
Gaussian Processes for Shuffled Regression

Masahiro Kohjima
NTT, Inc.

masahiro.kohjima@ntt.com

Abstract

Shuffled regression is the problem of learning regression functions from shuffled
data where the correspondence between the input features and target response
is unknown. This paper proposes a probabilistic model for shuffled regression
called Gaussian Process Shuffled Regression (GPSR). By introducing Gaussian
processes as a prior of regression functions in function space via the kernel function,
GPSR can express a wide variety of functions in a nonparametric manner while
quantifying the uncertainty of the prediction. By adopting the Bayesian evidence
maximization framework and a theoretical analysis of the connection between the
marginal likelihood/predictive distribution of GPSR and that of standard Gaussian
process regression (GPR), we derive an easy-to-implement inference algorithm for
GPSR that iteratively applies GPR and updates the input-output correspondence. To
reduce computation costs and obtain closed-form solutions for correspondence up-
dates, we also develop a sparse approximate variant of GPSR using its weight space
formulation, which can be seen as Bayesian shuffled linear regression with random
Fourier features. Experiments on benchmark datasets confirm the effectiveness of
our GPSR proposal.

1 Introduction

The purpose of shuffled regression (SR) is to learn regression functions from shuffled data where
the correspondence between the input features and the target response is unknown [1, 2, 3, 4]. This
situation often arises with data collected independently from multiple devices/viewpoints [4, 5, 6]
or when personal information must be anonymized for privacy reasons, such as in cases involving
clinical history [7]. Since traditional supervised regression methods, collectively referred to as coupled
regression (CR), rely on data with input-output correspondences (the pairs of features and responses)
and so cannot deal with shuffled data, SR has become the focus of recent studies [8, 9, 10, 11, 12].

In SR literature, main focus is the use of linear models [1, 2, 4, 9] (an exception is [12] which uses
neural networks as explained in §2). Accordingly, the use of Gaussian processes (GPs) [13] has not
been well investigated. Considering the known benefits of GPs such as nonparametric flexibility and
uncertainty quantification, efforts are needed to realize their benefits in SR.

This study proposes a probabilistic model based on GPs for SR called Gaussian Process Shuffled
Regression (GPSR). By introducing GPs as a prior of regression functions in function space via
the kernel function, GPSR can express wide variety of functions in a nonparametric manner while
quantifying prediction uncertainty as shown in Table 1.

By use of the Bayesian evidence maximization framework and a theoretical analysis of the connection
between the marginal likelihood/predictive distribution of GPSR and that of standard Gaussian
process regression (GPR), we derive an easy-to-implement inference algorithm for GPSR using GPR
as a subroutine; it iteratively applies GPR for the optimization of the kernel’s hyperparameters and
solves the quadratic assignment problem (QAP) for the updates of the input-output correspondence.
Although this algorithm is valid for small-scale data, it seems prohibitive for handling medium/large-
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Table 1: Comparison of the proposed method (GPSR) with
Gaussian process regression (GPR) and the existing methods
for shuffled regression (SR). Item (a) indicates which meth-
ods can handle shuffled data, while item (b) indicates which
methods can express non-linear regression functions. Finally,
item (c) shows the methods that can quantify the uncertainty
of their prediction.

GPR
[13]

SLR
[4]

SDR
[12]

GPSR
(ours)

(a) shuffled reg. ✓ ✓ ✓
(b) nonlinear ✓ ✓ ✓
(c) uncertainty ✓ ✓

Table 2: Classification of GPSR,
GPR, Bayesian Linear Regres-
sion (BLR) and Bayesian Shuf-
fled Linear Regression (BSLR). We
establish the connection between
these four methods.

Problem Type
CR SR

M
od

el

function
space GPR GPSR

weight
space BLR BSLR

scale data due to the difficulty of solving QAP (QAP is NP-hard in general) and the computation
cost of GPR, which scales cubically with the number of samples. Therefore, we also develop a
sparse approximate variant of GPSR called Sparse Spectrum GPSR (SS-GPSR) using the weight
space formulation of GPSR. This can be seen as Bayesian Shuffled Linear Regression (BSLR) with
the random Fourier features, and allows us to reduce both memory and computation cost and to
use sorting operations to obtain closed-form solutions of correspondence updating. Note that both
developing an algorithm for BSLR and clarifying the relations among four methods in Table 2 are also
our contributions. Experiments on benchmark datasets confirm the effectiveness of our proposals.

2 Related Works

This work is positioned within the literature of shuffled regression and that of Gaussian processes.
We describe below prior works in these research lines.

Background of shuffled regression (SR). SR [3, 4] which is also called “regression without
correspondence" [2, 14], “uncoupled regression" [15, 16], “permuted and unlinked regression" [9, 11],
arises in various fields, including flow cytometry for measuring chemical characteristics of cells [4],
image/point cloud registration [5, 6], and linkage of health records [7]. Thus various theoretical
aspects and problem settings of SR have been studied. For example, Pananjady et al. show that
recovering the correspondence between input and output is NP-hard in general [3]; the conditions
under which unique solutions can be achieved have been explored [17]. Some existing works consider
the setting with additional data such as pairwise comparison data [10, 15, 16, 18]. We focus on the
setting where no additional data is, only the shuffled data.

Models and algorithms for SR. Earlier works on SR mainly use linear models [3, 4, 8, 9] and are
categorized as shuffled linear regression (SLR). Only in recent years have approaches that utilize more
flexible models, such as the neural-network-based method called shuffled deep regression (SDR) [12],
been considered, and our study using GPs follows this research line. For comparison, see Table 1.
For parameter estimation, variants of the expectation-maximization (EM) [19] are frequently used,
e.g., [4, 9, 12, 20]. In contrast, our inference algorithm is derived from the Bayesian evidence
maximization framework [21, 22] which has, up to now, not been used in the context of SR. Since
the evidence penalizes overly complex models by integrating over parameters, this algorithm offers
the way of hyperparameter tuning without validation data while still avoiding overfitting.

Gaussian processes (GPs). For supervised regression, Gaussian process regression (GPR) provides
nonparametric flexibility and the quantification of uncertainty. However, naive GPR has limited
practicality because its computation cost scales to the cube of the number of data points. For
handling datasets with more than a few thousand points, various scalable approaches such as using
inducing points [23, 24, 25, 26], grid points [27, 28], and spectral points or called random Fourier
features (RFF) [29, 30] have been proposed. These so-called sparse GPs are still an active part of
GP research e.g., [31, 32, 33]. Our study adopts the approach using spectral points/RFF [29, 30] to
develop SS-GPSR, not only to reduce computation cost, but also because equations for updating the
input-output correspondence can be obtained as closed-form solutions via a sorting operation.
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3 Preliminaries

In this section, we provide definitions of shuffled data and its connection to coupled data. We also
review Gaussian process regression (GPR) for “coupled" data used in supervised regression. All
symbols are listed in the Appendix A.

Definition of Shuffled Data. Let X ⊆ RD and Y ⊆ R be the input space and response space,
respectively. Shuffled data DSD are defined by pairs of input-set Xi = {xi1,xi2, · · · ,xiL} and
response-set yi = {yi1, yi2, · · · , yiL}, i.e., DSD = {(Xi,yi)}Mi=1, where xiℓ ∈ X , yiℓ ∈ Y , L
is set size 1, and M is the number of pairs. Unlike “coupled" data, the correspondence between
input and response is unknown in shuffled data; the response corresponding to input xiℓ is one of
the elements in response-set yi = {yi1, ..., yiL}, but it is not known which one. For simplicity,
we define the total number of inputs/responses in DSD as N ≜ ML and denote all inputs and
all responses as X = {Xi}Mi=1, and y = {yi}Mi=1, respectively. Also we equate symbol yi with
L-dimensional column vector yi = (yi1, · · · , yiL)⊤, and symbol y with N -dimensional column
vector y = (y⊤

1 , · · · ,y⊤
M )⊤ whose {(i−1)L+ ℓ}-th element is yiℓ.

Connection between Shuffled Data and Coupled Data. Shuffled data DSD are regarded as a
general representation of coupled data DCD defined as pairs of input xi ∈ X and response yi ∈ Y ,
DCD = {(xi, yi)}Ni=1. This is because shuffled data with set size L = 1 are equivalent to coupled
data. To distinguish it from shuffled data, bold symbols/vectors, etc. related to couple data will
henceforth be underlined; we denote all inputs and all responses in DCD as X = {xi}Ni=1 and
y = (y1, · · · , yn)⊤, respectively. Note that early works on shuffled regression such as [2, 3, 4] focus
on shuffled data where the number of pairs is M = 1. In practical scenarios of data collection, data
are often collected multiple times by repeated measurements or by changing the target group of users;
even if the input-response correspondence is obscured we can know from which measurement/user-
groups the data was collected, so we consider shuffled data where the number of pairs is M > 1.

Gaussian Process Regression (GPR) for Coupled Data [13]. GPs are collection of random
variables {f(x)|x ∈ X} for which any finite subset follows a multivariate Gaussian specified by
mean function m(x) : X → R and kernel/covariance function k(x,x′) : X × X → R. GPR for
coupled data uses (zero-mean) GPs with kernel kθ depending on hyperparameter θ as priors over
function f , which is denoted as f ∼ GP(0, kθ(x,x′)). Each response yi is assumed to be obtained by
adding Gaussian noise to fi = f(xi), i.e., yi = fi + ϵ, where ϵ ∼ N (ϵ; 0, β−1) and β is the precision.
Introducing function values vector f = (f1, · · · , fN )⊤, this data generative process is summarized as
p(f |X) = N (f ;0,K) and p(y|f) = N (y; f , β−1IN ), where K is the gram matrix whose (i, j)-th
element is kθ(xi,xj) and IN is the N ×N identity matrix. Figure 1a shows the graphical model
representation of GPR. We get the (analytically-tractable) marginal likelihood by integrating over
latent function values f , p(y|X) =

∫
p(y|f)p(f |X)df = N (f ;0,Cθ) where Cθ = K + β−1IN .

Thus hyperparameter θ is estimated by the evidence framework [21, 22]2 that maximizes the logarithm
of marginal likelihood (evidence) defined as

(GPRMarginal L.) LGPR(θ;DCD) ≜ log p(y|X)=−1

2
log |Cθ|−

1

2
y⊤C−1

θ y−N
2
log(2π). (1)

Similarly, we get the predictive distribution of response y∗ for test input x∗ as follows.

(GPR Prediction) pGPR(y∗|x∗,DCD) = N (y∗;mGPR(x∗), σ
2
GPR(x∗)),

mGPR(x∗) = k⊤C−1
θ y, σ2

GPR(x∗) = k(x∗,x∗) + β−1 − k⊤C−1
θ k,

(2)

where k is an N -dimensional vector defined by k = (kθ(x∗,x1), · · · , kθ(x∗,xN ))⊤. Thus GPR can
make predictions with information on confidence levels.

Spectral Representation of Shift Invariant Kernel. One bottleneck of GPs is that, in a direct
implementation, the memory and computation requirements for inverting covariance Cθ scale as
O(N2) andO(N3), respectively. Accordingly, Lazaro et al. [29] use the spectral representation or the

1This could be extended to a setup where L is different for each sample i but that is omitted for simplicity.
2Also called empirical Bayes, Type-II maximum likelihood or generalized maximum likelihood [34, 35].
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Figure 1: Graphical models of (a) Gaussian process regression (GPR) and (b) proposed Gaussian
process shuffled regression (GPSR). Shaded nodes represent observed variables. The thick horizontal
bar represents a set of fully connected nodes. Dependency on hyperparameters is omitted. GPSR
includes GPR as a special case since these two are identical when set size L = 1.

so called random Fourier features (RFF) ψ : X → Fψ ⊆ RH that approximate the (shift-invariant)
kernel function,

k(x,x′)≈ψ(x)⊤ψ(x′), ψ(x)=(cos(2πs⊤1 x), sin(2πs⊤1 x), · · · , cos(2πs⊤H′x), sin(2πs⊤H′x))⊤, (3)

where H ′ = H/2 and sh is a D-dimensional vector sampled from the kernel’s spectral density,
e.g., N (s;0D, (4π

2Λ)−1) for the (ARD) Gaussian kernel defined by k(x,x′) = σ2
0exp

(
1
2 (x −

x′)⊤Λ(x − x′)
)
. This, together with the weight-space-view formulation of GPR, enables us to

create a sparse-spectrum approximation of GPR through Bayesian linear regression (BLR) on feature
space Fψ ⊆ RH . This reduces the memory requirement to O(NH) since we no longer store the
N ×N covariance matrix Cθ. As a result, the predictive distribution and the logarithm of marginal
distribution for BLR, denoted by pBLR(y∗|x∗,DCD) and LBLR, can be computed with lower memory
usage and computation cost. See Appendix B for thorough definitions and detailed explanations.
Although any positive definite kernel can be adopted in our method, we assume that kernel k is
shift-invariant when deriving the approximate variant of GPSR using RFF.

4 Gaussian Process Shuffled Regression (GPSR)

This section presents our probabilistic model based on GPs for shuffled regression (GPSR).

4.1 Generative Process and Marginal Likelihood of GPSR

GPSR is constructed by the following generative process of shuffled data DSD = {(Xi,yi)}Mi=1.
Similar to GPR [13] in the previous section, we put GPs prior on f , f ∼ GP(0, kθ(x,x′)), and
denote function values at i-th input-set Xi = {xi1, · · · ,xiL} as fi = (f(xi1), · · · , f(xiL))⊤. So
N (=ML)-dimensional vector f = (f⊤1 , · · · , f⊤M )⊤ is subject to the multivariate Gaussian given by

p(f |X) = N (f ;0N ,K), (4)

where K is the N ×N gram matrix whose ((i−1)L+ℓ, (i′−1)L+ℓ′)-th-th element is kθ(xiℓ,xi′ℓ′).
For each sample i = 1 · · ·M , using L × L latent permutation matrix3 Πi, response-set yi =
(yi1, · · · , yiL)⊤ is determined by shuffling latent function values fi and adding Gaussian noise,
i.e., yi follows p(yi|fi) = N (yi;Πif i, β

−1IL). This yields the joint probability distribution of all
responses y = (y⊤

1 , · · · ,y⊤
M )⊤ given f as

p(y|f) = N (y;Πf , β−1IN ), Π = diag(Π1,Π2, · · · ,ΠM ). (5)

From Eq. (4) and (5), we get the marginal likelihood for GPSR by integrating over function value f ,

p(y|X)=

∫
p(y|f)p(f |X)df = N (y;0N ,S), S = ΠKΠ⊤+β−1IN = Π (K+β−1IN )︸ ︷︷ ︸

Cθ

Π⊤. (6)

3A permutation matrix is a square binary matrix that contains exactly one 1 in each row and column, with all
other elements being 0.
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Figure 1b shows the graphical model representation of GPSR. Note that the order of generating
function values f and shuffling by Π can be exchanged; the identical marginal likelihood is derived
even if we first shuffle inputs X and then generate the function values of shuffled inputs.

For further analysis of the marginal likelihood, we denote the logarithm of (6) as symbol LGPSR,

(GPSRMarginal L.) LGPSR(θ;DSD)≜ log p(y|X)=−1

2
log |S|︸ ︷︷ ︸

complexity

− 1

2
y⊤S−1y︸ ︷︷ ︸
data fit

−N
2
log(2π), (7)

and define pseudo coupled data (PCD) as follows:
Definition 4.1. (Pseudo Coupled Data) Given shuffled data DSD = {({xiℓ}Lℓ=1, {yiℓ}Lℓ=1)}Mi=1 and
permutation matrices {Πi}Mi=1, we define the inversely permuted response ỹ⊤ = (ỹ⊤

1 , · · · , ỹ⊤
M ) as

(Inversely Permuted Response) ỹi ≜ Π⊤
i yi, (i.e., ỹ = Π⊤y). (8)

We also denote the ℓ-th element of ỹi as ỹiℓ. Pseudo coupled data DPCD is defined as a set of
N=ML pairs of input xiℓ with inversely permuted response ỹiℓ, DPCD = {(xiℓ, ỹiℓ)}M,L

i,ℓ=1.

Marginal likelihood of GPSR is equivalent to that of GPR (1) with pseudo coupled data.
Proposition 4.2. (Equivalence of Marginal Likelihood) LGPSR(θ;DSD) = LGPR(θ;DPCD) holds.

Proof. By the multiplicativity of determinant and the properties of permutation matrix (Π⊤ = Π−1

and |Π||Π⊤| = 1), we get

LGPSR(θ;DSD) = −
1

2
log(|Π||Cθ||Π⊤|)− 1

2
y⊤(ΠC−1

θ Π⊤)y − N

2
log(2π) (9)

= −1

2
log |Cθ|−

1

2
(Π⊤y)⊤C−1

θ (Π⊤y)︸ ︷︷ ︸
ỹ⊤C−1

θ ỹ

−N
2
log(2π) = LGPR(θ;DPCD).

This result allows us to use GPR as a subroutine of the inference detailed in the next subsection.

4.2 Inference

Similar to GPR [13], we adopt the Bayesian evidence maximization framework [21] for estimating
kernel hyperparameter θ and permutation matrix Π. To effectively utilize the Proposition 4.2, we
adopt the alternating optimization scheme that iteratively updates θ and Π.

Optimization of θ. Proposition 4.2 allows us to employ exactly same approach as GPR when
estimating hyperparameter θ. We update θ by applying an optimization routine such as scaled
conjugate gradient (SCG) and L-BFGS using the following partial derivatives of LGPSR w.r.t. the
hyperparameters,

∂LGPSR(θ;DSD)

∂θ
=
∂LGPR(θ;DPCD)

∂θ
= −1

2
tr
(
C−1
θ

∂Cθ

∂θ

)
− 1

2
(C−1

θ ỹ)⊤
∂Cθ

∂θ
(C−1

θ ỹ). (10)

Optimization of Π. Considering that permutation matrix Π is a discrete variable, we cast this
as a known combinatorial optimization problem. By extracting the terms related to Π from
LGPSR (Eq. (9)) with multiplication by −2 for simplicity, we get

(Π⊤y)⊤C−1
θ Π⊤y = tr{C−1

θ Π⊤y(Π⊤y)⊤} = tr(C−1
θ Π⊤yy⊤Π) ≜ UQAP(Π), (11)

where we used the trace trick (z⊤Az = tr(Azz⊤)). We can regard UQAP as the objective function of
the quadratic assignment problem (QAP), and so we can employ one of the existing QAP solvers [36]
4. In the later experiments, we use simulated annealing, which is easy to implement and closely related
to Markov Chain Monte Carlo (MCMC) used in existing shuffled regression methods [4, 20]. For
more details on the inference procedure, see Appendix C. Note that QAP is a NP-hard problem and
this procedure seems prohibitive when handling medium/large scale data; we derive an approximation
algorithm for GPSR that can avoid solving QAP in §5.

4Here Π has block diagonal structure and minor modification of constraint conditions may be needed.
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(a) M = 1 (b) M = 2 (c) M = 3

Figure 2: Predictive mean and variance of GPSR for various sample sizes, M=1 to 3, with set size
L=3. Marker△ indicates the elements in the input-set and response-set in shuffled data. Same color
means same index i. GPSR captures the true function (y = sinx) as the sample size is increased.

4.3 Making Predictions

We derive the predictive distribution of y∗ for input x∗ in GPSR by considering the joint distribution of
the (N+1)-dimensional vector y′ = (y⊤, y∗)

⊤. Note that (x∗, y∗) is a “coupled" pair not included in
DSD as shown in Fig. 1b. We define the latent function value at x∗ as f∗ = f(x∗) and f ′ = (f⊤, f∗)

⊤.
From GPs prior on f , p(f ′|X′) = N (f ′;0(N+1),K

′) where K′ is (N+1) × (N+1) gram matrix
computed using X′ = X ∪ x∗. From Eq. (5), and assuming p(y∗|f∗) = N (y∗|f∗, β−1) similar to
GPR, y′ is determined by following p(y′|f ′) = N (y′;Π′f ′, β−1I(N+1)) where Π′ = diag(Π, 1).
Then, the marginal distribution of y′ is given by

p(y′|X′)=

∫
p(y′|f ′)p(f ′|X′)df′=N (y′;0(N+1),S

′), where S′=Π′K′Π′⊤+β−1I(N+1). (12)

Note that S′ can be cast in the following block form:

S′=

(
Π 0N
0⊤
N 1

)(
Cθ k
k⊤ kθ(x∗,x∗)+β

−1

)(
Π⊤ 0N
0⊤
N 1

)
=

(
S Πk

(Πk)⊤ kθ(x∗,x∗)+β
−1

)
, (13)

where k is the N -dimensional vector whose {(i−1)L+ ℓ}-th element is kθ(xiℓ,x∗). The predictive
distribution of y∗ given shuffled data is the conditional Gaussian of (12); it is given by

(GPSR Prediction) pGPSR(y∗|x∗,DSD) = N (y∗;mGPSR(x∗), σ
2
GPSR(x∗)), (14)

mGPSR(x∗) = (Πk)⊤S−1y = k⊤Π⊤(ΠC−1
θ Π⊤)y = k⊤C−1

θ (Π⊤y) = k⊤C−1
θ ỹ,

σ2
GPSR(x∗) = kθ(x∗,x∗) + β−1 − (Πk)⊤S−1Πk = kθ(x∗,x∗) + β−1 − k⊤C−1

θ k.

Note that Π⊤ = Π−1 is used in the above derivation. It is obvious, similar to Proposition 4.2, that
the predictive distribution of GPSR is equivalent to that of GPR (2) given pseudo-coupled data.
Proposition 4.3. (Equivalence of Prediction) pGPSR(y∗|x∗,DSD) = pGPR(y∗|x∗,DPCD) holds.

Proof. The proof is completed by replacing y in Eq. (2) by response vector of PCD ỹ.

Figure 2 demonstrates the effectiveness of GPSR with the derived inference algorithm and predictive
distribution for the simple toy problem. GPSR can output a prediction with its uncertainty and
capture the true function as the sample size M is increased. However, the prediction and inference
procedure presented in this section is prohibitive for handling medium/large scale data since it has
two difficulties: (i) need to compute the inversion of the covariance matrix Cθ at the cost of O(N3)
operations (same as GPR), and (ii) need to solve QAP for estimating permutation matrix Π. The next
section provides a sparse variant of GPSR that can resolve these two difficulties at once.

5 Sparse Spectrum GPSR (SS-GPSR): Approximation of GPSR using RFF.

The key idea behind our sparse variant of GPSR, sparse spectrum GPSR (SS-GPSR), is to use a
weight-space-view of GPSR and random Fourier features (RFF) [29, 30]. Here we start with a model
with a finite-dimensional feature map ϕ : X → Fϕ whose inner product corresponds to kernel
function k. We then consider using RFF defined in (3) to approximate GPSR with a shift-invariant
kernel that may not have a corresponding finite-dimensional feature map.
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5.1 Weight Space View of GPSR: Bayesian Shuffled Linear Regression (BSLR)

We derive the predictive distribution and inference algorithm for SS-GPSR from the following
Bayesian shuffled linear regression (BSLR) models defined as

p(w) = N (w;0, α−1IH), p(yi|Xi,w) = N (yi|ΠiΦiw, β
−1IL), (15)

where Φi is an L×H design matrix whose ℓ-th row is ϕ(xiℓ)⊤. We can see that BSLR is a weight-
space-view of GPSR as follows. Using the equivalent expression of (15) yi = ΠiΦiw + ϵi where
ϵi ∼ N (ϵi|0L, β−1IL), we have the following mean and covariance of yi and yj :

Ew,ϵ[yi] = ΠiΦiEw[w] + Eϵ[ϵi] = 0L,

Ew,ϵ[yiy
⊤
j ] = ΠiΦiEw[ww⊤]Φ⊤

j Π
⊤
j + Eϵ[ϵiϵ⊤j ] = Πi(α

−1ΦiΦ
⊤
j + δijβ

−1IL)Π
⊤
j .

(16)

So the joint distribution of response-set y1, · · · ,yM is given by zero-mean Gaussian with N ×N
covariance R = Π(α−1ΦΦ⊤ + β−1IN )Π⊤; Φ is N ×H design matrix Φ = (Φ⊤

1 , · · · ,Φ⊤
M )⊤.

Thus we can confirm that BSLR is a weight-space-view of GPSR since R is equivalent to the
covariance S in GPSR (6) if the kernel is defined by inner product of the feature map, k(x,x′) =
α−1ϕ(x)⊤ϕ(x).

5.2 Prediction and Bayesian Evidence Maximization Framework for BSLR

We derive the predictive distribution and inference algorithm in BSLR. From Bayes rule, p(w|DSD)

∝p(w,y|X)=p(w)
∏M
i=1 p(yi|Xi,w) holds and thus a posterior distribution of w is given by

p(w|DSD) = N (w; w̄,A−1), w̄ = βA−1Φ⊤(Π⊤y) = βA−1Φ⊤ỹ, A = αIH+βΦ⊤Φ. (17)

So we obtain the following predictive distribution pBSLR(y∗|x∗,DSD)=
∫
p(y∗|x∗,w)p(w|DSD)dw

and marginal likelihood LBSLR(w;DSD)= log
∫
p(y,w|X)dw (see Appendix D for derivation):

(BSLR Prediction) pBSLR(y∗|x∗,DSD) = N (y∗;mBSLR(x∗), σ
2
BSLR(x∗)),

mBSLR(x∗) = w̄⊤ϕ(x∗), σ2
BSLR(x∗) = β−1 + ϕ(x∗)

⊤A−1ϕ(x∗).
(18)

(BSLRMarginal L.) LBSLR(w;DSD) =
H

2
logα+

N

2
log

( β

2π

)
− 1

2
log |A| − 1

2
E(w̄),

E(w̄) = αw̄⊤w̄ + β||y −ΠΦw̄||2 = βy⊤y + w̄⊤Aw̄ − 2β
∑M

i=1
tr(ΠiΦiw̄y⊤

i )︸ ︷︷ ︸
ULAP(Πi)

.
(19)

Similar to GPSR, the predictive distribution and marginal likelihood of BSLR are equivalent to those
of BLR given pseudo-coupled data (proofs are given in Appendix E).

Proposition 5.1. (Equivalence of Prediction) pBSLR(y∗|x∗,DSD) = pBLR(y∗|x∗,DPCD) holds.

Proposition 5.2. (Equivalence of Marginal Likelihood) LBSLR(w;DSD)=LBLR(w;DPCD) holds.

We can also show the predictive distribution of BSLR (18) is equivalent to that of GPSR (14) using
the connection between GPSR and GPR, GPR and BLR (Appendix B), BLR and BSLR.

Proposition 5.3. (Equivalence of Prediction) pGPSR(y∗|x∗,DSD) = pBSLR(y∗|x∗,DSD) holds if
the kernel function k is given by k(x,x′) = α−1ϕ(x)⊤ϕ(x).

Proof. Applying Proposition 4.3, B.1 and 5.1 sequentially, we get pGPSR(y∗|x∗,DSD) =
pGPR(y∗|x∗,DPCD) = pBLR(y∗|x∗,DPCD) = pBSLR(y∗|x∗,DSD).

Proposition 5.3 states the predictive distribution of GPSR can be obtained via BSLR for kernels
that admit finite-dimensional feature maps (regardless of whether the kernel is shift-invariant). For
shift-invariant kernels that do not admit finite-dimensional feature maps, an approximate predictive
distribution can be constructed using RFF ψ (3) as feature map ϕ. Therefore, we can more efficiently
construct the (approximate) predictive distribution using BSLR when the number of samples N
exceeds the dimension size H since the expression (18) involves the inverse of H ×H matrix A
instead of N ×N gram matrix Cθ.
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5.3 Inference

By leveraging the result of Proposition 5.2, a simple inference algorithm that iteratively updates
the posterior of w and Π can be derived, similar to GPSR. Thanks to the equivalence of marginal
likelihood, we can estimate posterior of w by exactly same way of BLR (update w̄ and A−1 by (17)).
Also we can update Π by minimizing the trace term ULAP in (19) that can be seen as the objective
of linear assignment problem (LAP). This is a simple instance of LAP, so the optimal permutation
matrix Πi can be found by a sort operation in O(L logL) without using tailored algorithms for
LAP [37, 38, 39] 5. This is because the objective function ULAP(Π) = (Πivi)

⊤yi is maximized by
setting the permutation matrix such that the ℓ-th largest element of response vector yi and that of
the predictive mean vector vi ≜ Φiw̄ match each other for all ℓ. For more details on the inference
procedure, see Appendix F.

Thus our SS-GPSR using the predictive distribution (18) and the above inference procedure reduces
memory and computation costs associated with GPs and avoids solving QAP. Although existing
studies also use sort operations [4, 12], to the best of our knowledge, this is the first to show that the
permutation matrix can be estimated by sorting, even in the evidence maximization framework.

6 Experiments

6.1 Setting

Data. We evaluated GPSR and SS-GPSR using four publicly available data sets found in the UCI
machine learning repository6: airfoil data (Airfoil), concrete compressive strength data (Concrete),
Boston housing data (Housing), auto-MPG data (MPG). We also made Housing-1D with input
feature dimension of D = 1 by extracting RM (average number of rooms) features for visualization
purposes. We prepared 5 data sets by randomly dividing the data and using 60% for training,
20% for validation, and 20% for testing. We made the shuffled data used for training/validation
by randomly dividing the training/validation data into M sets each with L elements (i.e., M ≈
0.6×original datasize/L) and shuffling the indices in each set. Note that validation data were
used only for neural network-based baselines as explained in next paragraph. The test data in the
evaluations were coupled data. We used test mean squared error (test MSE) as the performance
metric. We ran 5 trials using 5 sets of training, validation and test data.

Baselines. We compared (SS-)GPSR with linear-model-based method (SLR) [4] and the state-of-
the-art method that uses neural networks (SDR) [12]. Both methods use a (Gaussian-based) MSE
loss and were trained by the (stochastic) sparse EM algorithm. SDR adopted early-stopping with
validation data (which were also shuffled data) [42]. As oracle baselines, we also examined linear-
regression (LR), GPR, and deep-regression (DR) using coupled data with data size of N = LM .
Both SDR and DR used a one-hidden-layer feedforward network with ReLU activation function.

Hyperparameters. GPSR (and Oracle GPR) used Gaussian kernels as in §3, and SS-GPSR used
its RFF approximation with dimension size H = 100 in common for all datasets. The other
hyperparameters such as precision α and β in (SS-)GPSR are estimated when applying GPR or
BLR in inference procedure (see Alg. 1 and 2 in Appendix). So GPSR and SS-GPSR do not use
validation data unlike SDR. Moreover, due to their slow convergence, both GPSR and SDR used warm
initialization similar to [12], i.e., the initial value of permutation matrix is set using the estimated
result of SLR. For SS-GPSR, ten different runs were performed with various initial permutation
matrices, and the solution that maximized the marginal likelihood was selected. For more details of
implementations and hyperparameters such as optimization setting for SDR, see Appendix G.

6.2 Results

Table 3 shows the results of the experiments. We observe that SDR, GPSR and SS-GPSR which
can express nonlinear functions, outperform SLR in almost all settings. When comparing SDR and

5This problem also can be seen as an optimal transport problem between two 1-D point clouds consisting of
the same number of elements having unit mass [40, 41].

6https://archive.ics.uci.edu/ml/index.php
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Table 3: Results on benchmark datasets with various set sizes L. Average and standard deviation of
test MSE are shown. Bold/underline means the 1st/2nd best (lowest) MSE among the methods for
shuffled regression. Note that the performance of oracle methods including linear regression (LR),
deep regression (DR) and GPR trained using coupled data are also displayed in the Dataset column.

Dataset Existing Methods Proposed Methods

Source L SLR SDR GPSR SS-GPSR

Airfoil 2 23.66± 1.39 19.57± 1.73 9.05 ± 0.99 12.48± 1.36
LR: 22.33± 1.72 4 22.82± 1.62 20.15± 1.91 14.26± 1.46 14.11 ± 2.07
DR: 17.79± 2.49 8 24.05± 1.66 21.73± 2.02 19.44± 2.14 17.21 ± 2.64
GPR: 6.42± 0.47 16 25.18± 2.01 23.83± 1.99 22.44 ± 2.28 24.22± 1.78

Concrete 2 139.79± 4.13 101.62± 26.15 45.05 ± 7.64 52.20± 2.64
LR: 119.06± 7.00 4 119.66± 4.96 101.04± 27.47 67.22± 8.79 58.57 ± 4.31
DR: 82.66± 37.06 8 128.62± 4.62 121.67± 20.89 97.79± 5.54 68.19 ± 3.84

GPR: 39.21± 11.03 16 161.95± 30.28 165.32± 33.61 146.74±34.55 137.26±20.75

Housing-1D 2 51.40± 6.78 37.08±14.47 33.60 ± 8.29 34.45± 8.37
LR: 41.09± 7.54 4 40.95± 7.69 35.19± 9.59 33.64 ± 8.26 34.85± 8.63

DR: 41.25± 23.52 8 41.53± 8.42 35.72± 8.74 35.22 ± 8.45 36.24± 8.68
GPR: 33.70± 8.01 16 43.07± 8.88 37.78± 8.61 37.18 ± 9.19 37.93± 8.51

Housing 2 33.68± 6.10 12.31± 4.71 11.19 ± 4.51 11.70± 4.95
LR: 23.86± 5.69 4 24.57± 5.11 11.73± 3.53 11.44 ± 4.91 12.70± 5.17
DR: 11.03± 3.38 8 27.74± 8.11 18.25± 7.42 18.84± 8.14 17.11 ± 8.04
GPR: 9.78± 4.22 16 45.03± 16.43 39.11±15.88 41.25±17.86 46.88±23.72

MPG 2 12.31± 1.30 8.96± 1.55 8.21± 1.20 7.60 ± 1.29
LR: 11.92± 1.10 4 13.24± 1.59 10.54± 1.75 8.71± 1.83 8.47 ± 1.42
DR: 7.69± 1.00 8 15.15± 3.25 11.55± 3.75 10.94± 3.21 9.05 ± 1.80

GPR: 7.75± 0.93 16 21.50± 6.49 15.38± 4.23 18.43± 6.72 10.65 ± 3.03

(a) Learned regression functions (b) Predictive uncertainty (c) Negative log-likelihood

Figure 3: (a) Learned regression function (predictive mean) and (b) predictive uncertainty of GSPR
for Housing-1D (L = 8). The shaded regions represent ±1, ±2, and ±3 standard deviations,
respectively. (c) Comparison of negative log-likelihood on test data (Test NLL).

(SS-)GPSR, either of our proposals (GPSR or SS-GPSR) demonstrates the best performance across
all datasets, except for Housing (L = 16), confirming our methods’ effectiveness. Note that GPSR
and SS-GPSR perform similarly well across a comparable number of datasets, so we cannot judge
which is superior in terms of prediction performance. From Fig. 3a, we can see that GPSR well
captures the non-linear structure thanks to its nonparametric flexibility, and this contributes to its
superior performance comparable to that of oracle methods for Housing-1D. Figure 3b illustrates
that GPSR effectively captures the inherent uncertainty in the data, while Fig. 3c reports the negative
log-likelihood on the test data, demonstrating the method’s effectiveness in uncertainty quantification.

We also investigated the detailed behavior of SS-GPSR as illustrated in Fig. 4. In Fig. 4a, we
observe that SS-GPSR with the random initialization scheme can identify a better solution than warm
initialization (in terms of marginal likelihood) and converges within about ten iterations. Given that
SDR requires a longer time to converge without warm initialization [12] 7, these findings highlight

7We confirmed that GPSR has a similar convergence behavior to SDR.
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(a) Convergence behavior (b) Effect of RFF

Figure 4: (a) Convergence behavior of SS-GPSR with different initialization schemes (10 different
runs for random init.) for MPG (L = 8), and (b) effect of the dimension size of RFF on SS-GPSR
for MPG (L = 2∼8).

the effectiveness of SS-GPSR. Figure 4b further explores the impact of the dimension size of RFF, H .
It is shown that although MSE performance is degraded when H is smaller than 100, it stabilizes
when H exceeds 100. Thus, SS-GPSR utilizing RFF works well without requiring sensitive tuning of
the dimension size. These results support the usefulness of SS-GPSR.

7 Conclusion

In this study, we proposed GPSR and SS-GPSR for learning regression functions from shuffled data.
By theoretically analyzing the connection between GPSR, GPR and their weight-space formula-
tions, we derived the easy-to-implement inference algorithms for (SS-)GPSR, and confirmed their
effectiveness by experiments on public benchmark datasets.

Limitation and Future Work. The proposed methods are the first to apply GPs for shuffled
regression, and a promising direction for future work is to extend their applicability to higher-
dimensional and more complex settings. This may involve incorporating advanced techniques
such as deep kernel learning [43], which combines neural networks to learn task-specific feature
representations, as well as sparse GPs described in §2, which offer scalable solutions for large-scale
problems. Additionally, exploring fully Bayesian approaches that introduce prior distributions over
the kernel parameters and permutation matrix offers another promising avenue for future research, as
similar techniques have been successfully applied in related domains [20, 33].

Societal Impact. Shuffled regression methods, including ours, are useful for analyzing e.g., in-
dependently collected data as mentioned in §1. However, it’s important to note that coupled (test)
data with input-output correspondence is necessary to evaluate the regression performance (That’s
why the experiments in this paper are based on benchmark data). When applying the method to
real-world applications without coupled (test) data, it’s crucial to carefully assess the performance
of the estimated model when making predictions or decisions. Furthermore, the interpretation of
input-output correspondences via latent variable representations requires careful consideration, as
such usage falls outside our primary scope and may pose risks in scenarios involving privacy concerns.
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made in the paper.
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• Inversely, any informal proof provided in the core of the paper should be complemented
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4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed explanation of the experimental setting are provided in §6 and
Appendix G.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not provide the code but provide implementation details of proposed
methods and baselines in § 6 and Appendix G. Also, the experiment is conducted in open-
access data (provided in UCI machine learning repository).
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed explanation of the data and hyperaparameters are provided in §6 and
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the Conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide URLs of the used code and dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Symbol Definitions

Table 4 shows the symbols used in our paper. Bold symbols/vectors related to couple data are
underlined.

Table 4: Notation summary for the paper

Symbol Description

X input space X ⊆ RD where D is the dimension size of input space
Y response space Y ⊆ R
Fν feature space constructed by given feature map ν on X , Fν ⊆ RH

kθ kernel function with hyperparameter θ used for Gaussian process, kθ : X × X → R
ψ random Fourier features approximating (shift-invariant) kernel, ψ : X → Fψ
ϕ feature map used for linear regression model, ϕ : X → Fϕ
w H-dimensional vector parameter (regression coefficients) of linear regression model
α hyperparameter (precision) in a prior distribution on w
β precision parameter of observation noise (commonly used regardless of the model)

L the size of input/response-set in shuffled data (which reduces to coupled data when L=1)
M the number of pairs in shuffled data
N the total number of inputs/responses N =ML

DSD shuffled data (pairs of input-set Xi and response-set yi), DSD = {(Xi,yi)}Mi=1
Xi i-th input-set Xi = {xi1, · · · ,xiL} where xiℓ ∈ X
yi i-th response-set yi = {yi1, · · · , yiL} where yiℓ ∈ Y
yi L-dimensional vector representation of yi, yi = (yi1, · · · , yiL)⊤
X all inputs in shuffled data X = {Xi}Mi=1

y N -dimensional vector representation of all responses y = (y⊤
1 , · · · ,y⊤

M )⊤

fi L-dimensional vector rep. of function values of i-th input set, fi = (fi1, · · · , fiL)⊤
f N -dimensional vector representation of all function values, f = (f⊤1 , · · · , f⊤M )⊤

Πi L× L permutation matrix used for shuffling function values fi (or Φ̃iw)
Π N ×N permutation matrix defined by Π = diag(Π1,Π2, · · · ,ΠM )
K N ×N gram matrix whose ((i−1)L+ℓ, (i′−1)L+ℓ′)-th element is kθ(xiℓ,xi′ℓ′)
Cθ N ×N covariance matrix Cθ = K+ β−1IN (IN is the N ×N identity matrix)
S N ×N covariance matrix defined by S = ΠKΠ⊤+β−1IN = ΠCθΠ

⊤

Φi L×H design matrix whose ℓ-th row is ϕ(xiℓ)⊤

Φ N ×H design matrix whose {(i−1)L+ℓ}-th row is ϕ(xiℓ)⊤

DCD coupled data (pairs of input xi ∈ X and response yi ∈ Y), DCD = {(xi, yi)}Ni=1

X all inputs in coupled data X = {xi}Ni=1

y N -dimensional vector representation of all responses, y = (y1, · · · , yN )⊤

f N -dimensional vector representation of all latent function values, f = (f1, · · · , fN )⊤

K N ×N gram matrix whose (i, j)-th element is kθ(xi,xj)
Cθ N ×N covariance matrix Cθ = K+ β−1IN (IN is the N ×N identity matrix)
Φ N ×H design matrix whose i-th row is ϕ(xi)⊤

B Details of Bayesian Linear Regression for Coupled Data

Bayesian linear regression (BLR) with parameter w ∈ RH and feature map ϕ : X → Fϕ ⊆ RH is
derived by considering the following prior distribution and model,

p(w) = N (w;0, α−1IH), p(yi|xi,w) = N (yi;w
⊤ϕ(xi), β

−1), (20)
where α and β are hyperparameters. From Bayes theorem, p(w|DCD) ∝ p(y,w|X) =

p(w)
∏N
i=1 p(yi|xi,w) holds and thus a posterior distribution of w given coupled data DCD is

written as
(BLR Posterior) p(w|DCD) = N (w; w̄,A−1), w̄ = βA−1Φ⊤y, A = αIH+βΦ⊤Φ, (21)
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where Φ is the N ×H design matrix whose i-th row is ϕ(xi)⊤. We get the predictive distribution of
y∗ at test point x∗ by integrating over parameter w:

(BLR Prediction)

pBLR(y∗|x∗,DCD) =

∫
p(y∗|x∗,w)p(w|DCD)dw = N (y∗;mBLR(x∗), σ

2
BLR(x∗)),

mBLR(x∗) = w̄⊤ϕ(x∗), σ2
BLR(x∗) = β−1 + ϕ(x∗)

⊤A−1ϕ(x∗).

(22)

Thus the memory required for Bayesian linear regression is O(NH) to store design matrix Φ. Also,
the inverse of H ×H matrix A can be computed in O(H3) by direct computation.

Remark. Note that w̄ in (21) is both the mean and the mode of the posterior distribution p(w|DCD),
so w̄ is equivalent to the penalized maximum likelihood/maximum a posteriori (MAP) estimator. In
non-Bayesian/frequentist schemes, however, the predictive distribution is constructed by plugging
the estimator into the model (without integration over a posterior distribution), i.e., p(y∗|x∗, w̄) =
N (y∗; w̄

⊤ϕ(x∗), β
−1), and so the predictive variance is different from (22).

It is known that the predictive distribution of BLR (22) and that of GPR (2) are equivalent when the
kernel function k is defined by the dot product of feature map ϕ.
Proposition B.1. (Equivalence of Prediction, e.g., [22]) pGPR(y∗|x∗,DCD) = pBLR(y∗|x∗,DCD)
holds if the kernel function k is given by k(x,x′) = α−1ϕ(x)⊤ϕ(x).

We define the logarithm of marginal likelihood for BLR by symbol LBLR as follows:

(BLRMarginal L.) LBLR(w;DCD) ≜ log p(y|X) =

∫
p(y,w|X)dw. (23)

Note that LBLR is an analytically-tractable quantity computed as

LBLR(w;DCD) =
H

2
logα+

N

2
log

β

2π
− 1

2
log |A| − α

2
w̄⊤w̄ − β

2
||y −Φw̄||2. (24)

C Inference Procedure of GPSR

We detail the inference procedure of GPSR explained in §4.2. As stated, simulated annealing (SA)
is used for solving QAP since it is easy to implement and closely related to Markov Chain Monte
Carlo (MCMC) used in existing shuffled regression methods [4, 20]. Although not explicitly men-
tioned in the main text, we can estimate both the precision parameter β and the kernel parameter θ in
the GPR subroutine. The equivalence of marginal likelihoods between GPSR and GPR (shown in
Prop. 4.2) enables the use of existing GPR as subroutines, making the algorithm easier to implement.

Algorithm 1 shows the pseudo code that implements the inference procedure of GPSR. At initializa-
tion (line 1-3), permutation matrix Π is initialized. Note that, as reported in [12], convergence can
be accelerated by warm-initialization, i.e., the initial setting of Π is set by using the result of e.g.,
SLR [4]. Then, the response vector of pseudo-coupled data (Definition 4.1) DPCD, ỹ = Π⊤y, is set.
At each (algorithmic) time step t, GPR-step (line 5-6) and Correspondence Update (CU)-Step (line
7-14) are iteratively conducted. As the GPR-step, the parameters of θ are optimized by applying GPR
using pseudo-coupled data DPCD represented by X and ỹ. Next, as the CU-step, permutation matrix
Π is updated by randomly swapping its rows following SA. Let us denote the permutation matrices
before and after random swapping as Π(old) and Π(new), respectively. SA accepts this swapping
following probability q:

q = min(1, exp(−∆/T )), ∆ = L(Π(new))− L(Π(old)). (25)

where T is the temperature parameter. From the definition of q, the random swapping is accepted with
probability 1 when the solution is improved. Otherwise, SA accepts the swapping with probability
exp(−∆/T ). i.e., the solution is updated with a certain probability even when the solution becomes
worse, which helps to escape from local optima solutions.

Note that the above algorithm can be extended or modified in various ways, such as using the sparse
GP methods described in §2 [23, 24, 25, 26, 28, 33] for the GPR-step and using optimization methods
other than SA shown in [36] for the CU-Step.
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Algorithm 1 Inference Procedure of GPSR

Input: kernel function k (with hyperparameter θ, β), shuffled dataDSD, optimization parameter (e.g.,
# of iterations/steps Tmax, Smax, initial temperature Tinit, and cooling rate γ)

Output: hyperparameter θ, β, response vector of pseudo coupled data ỹ, permutation matrix Π
1: /* Initialization */
2: Randomly initialize Π (Optional: Π could be initialized by solving SLR).
3: Set the response vector of pseudo coupled data (Definition 4.1) as ỹ← Π⊤y.
4: for t = 1 to Tmax do
5: /* GPR-Step (Optimization of hyperparameter using partial derivative Eq. (10)) */
6: Update θ and β by SCG/L-BFGS (This could be done by e.g., GPR.fit(X, ỹ) in scikit-learn)
7: /* Correspondence Update-Step (Optimization of Π) by simulated annealing*/
8: Set temperature T ← Tinit
9: for s = 1 to Smax do

10: Randomly select i ∈ {1, · · · , N} and ℓ, ℓ′ ∈ {1, · · · , L} (ℓ ̸= ℓ′).
11: Swap {(i−1)L+ ℓ}-th row and {(i−1)L+ ℓ′}-th row of Π with probability q (Eq. (25))
12: Update temperature T ← γT .
13: end for
14: Update the response vector of pseudo coupled data, ỹ← Π⊤y
15: end for

D Details of Bayesian Shuffled Linear Regression (BSLR)

Here we derive BSLR’s predictive distribution (18) and marginal likelihood (19). We start with the
parameter posterior distribution as follows:

Derivation of posterior distribution p(w|DSD) (17). From the BSLR model (15), the joint
distribution p(w,y|X) is written as

p(w,y|X) = p(w)
∏M

i=1
p(yi|Xi,w)

=
( α

2π

)H
2

exp
(
−α
2
w⊤w

)( β

2π

)N
2

exp
(
−β
2
(y −ΠΦw)⊤(y −ΠΦw)

)
=

( α

2π

)H
2
( β

2π

)N
2

exp
(
−α
2
w⊤w − β

2
w⊤Φ⊤ Π⊤Π︸ ︷︷ ︸

cancel out

Φw + βw⊤Φ⊤Π⊤y − β

2
y⊤y

)
=

( α

2π

)H
2
( β

2π

)N
2

exp
{
w⊤

(
βΦ⊤(Π⊤y)

)
− 1

2
w⊤

(
αIH + βΦ⊤Φ︸ ︷︷ ︸

A

)
w − β

2
y⊤y

}

=
( α

2π

)H
2
( β

2π

)N
2

exp
{
−1

2

(
w⊤Aw − 2w⊤βΦ⊤(Π⊤y) + βy⊤y

)}
. (26)

By the trick of adding 0 = w̄⊤A−1w̄ − w̄⊤A−1w̄ and IH = A−1A, Eq. (26) is expanded into

p(w,y|X) =
( α

2π

)H
2
( β

2π

)N
2

exp
{
−1

2

(
w⊤Aw − 2w⊤AA−1βΦ⊤(Π⊤y)︸ ︷︷ ︸

w̄

+βy⊤y
)}

=
( α

2π

)H
2
( β

2π

)N
2

exp
{
−1

2

(
w⊤Aw − 2w⊤Aw̄ + βy⊤y + w̄⊤Aw̄ − w̄⊤Aw̄

)}
=

( α

2π

)H
2
( β

2π

)N
2

exp
{
−1

2
(w − w̄)⊤A(w − w̄)− 1

2

(
βy⊤y − w̄⊤Aw̄

)}
. (27)

Thus we get the posterior distribution (17) from p(w|DSD) ∝ p(w,y|X) ∝ exp{− 1
2 (w −

w̄)⊤A(w − w̄)}.

23



Derivation of predictive distribution pBSLR(y∗|x∗,DSD) (18). From the property of marginal
and conditional Gaussian distributions, we get

pBSLR(y∗|x∗,DSD) =

∫
p(y∗|x∗,w)p(w|DSD)dw

=

∫
N (y∗;ϕ(x∗)

⊤w, β−1)N (w; w̄,A−1)dw

= N (y∗;ϕ(x∗)
⊤w̄, β−1 + ϕ(x∗)

⊤A−1ϕ(x∗)). (28)

Derivation of logarithm of marginal distribution LBSLR(w;DSD) (= log
∫
p(y,w|X)dw) (19).

By the trick of adding 0 = w̄⊤A−1w̄ − w̄⊤A−1w̄ and IN = Π⊤Π with the definitions w̄ =
βA−1Φ⊤Π⊤y and A = αIH + βΦ⊤Φ, we can expand the final term of the argument of the
exponential function in (27) as follows.

− 1

2

(
βy⊤y − w̄⊤Aw̄

)
= −1

2

(
βy⊤y − 2w̄⊤Aw̄ + w̄⊤Aw̄

)
= −1

2

(
βy⊤y − 2w̄⊤ AA−1︸ ︷︷ ︸

cancel out

βΦ⊤Π⊤y + w̄⊤(αIH + βΦ⊤Φ)w̄
)

= −1

2

(
βy⊤y − 2w̄⊤βΦ⊤Π⊤y + βw̄⊤Φ⊤ Π⊤Π︸ ︷︷ ︸

IN

Φw̄ + αw̄⊤w̄
)

= −1

2

(
β(y −ΠΦw̄)⊤(y −ΠΦw̄) + αw̄⊤w̄

)
= −β

2
||y −ΠΦw̄||2 − α

2
w̄⊤w̄. (29)

Substituting (29) into (27), we get the following expression of joint distribution:

p(w,y|X) =
( α

2π

)H
2
( β

2π

)N
2

exp
{
−1

2
(w − w̄)⊤A(w − w̄)− β

2
||y −ΠΦw̄||2 − α

2
w̄⊤w̄

}
.

From the property used for normalizing constant of Gaussian distributions,
∫
exp{− 1

2 (w −
w̄)⊤A(w − w̄)}dw = (2π)

H
2 |A|−1/2 holds and thus we get

p(y|X) =

∫
p(y,w|X)dw

=

∫ ( α

2π

)H
2
( β

2π

)N
2

exp
{
−1

2
(w − w̄)⊤A(w − w̄)− β

2
||y −ΠΦw̄||2 − α

2
w̄⊤w̄

}
dw

=
( α

2π

)H
2
( β

2π

)N
2

(2π)
H
2 |A|−1/2 exp

{
−β
2
||y −ΠΦw̄||2 − α

2
w̄⊤w̄

}
. (30)

We get LBSLR(w;DSD) (19) by taking the logarithm of (30). The expression of E(w̄) using trace
function is obtained by the trace trick (z⊤z = tr(zz⊤)).

E(w̄) = αw̄⊤w̄ + β||y −ΠΦw̄||2

= αw̄⊤w̄ + β
∑M

i=1
(yi −ΠiΦiw̄)⊤(yi −ΠiΦiw̄)

= αw̄⊤w̄ + β
∑M

i=1
{y⊤

i yi − 2tr(ΠiΦiw̄y⊤
i ) + (ΠiΦiw̄)⊤ΠiΦiw̄}

= αw̄⊤w̄ − 2β
∑M

i=1
tr(ΠiΦiw̄y⊤

i ) + β
∑M

i=1
{y⊤

i yi + w̄⊤Φ⊤
i Π⊤Π︸ ︷︷ ︸

IN

Φiw̄}

= −2β
∑M

i=1
tr(ΠiΦiw̄y⊤

i ) + βy⊤y + w̄⊤ (αIH + βΦ⊤Φ)︸ ︷︷ ︸
A

w̄.

E Connection Between BLR and BSLR

Here we show the connection between BLR and BSLR. Similar to the relationship between GPSR
and GPR discussed in § 4, we can prove the equivalence of their predictive distributions and marginal
likelihoods using the definition of PCD. We begin by presenting a proof about predictive distributions.
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Proof of Proposition 5.1. We need to show the equivalence of the posterior mean of BSLR w̄ (17)
and that of BLR w̄ (21) when pseudo coupled data DPCD are given. The design matrices (Φ,Φ)
and posterior variances (A,A) are equivalent from the definition. So we get w̄ = βA−1Φ⊤Π⊤y =
βA−1Φ⊤ỹ = w̄.

Marginal likelihood of BSLR (19) is also equivalent to that of BLR (23) with pseudo coupled data.

Proof of Proposition 5.2. Similar to the proof of Prop. 5.1, we can show the equivalence of the
design matrices, posterior means and variances. Equivalence of the remaining terms can be shown as
follows:

||y −ΠΦw̄||2 = (y−ΠΦw̄)⊤ ΠΠ⊤︸ ︷︷ ︸
IN

(y−ΠΦw̄) = ||Π⊤y −Φw̄||2 = ||ỹ −Φw̄||2.

F Inference Procedure for SS-GPSR (BSLR with RFF)

We detail the inference procedure of SS-GPSR explained in §5.2. Although not explicitly mentioned
in the main text, we can estimate both the parameter posterior and hyperparameters α, β in the BLR
subroutine [22, 44]. The equivalence of marginal likelihoods between BSLR and BLR (shown in
Prop. 5.2) enables the use of existing BLR as subroutines, making the algorithm easier to implement.

Algorithm 2 shows the pseudo code for inference procedure. Overall structure is analogous to
Alg. 1. At initialization (line 1-5), permutation matrix Π and the response vector of pseudo coupled
data (Definition 4.1) ỹ is set. Also, vector sh used in RFF is sampled from the kernel’s spectral density.
At each (algorithmic) time step t, BLR-step (line 7-8) and Correspondence Update (CU)-Step (line
9-13) are iteratively conducted. As the BLR-step, posterior of the parameters w and hyperparameter
α, β is update by applying BLR using pseudo coupled data represented by X and ỹ. Next, as CU-step,
permutation matrix ỹ is updated by sort operation.

G Implementation Details of Experiments

This appendix explains the details of our experimental setting and implementation.

Dataset: As stated in the Experiments section, we used four publicly available data sets, Airfoil,
Concrete, Housing, and MPG. The description of each dataset and the pre-processing we applied
are as follows. Airfoil records 1503 samples obtained from a series of aerodynamic and acoustic tests
of two and three-dimensional airfoil blade sections with 5 features including angle, velocity and so on.
Concrete records 1030 samples of the compressive strength of concrete with 8 features including the
amount of cement, water and so on. Housing records 506 samples of home prices (MEDV: Median
value of owner-occupied homes) in Boston with 13 socioeconomic and environmental features such
as average number of rooms per dwelling (RM). MPG records 398 samples of the city-cycle fuel
consumption in miles per gallon of automobiles with 7 features including weight and horsepower.
We excluded samples with missing values and converted the categorical feature into a one-hot vector
for MPG. Input features were standardized for all data sets.

Oracle method (LR, GPR and DR): For oracle methods other than DR, we used scikit-
learn8. Specifically, LR uses sklearn.linear_model.LinearRegression and GPR uses
sklearn.gaussian_process.GaussianProcessRegressor with default settings (we adopted Gaus-
sian kernel for GPR). Details of DR are presented in the next paragraph.

Neural network-based methods (DR and SDR): As stated in the Experiments section, we used a
one-hidden-layer feedforward neural network with the ReLU activation function for neural network-
based methods (DR and SDR). Hyperparameters of these methods were set following [12]. The
number of units was set to 20 for all problems. The parameters of DR were optimized using Adam [45]
with a learning rate of 0.001. The parameters of SDR were optimized by the stochastic sparse EM
algorithm using Adam with a learning rate of 0.001. The mini-batch size of DR and that of SDR
were 32 and 32/L, respectively. The maximum number of epochs was 2000 in common. We used

8https://scikit-learn.org
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Algorithm 2 Inference of SS-GPSR (BSLR using Random Fourier Features)

Input: dimension size of RFF H , shuffled data DSD, maximum number of iterations Tmax.
Output: parameter posterior (w̄,A−1), hyperparameter α, β, and response vector of PCD ỹ

1: /* Initialization */
2: Randomly initialize Π (Optional: Π could be initialized by solving SLR).
3: Set the response vector of pseudo coupled data (Definition 4.1) as ỹ← Π⊤y.
4: Sort the elements of yi = (yi1, · · · , yiL)⊤. // Ascending sort to simplify CU-Step.
5: Sample sh from the kernel’s spectral density.
6: for t = 1 to Tmax do
7: /* BLR-Step (Optimization of parameter’s posterior distribution and hyperparameters) */
8: Update w̄,A−1, α, β (This could be done by e.g., BaysianRidge.fit(X, ỹ) in scikit-learn).
9: /* Correspondence Update-Step (Optimization of Π by sorting operation) */

10: for i = 1 to M do
11: ids← argsort(vi) // Get the indices sorting elements of vi(=Φiw̄) in ascending order.
12: ỹi ← yi[argsort(ids)] //Re-orderring of yi by (argsort of) ids provides ỹi ← Π⊤yi.
13: end for
14: end for

early-stopping with validation data (coupled data for DR and shuffled data for SDR) [42]. The above
was implemented using PyTorch [46]. Experiments were run on a computer with Apple M1.

Proposed methods (GPSR and SS-GPSR): Here, we provide details of the proposed methods (GPSR
and SS-GPSR). Their inference algorithms are summarized in Algorithm 1 (Appendix C) and
Algorithm 2 (Appendix F), respectively. As mentioned in the Experiments section, GPSR utilized
warm initialization, i.e., the initial value of the permutation matrix is set using the estimated result
of SLR. For SS-GPSR, ten different runs were performed with various initial permutation matrices,
and the solution that maximized the marginal likelihood was selected. For GPSR, the maximum
number of iterations Tmax was set to 100. The parameter for simulated annealing was configured
with Smax = 10−1N log2(L), an initial temperature of T = 1.0 and a cooling rate γ = 0.99. In the
case of SS-GPSR, the maximum number of iterations Tmax was set to 20. The dimension size of RFF
H was fixed at 100 for all datasets. Note that for GPR and BLR steps in Algorithm 1 and 2, we used
the scikit-learn analogous to oracle methods (BLR uses sklearn.linear_model.BayesianRidge). So
hyperparameters such as precision α and β in (SS-)GPSR are estimated when applying GPR or BLR.
So GPSR and SS-GPSR do not use validation data unlike SDR.
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