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Abstract

Benchmarks play an important role in the development of machine learning algo-1

rithms. Reinforcement learning environments are traditionally run on the CPU,2

limiting their scalability with typical academic compute. However, recent advance-3

ments in JAX have enabled the wider use of hardware acceleration to overcome4

these computational hurdles by producing massively parallel RL training pipelines5

and environments. This is particularly useful for multi-agent reinforcement learn-6

ing (MARL) research where not only multiple agents must be considered at each7

environment step, adding additional computational burden, but also the sample8

complexity is increased due to non-stationarity, decentralised partial observabil-9

ity, or other MARL challenges. In this paper, we present JaxMARL, the first10

open-source code base that combines ease-of-use with GPU enabled efficiency, and11

supports a large number of commonly used MARL environments as well as popular12

baseline algorithms. Our experiments show that our JAX-based implementations13

are up to 1400x faster than existing single-threaded baselines. This enables efficient14

and thorough evaluations, with the potential to alleviate the evaluation crisis of the15

field. We also introduce and benchmark SMAX, a vectorised, simplified version of16

the StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft17

II game engine. This not only enables GPU acceleration, but also provides a more18

flexible MARL environment, unlocking the potential for self-play, meta-learning,19

and other future applications in MARL.20

1 Introduction21

Benchmarks play a pivotal role in the development of new single and multi-agent reinforcement22

learning (MARL) algorithms. They allow the community to define problems, facilitate comparison,23

and concentrate effort. In recent years, Go and Chess inspired the development of MuZero [42]24

while the StarCraft Multi-Agent Challenge [SMAC, 41] resulted in the development of QMIX [39], a25

popular MARL technique.26

For reinforcement learning (RL) research, a large number of sequential environment interactions27

are typically required, often making simulation speed a significant bottleneck. This problem is even28

worse in MARL, where non-stationarity and decentralised partial observability greatly worsen the29

sample complexity. Hardware acceleration and parallelisation are crucial to alleviating this, but30

current acceleration and parallelisation methods are typically not implemented in Python, reducing31

their accessibility for most machine learning researchers. However, recent advances in JAX [7] have32

opened up new possibilities for using Python code directly with hardware accelerators, enabling the33

wider use of massively parallel RL training pipelines and environments.34

The JAX library provides composable function transformations, allowing for automatic vectorisation,35

device parallelisation, automatic differentiation and just-in-time (JIT) compilation with XLA, for36

device-agnostic optimisation. Using JAX, both the environment and model training can be conducted37

on a hardware accelerator, removing the cost of any data transfer between devices and allowing38
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Figure 1: JaxMARL environments.

for significant parallelisation. Recently, PureJaxRL [28, 29] has demonstrated the power of this39

end-to-end JAX-based approach; running both the environment and the model training on a GPU40

yields a 4000x speedup over a traditional pipeline with a GPU-trained model but a CPU-based41

environment.42

These speedups have significant potential impacts on RL and MARL research. Ideas can be tested43

and iterated on at a much greater rate, allowing the field to advance faster. Computational barriers for44

conducting Deep MARL research are lowered, allowing academic labs to utilise billions of frames in45

their research. Independent researchers are also able to extract significantly more performance from46

single GPUs.47

Alongside the current computational issues faced by MARL researchers, recent research also high-48

lights issues with the evaluation standards and use of benchmarks in the MARL community. In49

particular, there is a frequent lack of evaluation across a wide array of domains. Of the 75 recent50

MARL papers analysed by [18], 50% used only one evaluation environment and a further 30% used51

only two. While the two most used environments, SMAC and MPE, contain multiple different tasks or52

maps, there is no standard set, allowing authors to carefully select results. This leads to environment53

overfitting and unclear progress markers.54

Instead, novel MARL methods should be tested on a wide range of domains to accurately evaluate55

their limits and enable better comparisons. The likely issue preventing this is the lack of a unified56

codebase and the computational burden of further evaluation.57

This paper presents JaxMARL, a Python library that for the first time brings together JAX imple-58

mentations of eight common MARL environments under one API. We additionally provide JAX59

implementations for four state-of-the-art algorithms, allowing for end-to-end JAX-based training60

pipelines in a similar fashion to PureJaxRL. This, for the first time, creates a library with end-to-end61

hardware-accelerated training, simple python implementations, and a broad range of MARL environ-62

ments. By alleviating computational constraints, JaxMARL allows rapid evaluation of novel methods63

across a broad set of domains, and hence has the potential to be a powerful tool to address MARL’s64

evaluation crisis.65

We also create SMAX, a JAX-based simplification of the centralised training with decentralised66

execution (CTDE) benchmarks SMAC and SMACv2. SMAX features simplified dynamics, greater67

flexibility and a more sophisticated but fully-decentralised heuristic AI, while retaining the high-68

dimensional observation space, complex unit type interactions and procedural scenario generation69

that lend SMAC and SMACv2 much of their difficulty.70
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As shown in Figure 1, in addition to SMAX, our library includes the most popular environments from71

several MARL settings. For centralised training with decentralised execution (CTDE), we include72

the Multi-Agent Particle Environments (MPE) [27], and Multi-Agent Brax (MABrax). Meanwhile,73

for zero-shot coordination (ZSC), we include Hanabi and Overcooked. Lastly, from the general74

sum literature, we include the CoinGame and Spatial-Temporal Representations of Matrix Games75

(STORM), an extension of simple matrix games into grid-world scenarios. JaxMARL provides the76

first JAX implementation of these environments and is the first time they have existed within one77

codebase.78

We additionally provide JAX implementations of Independent PPO (IPPO) [43], QMIX, VDN [46]79

and Independent Q-Learning (IQL) [34], four of the most common MARL algorithms, allowing new80

techniques to be easily benchmarked against existing practices.81

2 Background82

2.1 Hardware Accelerated Environments83

Hardware acceleration allows for parallel execution, often granting significant speedups. Within84

the RL community, JAX has gained recent popularity as it enables the use of Python code with any85

hardware accelerator, increasing accessibility for researchers. Several libraries now provide JAX86

implementations of RL environments, alleviating the bottleneck of environment simulation steps.87

These libraries include: Gymnax [24], a library of popular single-agent RL environments; PGX [23],88

a collection of board games; and Brax [16], a differentiable physics engine. Only PGX provides89

MARL environments, and these are limited to board games.90

2.2 SMAC91

StarCraft has been a popular environment in which to test RL algorithms. Frequently this features92

a centralised controller issuing commands to balance micromanagement, the low-level control of93

individual units, and macromanagement, the high level plans for economy and resource management.94

Torchcraft[48] and TorchcraftAI[1] allow control of a player in StarCraft: Brood War, while the95

StarCraft II learning environment[54] provides a Python interface for communicating with StarCraft96

II. This latter environment was used to train AlphaStar[53], a centralised controller which attained97

grandmaster-level performance in StarCraft II and successfully beat professional human players.98

SMAC[41], however, focuses on decentralised unit micromanagement across a range of scenarios99

divided into three broad categories: symmetric, where each side has the same units, asymmetric,100

where the enemy team has more units, and micro-trick, which are scenarios designed specifically to101

feature a particular StarCraft micromanagement strategy. SMACv2[13] demonstrates that open-loop102

policies can be effective on SMAC and adds additional randomly generated scenarios to rectify103

SMAC’s lack of stochasticity. However, both of these environments rely on running the full game104

of StarCraft II, which severely limits their performance. SMAClite[32] attempts to alleviate this105

computational burden by recreating the SMAC environment primarily in NumPy, with some core106

components written in C++. While this is much more lightweight than SMAC, it cannot be run on a107

GPU and therefore cannot be parallelised that effectively with typical academic hardware.108

3 JaxMARL109

We present JaxMARL, a library containing JAX implementations of popular MARL environments110

and algorithms. Using JAX grants significant acceleration and parallelisation over existing implemen-111

tations, and we utilise a simple interface to maintain accessibility. This represents the first library that112

provides python- and JAX-based implementations of a wide range of environments and baselines,113

therefore creating for the first time a library that is easy-to-use, enables evaluation on many MARL114

environments, and allows hardware-acceleration.115

3.1 API116

The interface of JaxMARL is inspired by PettingZoo [50] and Gymnax, ensuring it is simple and can117

represent a wide range of MARL problems. A simple example of instantiating an environment from118
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import jax
from jaxmarl import make

key = jax.random.PRNGKey(0)
key, key_reset, key_act, key_step = jax.random.split(key, 4)

# Initialise and reset the environment.
env = make('MPE_simple_world_comm_v3')
obs, state = env.reset(key_reset)

# Sample random actions.
key_act = jax.random.split(key_act, env.num_agents)
actions = {agent: env.action_space(agent).sample(key_act[i]) \

for i, agent in enumerate(env.agents)}

# Perform the step transition.
obs, state, reward, done, infos = env.step(key_step, state, actions)

Figure 2: An example of JaxMARL’s API

JaxMARL’s registry and executing one transition is presented in Figure 2. As JAX’s JIT compilation119

requires pure functions, our step method has two additional inputs compared to PettingZoo’s. The120

state object stores the environment’s internal state and is updated with each call to step, before121

being passed to subsequent calls. Meanwhile, key_step is a pseudo-random key, consumed by JAX122

functions that require stochasticity. This key is separated from the internal state for clarity.123

Similar to PettingZoo, the remaining inputs and outputs are dictionaries keyed by agent names,124

allowing for differing action and observation spaces. However, as JAX’s JIT compilation requires125

array sizes to have static shapes, the total number of agents in an environment cannot vary during an126

episode. Thus, we do not use PettingZoo’s agent iterator. Instead, the maximum number of agents127

is set upon environment instantiation and any agents that terminate before the end of an episode128

pass dummy actions thereafter. As asynchronous termination is possible, we signal the end of an129

episode using a special "__all__" key within done. The same dummy action approach is taken for130

environments where agents act asynchronously.131

To ensure clarity and reproducibility, we keep strict registration of environments with a suffixed132

version number. Where implementations match existing ones the version numbers match.133

3.2 Environments134

JaxMARL contains a diverse range of environments, all implemented in JAX which can achieve135

speedups of up to 1400x over the CPU implementations of these environments. We also introduce136

SMAX, a SMAC-like environment implemented entirely in JAX. We introduce these environments137

and give details on their implementations in this section.138

SMAX The StarCraft Multi-Agent Challenge (SMAC) is a popular benchmark, but has a number139

of shortcomings. First, as noted and addressed in prior work [13], it is not sufficiently stochastic to140

require complex closed-loop policies. Additionally, SMAC relies on StarCraft II as a simulator. This141

allows SMAC to use the wide range of units, objects and terrain available in StarCraft II. However,142

running an entire instance of StarCraft II is slow[32]. StarCraft II runs on the CPU and therefore143

SMAC’s parallelisation is severely limited with typical academic compute.144

Another important downside of StarCraft II is the constraints it places on environment features. For145

example, StarCraft II does not allow units of different races on the same team, limiting the variety of146

scenarios that can be generated. Secondly, SMAC does not support a competitive self-play setting147

without significant engineering work. The purpose of SMAX is to address these limitations. It148

provides access to a SMAC-like, hardware-accelerated, customisable environment that supports149

self-play and custom unit types and interactions.150

Units in SMAX are modelled as circles in a two-dimensional continuous space. SMAX makes a151

number of additional simplifications to the dynamics of StarCraft II. Details about these are given in152

the Appendix.153

SMAX also features a different, and more sophisticated, heuristic AI. The heuristic in SMAC simply154

attack-moves to a fixed location [32], and the heuristic in SMACv2 globally pursues the nearest agent.155

Thus the SMAC AI often does not aggressively pursue enemies that run away, and cannot generalise156
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Table 1: SMAX scenarios and their unit types
Scenario Ally Units Enemy Units Start Positions

2s3z 2 stalkers and 3 zealots 2 stalkers and 3 zealots Fixed
3s5z 3 stalkers and 5 zealots 3 stalkers and 5 zealots Fixed

5m_vs_6m 5 marines 6 marines Fixed
10m_vs_11m 10 marines 11 marines Fixed
27m_vs_30m 27 marines 30 marines Fixed

3s5z_vs_3s6z 3 stalkers and 5 zealots 3 stalkers and 6 zealots Fixed
3s_vs_5z 3 stalkers 5 zealots Fixed
6h_vs_8z 6 hydralisks 8 zealots Fixed

smacv2_5_units 5 uniformly randomly chosen 5 uniformly randomly chosen SMACv2-style
smacv2_10_units 10 uniformly randomly chosen 10 uniformly randomly chosen SMACv2-style
smacv2_20_units 20 uniformly randomly chosen 20 uniformly randomly chosen SMACv2-style

to the SMACv2 start positions, whereas the SMACv2 heuristic AI conditions on global information157

and is exploitable because of its tendency to flip-flop between two similarly close enemies. One of158

the constraints of SMAC is that the heuristic AI must be coded in the map editor, which does not159

provide a simple coding interface.160

SMAX however features a decentralised heuristic AI that can effectively find enemies without the161

shortsighted targeting of the SMACv2 AI. This guarantees that a 50% win rate is always achievable162

by copying the heuristic policy exactly. This means any win-rate below 50% represents a concrete163

failure to learn.164

SMAX scenarios incorporate both a number of the original scenarios from SMAC, and scenarios165

similar to those found in SMACv2. This allows researchers to choose to evaluate on the environments166

most suitable for their project. The SMACv2 scenarios sample units uniformly across all SMAX167

unit types (stalker, zealot, hydralisk, zergling, marine, marauder) and ensure fairness by having the168

enemy and ally teams be the same. The start positions are generated as in SMACv2, with the small169

difference that the ‘surrounded’ start positions position the allies and enemies on the outside or inside170

symmetrically. We provide more details on SMAX in Appendix A.1.171

Overcooked Inspired by the popular videogame of the same name, Overcooked is commonly172

used for assessing fully cooperative and fully observable Human-AI task performance. The goal is173

to deliver soup as fast as possible, with each soup requiring 3 onions to be placed into a pot, time174

for the soup to cook, and delivery into bowls. Two agents, or cooks, must coordinate to effectively175

divide the tasks in order to maximise their common reward signal. Our implementation mimics the176

original from Overcooked-AI [9], including all five original layouts and a simple method for creating177

additional ones. For a discussion on the limitations of the Overcooked-AI environment, see [25].178

Hanabi A fully cooperative partially observable multiplayer card game, where players are aware179

of other players’ cards but not their own. To win, the team must play a series of cards in a specific180

order while sharing only a limited amount of information between players. As reasoning about the181

beliefs and intentions of other agents is central to performance, it is a common benchmark for ZSC182

and theory of mind research. Our implementation is inspired by the Hanabi Learning Environment [3]183

and includes custom configurations for varying game settings, such as the number of colours/ranks,184

number of players, and number of hint tokens. Compared to the Hanabi Learning Environment,185

which is written in C++, our implementation is a single-file and written in Python, making interfacing186

and starting experiments with it much easier.187

Multi-Agent Particle Environments (MPE) The multi-agent particle environments feature a 2D188

world with simple physics where particle agents can move, communicate, and interact with fixed189

landmarks. Each specific environment varies the format of the world and the agents’ abilities, creating190

a diverse set of tasks that include both competitive and cooperative settings. We implement all the191

MPE scenarios featured in the PettingZoo library and the transitions of our implementation map192

exactly to theirs. We additionally include a fully cooperative predator-prey variant of simple tag,193
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presented in [37]. The code is structured to allow for straightforward extensions, enabling further194

tasks to be added.195

Multi-Agent Brax (MABrax) A derivative from Multi-Agent MuJoCo [37], an extension of196

the MuJoCo Gym environment [51] that is commonly used for benchmarking Continuous Multi-197

Agent Robotic Control. Our implementation utilises Brax[16] as the underlying physics engine and198

includes five of Multi-Agent MuJoCo’s multi-agent factorisation tasks, where each agent controls199

a subset of the joints and only observes the local state. The included tasks, illustrated in Figure 1,200

are: ant_4x2, halfcheetah_6x1, hopper_3x1, humanoid_9|8, and walker2d_2x3. The task201

descriptions mirror those from Gymnasium-Robotics [12].202

Coin Game A two-player grid-world environment which emulates social dilemmas such as the203

iterated prisoner’s dilemma. Used as a benchmark for the general sum setting, it expands on simpler204

social dilemmas by mandating learning from a high-dimensional state. Two players, ‘red’ and ‘blue’205

move in a grid world and are each awarded 1 point for collecting any coin. However, ‘red’ loses 2206

points if ‘blue’ collects a red coin and vice versa. Thus, if both agents ignore colour when collecting207

coins their expected reward is 0. Further details are provided in Appendix A.2.208

Spatial-Temporal Representations of Matrix Games (STORM) Inspired by Melting Pot 2.0 [2],209

STORM [22] environment expands on simple matrix games by integrating them into grid-world210

scenarios. Agents collect resources which define their strategy during interactions and are rewarded211

based on the specific matrix game payoff matrix. This environment is useful because it allows to212

embed fully-cooperative, -competitive or general-sum games, such as the prisoner’s dilemma [44],213

which makes it a suitable playground for studying paradigms such as opponent shaping, where agents214

act with the intent to change other agents’ learning dynamics, which has been empirically shown215

to lead to more prosocial outcomes [15, 55, 30, 58]. Compared to the Coin Game or simple matrix216

games, the grid-world setting presents a variety of new challenges such as limited visibility, multi-step217

agent interactions, temporally-extended actions, and longer time horizons. Unlike Melting Pot, our218

environment features stochasticity, increasing the difficulty [13]. A further environment specification219

is provided in Appendix A.3.220

Switch Riddle Originally used to illustrate the Differentiable Inter-Agent Learning algorithm [14],221

Switch Riddle is a simple cooperative communication environment that we include as a debugging222

tool. n prisoners held by a warden can secure their release by collectively ensuring that each has223

passed through a room with a light bulb and a switch. Each day, a prisoner is chosen at random to224

enter this room. They have three choices: do nothing, signal to the next prisoner by toggling the225

light, or inform the warden they think all prisoners have been in the room. The game ends when226

a prisoner informs the warden or the maximum time steps are reached. The rewards are +1 if the227

prisoner informs the warden, and all prisoners have been in the room, -1 if the prisoner informs the228

warden before all prisoners have taken their turn, and 0 otherwise, including when the maximum time229

steps are reached. We benchmark using the implementation from (author?) [57].230

3.3 Algorithms231

In this section, we present our re-implementation of several well known MARL baseline algorithms232

using JAX. The primary objective of these baselines is to provide a structured framework for233

developing MARL algorithms leveraging the advantages of the JaxMARL environments. All the234

training pipelines are fully compatible with JAX’s JIT and VMAP functions, resulting in a significant235

acceleration of both training and metric evaluation processes. This enables parallelization of training236

across various seeds and hyperparameters on a single machine. We use the CleanRL philosophy of237

providing clear, single-file implementations [20].238

IPPO Our Independent PPO (IPPO) [43] implementation is based on PureJaxRL [28], with239

parameter sharing across homogeneous agents. We provide both feed-forward and RNN versions.240

Q-learning Methods Our Q-Learning baselines, including Independent Q-Learning (IQL) [49],241

Value Decomposition Networks (VDN) [47], and QMIX [40], have been implemented in accordance242

with the PyMARL codebase [40] to ensure consistency with published results and enable direct243
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Table 2: Benchmark results for JAX-based RL environments (steps-per-second)
Environment Original, 1 Env Jax, 1 Env Jax, 100 Envs Jax, 10k Envs
MPE Simple Spread 8.34× 104 5.48× 103 5.24× 105 3.99× 107

MPE Simple Reference 1.46× 105 5.24× 103 4.85× 105 3.35× 107

Switch Riddle 2.69× 104 6.24× 103 7.92× 105 6.68× 107

Hanabi 2.10× 103 1.36× 103 1.05× 105 5.02× 106

Overcooked 1.91× 103 3.59× 103 3.04× 105 1.69× 107

MABrax Ant 4x2 1.77× 103 2.70× 102 1.81× 104 7.62× 105

Starcraft 2s3z 8.31× 101 5.37× 102 4.53× 104 2.71× 106

Starcraft 27m vs 30m 2.73× 101 1.45× 102 1.12× 104 1.90× 105

Matrix Game in the Grid – 2.48× 103 1.75× 105 1.46× 107

Coin Game 1.97× 104 4.67× 103 4.06× 105 4.03× 107
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Figure 3: Speed in four environments JaxMARL frameworks.

comparisons with PyTorch. Our baselines natively support aggregating trajectories from batched244

environments, simplifying parallelization. This approach is more convenient than managing environ-245

ments on distinct threads and subsequently aggregating results, as done in PyMARL. We provide a246

brief overview of the implemented baselines in the Appendix.247

4 Results248

In our results, we aim to demonstrate four important properties of our library: the speed of our249

environments and algorithms compared with more traditional frameworks, and the correctness of our250

environment and algorithm implementations.251

4.1 Environment Speed252

We measure the performance in steps per second of the environments when using random actions253

compared to the original environments in Table 2. All results were collected on a single NVIDIA254

A100 GPU and AMD EPYC 7763 64-core processor. Environments were rolled out for 1000255

sequential steps. Many environments have comparable performance to JaxMARL when comparing256

single environments, but the ease of parallelisation with Jax allows for much more efficient scaling257

compared to CPU-based environments. For example, MPE Simple Spread’s JAX implementation258

is only 6.5% of the speed of the original when comparing a single environment, but even when259

only running 100 environments in parallel, the JAX environment is already over 6x faster. Figure 3260

shows the performance against the number of environments for a selection of environments. When261

considering 10000 environments, the JAX versions are much faster, achieving speedups of over 8500x262

over the single-threaded environment in the case of Overcooked. Running this many environments in263

parallel using CPU environments would require a large CPU cluster and sophisticated communication264

mechanisms. This engineering is typically beyond the resources of academic labs, and therefore265

JaxMARL can unlock new research for such institutions.266
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Figure 4: IPPO Speed and Performance in JaxMARL compared to MARLLIB and PyMARL in SMAX and
MPE. Return results were averaged across 3 seeds. Performance results show 1 seed collected on the hardware
described in Section 4.1.

4.2 Environment Correctness267

To confirm the validity of our implementations, we verify that policies trained using our pipeline268

transfer to the original environment implementations. For MPE, we use an IQL policy, with training269

curves illustrated in Figure 5, and test correspondence on 1000 environment rollouts. For each270

rollout, we initialise the internal state of the JAX implementation using the output of PettingZoo’s271

reset method, ensuring both episodes begin from identical points. We then execute the rollout with272

distinct calls to the policy from each implementation and compare the reward signals to confirm273

correspondence. Using this methodology, we validate correspondence for both Simple Speaker274

Listener V4 and Simple Spread V3.275

4.3 Algorithm Correctness276

We verify the correctness of our algorithm implementations by comparing to baselines from other277

libraries on the MPE Simple Spread and Simple Speaker Listener environments. For IPPO we report278

the mean return across 3 seeds in Figure 4a. Results were collected on the same hardware as listed in279

Section 4.1. Our IPPO implementation attains the same performance as MARLLIB and runs 250x280

quicker, taking only ten seconds to train.281

For the Q-learning algorithms, we verify the correctness by comparing with PyMARL implementa-282

tions of the same algorithms on the MPE Simple Spread and Simple Speaker Listener environments.283

IQL, VDN and QMIX all attain the same or better results than their PyMARL counterparts. The284

returns are from greedy policies and averaged across 8 runs. The hyperparameters used were the285

same as for PyMARL. We also demonstrate the performance of the Q-learning algorithms on the286

SMAX 3m environment, where only QMIX is able to solve it reliably.287

4.4 Algorithm Speed288

We also demonstrate the improved speed of our IPPO implementation in Figure 4. By vectorising289

over agents, it is possible to train a vast number of agents in a fraction of the time it takes to train290

a single agent without hardware-acceleration. For MPE, it is possible to train 1024 agents in 198.4291

seconds, which is less than 0.2 seconds per agent. A single run of MARLLIB’s IPPO implementation292

on the same hardware takes around 2435.7 seconds on average. This represents an over 12500x293

speedup.294

For SMAX, we compare the vectorised IPPO baseline to the MAPPO implementation provided in295

[45]. This implementation features an RNN, compared to the feed-forward baseline in JaxMARL.296

This was also run on a machine with a 64-core CPU and NVIDIA 2080Ti GPU. Additionally, as297

discussed in Section 3.2, SMAC and SMAX are different environments. These caveats aside, the298

differences in performance are so striking that we believe this clearly demonstrates the advantages of299

our approach. It’s possible to train 512 SMAX agents on 2s3z in under 33 minutes, whereas a single300

training run of PyTorch IPPO implementation takes 44 hours on average. This is 40000x speedup,301

with the significant caveats of the differences between the two runs.302
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Figure 5: Performances of Q-Learning baselines in MPE cooperative scenarios, PyMARL and JaxMARL.

5 Related Work303

Several open-source libraries exist for both MARL algorithms and environments. PyMARL [41]304

provides PyTorch implementations of QMIX, VDN and IQL and integrates easily with SMAC.305

E-PyMARL [36] extends this by adding the actor-critic algorithms MADDPG [27], MAA2C [33],306

IA2C [33], and MAPPO, and supports the SMAC, Gym [8], Robot Warehouse [10], Level-Based307

Foraging [10], and MPE environments. MARLLib [19], based on the open-source RL library308

RLLib [26], is a recent addition that combines a wide range of competitive, cooperative and mixed309

environments with a broad set of baseline algorithms. Meanwhile, MALib [59] focuses on population-310

based MARL across a wide range of environments. However, none of these frameworks feature311

hardware-accelerated environments and so do not give the associated performance benefits.312

There has also been a recent proliferation of hardware-accelerated and JAX-based RL environments.313

Isaac gym [31] provides a GPU-accelerated simulator for a range of robotics platforms and CuLE [11]314

is a CUDA reimplementation of the Atari Learning Environment [4]. Both of these environments are315

GPU-specific and cannot be extended to other hardware accelerators. Jumanji [6] features implemen-316

tations of mostly single-agent environments with a strong focus on combinatorial problems. These317

are written in JAX and the authors also provide an actor-critic baseline in addition to random actions.318

PGX [23] includes several board-game environments written in JAX. Gymnax [24] provides JAX319

implementations of the BSuite [35], classic continuous control, MinAtar [56] and other assorted envi-320

ronments and comes with a sister-library, gymnax-baselines, which provides PPO and ES baselines.321

Brax [16] reimplements the MuJoCo simulator in JAX and also provides a PPO implementation322

as a baseline. VMAS [5] provides a vectorized 2D physics engine written in PyTorch and a set of323

challenging multi-robot scenarios. Jax-LOB [17] implements a vectorized limit order book as an RL324

environment that runs on the accelerator. Perhaps the most similar to our work is Mava[38], which325

provides a MAPPO baseline, as well as integration with the Robot Warehouse environment. However,326

none of these libraries provides access to a wide range of JAX-based MARL environments as well as327

both value-based and actor-critic baselines.328

Broadly, no other work provides implementations of a similar range of hardware-accelerated cooper-329

ative, competitive and mixed environments, while also implementing value-based and actor-critic330

baselines. Secondly, no other JAX simplification of SMAC exists. All other versions are either tied to331

the StarCraft II simulator or not hardware accelerated.332

6 Conclusion333

Hardware acceleration offers important opportunities for MARL research by lowering computational334

barriers and increasing the speed at which ideas can be iterated. We present JaxMARL, an open-335

source library of popular MARL environments and baseline algorithms implemented in JAX. We336

combine ease of use with hardware accelerator enabled efficiency to give significant speed-ups337

compared to traditional CPU-based implementations. Furthermore, by bringing together a wide338

range of MARL environments under one codebase, we have the potential to help alleviate issues with339

MARL’s evaluation standards. We hope that JaxMARL will help advance MARL by improving the340

ability of academic labs to conduct research with thorough and effective evaluations.341
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A Further Details on Environments530

A.1 SMAX531

Observations in SMAX are structured similarly to SMAC. Each agent observes the health, previous532

action, position, weapon cooldown and unit type of all allies and enemies in its sight range. Like533

SMACv2[13], we use the sight and attack ranges as prescribed by StarCraft II rather than the fixed534

values used in SMAC.535
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SMAX’s reward function is similar to the dense reward from SMAC, but rescaled. Agents get 1 point536

for depleting all the enemies’ health and 1 point for winning. When trained in self-play, the reward is537

simply 1 for winning the episode and −1 for losing. Unlike StarCraft II, where all actions happen in538

a randomised order in the game loop, some actions in SMAX are simultaneous, meaning draws are539

possible. In this case both teams get 0 reward.540

Like SMAC, each environment step in SMAX consists of eight individual time ticks. SMAX uses541

a discrete action space, consisting of movement in the four cardinal directions, a stop action, and a542

shoot action per enemy.543

SMAX makes three notable simplifications of the StarCraft II dynamics to reduce complexity. First,544

zerg units do not regenerate health. This health regeneration is slow at 0.38 health per second, and so545

likely has little impact on the game. Protoss units also do not have shields. Shields only recharge after546

10 seconds out of combat, and therefore are unlikely to recharge during a single micromanagement547

task. Protoss units have additional health to compensate for their lost shields. Finally, the available548

unit types are reduced compared to SMAC. SMAX has no medivac, colossus or baneling units. Each549

of these unit types has special mechanics that were left out for the sake of simplicity.550

Collisions are handled by moving agents to their desired location first and then pushing them out551

from one another.552

A.2 Coin Game553

Two agents, ‘red’ and ‘blue’, move in a wrap-around grid and collect red and blue coloured coins.554

When an agent collects any coin, the agent receives a reward of 1. However, when ‘red’ collects a555

blue coin, ‘blue’ receives a reward of −2 and vice versa. Once a coin is collected, a new coin of556

the same colour appears at a random location within the grid. If a coin is collected by both agents557

simultaneously, the coin is duplicated and both agents collect it. Episodes are of a set length.558

A.3 Spatial-Temporal Representations of Matrix Games (STORM)559

This environment features directional agents within an 8x8 grid-world with a restricted field of view.560

Agents cannot move backwards or share the same location. Collisions are resolved by either giving561

priority to the stationary agent or randomly if both are moving. Agents collect two unique resources:562

cooperate and defect coins. Once an agent picks up any coin, the agent’s colour shifts, indicating563

its readiness to interact. The agents can then release an interact beam directly ahead; when this564

beam intersects with another ready agent, both are rewarded based on the specific matrix game565

payoff matrix. The agents’ coin collections determine their strategies. For instance, if an agent has 1566

cooperate coin and 3 defect coins, there’s a 25% likelihood of the agent choosing to cooperate. After567

an interaction, the two agents involved are frozen for five steps, revealing their coin collections to568

surrounding agents. After five steps, they respawn in a new location, with their coin count set back569

to zero. Once an episode concludes, the coin placements are shuffled. This grid-based approach to570

matrix games can be adapted for n-player versions. While STORM is inspired by MeltingPot 2.0,571

there are noteworthy differences:572

• Meltingpot uses pixel-based observations while we allow for direct grid access.573

• Meltingpot’s grid size is typically 23x15, while ours is 8x8.574

• Meltingpot features walls within its layout, ours does not.575

• Our environment introduces stochasticity by shuffling the coin placements, which remain576

static in Meltingpot.577

• Our agents begin with an empty coin inventory, making it easier for them to adopt pure578

cooperate or defect tactics, unlike in Meltingpot where they start with one of each coin.579

• MeltingPot is implemented in Lua[21] where as ours is a vectorized implementation in Jax.580

We deem the coin shuffling especially crucial because even large environments representing POMDPs,581

such as SMAC, can be solved without the need for memory if they lack sufficient randomness [13].582
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B Value-Based MARL Methods and Implementation details583

Key features of our framework include parameter sharing, a recurrent neural network (RNN) for584

agents, an epsilon-greedy exploration strategy with linear decay, a uniform experience replay buffer,585

and the incorporation of Double Deep Q-Learning (DDQN) [52] techniques to enhance training586

stability.587

Unlike PyMARL, we use the Adam optimizer as the default optimization algorithm. Below is an588

introduction to common value-based MARL methods.589

IQL (Independent Q-Learners) is a straightforward adaptation of Deep Q-Learning to multi-agent590

scenarios. It features multiple Q-Learner agents that operate independently, optimizing their individual591

returns. This approach follows a decentralized learning and decentralized execution pipeline.592

VDN (Value Decomposition Networks) extends Q-Learning to multi-agent scenarios with a593

centralized-learning-decentralized-execution framework. Individual agents approximate their own594

action’s Q-Value, which is then summed during training to compute a jointed Qtot for the global595

state-action pair. Back-propagation of the global DDQN loss in respect to a global team reward596

optimizes the factorization of the jointed Q-Value.597

QMIX improves upon VDN by relaxing the full factorization requirement. It ensures that a global598

argmax operation on the total Q-Value (Qtot) is equivalent to individual argmax operations on599

each agent’s Q-Value. This is achieved using a feed-forward neural network as the mixing network,600

which combines agent network outputs to produce Qtot values. The global DDQN loss is computed601

using a single shared reward function and is back-propagated through the mixer network to the602

agents’ parameters. Hypernetworks generate the mixing network’s weights and biases, ensuring non-603

negativity using an absolute activation function. These hypernetworks are two-layered multi-layer604

perceptrons with ReLU non-linearity.605

C Hyperparameters606

Hyperparameter Value
LR 0.0005

NUM_ENVS 25
NUM_STEPS 128

TOTAL_TIMESTEPS 1× 106

UPDATE_EPOCHS 5
NUM_MINIBATCHES 2

GAMMA 0.99
GAE_LAMBDA 1.0

CLIP_EPS 0.3
ENT_COEF 0.01
VF_COEF 1.0

MAX_GRAD_NORM 0.5
ACTIVATION tanh
ANNEAL_LR True

Table 3: Hyperparameters for IPPO MPE
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Hyperparameter Value
LR 0.004

NUM_ENVS 64
NUM_STEPS 128

TOTAL_TIMESTEPS 10, 000, 000.0
UPDATE_EPOCHS 2

NUM_MINIBATCHES 2
GAMMA 0.99

GAE_LAMBDA 0.95
CLIP_EPS 0.2

SCALE_CLIP_EPS False
ENT_COEF 0.0
VF_COEF 0.5

MAX_GRAD_NORM 0.5
ACTIVATION relu

Table 4: Hyperparameters for SMAX IPPO
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