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Abstract

One-shot image segmentation (OSS) methods enable semantic labeling of image
pixels without supervised training using an extensive dataset. They require just
one example (image, mask) pair per target class. Most neural-network based OSS
methods train on a large subset of dataset classes, and are evaluated on a disjoint
subset of classes. We posit that the data used for training induces negative biases
and affects the accuracy of these methods. Specifically, we present evidence for a
Class Negative Bias (CNB) arising from treating non-target objects as background
during training, and Salience Bias (SB), affecting the segmentation accuracy for
non-salient target class pixels. We demonstrate that by eliminating CNB and
SB, significant gains can be made over existing state-of-the-art. Next, we argue
that there is a significant disparity between real-world expectations from an OSS
method and its accuracy reported on existing benchmarks. To this end, we propose
a new evaluation dataset - Tiered One-shot Segmentation (TOSS) - based on
the PASCAL 5i and FSS-1000 datasets, and associated metrics for each tier. The
dataset enforces consistent accuracy measurement for existing methods, and affords
fine-grained insights into the applicability of a method to real applications. The
paper includes extensive experiments with the TOSS dataset on several existing
OSS methods. The intended impact of this work is to point to biases in training
and introduce nuances and uniformity in reporting results for the OSS problem.
The evaluation splits of the TOSS dataset and instructions for use are available at
https://github.com/fewshotseg/toss.

1 Introduction

Semantic image segmentation assigns class labels to pixels in an image. It is useful for diverse
applications such as image editing ([1]), content-based retrieval ([32, 14]), medicine ([11, 9]) and art
([10]). Accurate segmentation on a small number of classes can be achieved by training deep neural
networks on large datasets. However, when the number of classes is large, or the training examples
are hard to obtain, a supervised approach cannot be used. Semantic segmentation of images with very
few training examples is referred to as the Few-shot Segmentation (FSS) [26] problem. When exactly
one example is available, it is referred to as one-shot image segmentation (OSS).

Recent OSS methods (like [37, 22, 19, 33, 39, 18, 36, 28, 12, 21]) predict a binary mask for each
class of interest. They employ a dual-branched neural network (see Figure 1), where one branch is
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Figure 1: The one-shot segmentation task. A support image Is and a query image Iq are both passed
through a common encoder F . The support features Fs, the support mask Ms and the query features
Fq are fused and decoded to predict the query mask Mq. In this work, we show negative inductive
biases arising from treating unknown objects as background during training (Class Negative Bias),
and from favoring salient objects over the target class (Salience Bias).

supplied a set of support images and binary masks corresponding to the target class as input, while the
other branch is given a query image. The support branch produces a target-class representation which
is fused with the query-branch features, and decoded to predict the binary mask. Most solutions
train for OSS and extend the inference apparatus for FSS. While the accuracy of OSS solutions has
improved considerably since the problem was introduced in [26], the best solutions still fall short
of the accuracy of fully supervised methods. We posit that these networks have certain negative
inductive biases caused by the improper use of the training datasets. These biases manifest as very
low quality segmentation masks for certain kinds of input images. We also observe the need for
an evaluation approach that offers fine-grained insights into the problem. It would afford better
alignment with real-world applications by exposing the actual limitations in an incumbent solution.
For example, an application that requires extraction of relatively isolated objects may work well with
an OSS method that has a high accuracy for salient objects. The method may be chosen over another
with a better average accuracy over a diverse set of benchmark images. In this work, we discuss
negative inductive biases in existing methods and propose an evaluation dataset for cogent reporting.

The OSS training protocol described in [26] allows treating foreground objects that are not in the
training set as background pixels. We posit that this introduces a negative inductive bias (termed Class
Negative Bias (CNB) in OSS networks. To corroborate this position, we experiment with multiple
baseline methods ([7, 28, 33]) on the PASCAL 5i dataset (see Section 3.2). We find a correlation
between the drop in OSS test accuracy of certain classes with the presence of objects of these classes
in training images where they are treated as background (2). We introduce a salience-guided training
set selection strategy (SGTSS, section 3.2.1) to mitigate CNB. It selects only those images for training
where the target class pixels are in the salient regions. This weakens the effect of any distracting
objects present in the training set images. We present evaluation on the PASCAL-5i dataset.

Next, we notice that for images where the target-class pixels are in visually salient regions, the OSS
accuracy is significantly better. Also, many existing networks ([37, 30, 7, 33]) produce good results
even without any support images (see section 3.3.1). Both experiments indicate a strong bias favoring
salient objects over non-salient ones. In section 3.4, we elucidate the effect of mitigating this Salience
bias (SB).

These biases in existing networks demonstrate that the accuracy of segmentation in the OSS framework
varies significantly with the input images. Current benchmark datasets (PASCAL 5i, COCO 20i, and
FSS-1000, [26, 22, 13]) do not account for these variations in input. The mean intersection-over-
union (mIoU) score used with these benchmarks also conceal nuances about the shortcomings of
the existing methods. We propose a fine-grained evaluation benchmark based on the PASCAL 5i

and FSS-1000 datasets. These evaluation splits, termed Tiered-OSS (TOSS), consider the inherent
difficulty in segmenting an image with a fully-supervised method, the salience of the target regions,
and the effect of the support image. Specifically, we introduce three tiers - the Query Complexity
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tier with varying degrees of complexity of query images, the Support Cognizance tier with degrees
of support-query similarities, and the Generalization tier to gauge generalization to unseen classes.
Corresponding to these tiers, we propose scores based on the prevalent mIoU metric that indicate
the accuracy for each task. These nuances in reporting also improve alignment with the real-world
expectations for an OSS solution. To summarize, this paper contributes the following:

• A detailed analysis of two inductive biases that negatively affect the accuracy of one-shot
segmentation methods - Class negative bias from treating non-target object classes as
background in training, and Salience bias - favoring salient objects to target class.

– Documentation of the effect of mitigating these biases using Salience-guided train-
ing set selection (SGTSS) for reducing class negative bias, and selective salience
suppression at inference for salience bias.

• Tiered-OSS (TOSS) - a fine-grained, tiered one-shot evaluation dataset based on the PASCAL
5i and FSS-1000 datasets, and the corresponding scores for more nuanced reporting of OSS
accuracy, and aiding discovery and mitigation of biases in existing methods.

2 Related Work

The present work is related to existing few-shot segmentation (FSS) research, as well as to existing
benchmark datasets and metrics for OSS.

Few-shot Segmentation (FSS) Methods: Shaban et al. introduced a two-branched deep neural-
network based framework in [26] for semantic image segmentation using a single example. The
method extracts features from the support image (and mask) to predict the weights of the pixel
classifier layer of the query branch. This work was superseded by Rakelly et al. [25] with the
introduction of late fusion where the support mask is fused after the feature extraction step. This
approach is the template of much of the later work. The variations on it include the use of prototypical
learning [5, 30, 19, 33, 17, 12], the use of dense matching [38, 22, 37, 7, 39, 21, 35], and the use
of graph-based attention mechanisms [36, 19, 29]. Many methods used fixed backbone networks
for feature extraction (like [37, 7, 39]), while others allow for training of all features ([38, 18]) to
learn co-occurring features between the support and query. Intermediate class representation is
another factor - Zhang et al. [38] employ a masked average pooling (MAP) operation on the support
features and mask, [22] uses relevance weighting on top of that, and [33] replaces MAP with mixture
models [33]. We are concerned with extracting biases that affect accuracy for OSS. In [2], Azad et al.
consider the bias of convolutional layers towards high-frequency information in the input images,
and propose how to mitigate it. We focus on data-induced biases and demonstrate that most of these
methods still suffer from them.

OSS Datasets and Metrics: The PASCAL 5i dataset proposed in [26] is based on images and mask
annotations from the PASCAL VOC dataset [6] and the Semantic boundaries dataset [8]. It consists
of 12031 images, with pixel-level annotations for 21 classes (class 0 is background). The annotations
are split into 4 folds, each with 5 test classes, and 15 training classes. To address the small size
of the PASCAL 5i dataset, Nguyen et al. [22] propose the COCO 20i dataset based on the COCO
segmentation dataset [15]. This too comprises of 4-folds, but each fold has 60 training classes, and
20 test classes. The best test accuracy for COCO 20i is significantly lower than that for PASCAL 5i.
The FSS-1000 dataset introduced by Li et al. in [13] further scales the number of classes to 1000,
with 760 training classes and 240 test classes, with 10 image-mask pairs per class. These datasets
suffer from significant variance in results because the exact pairs of test images are not specified.
Another recent dataset is the LVIS-OneShot [20] but its evaluation is not included in our work due to
its unavailability.

Most one-shot segmentation methods report the mean over test classes of the intersection-over-union
(mIoU) of the predicted mask and the ground-truth mask for each fold of the dataset. Some papers
also report foreground-background IoU, disregarding the classes though it does not reflect OSS
accuracy adequately. Computing mIoU over the folds conceals the behavior of the networks for
different kinds of input. We introduce 4 scores defined over 3 tiers of test data to indicate the accuracy
considering query complexity, precision, and generalizing to unseen classes.

In the next section, we discuss biases introduced into OSS networks by the training data used. In
section 4 we describe our proposed dataset for improved evaluation of OSS.
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Figure 2: Test accuracy of the baseline network with different PASCAL 5i classes. The left column
compares the test accuracy of Deeplab v3+ [4] network on the PASCAL 5i classes (same as PASCAL
VOC) with the 1-shot accuracy of the baseline network. The right column indicates the fraction of
training set images containing objects of a particular class as a non-target class. For classes that have
a conspicuous presence as distraction in the one-shot training sets, severe drops in accuracy (from
supervised to one-shot) occur. This indicates class-negative bias in the network.

.

3 Data-induced Negative Inductive Biases

Negative inductive biases in a trained OSS neural-network can cause it to have skewed accuracy over
different kinds of input images. We discuss the evidence for the existence of two such data-induced
biases, and their mitigation. The evidence is collected using a baseline network derived from the
dense-matching framework of CANet [37] with the dual-prediction and background-attention ideas
from SimPropNet [7]. The network is trained and evaluated on the PASCAL 5i dataset.

3.1 Overview of the One-shot Segmentation Task

The one-shot segmentation problem is formulated as follows: Given a single support image-mask
(Is, Ms) pair as an example of the semantic segmentation of a target class C, predict the binary
segmentation mask Mq of objects of that class in a different query image (Iq). As described in [26],
OSS networks are trained with (support, query) pairs chosen at random from the training set of a
dataset fold. They are tested on pairs from the test set of the fold. The PASCAL 5i dataset has 20
classes, which are split into 4 folds, each with 5 test-classes and 15 training classes. We train our
baseline network on the PASCAL 5i dataset and conduct multiple experiments to identify its biases.

3.2 Class Negative Bias

We define Class Negative bias (CNB) as the inductive bias in OSS networks that results from
treating objects not present in the training classes as background during training, and causes error
in segmenting such objects during test. We first present evidence for this bias and then propose a
mitigation strategy for it.

Evidence for Class Negative Bias Our evidence for CNB is based on three observations:

1. An incommensurate drop in test accuracy with baseline OSS network, for classes numbered {2, 4,
9, 11, 15, 16, 18, 20}, compared to the accuracy with a pre-trained DeepLab v3+ [4] (Figure 2).

2. The conspicuous presence of objects of these classes in the corresponding OSS training sets where
they are treated as background, and

3. The gain in accuracy in OSS when the network is trained without images containing these test-class
objects (see Table 1, LeaveOut). For example, the gain in accuracy for the person class increases
from 31% to 49% (See supplemental material for more details).

Considered together, the results of these experiments indicate that there a negative bias is introduced
due to the presence of test-class objects in training images, and them being treated as background.
Next, we discuss CNB mitigation.
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OSS Method PASCAL 5i mIoU
Fold-1 Fold-2 Fold-3 Fold-4 Mean

Base 51.06 64.35 55.70 50.44 55.39
Base+Leaveout 51.10 66.32 58.07 52.16 56.9
Base+SGTSS 54.5 66.71 61.65 53.26 59.03
RPMM∗+ 45.72 61.40 47.50 44.31 49.73
RPMM+Leaveout 53.78 64.92 55.11 47.60 55.35
RPMM+SGTSS 50.3 62.46 55.13 47.81 53.93
PFENet+ 52.87 65.088 50.16 51.90 55.01
PFENet+Leaveout 56.83 68.49 57.36 55.05 59.43
PFENet+SGTSS 55.48 65.63 58.24 49.17 57.13

Table 1: Evidence and mitigation for Class Negative Bias in multiple existing networks. Leaveout
refers to filtering out images that have test-class objects from the training set. SGTSS = Salience
guided training set selection. The leave-out approach is technically not permitted in a true one-shot
segmentation setting. ∗ RPMM is re-trained without their class-based omission implementation. Also
note that the test files used contains 15000 pairs for each fold to reduce statistical error. + Quoted
mIoU numbers are as per our test splits.

3.2.1 Effect of alleviating Class Negative Bias

To alleviate the class negative bias is to train the network to treat non-target foreground objects not as
background. This could be done by eliminating all images that have non-target class objects from
the training set (as in the official implementation for [33]). The disadvantage of this approach is that
it assumes knowledge of test-class objects in the images. In a true one-shot setting, this cannot be
known. We observe that if the salient regions of an image are occupied by pixels of classes not in the
training set, it is likely that the image has distracting objects. These images are eliminated from the
training set as described below.

Salience-guided Training Set Selection (SGTSS): A salience mask for each training image is
computed using a pre-trained U2-Net [23] network. The salience mask is used to compute a salience
score for each image as follows:

Ki =

‖(
⋃
t∈T

M t
i ) ∩ Si‖

‖Si‖
(1)

Here the M t
i denotes the masks of all objects that belong to some training class (t ∈ T ), and Si is the

salience map for the ith image . The score is the ratio of the intersection area of any training class
mask with the salient regions, and the area of the salient region. It is the fraction of the salient regions
occupied by training class pixels. Ki is computed for each image and the ones with values lower
than the median are eliminated from the training set. Thus the training set comprises of images with
mostly training class pixels in their visually salient regions.

Table 1 presents the results with SGTSS. There is a significant gain across folds despite the training
set being actually smaller. Next, we discuss the salience bias present in these networks.

3.3 Salience Bias

We observe that many encoder-decoder based neural-networks for one-shot image segmentation are
most accurate with visually salient regions of an input image.

3.3.1 Evidence for Salience Bias

Table 2, column A presents some unexpected results with the baseline network on the PASCAL 5i

dataset. Supplying no support mask as input to the baseline network still produces query masks with
comparable accuracy. Supplying no support image (and no mask) as input still yields some mask with
accuracy comparable to the hard cases with both inputs. Supplying a support input from a different
class also yields a reasonable result. These results indicate that the network does not always consider
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A: Effect of Different Support Input Types B: Effect of Salience
Support Type PASCAL 5i mIoU Method mIoU

51 52 53 54 Mean Salient Non-Salient
Base 55.2 66.3 54.6 49.5 56.4 Baseline 61.0 38.3
C(Iq)6=C(Is) 46.9 44.2 36.3 37.8 41.3 RPMM 57.8 33.2
Ms=0 35.4 12.9 24.1 24.8 24.3 PFENet 61.9 38.2
Is=0 19.1 36.7 31.0 22.4 27.3
C(Iq)6=C(Is)+Ms=0 37.4 21.5 30.5 31.7 30.3

Table 2: Evidence for Salience bias. Column A shows that the baseline network predicts a query
mask despite receiving spurious support input. Column B shows that the accuracy is skewed across
different methods in favor of salient objects. C(Iq) and C(Is) refer to the target class for the query
and support images respectively. 5x refers to the folds of the PASCAL-5i.

the signal from the support branch, and is still able to produce some non-trivial results for certain
images. Next, we split the test set of each fold by the degree of salience of the target class pixels. The
degree of salience is approximated by the overlap (IoU) of the target mask with a salience mask of
the query image obtained from a pre-trained U2-Net network [23]. We notice that the mIoU for the
salient split is greater than the non-salient split by a large margin (Table 2, column B). This clearly
indicates the preference of the networks for salient target pixels, thus confirming the bias.

3.4 Effect of mitigating Salience Bias

We consider an oracle case where we have prior knowledge of whether the target pixels are in the
salient region or not. This prior can be generated with a human user providing feedback on the
predicted segmentation from an OSS network. For the non-salient case, we suppress the salient
regions in the input query image at inference time, using a wide-radius Gaussian blur. The salient
regions for an image are obtained using a pre-trained U2-Net (trained on the DUTS-TR dataset [31]).
Table 3 indicates the significant improvement we obtain in the accuracy by eliminating the Salience
bias from the OSS networks.

OSS Method PASCAL 5i mIoU
Fold-1 Fold-2 Fold-3 Fold-4 Mean

Base 51.06 64.35 55.70 50.44 55.39
Base+SSSI 52.99 66.23 58.04 52.65 57.48

RPMM∗ 45.72 61.40 47.50 44.31 49.73
RPMM+SSSI 46.26 62.12 48.86 45.86 50.52

PFENet 52.86 65.09 50.16 51.90 55.01
PFENet+SSSI 55.13 67.30 52.97 54.40 57.44

Table 3: Effect of Selective Salience Suppression at Inference (SSSI) with prior knowledge of whether
the target pixels are in the salient region or not yields significant gain in accuracy.

4 Tiered Evaluation for OSS

We posit that having an evaluation dataset that - i.) maps better to real-world image segmentation
expectations, and ii) provides a nuanced view of the accuracy of any OSS method can be a very useful
tool in advancing the state-of-the-art for the problem. To this end, we propose a new multi-faceted
evaluation dataset - the Tiered One-shot Segmentation (TOSS) dataset, and the associated metrics. In
this section, we present the structure of the dataset, the corresponding measurements, the results of
different OSS methods on the dataset and insights into the problem using the dataset.

4.1 Tiered One-shot Segmentation Evaluation

The dataset is based on the PASCAL 5i dataset proposed by Shaban et al. in [26], and the FSS-1000
dataset [13]. We retain the training folds of the PASCAL 5i datasets and focus on the evaluation only.
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For each fold, the TOSS dataset comprises of three tiers of measurements, each of which has pairs of
query-support images. These tiers are evaluated on the predictions of the incumbent OSS network:

1. Tier 1: Query Complexity - to 4 splits of support-query pairs constructed by varying complexity
of the query image.

2. Tier 2: Support Cognizance - to gauge the influence of the support image on the segmentation
outcome.

3. Tier 3: Generalization - to evaluate the generalization of the network to images of a different
domain. The images in this tier are taken from the FSS-1000 dataset [13].

Together these tiers indicate the accuracy of a network for various kinds of input data. Figure 3
depicts the tiers of the evaluation dataset.

4.1.1 Query Complexity (QC)

For each PASCAL 5i fold, we use its test classes to construct our evaluation splits. The test set is
partitioned on two axes - the accuracy of a supervised method (DeepLab v3+ [4]) for a class, and
the overlap of the class mask with the salience mask for the image. Four splits of (query, support)
pairs are then constructed by sampling the query images from corresponding partitions. These four
splits are ordered as {(easy, salient), (hard, salient), (easy, non-salient), (hard, non-salient)}. To
marginalize the effect of the support image, we sample the support images uniformly from all of the
partitions. Figure 3 depicts query images from these splits.

Attribute Choices: The accuracy of segmentation depends upon several factors including scene
illumination, materials and occlusion. We consolidate all of these into a single axis for a given image
- the IoU value for the target class with a supervised method. For the second axis of partitioning, we
use the overlap of the target pixels with the salient regions. This attribute has high mutual information
with respect to the IoU of the predicted mask. It is possible to consider other factors (object size,
offset from center, etc.). However, to keep the number of test splits manageable, we only partition
with these two factors. See supplemental material for details.

Scoring: For each PASCAL 5i fold, 4 mean IoU numbers are computed for each of the QC splits.
These are then combined into two scores for the entire dataset - the low-complexity accuracy score
(LCA) and the high-complexity accuracy score (HCA). These are computed as weighted averages:

LCA = µfolds(

∑i=3
i=0 wimIoUi∑i=3

i=0 wi

), HCA = µfolds(

∑i=3
i=0 w3−imIoUi∑i=3

i=0 wi

) (2)

The µfolds operation averages the weighted mIoU scores over the PASCAL 5i folds. The two scores
are different only in the weights used for averaging the mIoU values for each split. For LCA, the
splits with easy or salient query images are given higher weights (w=3,0.75,0.75,0.5) and for HCA
the weights are reversed to give more importance to the higher complexity images. The weights
are proportionate to the simplicity of the query image for each split across the folds. The simplicity
factor is computed as the product of the salience of the target object and the IoU with the supervised
(DeepLab v3+) network. The factors are also adjusted for computational convenience. More details
about the dataset design and statistics are included in the supplemental material.

4.1.2 Support Cognizance

As discussed in section 3.3.1, the networks predict some foreground pixels in the
masks even when the support information is spurious. We also observe that the pre-
dicted masks are not always of high quality, even when the support image is identical
to the query. Interpolating between these two extreme cases, we construct a set of
test pairs with the following levels of similarity between the support and query images:

L0: Identical Iq = Is Both inputs are identical.
L1: Transformed Iq = X(Is) X is a random rigid transformation.
L2: Similar F(Iq)≈F(Is) F represents the CLIP image features [24] of the image.
L3: Dissimilar F(Iq) 6≈F(Is) Is and Iq are visually dissimilar.
L4: Diff. Class C(Iq) 6= C(Is) Implies that a different class of object is to be segmented.
L5: Null Mask Ms=0 Implies that no target class object is present in the support.
L6: Empty Is=0 A trivial output is expected.
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Figure 3: The TOSS Evaluation Dataset. Tier 1 is derived from the PASCAL 5i dataset [26] and
consists of 4 splits for which the types of query images are indicated (easy/hard refers to accuracy
obtained with DeepLab v3+ [4]). Tier 2 consists of 7 levels of support-query similarity, and Tier 3
has images from the FSS-1000 dataset [13] with no overlap with the PASCAL 5i dataset.

.

For each PASCAL 5i fold, one test file is constructed by sampling an equal number of pairs from
each level. A pre-trained CLIP [24] model is used for measuring image similarity because it discerns
fine-grained differences between images. It is possible to use other feature extractors for measuring
similarity but the results are not likely to be different because the split is made about the mean
similarity values for the image pairs (see supplemental material). Note that the accuracy for levels
L0-L3 is required to be high for a good solution, and for levels L4-L6, it ought to be lower. To
incorporate these considerations, we compute a Support Cognizance score using the mean over all
the test classes of the IoU values as follows:

SCSi =Meanc∈F i(

j=6∑
j=0

wjH(j,

∑
pairs∈Lc

j
inter(Mq, M̃q)∑

pairs∈Lc
j
union(Mq, M̃q)

)) (3)

Mq and M̃q are the ground-truth and predicted query masks respectively. H(j, x) is (1 − x) for
L4-L6, and is otherwise the identity function. The standard mIoU computation is modified using the
formulation above. First, the IoU is computed for each pair in level Lc

j for each test class c in fold F i.
The H function inverts the IoU for the negative levels (L4-L6). This inversion penalizes the score
for any spurious foreground pixels predicted for input that should result in a null output. Next, a
weighted average of the partition IoU values is computed with weights wj . We use weight values wj

= {4, 2, 2, 1, 1,1,1} to attribute high relative importance to the easy cases. The idea is that L3-L6 can
be considered as adversarial input, designed to extricate the limitations of a network, while L0-L2 are
for the intended use of the solution. Finally, the aggregated values are averaged over the classes in
the fold. The average Support Cognizance Score over the 4 folds indicates the extent to which the
network honors the signal from the support input. Next, we discuss the generalization tier.

4.1.3 Generalization to Unseen Classes

The generalization tier comprises of a single file of (query, support) pairs taken from the FSS-1000
dataset [13]. This tier measures the ability of the network to generalize to unseen classes. It determines
the utility of the network for real-world application to domain-specific, photographic images where
the classes are strictly distinct from the training classes. We submit that the regular test folds of the
PASCAL 5i are inadequate for measuring generalization, because many test classes have semantically
related classes in the training sets. Consider these pairs of training- and test-classes from the different
folds of PASCAL 5i - {(dog, cat), (horse, cow), (motorbike, car), (train, bus), (cat, sheep)}. In each
of these pairs, the latter class (the test class) often occurs in a similar context as the former (training
class), or shares semantic similarities with it. The generalization tier marginalizes these semantic
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similarities that skew the accuracy in favor of these classes, by testing on diverse unseen classes like
a ringlet-butterfly, a banana, or a coin.

The classes in the tier are chosen to be conceptually disjoint from those in the PASCAL 5i dataset.
To achieve this, we remove all classes in FSS-1000 that have at least one semantically similar class in
the PASCAL 5i dataset (see supplemental material for a list of the removed classes). This ensures
that a network with PASCAL 5i has never seen images like the ones in this tier. The degree of
salience of the target class pixels is also balanced by sampling from the most salient and the least
salient images equally. The generalization score GS is the mean of mIoU values across the folds. .

OSS Method Tier 1 Tier 2 Tier 3
LCA (wmIoU) HCA (wmIoU) SCS (wmIou) GS (mIoU)

Baseline 58.59 38.06 68.82 82.29
RPMM∗ 54.49 34.20 54.66 78.79
PFENet 59.75 38.08 61.36 83.68
RePRI 54.14 32.52 67.81 84.75
HSNet 59.10 38.27 64.72 87.47

Table 4: TOSS Evaluation of current Few-shot segmentation methods. It is noteworthy that the
leader for different scores are different, thus illustrating the benefit of using TOSS evaluation for
comparison. wmIoU refers to weighted mIoU to indicate that the scores are dimensionally identical
to mIoU scores.

The generalization scores are high across the methods for this tier, because most images from the
FSS-1000 dataset feature a single, salient object.

4.2 Results and Insights with TOSS Evaluation

Table 4 presents the scores for multiple networks. Note that we have reported aggregate scores across
each tier of the TOSS dataset, because reporting mIoU values for each split separately will result
in an unwieldy data table that will be harder to analyze and present. While the metrics are good for
comparing solutions, the scores for the data splits themselves can be used without aggregation for
better analysis. We derive interesting insights from the aggregate scores:

• Low-complexity images are segmented accurately: Even older methods like SimPropNet [7] on
which the baseline network is based are able to segment low-complexity images well. Thus, for an
application that requires segmentation of images with the target object in salient regions only, one
can choose a network with fewer parameters for faster inference.

• High-complexity images are not segmented accurately: None of the methods do well enough
on the high-complexity query images. Therefore these methods cannot be reliably utilized for
segmenting objects in scenarios with a high degree of clutter.

• mIoU Accuracy versus Precision: The baseline network is more cognizant of the support image
signal than the other networks. This implies that in scenes with objects of multiple classes, where
the support may be supplied for one of the many classes, the other networks are more prone to
making erroneous pixel classification.

• Anomalous inversions: RePRI [3] generalizes on unseen classes better than PFENet [28], but has
worse accuracy for the TOSS test set, especially the high-complexity images.

5 Experimental Setup

We use the training protocols set for PASCAL 5i as defined in [26]. For one-shot inference, we depart
from the prevalent practice of using random query-support pairs (with a fixed seed). For all inference
runs, we use a large number of fixed pairs that are shared as a part of the dataset release to ensure
fairness of comparison. Also, we include the training set images in the test splits while ensuring that
the target class for each such image is disjoint from the training set.

We work with three networks - a baseline network based on SimPropNet [7], the RPMM variant of
the Prototype Mixture Models [33], and the Prior-guided Feature Enhancement network [28]. For
the latter two, we use publicly available official implementations [34] and [27] respectively. We use
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hyper-parameters identical to the ones suggested by each paper. RPMM is trained afresh without
filtering out images containing test-class objects to ensure fairness of comparisons. The PASCAL 5i

dataset is used for training and testing.

For analysis of the TOSS dataset, we perform inference on publicly available pre-trained models for
four methods - RPMM [33], PFENet [28], RePRI [3], HSNet [21], along with the baseline network
based on SimPropNet. We use a U2-Net [23] network model pre-trained on the DUTS-TR [31]
dataset for salience guidance. Inference analysis is done on single V100/A100 GPUs with 24-core
Intel Xeon processors and 160 GB RAM available on the Google Cloud Platform.

Baseline Network Implementation Details: The network is trained on PASCAL 5i, the input
images are of size 512x512 pixels, the learning rate is set at 0.0025, the batch size is 8, and the
training is done using stochastic gradient descent with momentum (0.9) for 180 epochs for each fold.
The models are trained on Google Cloud virtual machines with four Tesla V100 GPUs and 32-core
Intel Xeon processors, and 64 GB RAM.

6 Limitations and Conclusions

Limitations: We acknowledge that no dataset can capture all the nuances of the OSS problem. We
propose this dataset because we find large variance in reported and reproduced results. Even with
these nuances considered, not all problems may be discovered. However, the framework of tiers for
evaluating different aspects of the problem can be easily extended along other dimensions to ensure
consistent reporting.

General Impact: We hope that this work will result in more uniform reporting of the accuracy of
solutions to the one-shot image segmentation problem. This will improve baseline determination in
future research which, in turn, will limit the usage of GPUs for experiments and the associated power
consumption.

Ethical Issues: We concede that the dataset does not address any ethical issues present in the
underlying datasets. We discuss underlying data biases, as well as issues pertaining to private
information here.

Biases: The TOSS dataset is a useful reorganization of the existing PASCAL 5i and FSS-1000
datasets with added constraints. It does not introduce any new data biases, or alleviate or exacerbate
existing ones. The PASCAL 5i consists primarily of inanimate objects, and the person class, and is
devoid of any professional, gender, or racial indications. The subset of the FSS-1000 dataset that we
use, considers classes of inanimate objects, animals, and insects.

Private Information TOSS is based on the PASCAL 5i dataset which in turn is based on the PASCAL
Visual Object Challenge dataset [6]. The images in this dataset are collected from the Flickr photo-
sharing website 2 and does contain faces of people. The dataset inherits the Flickr terms of use for
images which presents as a deterrent against any untoward intent in using these images. Since setting
up the TOSS dataset requires setting up the PASCAL VOC dataset as well, the same terms of use
are inherently applicable. The subset of the FSS-1000 dataset that is used by TOSS includes only
two images with any discernible human faces. This is determined by running a pre-trained object
detection network [16] looking for the person class.

In this work, we present evidence of negative inductive biases in one-shot image segmentation (OSS)
methods - namely, the class negative bias and the salience bias - arising from improper treatment of
the training data. We also present a new, tiered evaluation dataset for OSS that creates opportunities
for a better understanding of the problem and cogent reporting of progress.
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