark). We evaluate the model performance on 4
held-out corruption types, 1 for each category, and select
these corruption types following the model validation set-
ting in Hendrycks and Dietterich [2019]. From the remain-
ing 15 corruption types, we vary the number of corruptions
included for training, and present the results in Table 1. We
observe that even if we do not train the perturbation classi-
fier on the same corruption types for testing, the classifier
still obtains a high generalization accuracy (> 90%). These
results demonstrate that perturbation classification is effec-
tive even for unseen perturbations.

6.2 ROBUSTNESS TO ℓp ATTACKS

Baselines. We compare PROTECTOR with the state-of-
art defenses against the union of ℓ1, ℓ2, ℓ∞ adversaries.
For Tramèr and Boneh [2019], we compare two variants of
adversarial training: (1) the MAX approach, where for each
image, among different perturbation types, the adversarial
sample that leads to the maximum increase of the model loss
is augmented into the training set; (2) the AVG approach,
where adversarial examples for all perturbation types are
included for training. We also compare with MSD [Maini
et al., 2020], which modifies the standard PGD attack to in-
corporate the union of multiple perturbation types within the
steepest decent. In addition, we evaluate Mℓ1 ,Mℓ2 ,Mℓ∞

models trained with ℓ1, ℓ2, ℓ∞ perturbations separately, as
described in Appendix D.

Attack evaluation. We evaluate against the strongest at-

tacks in the adversarial examples literature, and with adap-
tive attacks specifically designed for PROTECTOR (Sec-
tion 5.4). We perform standard PGD attacks along with
attacks from the AutoAttack library [Croce and Hein,
2020b], which achieves the state-of-art adversarial error
rates against multiple recently published models. The ra-
dius of the {ℓ1, ℓ2, ℓ∞} perturbation regions is {10, 2, 0.3}
for the MNIST dataset and {10, 0.5, 0.03} for the CIFAR-
10 dataset. We present the full details of attack algo-
rithms in Appendix F.

Following prior work, we evaluate models on adversarial
examples generated from the first 1000 images of the test
set for MNIST and CIFAR-10. Our main evaluation metric
is the accuracy on all attacks – a given input is a failure case
if any of the attack algorithm in our suite successfully fools
the model.

Results. In Table 2, we summarize the worst-case perfor-
mance against all attacks of a given perturbation type for
MNIST and CIFAR-10 datasets. In particular, “Ours” de-
notes the robustness of PROTECTOR against the adaptive
attacks described in Section 5.4, and “Ours*” denotes the
robustness of PROTECTOR against standard attacks based
on Equation 3. The adaptive strategy effectively reduces the
overall accuracy of PROTECTOR by 2− 5%, showing that
incorporating the gradient and prediction information of all
second-level predictors results in a stronger attack.

PROTECTOR outperforms all baselines by 6.4% on MNIST,
and 10% on CIFAR-10 in terms of the all attacks metric,
even when evaluated against a strong adaptive adversary.
Compared to the previous state-of-art defense against multi-
ple perturbation types (MSD), the accuracy gain on ℓ∞ at-
tacks is especially notable, i.e., around 15%. In particular,
if we compare the performance on each individual attack al-
gorithm, as shown in Appendix J.1 and J.2 for MNIST and
CIFAR-10 respectively, the average accuracy gain is ∼ 15%
for both datasets. These results demonstrate that PROTEC-
TOR considerably mitigates the trade-off in the accuracy for
individual attacks. Further, PROTECTOR retains a 7% higher
CIFAR-10 accuracy on clean images, as opposed to past de-
fenses that sacrifice benign accuracy for robustness to mul-
tiple perturbation types.

6.3 ROBUSTNESS TO NON-ℓp ATTACKS

We demonstrate how PROTECTOR can be extended to
perturbation types beyond those restricted to ℓp types.
Laidlaw et al. [2021] evaluate the robustness of vari-
ous adversarial defenses against attacks A ∈ S =
{ℓ2, ℓ∞,StAdv,ReColor} on CIFAR-10. We directly com-
pare PROTECTOR with the pre-trained models for each
individual defense provided in their work. This includes
their defense based on perceptual adversarial training (PAT)
and the MAX, AVG models, along with perturbation-

Table 2: Worst-case accuracies against different ℓp attacks: (a) MNIST; (b) CIFAR-10. Ours represents PROTECTOR against
the adaptive attack strategy (Eq 4), and Ours* is the standard setting.

MNIST Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD Ours Ours*
Clean accuracy 99.2% 98.7% 98.8% 98.6% 99.1% 98.3% 98.9% 98.9%
ℓ∞ attacks (ϵ = 0.3) 90.2% 2.6% 0.0% 39.0% 57.8% 63.5% 78.1% 79.0%
ℓ2 attacks (ϵ = 2.0) 9.5% 72.3% 47.8% 58.5% 58.6% 65.7% 66.6% 72.3%
ℓ1 attacks (ϵ = 10) 18.8% 70.6% 77.5% 41.8% 46.1% 64.3% 68.1% 72.5%
All attacks 7.3% 2.6% 0.0% 29.1% 37.1% 57.2% 63.6% 67.2%

(a)
CIFAR-10 Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD Ours Ours*
Clean accuracy 89.5% 93.9% 89.0% 81.0% 84.6% 81.7% 89.0% 89.0%
ℓ∞ attacks (ϵ = 0.03) 59.3% 34.8% 35.0% 34.9% 39.7% 43.7% 56.1% 58.4%
ℓ2 attacks (ϵ = 0.5) 64.6% 77.2% 71.5% 61.8% 65.5% 64.5% 69.3% 69.4%
ℓ1 attacks (ϵ = 10) 27.6% 45.3% 60.9% 43.7% 60.0% 56.1% 57.9% 59.5%
All attacks 27.6% 32.9% 35.0% 31.5% 39.3% 43.5% 53.5% 54.9%

(b)

Table 3: Worst-case accuracies against ℓ∞ (ϵ = 0.003), ℓ2 (ϵ = 0.5), spatial and recolor attacks. Ours represents
PROTECTOR against the adaptive attack strategy (Eq 4), and Ours* is the standard setting. PAT [Laidlaw et al., 2021] is
trained using perceptual adversarial training.

CIFAR-10 Mℓ∞ Mℓ2 MStAdv MReColor MAX AVG PAT Ours Ours*
Clean acc. 89.5% 93.9% 86.2% 93.4% 84.0% 86.8% 71.6% 89.5% 89.5%
ℓ∞ attacks 59.3% 34.8% 0.1% 8.5% 25.8% 42.1% 29.8% 58.2% 59.1%
ℓ2 attacks 64.6% 77.2% 10.0% 34.8% 44.2% 64.8% 54.1% 57.0% 57.2%
StAdv 5.7% 0.2% 68.9% 0.0% 46.2% 27.8% 58.4% 50.4% 55.7%
ReColor 85.5% 84.0% 52.1% 86.8% 77.4% 80.5% 70.9% 85.2% 85.3%
All attacks 5.4% 0.2% 0.1% 0.0% 24.0% 21.5% 27.8% 40.9% 41.9%

specific robust models MA. Specifically, as discussed in
Section 5.1, we train a perturbation classifier that classi-
fies adversarial examples as belonging to one of the two
classes: {{ℓ∞, ℓ2,ReColor},StAdv}. We use two individ-
ual robust predictors: {Mℓ∞ ,MStAdv}. The choice is once
again made based on the robust accuracy of Mℓ∞ models
against {ℓ∞, ℓ2,ReColor} attacks as also presented in Ta-
ble 3. This ability to combine attacks also represents posi-
tively on the scalability of PROTECTOR. PROTECTOR im-
proves by 13.1% against the union of all attacks. Impor-
tantly, PROTECTOR preserves a high accuracy against be-
nign samples, whereas PAT classifies only 71.6% of unper-
turbed samples correctly, which makes it difficult to adopt it
in real-world settings.

7 CONCLUSION

In this work, we introduce the problem of categorizing per-
turbation types. We theoretically demonstrate that adversar-
ial inputs of different attack types are separable, and empiri-
cally validate our claims on different ℓp and non-ℓp attacks.
In addition to categorizing them with high accuracy, the per-
turbation categorizer also generalizes to unseen corruptions
of the same category.

PROTECTOR performs perturbation type categorization to
achieve robustness against the union of multiple perturbation
types. We theoretically examine the existence of a natural
tension for any adversary trying to fool our model—between
fooling the attack classifier and the specialized robust pre-
dictors. Our empirical results on MNIST and CIFAR-10
datasets complement our theoretical analysis, showing that
PROTECTOR outperforms existing defenses against multi-
ple ℓp and non-ℓp attacks by over 5%, while showing gains
of over ∼ 15% on average and clean accuracy metrics.

Our work serves as a stepping stone towards the goal of uni-
versal adversarial robustness, by dissecting multiple adver-
sarial objectives into individually solvable pieces and com-
bining them via PROTECTOR. In its present form, PROTEC-
TOR requires the knowledge of each individual attack type
that we want to be robust against—to train the perturbation
classifier. This limitation opens up various avenues for fu-
ture work, including the new problem of perturbation catego-
rization by defining sub-classes of adversarial attack types,
and training generative models to synthesize diverse pertur-
bations.

Acknowledgements

This material is in part based upon work supported by
the National Science Foundation under Grant No. TWC-
1409915, Berkeley DeepDrive, and DARPA D3M under
Grant No. FA8750-17-2-0091. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. Xinyun Chen is
supported by the Facebook Fellowship.

References

Maksym Andriushchenko, Francesco Croce, Nicolas Flam-
marion, and Matthias Hein. Square attack: a query-
efficient black-box adversarial attack via random search.
In European Conference on Computer Vision, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples. In International
Conference on Machine Learning, 2018.

Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li,
and D. A. Forsyth. Unrestricted adversarial examples
via semantic manipulation. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=Sye_OgHFwH.

J. Buckman, Aurko Roy, Colin Raffel, and Ian J. Goodfellow.
Thermometer encoding: One hot way to resist adversarial
examples. In ICLR, 2018.

Nicholas Carlini and David Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods.
In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 3–14, 2017a.

Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In Security and Pri-
vacy (SP), 2017 IEEE Symposium on, pages 39–57. IEEE,
2017b.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C
Duchi, and Percy S Liang. Unlabeled data improves ad-
versarial robustness. In Advances in Neural Information
Processing Systems, pages 11190–11201, 2019.

Alessandro Cennamo, Ido Freeman, and Anton Kummert.
A statistical defense approach for detecting adversarial
examples. In Proceedings of the 2020 International Con-
ference on Pattern Recognition and Intelligent Systems,
pages 1–7, 2020.

Francesco Croce and Matthias Hein. Minimally distorted
adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning, 2020a.

Francesco Croce and Matthias Hein. Reliable evaluation
of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, 2020b.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial
attacks with momentum. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2018.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv preprint arXiv:1703.00410, 2017.

Gil Fidel, Ron Bitton, and Asaf Shabtai. When explain-
ability meets adversarial learning: Detecting adversar-
ial examples using shap signatures. arXiv preprint
arXiv:1909.03418, 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
van der Maaten. Countering adversarial images using
input transformations. In International Conference on
Learning Representations, 2018.

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and
Dawn Song. Adversarial example defense: Ensembles of
weak defenses are not strong. In 11th {USENIX} Work-
shop on Offensive Technologies ({WOOT} 17), 2017.

Dan Hendrycks and Thomas Dietterich. Benchmarking
neural network robustness to common corruptions and
perturbations. In International Conference on Learning
Representations, 2019.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples.
arXiv preprint arXiv:1907.07174, 2019.

Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and
Kilian Q Weinberger. A new defense against adversarial
images: Turning a weakness into a strength. In Advances
in Neural Information Processing Systems, pages 1635–
1646, 2019.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adver-
sarial examples are not bugs, they are features. In Ad-
vances in Neural Information Processing Systems, pages
125–136, 2019.

Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and
Jacob Steinhardt. Testing robustness against unforeseen
adversaries. arXiv preprint arXiv:1908.08016, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015.

https://openreview.net/forum?id=Sye_OgHFwH
https://openreview.net/forum?id=Sye_OgHFwH

Alex Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. ICLR Work-
shop, 2017. URL https://arxiv.org/abs/
1607.02533.

Cassidy Laidlaw and Soheil Feizi. Functional adversarial
attacks. In NeurIPS, 2019.

Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Percep-
tual adversarial robustness: Defense against unseen threat
models. In ICLR, 2021.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In Advances
in Neural Information Processing Systems, pages 7167–
7177, 2018.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Su-
danthi Wijewickrema, Grant Schoenebeck, Dawn Song,
Michael E Houle, and James Bailey. Characterizing ad-
versarial subspaces using local intrinsic dimensionality.
In International Conference on Learning Representations,
2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In Interna-
tional Conference on Learning Representations, 2018.

Pratyush Maini, Eric Wong, and J. Zico Kolter. Adversar-
ial robustness against the union of multiple perturbation
models. In International Conference on Machine Learn-
ing, 2020.

Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Ev-
genia Rusak, Oliver Bringmann, Alexander S. Ecker,
Matthias Bethge, and Wieland Brendel. Benchmarking
robustness in object detection: Autonomous driving when
winter is coming, 2020.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha,
and Ananthram Swami. Distillation as a defense to adver-
sarial perturbations against deep neural networks. In 2016
IEEE Symposium on Security and Privacy (SP), pages
582–597. IEEE, 2016.

Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting
in adversarially robust deep learning. arXiv preprint
arXiv:2002.11569, 2020.

Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland
Brendel. Towards the first adversarially robust neural
network model on mnist. In International Conference on
Learning Representations, 2018.

Leslie N Smith. A disciplined approach to neural net-
work hyper-parameters: Part 1–learning rate, batch
size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018.

Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon.
Constructing unrestricted adversarial examples with gen-
erative models. Advances in Neural Information Process-
ing Systems, 31:8312–8323, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Florian Tramèr and Dan Boneh. Adversarial training and ro-
bustness for multiple perturbations. In Advances in Neu-
ral Information Processing Systems, pages 5866–5876,
2019.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensem-
ble adversarial training: Attacks and defenses. In Interna-
tional Conference on Learning Representations, 2018.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial ex-
ample defenses. arXiv preprint arXiv:2002.08347, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In International Confer-
ence on Learning Representations, 2018.

Haotao Wang, Tianlong Chen, Shupeng Gui, Ting-Kuei Hu,
Ji Liu, and Zhangyang Wang. Once-for-all adversarial
training: In-situ tradeoff between robustness and accuracy
for free. In NeurIPS, 2020.

Eric Wong and J Zico Kolter. Learning perturbation sets
for robust machine learning. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=MIDckA56aD.

Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein ad-
versarial examples via projected Sinkhorn iterations. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6808–6817. PMLR, 09–15 Jun
2019.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better
than free: Revisiting adversarial training. In International
Conference on Learning Representations, 2020.

https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
https://openreview.net/forum?id=MIDckA56aD
https://openreview.net/forum?id=MIDckA56aD

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan
Liu, and Dawn Song. Generating adversarial examples
with adversarial networks. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
pages 3905–3911, 2018a.

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan
Liu, and Dawn Song. Spatially transformed adversarial
examples. In International Conference on Learning Rep-
resentations, 2018b. URL https://openreview.
net/forum?id=HyydRMZC-.

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus
Cubuk, and Justin Gilmer. A fourier perspective on model
robustness in computer vision. In Advances in Neural
Information Processing Systems, pages 13276–13286,
2019a.

Xuwang Yin, Soheil Kolouri, and Gustavo K Rohde.
Adversarial example detection and classification with
asymmetrical adversarial training. arXiv preprint
arXiv:1905.11475, 2019b.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing,
Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In
International Conference on Machine Learning, pages
7472–7482, 2019.

https://openreview.net/forum?id=HyydRMZC-
https://openreview.net/forum?id=HyydRMZC-

A PROBLEM SETTING: THEORETICAL ANALYSIS

The classification problem consists of two tasks: (1) Predicting the correct class label of an adversarially perturbed (or
benign) image using adversarially robust classifier MA; and (2) Predicting the type of adversarial perturbation that the input
image was subjected to, using attack classifier Cadv .

Setup. We consider the data to consist of inputs to be sampled from two multi-variate Gaussian distributions such that the
input-label pairs (x,y) can be described as:

y
u.a.r∼ {−1,+1},

x0∼N (yα, σ2), x1, . . . , xd
i.i.d∼ N (yη, σ2),

(5)

where the input x ∼ N (yµ,Σ) ∈ R(d+1); η = α/
√
d for some positive constant α; µ = [α, η, . . . , η] ∈ R+(d+1) and

Σ = σ2I ∈ R+(d+1)×(d+1). We can assume without loss of generality, that the mean for the two distributions has the
same absolute value, since for any two distributions with mean µ1,µ2, we can translate the origin to µ1+µ2

2 . This setting
demonstrates the distinction between an input feature x0 that is strongly correlated with the input label and d weakly
correlated features that are normally distributed (independently) with mean yη and variance σ2 each. We adapt this setting
from Ilyas et al. [2019] who used a stochastic feature x0 = y with probability p, as opposed to a normally distributed input
feature as in our case. All our findings hold in the other setting as well, however, the chosen setting better represents true data
distribution, with some features that are strongly correlated to the input label, while others that have only a weak correlation.

B SEPARABILITY OF PERTURBATION TYPES (THEOREM 1)

Our goal is to evaluate if the optimal perturbation confined within different ℓp balls have different distributions and whether
they are separable. We do so by developing an error bound on the maximum error in classification of the perturbation types.
The goal of the adversary is to fool a standard (non-robust) classifier M . Cadv aims to predict the perturbation type based on
only viewing the adversarial image, and not the delta perturbation.

First, in Appendix B.1 we define a binary Gaussian classifier that is trained on the given task. Given the weights of the binary
classifier, we then identify the optimal adversarial perturbation for each of the ℓ1, ℓ2, ℓ∞ attack types in Appendix B.2. In
Appendix B.3 we define the difference between the adversarial input distribution for different ℓp balls. Finally, we calculate
the error in classification of these adversarial input types in Appendix B.4 to conclude the proof of Theorem 1.

15 10 5 0 5 10 15
x0

15

10

5

0

5

10

x M

Binary Gaussian Classifier

Decision Boundary
Y=-1
Y=1

Figure 3: Simulation: Decision boundary (solid green line) of binary Gaussian classifier. xM = 1√
d

∑d
i=1 xi represents a

meta feature, and x0 is the first dimension of the input.

B.1 BINARY GAUSSIAN CLASSIFIER

We assume that we have enough input data to be able to empirically estimate the parameters µ, σ of the input distribution
via sustained sampling. The multivariate Gaussian representing the input data is given by:

p(x|y = yi) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− yi.µ)

TΣ−1(x− yi.µ)

)
, ∀yi ∈ {−1, 1}. (6)

We want to find p(y = yi|x) ∀yi ∈ {−1,+1}. From Bayesian Decision Theory, the optimal decision rule for separating the
two distributions is given by:

p(y = 1)p(x|y = 1)
y=1
> p(y = −1)p(x|y = −1);

p(y = 1)p(x|y = 1)
y=−1
< p(y = −1)p(x|y = −1).

(7)

Therefore, for two Gaussian Distributions N (µ1, Σ1), N (µ2, Σ2), we have:

0
y=1
< x⊤Ax− 2b⊤x+ c;

A = Σ−1
1 −Σ−1

2 ;

b = Σ−1
1 µ1 −Σ−1

2 µ2;

c = µ⊤
1 Σ

−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2 + log

∥Σ1∥
∥Σ2∥

− 2 log
p(y = 1)

p(y = −1)
.

(8)

Substituting (6) and (7) in (8), we find that the optimal Bayesian decision rule for our problem is given by:

x⊤µ
y=1
> 0, (9)

which means that the label for the input can be predicted with the information of the sign of x⊤µ alone. We can define the
parameters W ∈ Rd+1 of the optimal binary Gaussian classifier MW , such that ∥W∥2 = 1 as:

W0 =
α√
2
, Wi =

α√
2d

∀i ∈ {1, . . . , d};

MW (x) = x⊤W.
(10)

The same is also verified via a simulation in Figure 3.

B.2 OPTIMAL ADVERSARIAL PERTURBATION AGAINST MW

Now, we calculate the optimal perturbation δ that is added to an input by an adversary in order to fool our model. For the
purpose of this analysis, we only aim to fool a model trained on the standard classification metric as discussed in Section 3
(and not an adversarially robust model). The parameters of our model are defined in (10).

The objective of any adversary δ ∈ ∆ is to maximize the loss of the label classifier MW . We assume that the classification
loss is given by −y ×MW (x+ δ). The object of the adversary is to find δ∗ such that:

ℓ(x+ δ, y;MW) = −y ×MW (x+ δ) = −yx⊤W;

δ∗ = argmax
δ∈∆

ℓ(x+ δ, y;MW),

= argmax
δ∈∆

−y(x+ δ)⊤W = argmax
δ∈∆

−yδ⊤W.

(11)

We will now calculate the optimal perturbation in the ℓp balls ∀p ∈ {1, 2,∞}. For the following analyses, we restrict
the perturbation region ∆ to the corresponding ℓp ball of radius {ϵ1, ϵ2, ϵ∞} respectively. We also note that the optimal
perturbation exists at the boundary of the respective ℓp balls. Therefore, the constraint can be re-written as :

δ∗ = arg max
∥δ∥p=ϵp

−yδ⊤W. (12)

We use the following properties in the individual treatment of ℓp balls:

∥δ∥p =

(∑
i

|δi|p
) 1

p

,

∂j∥δ∥p =
1

p

(∑
i

|δi|p
) 1

p−1

· p|δj |p−1 sgn(δj) =

(
|δj |
∥δ∥p

)p−1

sgn(δj).

(13)

p = 2 Making use of langrange multipliers to solve (12), we have:

∇δ(−δ⊤Σ−1µ) = λ∇δ(∥δ∥2p − ϵ2p),

−W = λ
′
∥δ∥p∇δ(∥δ∥p).

(14)

Combining the results from (13) and replacing δ with δ2 we obtain :

−W = λ
′
∥δ2∥2

(
|δ2|
∥δ2∥2

)
sgn(δ2)

δ2; = −ϵ2

(
W

∥W∥2

)
= −ϵ2W.

(15)

p = ∞ Recall that the optimal perturbation is given by :

δ∗ = arg max
∥δ∥∞=ϵ∞

−yδ⊤W,

= arg max
∥δ∥∞=ϵ∞

−y

d∑
i=0

δiWi.
(16)

Since ∥δ∥∞ = ϵ∞, we know that maxi |δi| = ϵ∞. Therefore (16) is maximized when each δi = −yϵ∞ sgnWi ∀i ∈
{0, . . . , d}. Further, since the weight matrix only contains non-negative elements (α is a positive constant), we can conclude
that the optimal perturbation is given by:

δ∞ = −yϵ∞1. (17)

p = 1 We attempt an analytical solution for the optimal perturbation δ1. Recall that the optimal perturbation is given by :

δ∗ = arg max
∥δ∥1=ϵ1

−y

d∑
i=1

δiWi,

= arg max
∥δ∥1=ϵ1

−yδ0W0 − y

d∑
i=1

δiWi,

= arg max
∥δ∥1=ϵ1

−yδ0
α√
2
− y

d∑
i=1

δi
α√
2d

.

(18)

Since ∥δ∥1 = ϵ1, (18) is maximized when:

δ0 = −yϵ1 sgn(α) = −yϵ1, δi = 0 ∀i ∈ {1 . . . d}. (19)

Combining the results. From the preceding discussion, it may be noted that the new distribution of inputs within a
given label changes by a different amount δ depending on the perturbation type. Moreover, if the mean and variance of the
distribution of a given label are known (which implies that the corresponding true data label is also known), the optimal
perturbation is independent of the input itself, and only dependent on the respective class statistics (Note that the input is
still important in order to understand the true class).

B.3 PERTURBATION CLASSIFICATION BY Cadv

Now we aim to verify if it is possible to accurately separate the optimal adversarial inputs crafted within different ℓp balls.
For the purposes of this discussion, we only consider the problem of classifying perturbation types into ℓ1 and ℓ∞, but the
same analysis may also be extended more generally to any number of perturbation types.

We will consider the problem of classifying the correct attack label for inputs from true class y = 1 for this discussion. Note
that the original distribution:

Xtrue ∼ N (y.µ, Σ).

Since the perturbation value δp is fixed for all inputs corresponding to a particular label, the new distribution of perturbed
inputs X1 and X∞ in case of ℓ1 and ℓ∞ attacks respectively (for y = 1) is given by:

X1 ∼ N (µ+ δ1, Σ);

X∞ ∼ N (µ+ δ∞, Σ).
(20)

We now try to evaluate the conditions under which we can separate the two Gaussian distributions with an acceptable worst-
case error.

B.4 CALCULATING A BOUND ON THE ERROR

Classification Error. A classification error occurs if a data vector x belongs to one class but falls in the decision region of
the other class. That is in (7) the decision rule indicates the incorrect class. (This can be understood through the existence of
outliers)

Pe =

∫
P (error|x)p(x)dx,

=

∫
min [p(y = ℓ1|x)p(x), p(y = ℓ∞|x)p(x)] dx.

(21)

Perturbation Size. We set the radius of the ℓ∞ ball, ϵ∞ = η and the radius of the ℓ1 ball, ϵ1 = α. We further extend
the discussion about suitable perturbation sizes in Appendix C.2. These values ensure that the ℓ∞ adversary can make
all the weakly correlated labels meaningless by changing the expected value of the adversarial input to less than 0
(E[xi + δ∞(i)] ∀i > 0), while the ℓ1 adversary can make the strongly correlated feature x0 meaningless by changing its
expected value to less than 0 (E[x0 + δ1(0)]). However, neither of the two adversaries can flip all the features together.

Translating the axes. We can translate the axis of reference by
(
−µ−

(
δ1+δ∞

2

))
and define µadv =

(
δ1−δ∞

2

)
, such that :

X1 ∼ N (µadv, Σ);

X∞ ∼ N (−µadv, Σ).
(22)

We can once again combine this with the simplified Bayesian model in (9) to obtain the classification rule:

x⊤µadv

p=1
> 0. (23)

Combining the optimal perturbation definitions in (17) and (19) that µadv =
(
δ1−δ∞

2

)
= 1

2 [−ϵ1 + ϵ∞, ϵ∞, . . . , ϵ∞].
We can further substitute ϵ1 = α and ϵ∞ = η = α√

d
. Notice that µadv(i) > 0 ∀i > 0. Without loss of generality, to

simplify further discussion we can flip the coordinates of x0, since all dimensions are independent of each other. Therefore,
µadv = α

2
√
d

[√
d− 1, 1, . . . , 1

]
. Consider a new variable xz such that:

xz = x0 ·
(
1− 1√

d

)
+

1√
d

d∑
i=1

xi =
2

α

(
x⊤µadv

)
. (24)

Since each xi∀i ≥ 0 is independently distributed, the new feature xz ∼ N (µz, σ
2
z), where

µz = α

(
1− 1√

d

)
+

1√
d

d∑
i=1

α√
d
= 2α− α√

d

σ2
z = σ2

(
1 +

1

d
− 2

1√
d
+

d∑
i=1

1

d

)
,

= σ2

(
2 +

1

d
− 2

1√
d

)
.

(25)

Therefore, the problem simplifies to calculating the probability that the meta-variable xz > 0.

For α
σ > 10 and d > 1, we have in the z-table, z > 10:

Pe ≤ 10−24, (26)

which suggests that the distributions are significantly distinct and can be easily separated. This concludes the proof for
Theorem 1.

Note: We can extend the analysis to other ℓp balls as well, but we consider ℓ1 and ℓ∞ for simplicity.

C ROBUSTNESS OF THE PROTECTOR PIPELINE (THEOREM 2)

In the previous section, we show that it is indeed possible to distinguish between the distribution of inputs of a given class
that were subjected to ℓ1 and ℓ∞ perturbations over a standard classifier. Now, we aim to develop further understanding of
the robustness of our two-stage pipeline in a dynamic attack setting with multiple labels to distinguish among. The first
stage is a preliminary classifier Cadv that classifies the perturbation type and the second stage consists of multiple models
MA that were specifically trained to be robust to perturbations to the input within the corresponding ℓp norm.

First, in Appendix C.1, we calculate the optimal weights for a binary Gaussian classifier MA, trained on dataset D to be
robust to adversaries within the ℓp ball ∀p ∈ {1,∞}. Based on the weights of the individual model, we fix the perturbation
size ϵp to be only as large, as is required to fool the alternate model with high probability. Here, by ‘alternate’ we mean
that for an ℓq attack, the prediction should be made by the Mℓp,ϵp model,where p, q ∈ {1,∞}; p ̸= q. In Appendix C.3 we
calculate the robustness of individual MA models to ℓp adversaries, given the perturbation size ϵp as defined in Appendix C.2.
In Appendix C.4, we analyze the modified distributions of the perturbed inputs after different ℓp attacks. Based on this
analysis, we construct a simple decision rule for the perturbation classifier Cadv . Finally, in Appendix C.5 we determine the
perturbation induced by the worst-case adversary that has complete knowledge of both Cadv and Mℓp,ϵp∀p ∈ {1,∞}. We
show how there exists a trade-off between fooling the perturbation classifier (to allow the alternate Mℓp,ϵp model to make
the final prediction), and fooling the alternate Mℓp,ϵp model itself.

Perturbation Size. We set the radius of the ℓ∞ ball, ϵ∞ = η + ζ∞ and the radius of the ℓ1 ball, ϵ1 = α + ζ1, where
ζp are some small positive constants that we calculate in Appendix C.2. These values ensure that the ℓ∞ adversary can
make all the weakly correlated labels meaningless by changing the expected value of the adversarial input to less than 0
(E[xi + δ∞(i)] ∀i > 0), while the ℓ1 adversary can make the strongly correlated feature x0 meaningless by changing its
expected value to less than 0 (E[x0 + δ1(0)]). However, neither of the two adversaries can flip all the features together. The
exact values of ζp determine the exact success probability of the attacks. We defer this calculation to later when we have
calculated the weights of the models MA. For the following discussion, it may be assumed that ζp → 0 ∀p ∈ {1,∞}.

C.1 BINARY GAUSSIAN CLASSIFIER MA

Extending the discussion in Appendix B.1, we now examine the learned weights of a binary Gaussian classifier MA that is
trained to be robust against perturbations within the corresponding ℓp ball of radius ϵp. The optimization equation for the
classifier can be formulated as follows:

min
W

E
[
−yx⊤W

]
+

1

2
λ||W||22, (27)

where λ is tuned in order to make the ℓ2 norm of the optimal weight distribution, ||W∗||2,= 1. Following the symmetry
argument in Lemma D.1 [Tsipras et al., 2018] we extend for the binary Gaussian classifier that :

W∗
i = W∗

j = WM ∀i, j ∈ {1, . . . , d}. (28)

We deal with the cases pertaining to p ∈ {∞, 1} in this section. For both the cases, we consider existential solutions for the
classifier MA to simplify the discussion. This gives us lower bounds on the performance of the optimal robust classifier. The
robust objective under adversarial training can be defined as:

min
W

max
∥δ∥p≤ϵp

E

[
W0 · (x0 + δ0) +WM ·

d∑
i=1

(xi + δi)

]
+

1

2
λ∥W∥22;

min
W

{
−1

(
W0α+ d×WM

α√
d

)
+

1

2
λ∥W∥22 + max

∥δ∥p≤ϵp
E

[
−y

(
W0δ0 +WM

d∑
i=1

δi

)]} (29)

Further, since the λ constraint only ensures that ||W∗||2 = 1, we can simplify the optimization equation by substituting
W0 =

√
1− d ·WM

2 as follows,

min
WM

{
−1

(
α

√
1− d ·WM

2 + d×WM
α√
d

)
+ max

∥δ∥p≤ϵp
E

[
−y

(
δ0

√
1− d ·WM

2 +WM

d∑
i=1

δi

)]}
. (30)

p = ∞ As discussed in (17) the optimal perturbation δ∞ is given by −yϵ∞1. The optimization equation is simplified to:

min
WM

{
(ϵ∞ − α)

√
1− d ·WM

2 + d×WM

(
ϵ∞ − α√

d

)}
. (31)

Recall that ϵ∞ = α√
d
+ ζ∞. To simplify the following discussion we use the weights of a classifier trained to be robust

against perturbations within the ℓ∞ ball of radius ϵ∞ = α√
d

. The optimal solution is then given by:

lim
ζ∞→0

WM = 0. (32)

Therefore, the classifier weights are given by W = [W0,W1, . . . ,Wd] = [1, 0, . . . , 0]. We also show later in Appendix C.3
that the model achieves greater than 99% accuracy against ℓ∞ adversaries for the chosen values of ζ∞.

p = 1 We consider an analytical solution to yield optimal weights for this case. Recall from (19) that the optimal
perturbation δ1 depends on the weight distribution of the classifier. Therefore, if W0 > WM the optimization equation can
be simplified to

min
W

{
W0(ϵ1 − α)− d×WM

α√
d
+

1

2
λ∥W∥22

}
, (33)

and if WM > W0

min
W

{
−W0α−WM

(√
dα− ϵ1

)
+

1

2
λ∥W∥22

}
. (34)

Recall that ϵ1 = α+ ζ1. Once again to simplify the discussion that follows we will lower bound the robust accuracy of the
classifier Mℓ1 by considering the optimal solution when zeta1 = 0. The optimal solution is then given by:

lim
ζ1→0

WM = 1. (35)

For the robust classifier Mℓ1 , the weights W = [W0,W1, . . . ,Wd] = [0, 1√
d
, 1√

d
, . . . , 1√

d
]. While this may not be the

optimal solution for all values of ζ1, we are only interested in a lower bound on the final accuracy and the classifier described
by weights W simplifies the discussion hereon. We also show later in Appendix C.3 that the model achieves greater than
99% accuracy against ℓ1 adversaries for the chosen values of ζ1.

C.2 PERTURBATION SIZES FOR FOOLING MA MODELS

Now that we exactly know the weights of the learned robust classifiers Mℓ1 and Mℓ∞ , we can move towards calculating
values ζ1 and ζ∞ for the exact radius of the perturbation regions for the ℓ1 and ℓ∞ metrics. We set the radii of these regions
in such a way that an ℓ1 adversary can fool the model Mℓ∞ with probability ∼ 98% (corresponding to z = 2 in the z-table
for normal distributions), and similarly, the success of ℓ∞ attacks against the Mℓ1 model is ∼ 98%.

Let Pp1,p2
represent the probability that model Mℓp1

correctly classifies an adversarial input in the ℓp2
region. For p1 = ∞

and p2 = 1,

P∞,1 = Px∼N (yµ,Σ)[y ·Mℓ∞(x+ δ1) > 0],

= Px∼N (yµ,Σ)[y · (x+ δ1)
⊤W > 0],

≥ Px∼N (µ,Σ)[x0 > ϵ1];

z =
ϵ1 − α

σ
=

α+ ζ1 − α

σ
=

ζ1
σ

= 2;

ζ1 = 2σ;

ϵ1 = α+ 2σ.

(36)

To simplify the discussion for the Mℓ1 model, we define a meta-feature xM as:

xM =
1√
d

d∑
i=1

xi, (37)

which is distributed as :
xM ∼ N (yη

√
d, σ2)

d
=N (yα, σ2).

For p1 = 1 and p2 = ∞,

P1,∞ = Px∼N (yµ,Σ)[y ·Mℓ1(x+ δ∞) > 0],

= Px∼N (yµ,Σ)[y · (x+ δ∞)⊤W > 0],

= Px∼N (yµ,Σ)[y ·
1√
d

d∑
i=1

(xi + δ∞(i)) > 0],

= Px∼N (yµ,Σ)[y · (xM −
√
d · ϵ∞) > 0],

≥ Px∼N (µ,Σ)

[
xM >

√
d · ϵ∞

]
;

z =

√
d · ϵ∞ − α

σ
=

α+
√
d · ζ∞ − α

σ
=

√
d · ζ∞
σ

= 2;

ζ∞ =
2σ√
d
;

ϵ∞ =
α+ 2σ√

d
;

(38)

15 10 5 0 5 10 15
x0

15

10

5

0

5

10

15

x M
 Robust Model

Decision Boundary
Y=-1, No Attack
Y=1, No Attack
Y=-1, Attack
Y=1, Attack
Y=-1, 1 Attack
Y=1, 1 Attack

(a)

15 10 5 0 5 10 15
x0

15

10

5

0

5

10

15

x M

1 Robust Model

(b)

Figure 4: Simulation: Decision boundary (solid green line) and robustness of individual MA models to different ℓp attacks.
xM represents the meta feature as defined in Equation 37 and x0 is the first dimension of the input. Notice how the
distribution of perturbed samples varies according to the change in model architecture (scatter plots in the same color in the
two graphs represent the same distribution). (a) The Mℓ∞ model is able to correctly classify all benign and ℓ∞ perturbed
samples. However, the ℓ1 adversary is able to successfully flip the decision of most data points (b) The same illustration is
repeated for the M1 model. In this case, while the model is robust to ℓ1 attacks, it fails against an ℓ∞ adversary.

C.3 ROBUSTNESS OF INDIVIDUAL MA MODELS

Additional assumptions. We add the following assumptions: (1) the dimensionality parameter d of input data is larger
than 100; and (2) the ratio of the mean and variance for feature x0 is greater than 10. (These assumptions were also made
when introducing the problem in the main paper.)

d ≥ 100,
α

σ
≥ 10. (39)

We define Pp as the probability that for any given input x ∼ N (yµ,Σ), the classifier MA outputs the correct label y for the
input x+ δp.

p = ∞

P∞,∞ = Px∼N (yµ,Σ)[y ·Mℓ∞(x+ δ∞) > 0],

= Px∼N (yµ,Σ)[y · (x+ δ∞)⊤W > 0],

= Px∼N (yµ,Σ)[y · (x0 + δ∞(0)) > 0],

≥ Px∼N (µ,Σ)[x0 > ϵ∞];

z =
ϵ∞ − α

σ
=

α

σ

(
1√
d
− 1

)
+

2√
d
.

(40)

using the assumptions in (39),

P∞,∞ ≥ 0.999. (41)

p = 1

P1,1 = Px∼N (yµ,Σ)[y ·Mℓ1(x+ δ1) > 0],

= Px∼N (yµ,Σ)[y · (x+ δ1)
⊤W > 0],

= Px∼N (yµ,Σ)[y ·
1√
d

d∑
i=1

(xi + δ1(i)) > 0],

= Px∼N (yµ,Σ)[y · (xM + δM) > 0],

≥ Px∼N (µ,Σ)

[
xM >

ϵ1√
d

]
;

z =

ϵ1√
d
− α

σ
=

α

σ

(
1√
d
− 1

)
+

2√
d
.

(42)

using the assumptions in (39),
P1,1 ≥ 0.999. (43)

C.4 DECISION RULE FOR Cadv

We aim to provide a lower bound on the worst-case accuracy of the entire pipeline, through the existence of a simple
decision tree Cadv . For given perturbation budgets ϵ1 and ϵ∞, we aim to understand the range of values that can be taken by
the adversarial input. Consider the scenarios described in Table 4 below. The same is also corroborated via the empirical
experiments shown in Figure 4.

Table 4: The table shows the range of the values that the mean can take depending on the decision taken by the adversary.
µadv
0 and µadv

M represent the new mean of the distribution of features x0 and xM after the adversarial perturbation.

Attack
Type

µadv
0 µadv

M

y = 1 y = -1 y = 1 y = -1

None α −α η
√
d −η

√
d

ℓ∞ {α− ϵ∞, α+ ϵ∞} {−α− ϵ∞,−α+ ϵ∞} {η
√
d+ ϵ∞

√
d, η

√
d− ϵ∞

√
d} {−η

√
d+ ϵ∞

√
d,−η

√
d− ϵ∞

√
d}

ℓ1 {α− ϵ1, α+ ϵ1} {−α− ϵ1,−α+ ϵ1} {η
√
d+ ϵ1/

√
d, η

√
d− ϵ1/

√
d} {−η

√
d+ ϵ1/

√
d,−η

√
d− ϵ1/

√
d}

Note that any adversary that moves the perturbation away from the y-axis is uninteresting for our comparison, since
irrespective of a correct perturbation type prediction by Cadv , either of the two second level models naturally obtain a high
accuracy on such inputs. Hence, we define the following decision rule with all the remaining cases mapped to ℓ1 perturbation
type.

Cadv(x) =

{
1, if ||x0| − α| < ϵ∞ + α

2

0, otherwise
(44)

where the output 1 corresponds to the classifier predicting the presence of ℓ∞ perturbation in the input, while an output of 0
suggests that the classifier predicts the input to contain perturbations of the ℓ1 type.

If we consider a black-box setting where the adversary has no knowledge of the classifier Cadv , and can only attack MA it
is easy to see that the proposed pipeline obtains a high adversarial accuracy against the union of ℓ1 and ℓ∞ perturbations
(since the given decision rule correctly classifies known examples as simulated in Figure 4.

Note: (1) There exists a single model that can also achieve robustness against the union of ℓ1 and ℓ∞ perturbations, however,
learning this model may be more challenging in real data settings. (2) The classifier need not be perfect.

C.5 TRADE-OFF BETWEEN ATTACKING MA AND Cadv

To obtain true robustness it is important that the entire pipeline is robust against adversarial attacks. More specifically, in
this section we demonstrate the natural tension that exists between fooling the top level attack classifier (by making an

15 10 5 0 5 10 15
x0

15

10

5

0

5

10

15

x M

Y=-1, No Attack
Y=1, No Attack
Y=-1, Attack
Y=1, Attack
Y=-1, 1 Attack
Y=1, 1 Attack

Two Stage Classifier
Prediction = -1
Prediction = 1

Figure 5: Simulation: Decision boundary of the overall two stage classifier. xM represents the meta feature as defined in
Equation 37 and x0 is the first dimension of the input.

adversarial attack less representative of its natural distribution) and fooling the bottom level adversarially robust models
(requiring stronger attacks leading to a return to the attack’s natural distribution).

The accuracy of the pipelined model f against any input-label pair (x, y) sampled through some distribution N (yµadv,Σ)
(where µadv incorporates the change in the input distribution owing to the adversarial perturbation) is given by:

P [f(x) = y] = Px∼N (yµadv,Σ) [Cadv(x)]Px∼N (yµadv,Σ) [y ·Mℓ∞(x) > 0|Cadv(x)]

+ (1− Px∼N (yµadv,Σ) [Cadv(x)])Px∼N (yµadv,Σ) [y ·Mℓ1(x) > 0|¬Cadv(x)] ,

= Px∼N (µadv,Σ) [Cadv(x)]Px∼N (µadv,Σ) [Mℓ∞(x) > 0|Cadv(x)]

+ (1− Px∼N (µadv,Σ) [Cadv(x)])Px∼N (µadv,Σ) [Mℓ1(x) > 0|¬Cadv(x)] .

(45)

ℓ∞ adversary. To simplify the analysis, we consider loose lower bounds on the accuracy of the model f against the ℓ∞
adversary. Recall that the decision of the attack classifier is only dependent of the input x0. Irrespective of the input features
xi∀i > 0, it is always beneficial for the adversary to perturb the input by µi = −ϵ∞. However, the same does not apply
for the input x0. Analyzing for the scenario when the true label y = 1, if the input x0 lies between α

2 + ϵ∞ of the mean α,
irrespective of the perturbation, the output of the attack classifier Cadv = 1. The Mℓ∞ model then always correctly classifies
these inputs. The overall robustness of the pipeline requires analysis for the case when input lies outside α

2 + ϵ∞ of the
mean as well. However, we consider that the adversary always succeeds in such a case in order to only obtain a loose lower
bound on the robust accuracy of the pipeline model f against ℓ∞ attacks.

P [f(x) = y] = Px∼N (µadv,Σ) [Cadv(x)]Px∼N (µadv,Σ) [Mℓ∞(x) > 0|Cadv(x)] ,

+ (1− Px∼N (µadv,Σ) [Cadv(x)])Px∼N (µadv,Σ) [Mℓ1(x) > 0|¬Cadv(x)] ,

≥ Px∼N (µadv,Σ) [Cadv(x)]Px∼N (µadv,Σ) [Mℓ∞(x) > 0|Cadv(x)] ,

≥ Px∼N (µ,Σ)

[
|x0 − α| ≤ α

2
− ϵ∞

]
,

≥ 2Px∼N (µ,Σ)

[
x0 ≤ α− α

2
+ ϵ∞

]
,

z =
(α− α

2 + ϵ∞)− α

σ
= − α

2σ
+

3σ

2σ
√
d
.

(46)

using the assumptions in (39),
P [f(x) = y] ∼ 0.99. (47)

ℓ1 adversary. It may be noted that a trivial way for the ℓ1 adversary to fool the attack classifier is to return a perturbation
δ1 = 0. In such a scenario, the classifier predicts that the adversarial image was subjected to an ℓ∞ attack. The label
prediction is hence made by the Mℓ∞ model. But we know from (41) that the Mℓ∞ model predicts benign inputs correctly
with a probability P∞,∞ > 0.99, hence defeating the adversarial objective of misclassification. To achieve misclassification

over the entire pipeline the optimal perturbation decision for the ℓ1 adversary when x0 ∈
[
−α− α

2 − ϵ1,−α+ α
2 + ϵ1

]
the adversary can fool the pipeline by ensuring that the Cadv(x) = 1. However, in all the other cases irrespective of the
perturbation, either Cadv = 0 or the input features x0 has the same sign as the label y. Since, P1,1 > 0.99 for the Mℓ1

model, for all the remaining inputs x0 the model correctly predicts the label with probability greater than 0.99 (approximate
lower bound). We formulate this trade-off to elaborate upon the robustness of the proposed pipeline.

P [f(x) = y] = Px∼N (µadv,Σ) [Cadv(x)]Px∼N (µadv,Σ) [Mℓ∞(x) > 0|Cadv(x)]

+ (1− Px∼N (µadv,Σ) [Cadv(x)])Px∼N (µadv,Σ) [Mℓ1(x) > 0|¬Cadv(x)] ,

≥ Px∼N (µ,Σ)

[
−α− α

2
− ϵ1 ≤ x0 ≤ −α+

α

2
+ ϵ1

]
+ 0.999(Px∼N (µ,Σ)

[
x0 < −α− α

2
− ϵ1 or x0 > −α+

α

2
+ ϵ1

]
),

≥ 0.999(Px∼N (µ,Σ)

[
x0 < −α− α

2
− ϵ1 or x0 > −α+

α

2
+ ϵ1

]
).

(48)

using the assumptions in (39),
P [f(x) = y] ∼ 0.99. (49)

This concludes the proof for Theorem 2, showing that an adversary can hardly stage successful attacks on the entire pipeline
and faces a natural tension between attacking the label predictor and the attack classifier. We verify these results via a
simulation in Figure 5. We emphasize that these accuracies are lower bounds on the actual robust accuracy, and the objective
of this analysis is not to find the optimal solution to the problem of multiple perturbation adversarial training, but to elucidate
the trade-off between attacking the two pipeline stages.

D MODEL ARCHITECTURE

Second-level MA models. A key advantage of PROTECTOR is that we can build upon existing defenses against individual
perturbation type. Specifically, for MNIST, we use the same CNN architecture as Zhang et al. [2019] for our MA models,
and we train these models using their proposed TRADES loss. For CIFAR-10, we use the same training setup and model
architecture as Carmon et al. [2019], which is based on a robust self-training algorithm that utilizes unlabeled data to
improve the model robustness.

Perturbation classifier Cadv. For both MNIST and CIFAR-10 datasets, the architecture of the perturbation classifier
Cadv is similar to the individual MA models. Specifically, for MNIST, we use the CNN architecture in Zhang et al. [2019]
with four convolutional layers, followed by two fully-connected layers. For CIFAR-10, Cadv is a WideResNet [Zagoruyko
and Komodakis, 2016] model with depth 16 and widening factor of 2 (WRN-16-2). The architectures for classifying
ℓp perturbations and common corruptions are largely the same, except that the final classification layers have different
dimensions due to the different label set sizes.

E TRAINING DETAILS

E.1 SPECIALIZED ROBUST PREDICTORS MA

MNIST. We use the Adam optimizer [Kingma and Ba, 2015] to train our models along with a piece-wise linearly
varying learning rate schedule [Smith, 2018] to train our models with maximum learning rate of 10−3. The base models
Mℓ1 ,Mℓ2 ,Mℓ∞ are trained using the TRADES algorithm for 20 iterations, and step sizes α1 = 2.0, α2 = 0.3, and α∞ =
0.05 for the ℓ1, ℓ2, ℓ∞ attack types within perturbation radii ϵ1 = 10.0, ϵ2 = 2.0, and ϵ∞ = 0.3 respectively.4

CIFAR10. The individual MA models are trained to be robust against {ℓ∞, ℓ1, ℓ2} perturbations of {ϵ∞, ϵ1, ϵ2} =
{0.003, 10.0, 0.05} respectively. For CIFAR10, the attack step sizes {α∞, α1, α2} = {0.005, 2.0, 0.1} respectively. The
training of the individual MA models is directly based on the work of Carmon et al. [2019].

4We use the Sparse ℓ1 descent [Tramèr and Boneh, 2019] for the PGD attack in the ℓ1 constraint.

E.2 PERTURBATION CLASSIFIER Cadv

MNIST. We train the model for 5 epochs using the SGD optimizer with weight decay as 5× 10−4. We used a variation of
the learning rate schedule from Smith [2018], which is piecewise linear from 5× 10−4 to 10−3 over the first 2 epochs, and
down to 0 till the end. The batch size is set to 100 for all experiments.

CIFAR10. We train the model for 5 epochs using the SGD optimizer with weight decay as 5× 10−4. We used a variation
of the learning rate schedule from Smith [2018], which is piecewise linear from 5× 10−3 to 10−2 over the first 2 epochs,
and down to 0 till the end. The batch size is set to 100 for all experiments.

Creating the Adversarial Perturbation Dataset. We create a static dataset of adversarially perturbed images and their
corresponding attack label for training the perturbation classifier Cadv. For generating adversarial images, we perform
weak adversarial attacks that are faster to compute. In particular, we perform 10 iterations of the PGD attack. For MNIST,
the attack step sizes {α∞, α1, α2} = {0.05, 2.0, 0.3} respectively. For CIFAR10, the attack step sizes {α∞, α1, α2} =
{0.005, 2.0, 0.1} respectively. Note that we perform the Sparse-ℓ1 or the top-k PGD attack for the ℓ1 perturbation ball, as
introduced by Tramèr and Boneh [2019]. We set the value of k to 10, that is we move by a step size α1

k in each of the top 10
directions with respect to the magnitude of the gradient.

CIFAR10-C. We use a dropout value of 0.3 along with the same optimizer (SGD). We use a learning rate of 0.01 and SGD
optimizer for 5 epochs, with linear rate decay to 0.001 between the second epoch and the fifth epoch For experiments on
classifying corruptions of severity 1, we find that the model takes longer to train. Hence, we train the model for 10 epochs,
whereas all other models (at other severity levels) were trained for 5 epochs.

F ATTACKS USED FOR EVALUATION

A description of all the attacks used for evaluation of the models is presented here. From the AutoAttack library [Croce and
Hein, 2020b], we make use of all the three variants of the Adaptive PGD attack (APGD-CE, APGD-DLR, APGD-T) along
with the targeted and standard version of Fast Adaptive Boundary Attack (FAB, FAB-T) [Croce and Hein, 2020a] and the
Square Attack [Andriushchenko et al., 2020]. We utilize the AA+ version in the auto-attack library for stronger attacks.

Attack Hyperparameters. For the attacks in the AutoAtack library we use the default parameter setting in the strongest
available mode (such as AA+). For the custom PGD attacks, we evaluate the models with 10 restarts and 200 iterations
of the PGD attack. The step size of the {ℓ∞, ℓ1, ℓ2} PGD attacks are set as follows: For MNIST, the attack step sizes
{α∞, α1, α2} = {0.01, 1.0, 0.1} respectively. For CIFAR10, the attack step sizes {α∞, α1, α2} = {0.003, 1.0, 0.02}
respectively.

Further, in line with previous work [Tramèr and Boneh, 2019, Maini et al., 2020] we evaluate our models on the first
1000 images of the test set of MNIST and CIFAR-10, since many of the attacks employed are extremely computationally
expensive and slow to run. Specifically, on a single GPU, the entire evaluation for a single model against all the attacks
discussed with multiple restarts will take nearly 1 month, and is not feasible.

G FOURIER FEATURES

Yin et al. [2019a] studied various perturbations in their Fourier domain. Their work mainly focused on studying the Fourier
spectrum of various common corruptions, and they showed how model robustness was affected by the data augmentation
scheme used. In particular, they found that certain augmentation strategies benefit robustness to perturbations in the high
frequency domain.

On the contrary, in our work, we use Fourier features to classify perturbation types. While Yin et al. [2019a] directly studied
only the perturbation (δ) added to the image, we visualize the Fourier transform of the actual perturbed image (x+ δ). This
makes it more challenging to distill the perturbation from the original image. Secondly, we study the Fourier transform of
various adversarially crafted examples. In what follows, we will first provide a visual example to justify how adversarial
examples crafted by different attack types, have different Fourier spectrums. We then utilise this property to use Fourier
features as an input to the perturbation classifier for classifying the perturbation type.

(a) MNIST dataset

(b) CIFAR10 dataset

Figure 6: We present the Fourier spectrums of various attacks on a vanilla model trained on (a) MNIST and (b) CIFAR10
datasets by averaging the per-pixel DFT over the entire test set, i.e. for an ℓ∞, ℓ1, ℓ2 adversarial example corresponding to
image in the test set.

Fourier Spectrum. We follow the same naming convention as Yin et al. [2019a]. For an input image x ∈ Rd1×d2 , we will
represent the 2-dimensional discrete Fourier transform (DFT) by F : Rd1×d2 → Cd1×d2 . F−1 represents the inverse DFT.
Since the Fourier transform belongs to the complex plane, we estimate E [|F(xadv)[i, j]|] by averaging over adversarial
examples generate for each image in the test set.

Note that Yin et al. [2019a] had estimated only the perturbation (E [|F(xadv − x)[i, j]|]) and not the perturbed image in
their work. However, since at test time we do not have access to the original image, we only perform our analysis based on
the perturbed input.

We present the Fourier spectrums in Figure 6. While adversarial examples typically have an imperceptible amount of
perturbation for the human eye, the visualization of these adversarial examples through the Fourier spectrums help us visually
distinguish between them. We also note that the Fourier spectrum for each attack does not show similar characteristics
across different datasets (MNIST and CIFAR10). However, the characteristics stay consistent when independently attacking
a given model on the same dataset.

We use this observation to augment PROTECTOR with an ensemble of diverse perturbation classifiers. We do so by training
another model Cadv for which the inputs are only the Fourier features of the corresponding adversarial examples. The training
process and architecture for such a classifier stays identical as one that classifies adversarial examples in their image domain.

H PERTURBATION CATEGORIZATION

H.1 EMPIRICAL PERTURBATION OVERLAP

While we justify the choice of perturbation sizes in our theoretical proofs in Appendix B.4 and C.2, in this section we
demonstrate the empirical agreement of the choices of perturbation sizes we make for our results on MNIST and CIFAR10
datasets. To measure how often adversarial perturbations of different attacks overlap, we empirically quantify the overlapping
regions by attacking a benign model with PGD attacks. In Table 5 we report the range of the norm of perturbations in the

Table 5: Vanilla Model: Empirical overlap of ℓp,ϵp attack perturbations in different ℓq,ϵq regions for (a) MNIST
(ϵ1, ϵ2, ϵ∞) = (10, 2.0, 0.3); (b) CIFAR-10 (ϵ1, ϵ2, ϵ∞) = (10, 0.5, 0.03). Each column represents the range (min - max) of
ℓq norm for perturbations generated using ℓp PGD attack.

Attack MNIST CIFAR10
ℓ∞ < 0.3 ℓ2 < 2.0 ℓ1 < 10 ℓ∞ < 0.03 ℓ2 < 0.5 ℓ1 < 10

PGD ℓ∞ ≤ 0.3 (3.67 - 6.05) (54.8 - 140.9) ≤ 0.03 (1.33 - 1.59) (62.7 - 85.5)
PGD ℓ2 (0.40 - 0.86) ≤ 2.0 (11.2 - 24.1) (0.037 - 0.10) ≤ 0.05 (15.4 - 20.9)
Sparse ℓ1 (0.70 - 1.0) (2.08 - 2.92) ≤ 10.0 (0.27 - 0.77) (1.32 - 1.88) ≤ 10.0

Table 6: PROTECTOR: Empirical overlap of ℓp,ϵp attack perturbations in different ℓq,ϵq regions for (a) MNIST (ϵ1, ϵ2, ϵ∞) =
(10, 2.0, 0.3); (b) CIFAR-10 (ϵ1, ϵ2, ϵ∞) = (10, 0.5, 0.03). Each column represents the range (min - max) of ℓq norm for
perturbations generated using ℓp PGD attack.

Attack MNIST CIFAR10
ℓ∞ < 0.3 ℓ2 < 2.0 ℓ1 < 10 ℓ∞ < 0.03 ℓ2 < 0.5 ℓ1 < 10

PGD ℓ∞ ≤ 0.3 (5.03-6.12) (100.40-138.52) ≤ 0.03 (1.46-1.69) (73.15-93.26)
PGD ℓ2 (0.35-0.95) ≤2.0 (17.06-27.88) (0.036-0.29) ≤0.05 (5.83-21.21)
Sparse ℓ1 (0.81-1.0) (2.13-2.98) ≤10.0 (0.42-1.0) (1.50-2.91) ≤10.0

alternate perturbation region for any given attack type. The observed overlap is exactly 0% in all cases and the observation is
consistent across MNIST and CIFAR10 datasets.

Table 7: Perturbation type classification accuracy for different perturbation types. The perturbation classifier Cadv is trained
on adversarial examples against two MA models. Each column represent the model used to create transfer-based attack via
the attack type in the corresponding row. The represented accuracy is an aggregate over 1000 randomly sampled attacks of
the ℓ∞, ℓ2, ℓ1 types for the corresponding algorithms (and datasets).

Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD
MNIST-PGD 100% 100% 99.3% 99.0% 99.6% 99.1%
MNIST-AutoAttack 100% 100% 99.0% 99.5% 100% 100%
CIFAR10-PGD 99.9% 99.5% 100% 100% 98.7% 95.7%
CIFAR10-AutoAttack 99.9% 99.9% 100% 100% 99.7% 99.7%

To contrast the results with that of attacking a vanilla model, we also present results on the perturbation overlap when we
attack PROTECTOR with PGD attacks (in Table 6). It is noteworthy that the presence of a perturbation classifier forces the
adversaries to generate such attacks that increase the norm of the perturbations in alternate ℓq region. Secondly, we also
observe that in the case of CIFAR10, the ℓ2 PGD attack has a large overlap with the ℓ1 norm of radius 10. However, recall
that in case of ℓ2 attacks for CIFAR10, both the base models Mℓ1 and Mℓ∞ were satisfactorily robust. Hence, the attacker
has no incentive to reduce the perturbation radius for an ℓq norm since the perturbation classifier only performs a binary
classification between ℓ1 and ℓ∞ attacks.

H.2 ROBUSTNESS OF Cadv

In this section, we present the results of the perturbation type classifier Cadv against transfer adversaries. The results for
the robustness of the perturbation classifier Cadv in the presence of adaptive adversaries is presented in Table 7. Note that
Cadv transfers well across the board, even if the adversarial examples are generated against new models that are unseen
for Cadv during training, achieving extremely high test accuracy. Further, even if the adversarial attack was generated by a
different algorithm such as from the AutoAttack library, the transfer success of Cadv still holds up. In particular, the obtained
accuracy is > 95% across all the individual test sets created. The attack classification accuracy is in general highest against
those generated by attacking Mℓ1 or Mℓ∞ for CIFAR10, and Mℓ2 or Mℓ∞ for MNIST. This is an expected consequence of
the nature of generation of the static dataset for training the perturbation classifier Cadv as described in Section 5.1.

Table 8: Classification accuracy for common corruptions at different severity levels. The task is a 19 class classification
problem. In the training setting “Combined”, all images of different severity levels are used for training. The model predicts
the corruption type among the 19 possible corruptions.

Tested on
Training Level 1 Level 2 Level 3 Level 4 Level 5
Level Specific 87.2% 97.7% 97.0% 98.7% 99.5%
Combined 85.4% 96.2% 97.2% 98.1% 99.1%

Table 9: Comparison between using a ‘softmax’ based aggregation of predictions from different specialized models versus
using the prediction from the model corresponding to the most likely attack (only at inference time). Results are presented
for APGD ℓ2, ℓ∞ attacks on the CIFAR10 dataset.

Attack Max-approach (Eq. 3) Softmax-approach (Eq. 4)
APGD-CE ℓ2 (ϵ2 = 0.5) 75.7% 75.6%
APGD-DLR ℓ2 (ϵ2 = 0.5) 76.5% 76.7%
APGD-CE ℓ∞ (ϵ∞ = 0.03) 86.9% 86.9%
APGD-DLR ℓ∞ (ϵ∞ = 0.03) 91.8% 91.2%

H.3 MORE RESULTS ON COMMON CORRUPTIONS

For each image in the original CIFAR-10 test set, CIFAR-10-C includes corrupted images of 19 different corruption types at
5 severity levels. In this section, we present results on corruption classification at different severity levels. Specifically, we
train a single model on images of all severity levels. Then to evaluate on each of the 5 severity levels, we also train another
model on corrupted images of the same level. As mentioned in Section 6.1, each corruption type has 9K training samples at
each severity level, and 1K for testing. We ensure that all corrupted samples of the same original CIFAR-10 image are in the
same data split, so that no sample in the test split corresponds to the same original image in the training split.

We present the corruption type classification accuracies at different severity levels in Table 8. We observe that the classification
accuracy is around 90% for all severity levels, even when the severity level is low and the corruptions are hard to notice for
the human eye. Note that for a 19-class classification problem, random guessing would only yield about 5% accuracy. Further,
the test accuracy increases as the severity of the corruption increases. This can be explained due the fact that increasing the
magnitude of corruptions makes them more representative and easier to be distinguished from others. Note that models
trained on standard image classification tasks are typically more resilient to corruptions at a lower severity, and images with
a high corruption severity can be detrimental to the prediction performance of standard classifiers. Therefore, it is important
to correctly identify such highly corrupted images. We also note that a combined model trained on multiple corruption
severity levels does not have a significant trade-off in test accuracy to those trained on the specific levels. Specifically,
the drop in test set accuracy varies between 0.4% and 1.8% across various severity levels, and the decrease is much less
noticeable when the severity level becomes large.

I ADAPTIVE ATTACKS

I.1 AGGREGATING PREDICTIONS FROM DIFFERENT MA AT INFERENCE

In all our experiments in this work the adversary constructs adversarial examples using the softmax based adaptive strategy
for aggregating predictions from different MA models, as described in Equation 4 for the column ‘Ours’ and using the ‘max’
strategy (Equation 3) for results described in the column ‘Ours*’

However, for consistency of our defense strategy irrespective of the attacker’s strategy, the defender only utilizes predictions
from the specialized model MA corresponding to the most-likely attack (Equation 3) to provide the final prediction (only
forward propagation) for generated adversarial examples. In our evaluation, we found a negligible impact of changing this
aggregation to the ‘softmax’ strategy for aggregating the predictions. For example, we show representative results in case of
the APGD (ℓ∞, ℓ2) attacks on the CIFAR10 dataset in Table 9.

Table 10: Performance of Adaptive attacks that attempt to separately fool the perturbation classifier and the alternate
specialized robust model. The corresponding objective functions for each attack are specified in Appendix I.

Attack Dual Attack (Eq. 51) Binary Attack (Eq. 52)
PGD ℓ∞ (ϵ∞ = 0.03) 69.3% 73.2%
PGD ℓ2 (ϵ2 = 0.5) 72.1% 74.8%
Sparse PGD ℓ1 (ϵ1 = 10) 64.7% 59.1%

I.2 TRADE-OFF BETWEEN FOOLING MA AND Cadv

The adversary chooses the strongest attack over a set of adaptive attacks targeted at each MA. For any data point (x,y) each
targeted attack optimises the following constraint:

min
δp

ℓp(x+ δp)

s.t. MA(x+ δp) ̸= y; Cadv(x+ δp) = p
(50)

We perform the attack for each of the PGD attacks for p ∈ {1, 2,∞}. To design the exact objective function for optimization
of Equation 50, we take inspiration from a similar exploration by Carlini and Wagner [2017b].

First, we combine a dual loss function for individually fooling the MA model and the perturbation classifier Cadv by giving
different importance to each of them using a parameter λ. More specifically, for an input (x, y), the objective for finding an
adversarial example of type A ∈ S can be written as:

L(x,y,A) = −1 · CrossEntropyLoss(Cadv(x),A) + λ · CrossEntropyLoss(MB(x), y) (51)

where B = argmaxCadv(x). We experiment with values of λ ∈ {10−1, 1, 10, 100} and report the worst adversarial
example in each case.

Secondly, we design an alternate approach where the adversary is constrained to fool the perturbation classifier (owing to a
strong binary misclassification loss). It then attempts to fool the alternate MA model under this constraint. More specifically,
if B = argmaxCadv(x), then

L(x,y,A) = −1 · (A = B) + λ · CrossEntropyLoss(MB(x), y) (52)

We perform the above optimization for the PGD attacks in the ℓ∞, ℓ1, ℓ2 perturbation radius constraints. In case of the ℓ1
attack, we optimize using the stronger Sparse-ℓ1 attack [Tramèr and Boneh, 2019]. The adversarial robustness of PROTECTOR
(on CIFAR10) to these attacks is reported in Table 10. We note that the formulation used in the main paper (Equation 4) that
uses a ‘softmax’ bridge between the two levels of the pipeline performs better than the attacks outlined above. In particular,
we observe that adversaries find it difficult to balance the two losses separately in order to satisfy the dual constraint.

J BREAKDOWN OF COMPLETE EVALUATION

Now we present a breakdown of results of the adversarial robustness of baseline approaches and PROTECTOR against all the
attacks in our suite. We also report the worst case performance against the union of all attacks.

J.1 MNIST

In Table 11, we provide a breakdown of the adversarial accuracy of all the baselines, individual MA models and the
PROTECTOR method, with both the adaptive and standard attack variants on the MNIST dataset. PROTECTOR outperforms
prior baselines by 6.4% on the MNIST dataset. It is important to note that PROTECTOR shows significant improvements
against most attacks in the suite. Compared to the previous state-of-the-art defense against multiple perturbation types

Table 11: Attack-wise breakdown of adversarial robustness on the MNIST dataset. Ours represents the PROTECTOR method
against the adaptive attack strategy described in Section 5.4, and Ours* represents the standard attack setting.

Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD Ours Ours*
Benign Accuracy 99.2% 98.7% 98.8% 98.6% 99.1% 98.3% 98.9% 98.9%
PGD-ℓ∞ 92.8% 6.2% 0.0% 50.0% 64.8% 65.7% 83.5% 89.1%
APGD-CE 91.5% 3.6% 0.0% 41.0% 59.1% 65.2% 84.3% 84.6%
APGD-DLR 91.8% 8.0% 0.0% 43.9% 61.9% 66.0% 88.6% 88.4%
APGD-T 91.9% 2.9% 0.0% 39.6% 59.0% 64.4% 88.0% 88.6%
FAB-T 92.5% 5.0% 0.0% 48.8% 64.3% 65.5% 99.0% 98.6%
SQUARE 90.3% 7.6% 0.0% 45.9% 65.1% 68.2% 93.0% 93.3%
ℓ∞ attacks (ϵ = 0.3) 90.2% 2.6% 0.0% 39.0% 57.8% 63.5% 78.1% 79.0%
PGD-ℓ2 84.9% 74.9% 51.6% 63.6% 69.5% 71.7% 73.0% 75.5%
DDN 42.3% 76.0% 53.1% 62.2% 64.6% 70.1% 87.5% 94.3%
APGD-CE 78.9% 74.0% 50.7% 61.9% 65.0% 69.6% 72.2% 76.4%
APGD-DLR 79.3% 75.2% 54.1% 63.2% 65.1% 70.9% 74.4% 78.2%
APGD-T 80.7% 73.8% 48.0% 61.0% 63.9% 69.6% 70.8% 74.3%
FAB-T 12.2% 74.8% 49.4% 62.5% 63.7% 69.1% 86.9% 96.3%
SQUARE 25.6% 82.3% 66.6% 71.7% 71.8% 75.0% 96.9% 96.6%
ℓ2 attacks (ϵ = 2.0) 9.5% 72.3% 47.8% 58.5% 58.6% 65.7% 66.6% 72.3%
PGD-ℓ1 72.5% 74.6% 78.5% 52.9% 59.3% 67.9% 73.8% 79.4%
FAB-T 20.0% 71.6% 77.6% 43.9% 51.2% 67.5% 74.3% 85.0%
ℓ1 attacks (ϵ = 10) 18.8% 70.6% 77.5% 41.8% 46.1% 64.3% 68.1% 72.5%
All Attacks 7.3% 2.6% 0.0% 29.1% 37.1% 57.2% 63.6% 67.2%
Average All Attacks 69.8% 47.4% 35.3% 54.1% 63.2% 68.4% 83.1% 86.6%

(MSD), if we compare the performance gain on each individual attack algorithm, the average accuracy increase of 14.7%
on MNIST dataset. These results demonstrate that PROTECTOR considerably mitigates the trade-off in accuracy against
individual attack types.

J.2 CIFAR-10

In Table 12, we provide a breakdown of the adversarial accuracy of all the baselines, individual MA models and the
PROTECTOR method, with both the adaptive and standard attack variants on the CIFAR10 dataset. PROTECTOR outperforms
prior baselines by 10%. Once again, note that PROTECTOR shows significant improvements against most attacks in the suite.
Compared to the previous state-of-the-art defense against multiple perturbation types (MSD), if we compare the performance
gain on each individual attack algorithm, the improvement is significant, with an average accuracy increase of 14.2% on.
These results demonstrate that PROTECTOR considerably mitigates the trade-off in accuracy against individual attack types.
Further, PROTECTOR also retains a higher accuracy on benign images, as opposed to past defenses that have to sacrifice the
benign accuracy for the robustness on multiple perturbation types. The clean accuracy of PROTECTOR is over 7% higher
than such existing defenses on CIFAR-10, and the accuracy is close to MA models trained for a single perturbation type.

J.3 DIFFERENT NUMBER OF SECOND-LEVEL MA PREDICTORS

We also evaluate PROTECTOR with three second-level predictors, i.e., Mℓ1 , Mℓ2 and Mℓ∞ . The results are presented in
Table 13. This alternative design reduces the overall accuracy of the pipeline model. We hypothesize that this happens
because the Mℓ1 model is already reasonably robust against the ℓ2 attacks, as shown in Table 2b. However, having both Mℓ1

and Mℓ2 models allows adaptive adversaries to find larger regions for fooling both Cadv and MA, thus hurting the overall
performance against adaptive adversaries.

Table 12: Attack-wise breakdown of adversarial robustness on CIFAR-10. Ours represents PROTECTOR against the adaptive
attack strategy described in Section 5.4, and Ours* represents the standard attack setting.

Mℓ∞ Mℓ2 Mℓ1 MAX AVG MSD Ours Ours*
Benign Accuracy 89.5% 93.9% 89.0% 81.0% 84.6% 81.7% 89.0% 89.0%
PGD-ℓ∞ 62.3% 36.2% 36.0% 43.2% 41.1% 46.6% 62.3% 62.3%
APGD-CE 62.1% 35.5% 35.9% 38.5% 41.1% 46.3% 62.2% 63.9%
APGD-DLR 60.9% 38.0% 37.7% 39.1% 43.3% 46.6% 59.1% 63.8%
APGD-T 59.4% 34.9% 35.0% 36.5% 39.7% 43.8% 58.7% 62.3%
FAB-T 59.9% 35.9% 35.4% 40.8% 40.2% 44.0% 79.1% 84.7%
SQUARE 67.2% 57.7% 50.5% 51.8% 50.8% 52.1% 85.6% 80.3%
ℓ∞ attacks (ϵ = 0.003) 59.3% 34.8% 35.0% 34.9% 39.7% 43.7% 56.1% 58.4%
PGD-ℓ2 66.5% 77.5% 72.4% 64.4% 67.7% 66.2% 69.4% 69.6%
DDN 66.9% 77.5% 72.6% 64.5% 67.7% 66.2% 83.1% 85.2%
APGD-CE 66.3% 77.4% 72.3% 64.4% 67.2% 66.1% 71.1% 70.8%
APGD-DLR 65.6% 77.6% 72.0% 63.0% 66.0% 65.3% 70.5% 70.6%
APGD-T 65.1% 77.3% 71.5% 62.1% 65.5% 64.5% 69.4% 69.6%
FAB-T 65.0% 77.4% 71.7% 62.7% 65.7% 64.5% 88.7% 90.4%
SQUARE 81.2% 86.2% 81.7% 72.0% 77.1% 72.2% 90.2% 92.1%
ℓ2 attacks (ϵ = 0.5) 64.6% 77.2% 71.5% 61.8% 65.5% 64.5% 69.3% 69.4%
PGD-ℓ1 30.2% 48.5% 62.5% 50.8% 61.0% 58.2% 59.8% 64.1%
FAB-T 35.0% 47.2% 61.3% 48.3% 63.8% 57.7% 65.5% 69.3%
ℓ1 attacks (ϵ = 10) 27.6% 45.3% 60.9% 43.7% 60.0% 56.1% 57.9% 59.5%
All Attacks 27.6% 32.9% 35.0% 31.5% 39.3% 43.5% 53.5% 54.9%
Average All Attacks 60.9% 59.0% 57.9% 53.5% 57.2% 57.4% 71.6% 73.3%

Table 13: Effect of the number (n) of specialized robust predictors MA in PROTECTOR(n) on CIFAR-10. The analysis was
performed for an architecture that only utilizes the raw input, and not the Fourier features.

PROTECTOR(2) PROTECTOR(3)
Clean accuracy 90.8% 92.2%
APGD ℓ∞ (ϵ = 0.03) 64.8% 56.3%
APGD ℓ2 (ϵ = 0.5) 68.8% 69.2%
Sparse ℓ1 (ϵ = 10) 55.9% 52.3%

	Introduction
	Related Work
	Separability of Perturbation Types
	Problem Setting
	Separability of p Perturbations

	Protector: Perturbation Type Categorization for Robustness
	Adversarial Trade-off

	Training and Inference
	Dataset Creation
	Training
	Inference Procedure
	Adaptive Attacks against Protector

	Experiments
	Perturbation Categorization by C_adv
	Robustness to p attacks
	Robustness to non-p attacks

	Conclusion
	Problem Setting: Theoretical Analysis
	Separability of perturbation types (Theorem 1)
	Binary Gaussian Classifier
	Optimal Adversarial Perturbation against MW
	Perturbation Classification by Cadv
	Calculating a bound on the error

	Robustness of the Protector Pipeline (Theorem 2)
	Binary Gaussian Classifier MA
	Perturbation Sizes for Fooling MA Models
	Robustness of individual MA models
	Decision rule for Cadv
	Trade-off between attacking MA and Cadv

	Model Architecture
	Training Details
	Specialized Robust Predictors MA
	Perturbation classifier Cadv

	Attacks Used for Evaluation
	Fourier Features
	Perturbation Categorization
	Empirical Perturbation Overlap
	Robustness of Cadv
	More Results on Common Corruptions

	Adaptive Attacks
	Aggregating predictions from different MA at Inference
	Trade-off between fooling MA and Cadv

	Breakdown of Complete Evaluation
	MNIST
	CIFAR-10
	Different number of second-level MA predictors

