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Abstract

Word Usage Graphs (WUGs) represent human
judgments about semantic proximity between
word uses as a weighted undirected graph.
WUGs pose specific challenges to clustering al-
gorithms such as incompleteness and noise. We
are the first to systematically compare multi-
ple graph clustering algorithms for WUGs and
find that the Weighted Stochastic Block Model
is comparable to or outperforms the current
state-of-the-art. We further test various graph
cleaning strategies to improve the quality of re-
maining cluster assignments while minimizing
data loss. With better clustering and cleaning
methods we hope to help researchers help other
researchers improve the quality of their WUGs
without additional manual annotation. We pub-
lish clustered and cleaned graphs for further
research.

1 Introduction

In recent years, a new annotation paradigm for
word senses has emerged under the name of Word
Usage Graphs (WUGs, Schlechtweg et al., 2020,
2021b). In this paradigm, humans provide se-
mantic proximity judgements for pairs of word
uses (also known as Word-in-Context annotations),
which are then represented as a weighted graph and
clustered with a graph clustering algorithm, as dis-
played in Figure 1. This way, clusters representing
word senses can be inferred from simple judgments
about pairs of word uses, avoiding the need for
word sense definitions. While, up to now, this ap-
proach has been applied mainly within the field of
Lexical Semantic Change Detection (LSCD) (e.g.
Schlechtweg et al., 2021b; Kurtyigit et al., 2021;
Zamora-Reina et al., 2022), it can be applied gen-
erally in a Word Sense Induction (WSI) setting
(Aksenova et al., 2022) or for Word Sense Dis-
ambiguation (WSD) when combined with a sense
labelling procedure for word sense clusters (cf. Giu-
lianelli et al., 2023; Kutuzov et al., 2024).

Being a rather recently developed annotation
approach, the WUG paradigm brings many open
questions. In this paper, we approach two impor-
tant problems: (i) WUGs are undirected graphs
with ordinal edge weights. They are often sparsely
observed (annotated), contain considerable annota-
tion noise and disagreements and have subgraphs
annotated by different annotators. Node clustering
under these conditions is challenging as e.g. many
standard clustering algorithms such as Agglomera-
tive Clustering (Ward Jr, 1963) need a complete ad-
jacency matrix not provided by incomplete WUGs.
The current state-of-the-art approach is Correla-
tion Clustering (Bansal et al., 2004) as first applied
to this problem by Schlechtweg et al. (2020), but
mainly for lack of a systematic comparison. We
thus test multiple graph clustering algorithms on a
WUG dataset that provides an independent word
sense annotation for evaluation. (ii) As a result
of the above-described challenges, clusterings ob-
tained on WUGs often show considerable error.
Researchers may want to clean out unreliable clus-
ter assignments before using them as ground truth
for model evaluation (e.g. Schlechtweg et al., 2020;
Aksenova et al., 2022; Zamora-Reina et al., 2022)
or further modelling (Giulianelli et al., 2023; Kutu-
zov et al., 2024). Hence, we test several post hoc
cleaning strategies and evaluate the results in terms
of lost data and correspondence to the independent
word sense annotation.

Our contributions can be summarized as follows:

* We are the first to systematically evaluate
graph clustering algorithms on manually an-
notated WUGs.

* We considerably improve the clustering per-
formance over the previous state-of-the-art.

* We are the first to empirically validate the
clustering model proposed in Peixoto (2017)
and slightly adjusted in Schlechtweg et al.
(2021a).



DWUG DE DWUG DE Sense
n 50 24
N/V/A 34/14/2 16/7/1
Ul <100+<100 25425
AN 8 3
|J| 1.7 2.9
KRI .67 .87
STYLE use-use use-sense
Table 1: Statistics for the latest version (2.3.0) of

DWUG DE and the new DWUG DE Sense dataset.
n = no. of target words, N/V/A = no. of
nouns/verbs/adjectives, |U| = no. uses per word (¢1+t2),
AN = no. of annotators, |J| = avg. no. judgments per
annotation instance, KRI = Krippendorff’s o, STYLE =
annotation style.

* We are the first to formulate and systemati-
cally evaluate cleaning procedures for WUGs,
which will be crucial for further research
building on this type of data.

* We publish improved clusterings and cleaned
graphs for further research.!

2 Related Work

There are a number of recent WUG datasets for
multiple languages (Schlechtweg et al., 2021b; Kur-
tyigit et al., 2021; Baldissin et al., 2022; Zamora-
Reina et al., 2022; Kutuzov et al., 2022; Aksenova
et al., 2022; Chen et al., 2023). Most of them are
diachronic, meaning that the underlying word uses
were sampled from different time periods. A few
studies investigate the clustering and/or edge sam-
pling procedures (Schlechtweg et al., 2021a; Tunc,
2021; Kotchourko, 2021). See also Schlechtweg
(2023, pp. 54-67) for an in-depth analysis of clus-
ter errors, and robustness of clusterings and seman-
tic change scores derived from them. However,
studies on clustering WUGs either do not evaluate
the quality of obtained clusters against a realistic
(i.e., empirically observed) gold standard or do
not compare their models against others. Hence,
we currently do not know which clustering algo-
rithm should be preferred on WUGS in practice.
Moreover, there are no previous results on cleaning
WUGs. More recent work uses WUG clusters as
a data source for generation of sense glosses (Giu-
lianelli et al., 2023; Kutuzov et al., 2024) or for
edge induction (Noble et al., 2024).

'Link will be put for publication version.

3 Datasets

For our experiments, we use the DWUG DE dataset
(Schlechtweg et al., 2021b) and the DWUG DE
Sense dataset (Schlechtweg, 2023, pp. 57-58) de-
rived from it. Table 1 provides basic statistics for
both of them.

3.1 DWUG DE

DWUG DE contains pairs of German word uses
from two time periods annotated with judgements
about relatedness of word meanings in those pairs
collected from multiple annotators. For each target
word, authors sampled pairs of uses such as (1)
and (2) from two historical corpora (1800—-1899,
1946-1990) and asked annotators to rate them on
a ordinal relatedness scale from 1 (unrelated) to 4
(identical), as detailed in Table 3 in Appendix A.

(1) Im Ohrwurm ist der obere Magenmund
inwendig mit einigen Zdhnen in zwey Reihen
besetzt.

‘In the earworm the upper stomach mouth is
occupied inside with some teeth in two rows.’

(2) Werden die Lieder Ohrwiirmer, klingelt
auch die Kinokasse.
‘If the songs become catchy tunes, the cinema
cash register also rings.’

The annotated pairs were represented as a weighted
graph with the median of annotator judgments as
edge weights and clustered with Correlation Clus-
tering. All uses sharing a cluster were then inter-
preted as having the same sense and the semantic
change for each word was measured based on these
clusterings. We use version 2.3.0 for our experi-
ments.?

3.1.1 DWUG DE Sense

Schlechtweg (2023) randomly chose 24 target
words (out of 50) from the DWUG DE dataset,
randomly sampled uses for each target word (25
per time period from at most 100 in the original
dataset) and asked three annotators to label each
use with a sense definition from a predefined in-
ventory best describing meaning of the target word
in this use. The data is then cleaned and aggre-
gated. For our experiments, we use the "maj3"
aggregation, meaning that all uses were identically
annotated by all three annotators leaving 826 uses
of 24 target words for evaluation. We use version

2https: //zenodo.org/records/7441645.
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Figure 1: WUGSs from different datasets (Schlechtweg et al., 2021b; Kurtyigit et al., 2021): English plane (left),
Swedish farg (middle) and German anpflanzen (right). Noisy nodes and isolates were removed.

1.0.0 for our experiments.> DWUG DE Sense is a
subset of DWUG DE in terms of target words and
uses. However, it provides word sense annotations
following the more established use-sense approach
widely used in WSD (e.g. Langone et al., 2004;
Hovy et al., 2006). It was cleaned on the use level.
Hence, it can serve as a reliable gold standard to
evaluate clusterings on the DWUG DE graphs.

4 Tasks

AWUG G = (U, E, W) is a weighted, undirected
graph, where nodes u € U represent word uses and
weights w € W represent the human-annotated
semantic proximity of a pair of uses (an edge)
(u1,u2) € E (McCarthy et al., 2016; Schlechtweg
et al., 2020). We approach two tasks: Given an
incomplete and noisy WUG,

1. cluster the GG based on the edge weights such
that uses with the same sense are in the same
cluster,

2. remove nodes from the G which were clus-
tered incorrectly while removing as few nodes
as possible.

Note that the first task is basically WSI under spe-
cific conditions. Our main quality metrics are the
Rand Index and the Adjusted Rand Index (RI and
ARI, Hubert and Arabie, 1985) against gold clus-
ters, and for the second task we additionally report
the amount of nodes, senses, clusters and whole
lemmas removed.

5 Models

In this section, we describe models solving two
tasks described above, i.e., clustering and cleaning
models.

3https ://zenodo.org/records/8197553.

5.1 Graph preprocessing

First, note that the pre-processing techniques de-
scribed below are not tested with WSBM as it shifts
edge weights from discrete to dense values requir-
ing dense distribution estimation during model fit-
ting, which we found to suffer from a bug in graph-
tool version 2.58 installed with Anaconda.

We define two graph preprocessing parameters:

* t: threshold for shifting all edge weights and
e dwn: downscales the influence of annotation
noise.

We shift each edge weight w = W (e), e € E to
w’' = w — t where t is the threshold parameter.
For both, CW and CC, this parameter decreases
the influence of edge weights that are close to the
threshold on cluster comparison scores during clus-
tering (the sum of edge weights for Chinese Whis-
pers and the cluster loss for Correlation Clustering).
We test the values ¢ € {0.0,1.8,1.9...3.2} where
the the value 0.0 corresponds to the original edge
weights.

In their manual analysis, Schlechtweg (2023, p.
60) observed disagreements stemming from am-
biguity of some word uses to be the major factor
determining clustering errors. Hence, we intro-
duce the dwn parameter scaling each shifted edge
weight w’(e) := w'(e)(1 — o) where o is the stan-
dard deviation of all judgements on edge e. This
lowers the absolute values of questionable edge
weights, which should decrease their influence on
the clustering with Chinese Whispers and Correla-
tion Clustering. We test models with and without
downscaling.

5.2 Clustering

For model choice, we rely on the results from previ-
ous studies (Schlechtweg et al., 2021a; Tunc, 2021;
Kotchourko, 2021). Below, we assume that cluster-
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ing algorithms operate on the preprocessed graphs
from Section 5.1.

Chinese Whispers Chinese Whispers (CW) is
an efficient, randomized clustering algorithm with
a time complexity linear with respect to the number
of edges (Biemann, 2006). The algorithm first as-
signs all nodes to different clusters. Then the nodes
are processed in randomized order for a small num-
ber of iterations (we set this hyperparameter to 20)
and are assigned to the strongest cluster in the local
neighborhood, i.e., the cluster whose sum of edge
weights to the current node is maximal, i.e., given
the currently processed node u and N(u) being
the set of all neighbouring nodes, u’s new cluster
assignment will be given by

C(u) := arg max Z

ne(c N N(u))

weight((u,n))

where weight is a hyperparameter, which takes
three different values:

1. lin: This calculates the weight of an edge
between two nodes in a graph using lin-
ear weighting, which is the edge weight di-
vided by the degree of the destination node:
weight((u,n)) = W(u,n)/d(n).

2. log: This computes the weight of an edge
between two nodes in a graph using loga-
rithm weighting, which is the edge weight
divided by the logarithm of the degree of
the destination node (shifted by one to
avoid zero division): weight((u,n)) =
W(u,n)/loga(d(n) + 1).

3. top:  This keeps edge weight as is:
weight((u,n)) = W(u,n).

We use the implementation provided by Ustalov
etal. (2019).4

Correlation Clustering We use a variation of
Correlation Clustering (CC) (Bansal et al., 2004),
a graph clustering technique which minimizes the
sum of cluster disagreements, i.e., the sum of neg-
ative edge weights within a cluster and the pos-
itive edge weights across clusters (Schlechtweg
et al., 2020). CC has been used extensively in
the LSCD context to cluster human annotations
(Schlechtweg et al., 2021b; Kurtyigit et al., 2021;
Kutuzov et al., 2022; Baldissin et al., 2022; Ak-
senova et al., 2022; Zamora-Reina et al., 2022;
Chen et al., 2023). Those edges e with a weight

4h’ctps ://github.com/nlpub/chinese-whispers

W(e) > 0 are referred to as positive edges Pp
while edges with weights W (e) < 0 are called
negative edges Ng. Let further C' : U — L be
some clustering on U, ¢ ¢ be the set of positive
(high) edges across any of the clusters in clustering
C and Y g ¢ the set of negative (low) edges within
any of the clusters. The algorithm then searches for
a clustering C' that minimizes the sum of weighted
cluster disagreements:

SWD(C)= > W)+ Y [W(e)l.

eEPE,C eEvp.c

That is, the sum of positive edge weights be-
tween clusters and (absolute) negative edge weights
within clusters is minimized. Minimizing SWD is
a discrete optimization problem which is NP-hard
(Bansal et al., 2004). We use the implementation of
Schlechtweg et al. (2021b).> The implementation
approximates the global optimum with Simulated
Annealing (Pincus, 1970), a standard discrete opti-
mization algorithm. In order to reduce the search
space, the implementation iterates over different
values for the maximum number of clusters. It also
iterates over randomly as well as heuristically cho-
sen initial clustering states. The implementation
has the following hyperparameters:

* tcc: athreshold for shifting and splitting edge
weights into positive and negative.

* MaXclusters: the maximum number of clusters
allowed in the search space,

* MaXytm and maxjter: the maximum attempts
and maximum iterations for simulated anneal-
ing and

* rep: the number of repetitions of the cluster-
ing.

tce has an equivalent effect as the threshold pa-
rameter described above. Hence, it will not be
varied. maXciysters 18 set to 20 based on the as-
sumption that most words have less than 20 senses.
We set maxXyty and maxiter to 2000 and 50000 re-
spectively, and rep to 5. These have shown near
to optimal performance on DWUG DE in Tunc
(2021).

Weighted Stochastic Block Model We use a
Bayesian formulation of the Weighted Stochastic
Block Model (WSBM), a generative model for ran-
dom graphs popular in biology, physics and so-
cial sciences (Aicher et al., 2014; Peixoto, 2017).

5https: //github.com/Garrafao/WUGs
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The model has been first applied on WUGs by
Schlechtweg et al. (2021a) and subsequently by
Kotchourko (2021) and Noble et al. (2024). The
basic assumption of the WSBM is that nodes be-
long to latent blocks (clusters), and that nodes in
the same block are stochastically equivalent (i.e.,
they have edges drawn from the same distribution).
Fitting the model is equivalent to determining the
optimal latent block structure providing a cluster-
ing of word uses.

The inference of the latent block structure is
driven by both edge existence and edge weights.
This is achieved by treating edge weights as co-
variates that are sampled from some distribution
(e.g. binomial) conditioned on the vertex partition
(Peixoto, 2014a), i.e.,

P(A, 20,7,b) = P(x|A,~,0)P(A]6,b)

with the covariates being sampled only on existing
edges, and where -, is a set of parameters that
govern the sampling of the weights between groups
r and s. The posterior partition distribution is then

P(2|A, b)P(AJb)P(b)
P(A,x) ’

P(b|A,x) =

omitting the parameters 6,y as in the non-
parametric WSBM through the use of marginal
likelihoods (Peixoto, 2017). In our experiments we
use the non-parametric, micro-canonical implemen-
tation of the WSBM which avoids explicitly encod-
ing distribution parameters for edge weights by re-
placing them with hard quantities (Peixoto, 2014c).
The non-parametric model avoids over-fitting, and
micro-canonical distributions are easier to compute
while approaching their canonical counterparts
asymptotically (Peixoto, 2017). Finding the maxi-
mum of the posterior distribution of the WSBM is
NP-hard (Peixoto, 2015). Hence, we infer the opti-
mal partitioning of vertices P(b|z) asymptotically
with multilevel agglomerative Markov chain Monte
Carlo (MCMC) Peixoto (2014b). All experiments
were done with Peixoto (2017)’s implementation.5
We keep all hyperparameters (e.g. the temperature
parameter for MCMC, f3) at their default values,
except for the following ones:

e dist: the distribution fitted to the observed
edge weights within and between blocks (clus-

ters),
* mrg: whether to marginalize out edge proba-

bilities,

6https ://graph-tool. skewed.de/

* dgr: whether to use the degree-corrected
model version,

* Bpax: the maximum number of clusters to con-
sider during search and

* niter: the number of sweeps performed in
multilevel agglomerative acceptance-rejection
MCMC search.

We test all discrete distributions available in the
implementation: poisson, binomial, and geometric.
We test the model with and without marginalizing
out edge probabilities (Schlechtweg et al., 2021a),
with and without degree-correction (Karrer and
Newman, 2011). Byax and niter are set to 30 and
100 respectively. These choices for manipulation
are driven by Schlechtweg et al. (2021a)’s findings
and examples in Peixoto (2014a).

5.3 Postprocessing

We define the following cluster postprocessing pa-
rameters:

* tcips: threshold for collapsing clusters.

We apply a cluster postprocessing step merging
clusters with the average between-cluster edge
weights above tcips. This parameter follows the
idea that nodes from two different clusters should
really correspond to two different senses, thus, the
between-cluster edges should have judgments from
the lower end of the annotation scale. Hence, clus-
ter with high judgments on the between-cluster
edges likely correspond to the same sense and
should be merged.

5.4 Cleaning

There are no previous studies on cleaning strategies
for WUGs. Hence, we derive a number of postpro-
cessing (cleaning) heuristics based on the insights
obtained from a manual analysis of clustering er-
rors (Schlechtweg, 2023, pp. 59-61):

* tstdnode: Temove nodes with average standard
deviation on its edges above the threshold,

* tggrnode: Temove nodes with degree (number
of edges) below the threshold,

* tgizecluster: remove clusters with a size below
the threshold,

* tenteluster: remove poorly connected clus-
ters. We calculate the percentage of annotated
edges for each cluster pair and then average
these percentages per cluster. We then remove
clusters with an average connectedness below
the threshold.
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These strategies are motivated by the hypothesis
that clustering errors mainly stem from noise in
the graph (e.g. through ambiguity), edge sparsity
or their combination. We test the effect of each of
the hyperparameters individually, reducing the size
of the grid. We also test the effect of the above-
described cluster postprocessing parameter tcips
in more detail as part of the cleaning experiments,
which was not feasible above given the large hy-
perparameter grid in the clustering experiments.
For each cleaning run, we first remove nodes and
edges with a high number of 0-judgments before
applying the cleaning strategy. We further remove
all isolates.For each threshold hyperparameter, we
calculate the grid by first gathering all observed
values of the underlying variable (e.g. all degrees
of nodes for tggrnode) Over all graphs in DWUG
DE with published opt clusterings. We then divide
these scores in 50 percentiles and select all unique
percentiles for the respective hyperparameter grid.
This way we avoid testing many values having little
effect on the graphs.

6 Experiments

We now apply the clustering and cleaning mod-
els described above to the annotated graphs from
DWUG DE varying their hyperparameters. Cluster
quality is measured as correspondence to DWUG
DE Sense clusters with the Adjusted Rand Index
(ARI, Hubert and Arabie, 1985).

6.1 Clustering

Evaluation Setup. To compare different meth-
ods, we need some labelled data to select optimal
hyperparameters for each of them, and also sep-
arate labelled data to calculate the unbiased esti-
mates of clustering quality. Since we have only 24
words in our dataset, we decided to employ leave-
one-out cross-validation. Specifically, following
the idea proposed in (Cawley and Talbot, 2010)
when calculating ARI of a method for a particular
test word, we first select the hyperparameters that
maximise the average ARI on all other words, then
calculate ARI for the test word. This helps avoid
over-fitting during hyperparameter selection and
obtain unbiased estimates of ARI for each method
on each test word.

This evaluation setup helps to get unbiased esti-
mates of the quality of a whole pipeline consisting
of a particular clustering method, pre- and post-
processing steps, and also the hyperparameter se-

lection approach. However, it potentially select
entirely different hyperparameter configurations
for each fold. Table 2 shows the number of folds
each configuration was selected for. Evidently, for
each clustering method there exists a winning con-
figuration selected for 70-80% of folds. This con-
figuration can be recommended as the default one
when running our pipelines on new data.

Result Overview. The cross-validated ARI for
each clustering method is reported in Table 2.
WSBM outperforms two other methods, and CW
demonstrates poor performance. Additionally, Ap-
pendix B compares these methods on each word
individually.

Since the test set contains 24 words only, it is
important to check for statistical significance of the
differences between performance of our clustering
methods. We set the confidence level of 5% and em-
ploy the Wilcoxon signed-rank test with one-sided
alternative and Pratt method (Pratt, 1959) to ac-
count for zero differences.The differences between
WSBM and CW, and also between CC and CW
are statistically significant, while the difference
between WSBM and CC is not. We can reliably
conclude that CW is worse than two other meth-
ods. The size of the test set does not allow to draw
reliable conclusions regarding the comparison of
WSBM and CC though.

Previous Models. Another way to select hyper-
parameter configurations for testing is by previous
results or theoretical argument. This way, we select
two model configurations to compare: (i) The
WSBM+t,ips=False+dist=binomial+mrg=True

+dgr=False and (ii) CC+t=2.5+dwn=False
+tcps=False. The first is suggested by the
rather superficial evaluation of Schlechtweg
et al. (2021a) and has a theoretical motivation
as statistically sound model (Peixoto, 2017).
The second model has a theoretical motivation
based on the interpretation of the annotation scale
(Schlechtweg et al., 2020) and was used to create
the published clusterings for most WUG datasets
(e.g. Schlechtweg et al., 2021b; Kurtyigit et al.,
2021; Chen et al., 2023). We now test whether
their performances are significantly different: The
two models have an average ARI of .81 and .75
respectively. The Wilcoxon test shows that the
difference is not statistically significant though.”

"However, p-value is 0.0516, which is only a bit higher
than our critical value of 0.05.



method ARI t dwn  teps dist mrg dgr weight  #folds
- - False binomial True True - 20
WSBM .76 - - 2.4 binomial True False - 2
- - False binomial True False - 1
- - 2.3 binomial True  True - 1
2.5 True 23 - - - - 18
2.4 True 2.4 - - - - 2
25 True 24 - - - - 1
ccC 72 2.6 False 2.3 - - - - 1
29 True 2.3 - - - - 1
26 True 2.3 - - - - 1
30 True 24 - - - top 17
20 True 24 - - - top 2
2.8 False 24 - - - top 2
cw S 90 Tre 23 - - - top 1
22 True 24 - - - top 1
29 True 23 - - - top 1

Table 2: The configurations of hyperparameters selected for each method in at least one CV fold. The configuration
selected for the majority of folds is in bold. “-” marks non-applicable parameters for the respective method.

Shifting and collapsing thresholds. CC and CW
profit from post-clustering collapsing of clusters
with t¢1ps=2.3/2.4. For CC, the shifting thresh-
old t=2.5 seems optimal, however with additional
post-collapsing at 2.3. For CW, a higher shifting
thresholds of t=3.0 seems optimal, with additional
collapsing at 2.4. Collapsing has no pronounced
effect for the WSBM.

Ambiguity downscaling. Table 2 indicates that
dwn=True has a positive effect on CC and CW as
it is part of most optimal configurations. For CC,
dwn=True for 23/24 folds while for CW this is true
for 22/24 folds.

Edge marginalization, degree correction and dis-
tribution for WSBM. The performance differ-
ence for WSBM-+tps=False+dist=binomial with
and without edge marginalization (mrg=False/True)
is .175/.176 vs. .813/.815 (dgr=False/True), the
difference is statistically significant and also quite
large. This trend is opposite for other distribu-
tions (poisson, geometric), but the performance of
these models is always lower than 0.34. This con-
firms the observations of Schlechtweg et al., but
leaves an open question why the trend is inconsis-
tent across distributions. Furthermore, 21/24 folds
have dgr=True suggesting that degree-correction
has a positive effect. The binomial distribution is
part of the selected model on all folds confirming
previous results by Schlechtweg et al. (2021a).

Weight parameter for CW. The weight param-
eter is weight=top across all selected models sug-
gesting that degree weighting has no positive effect
for CW.

6.2 Cleaning

As indicated above, cleaning experiments were
only performed for the published DWUG DE opt
clusterings, which were obtained with CC at a
threshold of 2.5 after removing nodes with a high
number of O-judgments and any nan edges and iso-
lates, without further preprocessing or postprocess-
ing. This choice is driven by the fact that this clus-
tering approach is widely used for other datasets
and thus our results can more easily be assumed to
generalize to these datasets.

Evaluation Setup. To compare different clean-
ing methods we have to compare the trade-offs they
offer between the amount of information removed
from a graph and the clustering quality of the re-
maining part of this graph, next we explain how we
quantify these trade-offs. Better cleaning methods
result in higher quality for the same proportion of
removed uses. In addition, it is important to con-
sider the number of senses that have all of their
uses removed after cleaning because, generally, we
would prefer a method that preserves all or almost
all word senses even if it removes more uses e.g.
due to heavier filtering of uses of the most frequent
senses.

As a measure of change in the number of uses
we employ the relative change averaged across all
target words:

Anuses s — nuses;

1 N nuse
_NZ

where nuses; and nuses; are the number of uses
of the i-th target word before and after cleaning,

nuses nuses;
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Figure 2: Comparison of cleaning methods. Relative
changes are plotted, arrows show if we prefer higher
or lower values. For the random baseline we show the
mean and the 95% CI for the mean based on 100 runs
for each X value.

N is the number of target words. Similarly, the
relative change in the number of senses or clusters
is calculated first for each target word, and then
averaged across all target words. If all uses of a
particular target word are filtered, out we naturally
define the number of uses, senses and clusters for
this word as 0.

As the main measure of change in the cluster-
ing quality we rely on the relative change of the
complement of ARI, Appendix C explains why this
metric is selected. First, we calculate the relative
change for each word:

A(1 — ari;)

(1 — ari;)

(1 —ari)) — (1 — ari;)
1—ari

where ari; and ari, measure the quality of the orig-
inal clustering of all uses and clustering of uses that
survived after cleaning. For a target word with no

uses, the quality of clustering cannot be naturally
defined. Thus, the metrics of clustering quality are
averaged only across those words that have some
uses survived after filtering. In Appendix D we
compare the results using both the original clus-
tering metrics ARI and RI, and also their comple-
ments, all of them are calculated the same way.

Result Overview. Figure 2 compares the clean-
ing methods including a random baseline, which
randomly removes the given proportion of nodes.
The first plot shows the relative change of the com-
plement of ARI averaged across those target words
that have at least one use after cleaning, the values
below 0 mean an increase of clustering quality af-
ter cleaning. The second plot shows the average
relative change of the number of senses for all tar-
get words, the higher values meaning more senses
survived are preferable.

The only method that consistently improves
the clustering quality while preserving almost all
senses is dgrnode. It also leaves more senses com-
pared to all other methods when the same propor-
tion of uses is removed.The best clustering quality
is obtained when roughly half of the uses are re-
moved. Despite the proportion of removed uses is
large in this case, very few senses are fully filtered
out making this filtering configuration practically
useful. Sizecluster gives a comparable improve-
ment with much fewer uses removed, but at the
same time with much more senses fully lost due to
removing whole clusters. Stdnode is competitive
when we allow removing only 5-10% of nodes, but
cannot give the same improvement as dgrnode un-
less 70-80% of nodes are filtered out and 30-40% of
senses are lost which seems hardly acceptable for
practical use. Finally, cntcluster results in a large
loss of senses and no improvement in clustering
quality.

7 Conclusion

We systematically evaluated graph clustering al-
gorithms and cleaning strategies on manually an-
notated WUGs. We were able to show that the
Weighted Stochastic Block Model outperforms the
previous state-of-the-art model, Correlation Clus-
tering. However, the difference was not statistically
significant. Further, we identified the removal of
nodes by their degree as effective cleaning strategy.
We publish the improved clusterings and cleaned
graphs for further research.



8 Limitations

The main limitation of our work is the size of the
gold dataset containing only 24 words. This is
due to the scarcity of data annotated both with the
WUG and the traditional approach. Further, the
DWUG DE WUGs have been annotated with a
special annotation approach in rounds involving
many edge sampling heuristics. We do not know
whether our results generalize to WUGs annotated
in a different way, e.g. with random sampling of
edges.

Some interesting experiments are missing in our
work: We did not test the dense version of the
WSBM. We also only tested the cleaning strategies
on the published clusterings and did not test com-
binations of cleaning strategies. We only applied
cleaning as a post-processing step, but it could be
applied as a pre-processing before clustering.

Our work relies on the assumptions that semantic
proximity judgments between pairs of uses reflect
the structure of traditional sense definition judg-
ments as we use the former to reproduce the latter
through clustering. This assumption sometimes
does not hold, also because annotators may dis-
agree in the interpretation of the word uses.
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4: Identical

3: Closely Related
2: Distantly Related
1: Unrelated

Table 3: The DURel relatedness scale (Schlechtweg
etal., 2018).

A Annotation scale

Table 3 shows the ordinal annotation scale for use
pairs used in the WUG paradigm.

B Cross-validation results per word

Figure 3 compares ARI for the three clustering
methods for each test word individually. For 18 out
of 24 words WSBM gives one of the best cluster-
ings, and on 8 of those words it strictly outperforms
two other methods. For comparison, the second
best performing method CC returns one of the best
clusterings for 16 out of 24 words, and for 5 of
those words it is strictly better than the others. For
7 words WSBM returns the clustering identical to
the ground truth one, getting the ARI of 1.0. For
the words Titel and Seminar no method shows rea-
sonable ARI.

C Metrics for the cleaning experiments

We considered different metrics as the main quality
metrics, and finally selected the relative change in
the complements of RI and ARI averaged across
the survived target words. As RI is the pairwise
accuracy, i.e. the proportion of pairs of uses that
are correctly put into the same or different clusters
(depending on their gold labels), and ARI is its
shifted and scaled version, their complements 1-RI
and 1-ARI quantify the pairwise error rate. We
argue that averaging the relative changes in the
error rate better reflect our intuition that equivalent
absolute improvements in RI for the words that are
already clustered almost perfectly and those with
very bad clustering are not comparable.

As an example, consider two lemmas with
RI for the first decreased from 0.9 to 0.8 and
for the second increased from 0.2 to 0.3 after
cleaning. Intuitively, the second change is much
smaller than the first one, and the overall per-
formance is now worse. But after averaging
the absolute RIs we will conclude that nothing
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changed: Ari = (0'8_0'9);(0'3_0'2) = 0. The
relative change of 1-ri will reveal that we have
2x more pairwise errors (the relative increase in
error rate of 1.0) for the first lemma and a small
decrease for the second one, so the average will
be significantly larger: A(1 —7i)/(1 — ri)
(0.2—0.1)/0.142-(0.7—0.8)/0.8 1—21/8 0.4375.
This can be interpreted as an increase in the number
of errors by 43.75%.

D Extended comparison of cleaning
methods

Figure 4 shows how the number of clusters and the
number of senses change as usages are removed.
Clearly we want as few senses to be removed as
possible, but removing some clusters may be de-
sirable if they poorly correspond to senses. The
most conservative method is dgrnode, for the same
proportion of removed nodes it removes the small-
est number of senses and clusters. For the meth-
ods removing whole clusters, i.e. cntcluster and
sizecluster, we see that both the number of clusters
and the number of senses reduce rapidly, but the
number of senses decrease a bit more slowly in the
beginning. This is probably due to some senses
appearing in small removed clusters also appear in
larger clusters.

Figure 5 extends figure 2 with additional metrics.
However, they show a similar overall picture. Com-
pared to the relative changes, the absolute value of
ARI similarly shows a bit less articulated but con-
sistent superiority of dgrnode over other methods.

For the methods removing whole clusters, i.e.
sizecluster and cntcluster, when comparing the rel-
ative change of RI and ARI the results are contra-
dictory. This is likely related to RI of a random
assignment of uses to clusters becoming better as
the number of clusters decreases, which is taken
into account by ARI.

Figures 6 and 7 show how ARI changes after
cleaning for each target word individually. There is
no single method that outperforms all other meth-
ods or at least the random baseline on all words.

E Collapsing threshold

Figure 8 shows the effect of collapsing with dif-
ferent thresholds on ARI. The left plot shows the
average ARI across all target words, seemingly
there is a significant increase if the threshold is
properly selected. However, from the right plot
we see that if the word artikulieren is excluded
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Figure 3: Comparison of clustering quality for each test word.

cross-validation are shown.

the positive effect from collapsing becomes very
small. Figure 9 explores the effect of collapsing
for each target word individually. For most words
collapsing cannot help, but can significantly hurt if
the threshold is too small, i.e. too few clusters re-
main. For a few words (Engpaf, Rezeption, packen,
iiberspannen) collapsing gives a small but consis-
tent improvement. For the word artikulieren the
improvement in ARI is huge, from 0 to 1, but this is
related to this word having only a single sense, so
any clustering except for merging all uses together
will give the ARI of 0.
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Figure 8: ARI w.r.t. the collapsing threshold. ARI is averaged across all words (left) and all words excluding
artikulieren (right). The vertical line denotes the optimal threshold, which is the same in both cases.
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Figure 9: ARI individually for each target word w.r.t. the collapsing threshold. The vertical line denotes the
threshold maximizing the average ARI across all target words.
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