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ABSTRACT

We study the sparse phase retrieval problem, which seeks to recover a sparse signal
from a limited set of magnitude-only measurements. In contrast to prevalent sparse
phase retrieval algorithms that primarily use first-order methods, we propose an
innovative second-order algorithm that employs a Newton-type method with hard
thresholding. This algorithm overcomes the linear convergence limitations of
first-order methods while preserving their hallmark per-iteration computational
efficiency. We provide theoretical guarantees that our algorithm converges to
the s-sparse ground truth signal x♮ ∈ Rn (up to a global sign) at a quadratic
convergence rate after at most O(log(∥x♮∥/x♮min)) iterations, using Ω(s2 log n)
Gaussian random samples. Numerical experiments show that our algorithm
achieves a significantly faster convergence rate than state-of-the-art methods.

1 INTRODUCTION

We study the phase retrieval problem, which involves reconstructing an n-dimensional signal x♮

using its magnitude-only measurements:

yi = |⟨ai,x♮⟩|2, i = 1, 2, · · · ,m, (1)

where each yi represents a measurement, ai denotes a sensing vector, x♮ is the unknown signal to be
recovered, and m is the total number of measurements. The phase retrieval problem arises in various
applications, including diffraction imaging (Maiden & Rodenburg, 2009), X-ray crystallography
(Miao et al., 2008), and optics (Shechtman et al., 2015).

Although the phase retrieval problem is ill-posed and even NP-hard (Fickus et al., 2014), various
algorithms can recover target signals. These are broadly categorized into convex and nonconvex
approaches. Convex methods, such as PhaseLift (Candes et al., 2015; 2013), PhaseCut (Waldspurger
et al., 2015), and PhaseMax (Goldstein & Studer, 2018; Hand & Voroninski, 2018), offer optimal
sample complexity but are computationally challenging in high-dimensional cases. To improve
computational efficiency, nonconvex approaches are explored such as alternating minimization
(Netrapalli et al., 2013; Cai et al., 2022b), Wirtinger flow (Candes et al., 2015), truncated amplitude
flow (Wang et al., 2017a), Riemannian optimization (Cai & Wei, 2023), Gauss-Newton (Gao &
Xu, 2017; Ma et al., 2018), Kaczmarz (Wei, 2015; Chi & Lu, 2016), and unregularized gradient
descent (Ma et al., 2020). Despite the nonconvex nature of its objective function, the global geometric
landscape lacks spurious local minima (Sun et al., 2018; Li et al., 2019; Cai et al., 2023b), allowing
algorithms with random initialization to work effectively (Chen et al., 2019; Waldspurger, 2018).

The nonconvex approaches previously mentioned can guarantee successful recovery of the ground
truth (up to a global phase) using m = Ω(n loga n) measurements, where a ≥ 0. This complexity is
nearly optimal, as the phase retrieval problem requiresm ≥ 2n−1 for real signals andm ≥ 4n−4 for
complex signals (Conca et al., 2015). However, in practical situations, especially in high-dimensional
cases, the number of available measurements is often less than the signal dimension (i.e., m < n),
leading to a need for further reduction in sample complexity.
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In this paper, we focus on the sparse phase retrieval problem, which aims to recover a sparse signal
from a limited number of phaseless measurements. It has been established that the minimal sample
complexity required to ensure s-sparse phase retrievability in the real case is only 2s for generic
sensing vectors (Wang & Xu, 2014). Several algorithms have been proposed to address the sparse
phase retrieval problem (Ohlsson et al., 2012; Cai et al., 2016; Wang et al., 2017b; Jagatap & Hegde,
2019; Cai et al., 2022c). These approaches have been demonstrated to effectively reconstruct the
ground truth using Ω(s2 log n) Gaussian measurements. While this complexity is not optimal, it is
significantly smaller than that in general phase retrieval.

1.1 CONTRIBUTIONS

Existing algorithms for sparse phase retrieval primarily employ first-order methods with linear
convergence. Recent work (Cai et al., 2022c) presented a second-order method, while it fails to obtain
quadratic convergence. The main contributions of this paper can be summarized in three points:

1. We propose a second-order algorithm for sparse phase retrieval that maintains the same per-
iteration computational complexity as popular first-order methods. Our algorithm enhances
convergence by integrating second-order derivative information from intensity-based empirical
loss into the search direction. To ensure computational efficiency, the Newton step is applied
only to a subset of variables identified through the amplitude-based empirical loss.

2. We establish a non-asymptotic quadratic convergence rate for our proposed algorithm and
provide the iteration complexity. Specifically, we prove that the algorithm converges to
the ground truth (up to a global sign) at a quadratic rate after at most O(log(∥x♮∥/x♮min))
iterations, with m = Ω(s2 log n) measurements. To the best of our knowledge, this is the first
algorithm to establish a quadratic convergence rate for sparse phase retrieval.

3. Numerical experiments demonstrate that the proposed algorithm achieves a significantly faster
convergence rate in comparison to state-of-the-art methods. The experiments also reveal that
our algorithm attains higher success rates in the exact recovery of signals from noise-free
measurements and offers improved signal reconstruction in the presence of noise.1

Notation: ∥x∥0 denotes the number of nonzero entries of x, and ∥x∥ denotes the ℓ2-norm. For a
matrix A ∈ Rm×n, ∥A∥ is the spectral norm of A. For any q1 ≥ 1 and q2 ≥ 1, ∥A∥q2→q1 denotes
the induced operator norm from the Banach space (Rn, ∥·∥q2) to (Rm, ∥·∥q1). λmin(A) and λmax(A)
denote the smallest and largest eigenvalues of A. |S| denotes the number of elements in S. a⊙ b
denotes the entrywise product of a and b. We write f(n) = O(g(n)) to indicate f(n) ≤ c1g(n) for
some constant c1 > 0, and f(n) = Ω(g(n)) to denote f(n) ≥ c2g(n) for some constant c2 > 0. For
x, x♮ ∈ Rn, the distance between x and x♮ is defined as dist(x,x♮) := min

{
∥x− x♮∥, ∥x+ x♮∥

}
.

x♮min denotes the smallest nonzero entry in magnitude of x♮.

2 PROBLEM FORMULATION AND RELATED WORK

We first present the problem formulation for sparse phase retrieval, and then review related work and
provide a comparative overview of state-of-the-art algorithms and our proposed algorithm.

2.1 PROBLEM FORMULATION

The standard sparse phase retrieval problem can be concisely expressed as finding x that satisfies

|⟨ai,x⟩|2 = yi ∀ i = 1, . . . ,m, and ∥x∥0 ≤ s, (2)

where {ai}mi=1 and {yi}mi=1 represent known and fixed sensing vectors and phaseless measurements,
respectively. Each yi = |⟨ai,x♮⟩|2 with x♮ the ground truth (∥x♮∥0 ≤ s). While sparsity level is
assumed known a priori for theoretical analysis, our experiments will explore cases with unknown s.
To address Problem (2), various problem reformulations have been explored. Convex formulations,
such as the ℓ1-regularized PhaseLift method (Ohlsson et al., 2012), often use the lifting technique
and solve the problem in the n× n matrix space, resulting in high computational costs.

1Our codes are available at https://github.com/jxying/SparsePR.
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Table 1: Overview of per-iteration computational cost, iteration complexity, and loss function types
for ThWF (Cai et al., 2016), SPARTA (Wang et al., 2017b), CoPRAM (Jagatap & Hegde, 2019), HTP
(Cai et al., 2022c), and our proposed algorithm. Here, x♮ represents the ground truth with dimension
n and sparsity s, and x♮min denotes the smallest nonzero entry in magnitude of x♮.

Methods Per-iteration computation Iteration complexity Loss function

ThWF O(n2 logn) O(log(1/ϵ)) fI(x)

SPARTA O(ns2 logn) O(log(1/ϵ)) fA(x)

CoPRAM O(ns2 logn) O(log(1/ϵ)) fA(x)

HTP O((n+ s2)s2 logn) O(log(log(ns2)) + log(∥x♮∥/x♮
min)) fA(x)

Proposed O((n+ s2)s2 logn) O(log(log(1/ϵ)) + log(∥x♮∥/x♮
min)) fI(x), fA(x)

To enhance computational efficiency, nonconvex approaches (Cai et al., 2016; Wang et al., 2017b;
Cai et al., 2022c; Soltanolkotabi, 2019) are explored, which can be formulated as:

minimize
x

f(x), subject to ∥x∥0 ≤ s. (3)

Both the loss function f(x) and the ℓ0-norm constraint in Problem (3) are nonconvex, making it
challenging to solve. Two prevalent loss functions are investigated: intensity-based empirical loss

fI(x) :=
1

4m

m∑
i=1

(
|⟨ai,x⟩|2 − yi

)2
, (4)

and amplitude-based empirical loss

fA(x) :=
1

2m

m∑
i=1

(|⟨ai,x⟩| − zi)
2
, (5)

where zi =
√
yi, i = 1, . . . ,m. The intensity-based loss fI(x) is smooth, while the amplitude-based

loss fA(x) is non-smooth because of the modulus.

2.2 RELATED WORK

Existing nonconvex sparse phase retrieval algorithms can be broadly classified into two categories:
gradient projection methods and alternating minimization methods. Gradient projection methods,
such as ThWF (Cai et al., 2016) and SPARTA (Wang et al., 2017b), employ thresholded gradient
descent and iterative hard thresholding, respectively. On the other hand, alternating minimization
methods, including CoPRAM (Jagatap & Hegde, 2019) and HTP (Cai et al., 2022c), alternate between
updating the signal and phase. When updating the signal, formulated as a sparsity-constrained least
squares problem, CoPRAM leverages the cosamp method (Needell & Tropp, 2009), while HTP
applies the hard thresholding pursuit algorithm (Foucart, 2011).

Contrary to previously discussed algorithms, our algorithm is rooted in a Newton-type method with
hard thresholding and incorporates second-order information to accelerate convergence. Unlike
alternating minimization methods, our algorithm eliminates the need to update the signal and phase
separately. A sample complexity of Ω(s2 log n) under Gaussian measurements is required for
successful recovery across all discussed algorithms. ThWF employs an intensity-based loss as
the objective function, while SPARTA, CoPRAM, and HTP utilize an amplitude-based loss. Our
algorithm, distinctively, adopts both loss types: It uses intensity-based loss as the objective function
and amplitude-based loss to determine the support for the Newton update.

Discussions: Table 1 provides a comparative overview of various algorithms. ThWF, SPARTA, and
CoPRAM, as first-order methods, exhibit linear convergence. In contrast, our algorithm achieves
a quadratic convergence rate. Although HTP is a second-order method that converges in a finite
number of iterations, it fails to establish quadratic convergence and has a higher iteration complexity
than our algorithm. Empirical evidence further shows that our algorithm converges faster than HTP.
This can be attributed to our algorithm’s more effective exploitation of the second-order information
of the objective function when constructing the search direction.
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3 MAIN RESULTS

In this section, we present our proposed algorithm for sparse phase retrieval. Generally, nonconvex
methods comprise two stages: initialization and refinement. The first stage generates an initial guess
close to the target signal, while the second stage refines the initial guess. Our proposed algorithm
adheres to this two-stage strategy. In the first stage, we employ an existing effective method to
generate an initial point. Our primary focus is on the second stage, wherein we propose an efficient
second-order algorithm to refine the initial guess.

3.1 PROPOSED ALGORITHM

We introduce our proposed second-order algorithm for sparse phase retrieval, which adopts a dual
loss strategy: It employs the intensity-based loss as defined in (4) for the objective function and uses
the amplitude-based loss from (5) to identify the support for the Newton update. In alignment with
established Newton-type methods for sparse optimization (Cai et al., 2023a; Zhou et al., 2021; Meng
& Zhao, 2020), our algorithm involves two primary steps: (1) identifying the sets of free and fixed
variables, and (2) computing the search direction.

3.1.1 IDENTIFYING FREE AND FIXED VARIABLES

In Newton-type methods, computing the Newton direction at each iteration typically requires solving
a linear system, a process that often incurs a significant computational cost ofO(nω). Here, n denotes
the dimension of the problem space, and ω represents the matrix multiplication constant, which could
be less than 3 if fast matrix multiplication is employed. Unfortunately, this complexity can still render
the algorithm impractical for high-dimensional scenarios where n is large.

To address this challenge, we categorize variables into two groups at each iteration: free and fixed,
and update them separately. The free variables, which consist of at most s variables, are updated
according to the (approximate) Newton direction, while the fixed variables are set to zero. This
strategy substantially cuts the computational cost fromO(nω) toO(sω) by only requiring the solution
of a linear system of size s× s, and ensures s-sparsity at each iteration.

We identify free variables using one-step iterative hard thresholding (IHT) of the loss fA(x) in (5):

Sk+1 = supp
(
Hs(x

k − η∇fA(xk))
)
,

where η is the stepsize, and Hs denotes the s-sparse hard-thresholding operator, defined as follows:

Hs(w) := arg min
x

∥x−w∥2, subject to ∥x∥0 ≤ s, (6)

This operator picks the s largest magnitude entries of the input vector and sets the rest to zero.
Therefore, there are at most s free variables. Since fA is non-smooth, we adopt the generalized
gradient (Zhang et al., 2017) as ∇fA. The set of fixed variables is the complement of Sk+1. We only
update free variables along the approximate Newton direction and set others to zero.

While the objective function of our algorithm is the intensity-based loss fI(x), it’s noteworthy that
we use the amplitude-based loss fA(x) in place of fI(x) when identifying free variables. Empirical
evidence shows that this approach yields faster convergence compared to using fI(x).

3.1.2 COMPUTING SEARCH DIRECTION

We update the free variables in Sk+1 by solving the following support-constrained problem:

minimize
x

ψk(x), subject to supp(x) ⊆ Sk+1, (7)

where ψk(x) is an approximation of the intensity-based loss fI at xk. To ensure fast convergence
and efficient computation, we choose ψk(x) in (7) as the second-order Taylor expansion of fI at xk:

ψk(x) := fI(x
k) +

〈
∇fI(xk), x− xk

〉
+

1

2

〈
x− xk, ∇2fI(x

k)(x− xk)
〉
.

For notational simplicity, define gkSk+1
=
[
∇fI(xk)

]
Sk+1

, which denotes the sub-vector of ∇fI(xk)
indexed by Sk+1, Hk

Sk+1,Sk+1
=
[
∇2fI(x

k)
]
Sk+1,Sk+1

, which represents the principle sub-matrix
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of the Hessian indexed by Sk+1, and Hk
Sk+1,Sc

k+1
=
[
∇2fI(x

k)
]
Sk+1,Sc

k+1

, denoting the sub-matrix

whose rows and columns are indexed by Sk+1 and Sck+1, respectively. Let x⋆ denote the minimizer
of Problem (7). Following from the first-order optimality condition of Problem (7), we obtain that
x⋆Sc

k+1
= 0 and x⋆Sk+1

satisfies

Hk
Sk+1,Sk+1

(
x⋆Sk+1

− xkSk+1

)
= Hk

Sk+1,Sc
k+1

xkSc
k+1

− gkSk+1
. (8)

As a result, we obtain the next iterate xk+1 by
xk+1
Sk+1

= xkSk+1
− pkSk+1

, and xk+1
Sc
k+1

= 0, (9)

where pkSk+1
represents the approximate Newton direction over Sk+1, which can be calculated by

Hk
Sk+1,Sk+1

pkSk+1
= −Hk

Sk+1,Jk+1
xkJk+1

+ gkSk+1
. (10)

where Jk+1 := Sk \ Sk+1 with |Jk+1| ≤ s. In contrast to Eq. (8), we replace xkSc
k+1

with xkJk+1
in

(10), as Jk+1 captures all nonzero elements in xkSc
k+1

as follows:

G
(
xkSc

k+1

)
=

[
xkSc

k+1∩Sk

0

]
=

[
xkSk\Sk+1

0

]
=

[
xkJk+1

0

]
, (11)

where operator G arranges all nonzero elements of a vector to appear first, followed by zero elements.
The first equality in (11) follows from the fact that supp(xk) ⊆ Sk.

By calculating Hk
Sk+1,Jk+1

rather than Hk
Sk+1,Sc

k+1
as in (10), the computational cost is substantially

reduced from O(smn) to O(s2m). The costs for computing Hk
Sk+1,Sk+1

and solving the linear
system in (10) are O(s2m) and O(sω), respectively. Thus, the cost for Step 2 is O(s2m). The
cost for Step 1 amounts to O(mn), which involves calculating ∇fA(xk). Therefore, the overall
cost per iteration is O(n+ s2)m, with m on the order of s2 log n, which is generally necessary for
a theoretical recovery guarantee. Assuming s = O(

√
n) (otherwise, the complexity Ω(s2 log n)

for sparse phase retrieval would reduce to that of general methods), our algorithm’s per-iteration
complexity matches that of popular first-order methods at O(ns2 log n).

Algorithm 1 Proposed algorithm

Input: Data {ai, yi}mi=1, sparsity s, initial estimate x0, and stepsize η.
1: for k = 0, 1, 2, . . . do
2: Identify the set of free variables Sk+1 = supp(Hs(x

k − η∇fA(xk)));
3: Compute the search direction pkSk+1

over Sk+1 by solving (10);

4: Update xk+1:
xk+1
Sk+1

= xkSk+1
− pkSk+1

, and xk+1
Sc
k+1

= 0.

5: end for
Output: xk+1.

3.1.3 LEVERAGING TWO TYPES OF LOSSES

We provide an intuitive explanation of our algorithm, with a particular focus on the utilization of two
types of loss functions: the intensity-based loss and the amplitude-based loss.

Our algorithm employs the intensity-based loss fI as the objective function; its smoothness facilitates
the computation of the Hessian and the construction of the Newton direction. While one might
intuitively use the same loss function to determine variables for the Newton update, our numerical
experiments indicate that the amplitude-based loss fA is more effective for this purpose.

One potential reason is the superior curvature exhibited by fA around the true solution, which often
behaves more similarly to that of a quadratic least-squares loss (Chi et al., 2019; Zhang et al., 2017;
Wang et al., 2017a). This indicates that the gradient of fA could offer a more effective search direction
than that of fI . Furthermore, studies (Zhang et al., 2018; Cai et al., 2022a) have demonstrated that
algorithms founded on fA consistently outperform those based on fI in numerical results.
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3.2 INITIALIZATION

The nonconvex nature of phase retrieval problems often requires a good initial guess to find the
target signal. Spectral initialization (Candes et al., 2015) is a common approach. We adopt a sparse
variant of the spectral initialization method to obtain a favorable initial guess. It would be intriguing
to consider other well-established initialization methods, such as sparse orthogonality-promoting
initialization (Wang et al., 2017b), diagonal thresholding initialization (Cai et al., 2016), and modified
spectral initialization method (Cai et al., 2023c).

Assuming {ai}mi=1 are independently drawn from a Gaussian distribution N (0, In), the expectation
of the matrix 1

m

∑m
i=1 yiaia

T
i is M := ∥x♮∥2In + 2x♮(x♮)T . The leading eigenvector of M is

precisely ±x♮. Hence, the leading eigenvector of 1
m

∑m
i=1 yiaia

T
i can be close to ±x♮ (Candes et al.,

2015). However, this method requires the sample complexity of at least Ω(n), which is excessively
high for sparse phase retrieval. Leveraging the sparsity of x♮ is crucial to lower this complexity.

We adopt the sparse spectral initialization method proposed in (Jagatap & Hegde, 2019). Specifically,
we first collect the indices of the largest s values from

{
1
m

∑m
i=1 yi[ai]

2
j

}n
j=1

and obtain the set Ŝ,

serving as an estimate of the support of the true signal x♮. Next, we construct the initial guess x0 as
follows: x0

Ŝ
is the leading eigenvector of 1

m

∑m
i=1 yi[ai]Ŝ [ai]

T
Ŝ

, and x0
Ŝc

= 0. Finally, we scale x0

such that ∥x0∥2 = 1
m

∑m
i=1 yi, ensuring the power of x0 closely aligns with the power of x♮.

The study in (Jagatap & Hegde, 2019) demonstrates that, given a sample complexitym = Ω(s2 log n),
the aforementioned sparse spectral initialization method can produce an initial estimate x0 that falls
within a small-sized neighborhood around the ground truth. Specifically, it holds dist(x0,x♮) ≤
γ∥x♮∥ for any γ ∈ (0, 1), with a probability of at least 1 − 8m−1. Our theoretical analysis
demonstrates that, once the estimate enters this neighborhood, our iterative updates in the refinement
stage will consistently stay within this neighborhood and be attracted towards the ground truth,
exhibiting at least linear convergence and achieving quadratic convergence after K iterations.

3.3 THEORETICAL RESULTS

Given the nonconvex nature of the objective function and constraint set in the sparse phase retrieval
problem, a theoretical analysis is crucial to guarantee the convergence of our algorithm. In this
subsection, we provide a comprehensive convergence analysis for both noise-free and noisy cases.

3.3.1 NOISE-FREE CASE

We begin by the noise-free case, in which each measurement yi = |⟨ai,x♮⟩|2. Starting with an initial
guess obtained via the sparse spectral initialization method, the following theorem shows that our
algorithm exhibits a quadratic convergence rate after at most O(log(∥x♮∥/x♮min)) iterations.
Theorem 3.1. Let {ai}mi=1 be i.i.d. random vectors distributed as N (0, In), and x♮ ∈ Rn
be any signal with ∥x♮∥0 ≤ s. Let {xk}k≥1 be the sequence generated by Algorithm 1 with
the input measurements yi = |⟨ai,x♮⟩|2, i = 1, . . . ,m, and the initial guess x0 generated
by the sparse spectral initialization method mentioned earlier. There exist positive constants
ρ, η1, η2, C1, C2, C3, C4, C5 such that if the stepsize η ∈ [η1, η2] and m ≥ C1s

2 log n, then with
probability at least 1− (C2K + C3)m

−1, the sequence {xk}k≥1 converges to the ground truth x♮

at a quadratic rate after at most O
(
log(∥x♮∥/x♮min)

)
iterations, i.e.,

dist(xk+1,x♮) ≤ ρ · dist2(xk,x♮), ∀ k ≥ K,

where K ≤ C4 log
(
∥x♮∥/x♮min

)
+ C5, and x♮min is the smallest nonzero entry in magnitude of x♮.

The proof of Theorem 3.1 is available in Appendix B.3.1. Theorem 3.1 establishes the non-asymptotic
quadratic convergence rate of our algorithm as it converges to the ground truth, leading to an iteration
complexity of O(log(log(1/ϵ)) + log(∥x♮∥/x♮min)) for achieving an ϵ-accurate solution. While
superlinear convergence for Newton-type methods has been widely recognized in literature, it
typically holds only asymptotically. Consequently, the actual iteration complexity remains undefined,
highlighting the importance of establishing a non-asymptotic superlinear convergence rate. For the
first K iterations, our algorithm exhibits at least linear convergence.
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3.3.2 NOISY CASE

We demonstrate the robustness of our algorithm under noisy measurement conditions. Building upon
(Cai et al., 2016; Chen & Candès, 2017), we assume that the noisy measurements are given by:

yi = |⟨ai,x♮⟩|2 + ϵi, for i = 1, . . . ,m,

where ϵ represents a vector of stochastic noise that is independent of {ai}mi=1. Throughout this paper,
we assume, without loss of generality, that the expected value of ϵ is 0.
Theorem 3.2. Let {ai}mi=1 be i.i.d. random vectors distributed as N (0, In), and x♮ ∈ Rn be
any signal with ∥x♮∥0 ≤ s. Let {xk}k≥1 be the sequence generated by Algorithm 1 with noisy
input yi = |⟨ai,x♮⟩|2 + ϵi, i = 1, . . . ,m. There exists positive constants η1, η2, C6, C7, C8, and
γ ∈ (0, 1/8], such that if the stepsize η ∈ [η1, η2], m ≥ C6s

2 log n and the initial guess x0 obeys
dist(x0,x♮) ≤ γ∥x♮∥ with ∥x0∥0 ≤ s, then with probability at least 1− (C7K

′ + C8)m
−1,

dist(xk+1,x♮) ≤ ρ′ · dist(xk,x♮) + υ∥ϵ∥, ∀ 0 ≤ k ≤ K ′,

where ρ′ ∈ (0, 1), υ ∈ (0, 1), and K ′ is a positive integer.

The proof of Theorem 3.2 is provided in Appendix B.3.2. Theorem 3.2 validates the robustness of
our algorithm, demonstrating its ability to effectively recover the signal from noisy measurements. It
reveals a linear convergence rate for our algorithm in the presence of noise. However, our algorithm
incorporates the second-order information when determining the search direction, which always leads
to faster convergence than first-order algorithms. In addition, Theorem 3.2 does not suggest that the
established inequality fails to hold when k ≥ K ′.

4 EXPERIMENTAL RESULTS

In this section, we present a series of numerical experiments designed to validate the efficiency and
accuracy of our proposed algorithm. All experiments were conducted on a 2 GHz Intel Core i5
processor with 16 GB of RAM, and all compared methods were implemented using MATLAB.

Unless explicitly specified, the sensing vectors {ai}mi=1 were generated by the standard Gaussian
distribution. The true signal x♮ has s nonzero entries, where the support is selected uniformly from
all subsets of [n] with cardinality s, and their values are independently generated from the standard
Gaussian distribution N (0, 1). In the case of noisy measurements, we have:

yi = |⟨ai,x♮⟩|2 + σεi, for i = 1, . . . ,m, (12)

where {εi}mi=1 follow i.i.d standard Gaussian distribution, and σ > 0 determines the noise level.
We compare the convergence speed of our algorithm with state-of-the-art methods, including ThWF
(Cai et al., 2016), SPARTA (Wang et al., 2017b), CoPRAM (Jagatap & Hegde, 2019), and HTP
(Cai et al., 2022c). We fine-tune the parameters and set: α = 0.7 for ThWF; γ = 0.5, µ = 1 and
|I| = ⌈m/6⌉ for SPARTA; η = 0.95 for both HTP and our algorithm. The maximum number of
iterations for each algorithm is 1000. The Relative Error (RE) between the estimated signal x̂ and the
ground truth x♮ is defined as RE := dist(x̂,x♮)

∥x♮∥ . A recovery is deemed successful if RE < 10−3.

Figure 1 compares the number of iterations required for convergence across various algorithms. We
set the number of measurements to m = 3000, the dimension of the signal to n = 5000, and the
sparsity levels to s = 80 and 100. We consider both noise-free and noisy measurements with a noise
level of σ = 0.03. We observe that all algorithms perform well under both noise-free and noisy
conditions; however, our algorithm converges with significantly fewer iterations.

Table 2 presents a comparison of the convergence running times for various algorithms, corresponding
to the experiments depicted in Figure 1. For noise-free measurements, all algorithms are set to
terminate when the iterate satisfies the following condition: dist(xk,x♮)

∥x♮∥ < 10−3, which indicates
a successful recovery. In the case of noisy measurements, the termination criterion is set as
dist(xk+1,xk)

∥xk∥ < 10−3. As evidenced by the results in Table 2, our algorithm consistently outperforms
state-of-the-art methods in terms of running time, for both noise-free and noisy cases, highlighting its
superior efficiency for sparse phase retrieval applications.
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(b) Noise free, sparsity s = 100
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(c) Noise level σ = 0.03, sparsity s = 80
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(d) Noise level σ = 0.03, sparsity s = 100

Figure 1: Relative error versus iterations for various algorithms, with fixed signal dimension n = 5000
and sample size m = 3000. The results represent the average of 100 independent trial runs.

Table 2: Comparison of running times (in seconds) for various algorithms in the recovery of signals
with sparsity levels of 80 and 100 for both noise-free and noisy scenarios.

Methods ThWF SPARTA CoPRAM HTP Proposed

Noise free (σ = 0)
Sparsity 80 0.3630 1.0059 0.9762 0.0813 0.0530

Sparsity 100 0.6262 1.2966 3.3326 0.2212 0.1024

Noisy (σ = 0.03)
Sparsity 80 0.2820 1.1082 1.3426 0.1134 0.0803

Sparsity 100 0.4039 1.6368 4.1006 0.2213 0.1187

0 500 1000 1500 2000 2500 3000
Measurements (m)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

CoPRAM
HTP
ThWF
SparTA
Proposed

(a) s = 25
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(b) s = 50

Figure 2: Phase transition performance of various algorithms for signals of dimension n = 3000 with
sparsity levels s = 25 and 50. The results represent the average of 200 independent trial runs. The
parameter settings for ThWF, SPARTA, CoPRAM, and HTP in experiments are consistent with those
in the studies by Jagatap & Hegde (2019); Cai et al. (2022c).

Figure 2 depicts the phase transitions of different algorithms, with the true signal dimension fixed
at n = 3000 and sparsity levels set to s = 25 and 50. The phase transition graph is generated by
evaluating the successful recovery rate of each algorithm over 200 independent trial runs. Figure 2
shows that the probability of successful recovery for each algorithm transitions from zero to one as
the sample size m increases. Furthermore, our algorithm consistently outperforms state-of-the-art
methods, achieving a higher successful recovery rate across various measurement counts.
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In practical applications, natural signals may not be inherently sparse; however, their wavelet
coefficients often exhibit sparsity. Figure 3 illustrates the reconstruction performance of a signal from
noisy phaseless measurements, where the true signal, with a dimension of 30,000, exhibits sparsity
and contains 208 nonzero entries under the wavelet transform, using 20,000 samples. The sampling
matrix A ∈ R20,000×30,000 is constructed from a random Gaussian matrix and an inverse wavelet
transform generated using four levels of Daubechies 1 wavelet. The noise level is set to σ = 0.03.

To evaluate recovery accuracy, we use the Peak Signal-to-Noise Ratio (PSNR), defined as PSNR =

10 · log V2

MSE , where V represents the maximum fluctuation in the ground truth signal, and MSE
denotes the mean squared error of the reconstruction. A higher PSNR value generally indicates better
reconstruction quality. As depicted in Figure 3, our proposed algorithm outperforms state-of-the-art
methods in terms of both reconstruction time and PSNR. It achieves a higher PSNR while requiring
considerably less time for reconstruction. In the experiments, the sparsity level is assumed to be
unknown, and the hard thresholding sparsity level is set to 300 for various algorithms.

(a) Original signal (b) ThWF: PSNR = 71,
Time(s) = 11.586 (c) SPARTA: PSNR = 66,

Time(s) = 38.379

(d) CoPRAM: PSNR = 61,
Time(s) = 117.685 (e) HTP: PSNR = 62,

Time(s) = 6.689 (f) Proposed: PSNR = 78,
Time(s) = 2.629

Figure 3: Reconstruction of the signal with a dimension of 30,000 from noisy phaseless measurements
by various algorithms. Time(s) is the running time in seconds.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we have introduced an efficient second-order algorithm for sparse phase retrieval.
Our algorithm attains a non-asymptotic quadratic convergence rate while maintaining the same per-
iteration computational complexity as popular first-order methods, which exhibit linear convergence
limitations. Empirical results have demonstrated a significant improvement in the convergence rate of
our algorithm. Furthermore, experiments have revealed that our algorithm excels in attaining a higher
success rate for exact signal recovery.

Finally, we discuss the limitations of our paper, which also serve as potential avenues for future
research. Both our algorithm and state-of-the-art methods share the same sample complexity
of Ω(s2 log n) for successful recovery; however, our algorithm requires this complexity in both
the initialization and refinement stages, while state-of-the-art methods require Ω(s2 log n) for
initialization and Ω(s log n/s) for refinement. Investigating ways to achieve tighter complexity
in our algorithm’s refinement stage is a worthwhile pursuit for future studies.

Currently, the initialization methods for sparse phase retrieval exhibit a sub-optimal sample complexity
of Ω(s2 log n). A key challenge involves reducing its quadratic dependence on s. Recent study
(Jagatap & Hegde, 2019) attained a complexity of Ω(s log n), closer to the information-theoretic
limit, but relied on the strong assumption of the power law decay for sparse signals. Developing an
initialization method that offers optimal sample complexity for a broader range of sparse signals is an
engaging direction for future research.
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Additional experimental results are provided in Appendix A, while the proofs for Theorems 3.1
and 3.2 can be found in Appendix B.

A ADDITIONAL EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the scalability of the proposed algorithm,
its phase transition characteristics during signal recovery, its resilience when confronted with various
levels of input sparsity, and its robustness in the face of noisy measurements.

A.1 SCALABILITY ACROSS VARYING DIMENSIONS

We first investigate the scalability of our algorithm in terms of varying dimensions. In particular,
we extend the range of signal dimensions from 10000 to 50000 and adjust the sample size ratio
(m/n) from 0.3 to 0.7. We define successful recovery as the termination condition for the algorithm,
specifically when the iterate fulfills: dist(xk,x♮)

∥x♮∥ < 10−3. Table 3 offers an in-depth view of the
efficiency and scalability of our proposed algorithm.

Table 3: Running time comparison (in seconds) for the proposed algorithm while recovering signals
with dimensions ranging from 10000 to 50000 and sample size ratios (m/n) from 0.3 to 0.7. The
underlying signal has a sparsity level of 100. The reported results represent the average of 200
independent trial runs.

Dimension n (105) 1 1.5 2 2.5 3 3.5 4 4.5 5

Sample size
ratio m/n

0.3 0.212 0.420 0.458 0.675 0.987 1.214 1.472 1.854 2.147

0.5 0.242 0.497 0.585 0.912 1.382 1.788 2.237 2.709 3.022

0.7 0.278 0.545 0.833 1.179 1.783 2.224 2.789 3.581 4.252

A.2 PHASE TRANSITIONS FOR BLOCK-SPARSE SIGNALS

We present the phase transitions of various algorithms in Figure 4, focusing on block-sparse signals
with a fixed dimension of n = 3000 and sparsity levels set to s = 20 and 30. The signal generation
process aligns with the experiments depicted in Figure 2 of the study by Jagatap & Hegde (2019). We
generated the phase transition graph by assessing the success rate of each algorithm’s recovery across
200 independent trial runs. As shown in Figure 4, our algorithm always achieves a higher successful
recovery rate than the state-of-the-art methods across various measurement counts.
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Figure 4: Phase transition comparison of various algorithms applied to block-sparse signals with a
dimension of n = 3000 and sparsity levels s = 20 and 30. The signal generation process aligns with
the experiments depicted in Figure 2 of the study by Jagatap & Hegde (2019). The parameter settings
for ThWF, SPARTA, CoPRAM, and HTP are consistent with those used in the studies by Jagatap &
Hegde (2019); Cai et al. (2022c). The results reflect the average of 200 independent trial runs. A
recovery is considered successful if the relative error was less than 10−3.
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A.3 PHASE TRANSITIONS ACROSS VARYING SPARSITY LEVELS

Figure 5 presents the success rate of different algorithms as a function of varying sparsity levels s
and the number of measurements m. With a fixed signal dimension of n = 3000, we vary the signal
sparsity s from 6 to 120 and the number of measurements m from 150 to 3000. A signal recovery is
considered successful if the relative error dist(x̂,x♮)

∥x♮∥ < 10−3. The gray level of a block represents the
success rate: black corresponds to a 0% successful recovery, white to a 100% successful recovery,
and gray to a rate between 0% and 100%. As Figure 5 demonstrates, our algorithm outperforms the
state-of-the-art methods at higher values of s. For lower values of s, our algorithm achieves slightly
better results compared to ThWF, similar to the performances of SPARTA, CoPRAM, and HTP.
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Figure 5: Comparing phase transitions among various algorithms for a signal dimension of n = 3000,
across different sparsity levels and numbers of measurements. The successful recovery rates are
indicated by varying grey levels in the corresponding block. Black signifies a 0% successful recovery
rate, white indicates 100%, and grey represents values between 0% and 100%. A signal recovery is
considered successful if its relative error is less than 10−3.

A.4 PERFORMANCE COMPARISON WITH UNKNOWN SPARSITY

In Table 4, we consider scenarios with unknown sparsity. We input various sparsity levels into each
algorithm and compare the success rates of various algorithms in recovering the signal. In these
experiments, the underlying signal has a sparsity of 30, a signal dimension of 3000, and the number
of measurements is 2000. We excluded ThWF from the comparison because it does not require
input sparsity. As demonstrated in Table 4, our proposed algorithm exhibits significant robustness to
changes in input sparsity levels.

Table 4: Comparison of success rates of various algorithms with unknown signal sparsity. The
underlying signal has a sparsity of 30, a dimension of 3000, and a total of 2000 samples.

Input sparsity 10 20 30 50 70 100 150 200 250 300

CoPRAM 0 0 1 1 1 1 0.75 0.09 0 0

HTP 0 0 1 1 1 1 0.71 0.22 0.02 0.01

SPARTA 0 0 1 1 1 0.09 0 0 0 0

Proposed 0 0 1 1 1 1 0.93 0.85 0.76 0.66
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A.5 NOISE ROBUSTNESS

We investigate the impact of the noise level of measurements on the recovery error of our proposed
algorithm. Noise levels are represented by signal-to-noise ratios (SNR), i.e., ∥x♮∥/σ, where x♮ is the
ground truth signal and σ is a parameter determining the standard deviation of Gaussian noise, as
defined in (12). We set the dimension of the ground truth signal to n = 2000, the sparsity level to
s = 20, and the number of measurements to m = 1500.

Figure 6 depicts the relative error of the proposed algorithm as a function of signal-to-noise ratios
(SNR) in dB. We observe a nearly linear decrease in the relative error as the SNR increases, implying
that its recovery error can be controlled by a multiple of the measurement noise level. This result
demonstrates the robustness of our algorithm against noise in measurements. Additionally, the small
error bars shown in Figure 6 emphasize the low variability of recovery errors of our algorithm.
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Figure 6: Robustness of the proposed algorithm against additive Gaussian noise. The y-axis represents
the relative error of the proposed algorithm, while the x-axis corresponds to the signal-to-noise ratios
(SNR) of the measurements. The results are averaged over 100 independent trial runs, with error bars
indicating the standard deviation of the recovery error. We set n = 2000, m = 1500, and s = 20.

B PROOFS

We provide proofs for Theorem 3.1, the recovery guarantee for noise-free measurements, and Theorem
3.2, the recovery guarantee for noisy measurements. Technical lemmas are presented in Appendix B.1,
which serve as the foundation for proving Theorems 3.1 and 3.2, and their proofs are available in
Appendix B.2. Subsequently, the proofs of Theorems 3.1 and 3.2 can be found in Appendix B.3.

For a more concise representation, we arrange the sampling vectors and observations as follows:

A := [a1 a2 · · · am]T , y := [y1 y2 · · · ym]T , z := [z1 z2 · · · zm]T , (13)

where zi =
√
yi, i = 1, . . . ,m. We denote ai,S as the row vector that represents the i-th row of A,

retaining only the entries indexed by S.

B.1 TECHNICAL LEMMAS

The following lemma serves as an extension of Lemma 7.4 found in (Candes et al., 2015).

Lemma B.1. For any s-sparse vector x♮ ∈ Rn with support S♮ = supp(x♮), let {ai}mi=1 be
identically and independently distributed as N (0, In) and define the matrix A as in (13). For any
subset S ⊆ [n] such that supp(x♮) ⊆ S and |S| ≤ r for some integer r ≤ n. With probability at
least 1−m−4 − caδ

−2m−1 − cb exp
(
−ccδ2m/ logm

)
, we have∥∥∥∥ 1

m

m∑
i=1

|aTi,Sx♮|2ai,SaTi,S −
(
∥x♮∥2(In)S,S + 2x♮S(x

♮
S)
T
)∥∥∥∥ ≤ δ∥x♮∥2 (14)

provided m ≥ C(δ)r log(n/r). Here C(δ) is a constant depending on δ, ca, cb and cc are positive
absolute constants, and ai,S represents the i-th row of A, retaining only the entries indexed by S.

15



Published as a conference paper at ICLR 2024

The following lemma is derived through the application of Hölder’s inequality and Lemma B.9:

Lemma B.2. Given two vectors x, z ∈ Rn each with sparsity no larger than s and two subsets
S, T ⊆ [n]. Define the subset R := S ∪ T ∪ supp(x)∪ supp(z). Under the event (20) with support
R, there holds∥∥∇2

S,T fI(x)−∇2
S,T fI(z)

∥∥ ≤ 3

m

(
(3m)1/4 + (|R|)1/2 + 2

√
logm

)4
∥x+ z∥∥x− z∥. (15)

The following inequalities in Lemma B.3 can be derived using Lemmas B.1, B.2, B.11, and B.12.

Lemma B.3. Let x♮ ∈ Rn be any signal with sparsity ∥x♮∥0 ≤ s and support S♮. Let {ai}mi=1

be random Gaussian vectors identically and independently distributed as N (0, In). Define A, y
and fI(x) as in (13) and (4) respectively. Given two subsets S, T ⊆ [n] satisfying |S| ≤ s and
|T | ≤ s. Then if m ≥ 30s2, for any s-sparse vector x ∈ Rn with supp(x) ⊆ T and obeying
dist(x,x♮) ≤ γ∥x♮∥ with 0 < γ ≤ 0.1, under events (20) and (14), the following inequalities hold:

(i)
l1∥u∥ ≤

∥∥∇2
S,SfI(x)u

∥∥ ≤ l2∥u∥, ∀u ∈ R|S|, (16)

where l1 := (2− 2δ − 10γ(2 + γ)) ∥x♮∥2 and l2 := (6 + 2δ + 10γ(2 + γ)) ∥x♮∥2.

(ii) ∥∥∥∇2
S,S♮\SfI(x)

∥∥∥ ≤ l3 := (2 + 2δ + 10γ(2 + γ)) ∥x♮∥2. (17)

The next lemma is adapted from Lemma 3 in (Cai et al., 2022c).

Lemma B.4. Let {xk}k≥1 be the sequence generated by the Algorithm 1. Let zk := z ⊙ sgn(Axk).
Assume ∥xk − x♮∥ ≤ γ∥x♮∥. Then under the event (18) with r = s, 2s and the event (19), it holds
that

1

m

∥∥∥AT
Sk+1

(zk −Ax♮)
∥∥∥ ≤

√
Cγ(1 + δs)∥xk − x♮∥,

where Cγ = 4
(1−γ2) (ϵ0 + γ

√
21
20 )

2 with ϵ0 = 10−3, and Sk+1 = supp(Hs(x
k − η∇fA(xk))).

The following lemma provides an upper bound on the estimation error for the vector obtained after
one iteration of IHT, as described in (Blumensath & Davies, 2009). To make this paper self-contained,
we include the details of the proof for the reader’s convenience.

Lemma B.5. Given an s-sparse estimate xk satisfying
∥∥xk − x♮

∥∥ ≤ γ
∥∥x♮∥∥. Define the vector

obtained by one iteration of IHT with stepsize η to be

uk := Hs

(
xk − η∇fA

(
xk
))
.

Under the RIP event (18), it holds that∥∥uk − x♮
∥∥ ≤ ζ

∥∥xk − x♮
∥∥ ,

where ζ = 2
(√

2max{ηδ3s, 1− η (1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
.

The following lemma asserts that, given a sufficiently large m, the normalized random Gaussian
matrix A obeys the restricted isometry property (RIP) with overwhelming probability. This conclusion
is well-established in compressive sensing literature (Candes & Tao, 2005; Foucart & Rauhut, 2013).

Lemma B.6. (Foucart & Rauhut, 2013, Theorem 9.27) Let A be defined as in (13) with each vector
ai distributed as the random Gaussian vector a ∼ N (0, In) independently for i = 1, 2, . . . ,m.
There exists some universal positive constants C ′

1, C
′
2 such that for any positive integer r ≤ n and

any δr ∈ (0, 1), if m ≥ C ′
1δ

−2
r r log (n/r), then 1√

m
A satisfies r-RIP with constant δr, namely

(1− δr)∥x∥2 ≤
∥∥∥∥ 1√

m
Ax

∥∥∥∥2 ≤ (1 + δr)∥x∥2, ∀x ∈ Rnwith∥x∥0 ≤ r, (18)

with probability at least 1− e−C
′
2m.
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The results presented below have been previously established in (Cai et al., 2016).

Lemma B.7. (Cai et al., 2016, Lemma A.6) On an event with probability at least 1−m−1, we have∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,S♮ −

(
∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x

♮
S♮)

T
)∥∥∥∥ ≤ δ∥x♮∥2,

provided m ≥ C(δ)s log s. Here C(δ) is a constant depending on δ.

The subsequent lemma, a direct outcome from (Soltanolkotabi, 2019), plays a crucial role in bounding
the term

∥∥AT
Tk+1

(zk −Ax♮)
∥∥.

Lemma B.8. (Soltanolkotabi, 2019, Lemma 25) Let {ai}mi=1 be i.i.d. Gaussian random vectors with
mean 0 and variance matrix I . Let γ be any constant in (0, 18 ]. Fixing any ϵ0 > 0, then for any
s-sparse vector x satisfying dist(x,x♮) ≤ λ0∥x♮∥, with probability at least 1− e−C

′
6m there holds

that
1

m

m∑
i=1

|aTi x♮|2 · 1{(aT
i x)(aT

i x♮)≤0} ≤ 1

(1− λ0)2

(
ϵ0 + λ0

√
21

20

)2

∥x− x♮∥2, (19)

provided m ≥ C ′
5s log(n/s). Here C ′

5 and C ′
6 are some universal positive constants.

The next lemma, derived from (Cai et al., 2016), asserts that the induced norm of the submatrix of
random Gaussian matrix A is bounded by its size.

Lemma B.9. (Cai et al., 2016, Lemma A.5) Let {ai}mi=1 be identically and independently distributed
as N (0, In) and define the matrix A as in (13). Given a support S ⊆ [n] with cardinality s, with
probability at least 1− 4m−2, there holds

∥AS∥2→4 ≤ (3m)1/4 + s1/2 + 2
√
logm, (20)

where AS represents the sub-matrix of A, retaining only the columns indexed by S.

The subsequent result concerning the spectral norm of submatrices of 1√
m
A can be deduced by

employing the restricted isometry property of matrix 1√
m
A.

Lemma B.10. (Needell & Tropp, 2009, Proposition 3.1) Suppose the matrix A satisfies the inequality
(18) for values of r specified as s and s′. Then for any disjoint subsets S and T of {1, 2, · · · ,m}
satisfying |S| ≤ s and |T | ≤ s′, the following inequalities hold:∥∥∥∥ 1√

m
AT

S

∥∥∥∥ ≤
√

1 + δs, (21)∥∥∥∥ 1

m
AT

SAT

∥∥∥∥ ≤ δs+s′ , (22)

1− δs ≤
∥∥∥∥ 1

m
AT

SAS

∥∥∥∥ ≤ 1 + δs, . (23)

The following lemma provides the expectation of the sub-Hessian of the intensity-based loss fI at x♮.
As this result can be easily derived through basic calculations, we will not delve into the details here.

Lemma B.11. For any subset S ⊆ [n] such that supp(x♮) ⊆ S, the expectation of ∇2
S,SfI(x

♮) is

E
[
∇2

S,SfI(x
♮)
]
= 2

(
∥x♮∥2(In)S,S + 2x♮S(x

♮
S)
T
)
,

and it has one eigenvalue of 6∥x♮∥2 and all other eigenvalues are 2∥x♮∥2.

The next lemma is the so-called Weyl Theorem, which is a classical linear algebra result.
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Lemma B.12. Suppose M , N ∈ Rn×n are two symmetric matrices. The eigenvalues of M are
denoted as λ1 ≥ λ2 ≥ · · ·λn and the eigenvalues of N are denoted as µ1 ≥ µ2 ≥ · · ·µn. Then we
have

|µi − λi| ≤ ∥M −N∥2, ∀i = 1, 2, · · · , n.

Lemma B.13. (Hoeffding-type inequality) Let X1, · · · , XN be independent centered sub-Gaussian
random variables, and let K = maxi∈[N ] ∥Xi∥ψ2

, where the sub-Gaussian norm

∥Xi∥ψ2
:= sup

p≥1
p−1/2 (E [|X|p])1/p .

Then for every b = [b1; · · · ; bN ] ∈ RN and every t ≥ 0, we have

P
{∣∣∣∣ N∑

k=1

bkXk

∣∣∣∣ ≥ t

}
≤ e exp

(
− ct2

K2∥b∥2

)
.

Here c is a universal constant.

Lemma B.14. (Bernstein-type inequality) Let X1, · · · , XN be independent centered sub-exponential
random variables, and let K = maxi ∥Xi∥ψ1 , where the sub-exponential norm

∥Xi∥ψ1
:= sup

p≥1
p−1 (E [|X|p])1/p .

Then for every b = [b1; · · · ; bN ] ∈ RN and every t ≥ 0, we have

P
{∣∣∣∣ N∑

k=1

bkXk

∣∣∣∣ ≥ t

}
≤ 2 exp

(
−cmin

(
t2

K2∥b∥2
,

t

K∥b∥∞

))
.

Here c is a universal constant.

Lemma B.15. (Bernstein’s inequality for bounded distributions) Let X1, · · · , XN be independent
mean zero random variables, such that |Xi| ≤ K for all i. Then, for every t ≥ 0, we have

P
{∣∣∣∣ N∑

i=1

Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∑N
i=1 EX2

i is the variance of the sum.

B.2 PROOFS OF TECHNICAL LEMMAS

In this subsection, we provide proofs for the technical lemmas: Lemmas B.1, B.2, B.3, B.4, and B.5.

B.2.1 PROOF OF LEMMA B.1

Proof of Lemma B.1. If |S| = |S♮|, then S = S♮ and the result is established by Lemma B.7. We
now focus on the case where T := S\S♮ ̸= ∅. We first define two matrices as follows:

G =

ai,S♮aTi,S♮ ai,S♮aTi,T

ai,T a
T
i,S♮ ai,T a

T
i,T

 , H =

∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x
♮
S♮)

T 0

0 ∥x♮∥2(In)T ,T

 .
Then we rephrase the term on the left-hand side of (14) as follows:∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2G−H

∥∥∥∥ ≤
∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,S♮ −

(
∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x

♮
S♮)

T
)∥∥∥∥

+

∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,T

∥∥∥∥+ ∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,T aTi,T − ∥x♮∥2(In)T ,T

∥∥∥∥.
18
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The first term can be bounded with overwhelming probability via a direct application of Lemma B.7
as below whenever m ≥ c1δ

−2s log(n/s):∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,S♮ −

(
∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x

♮
S♮)

T
)∥∥∥∥ ≤ δ/4.

For the other two terms, it is enough to consider x♮ = e1 because the unitary invariance of the
Gaussian measure and rescaling. Then for a prefixed subset S (thus T is also fixed), there exists a
unit vector u ∈ Rn with supp(u) ⊆ T such that the second term is equal to∥∥∥∥ 1

m

m∑
i=1

(ai(1))
3aTi,T

∥∥∥∥ =
1

m

m∑
i=1

(ai(1))
3
(aTi u).

We emphasize that aTi u = aTi,T uT is a random Gaussian variable distributed as N (0, 1) for all
u ∈ Rn, ∥u∥ = 1, supp(u) ⊆ T and independent of ai(1) for all i ∈ [m]. So for one realization of
{ai(1)}, Lemma B.13 (Hoeffding-type inequality) implies

P
{∣∣∣∣ 1m

m∑
i=1

(ai(1))
3
aTi u

∣∣∣∣ > t

}
≤ e exp

(
− c2m

2t2∑m
i=1 |ai(1)|6

)
,

for any t > 0. Define the set Wn
r to be a collection of all the index set in [n] with cardinality no

larger than r, i.e. Wn
r := {S ⊆ [n] : |S| ≤ r}. Note that the cardinality of Wn

r can be bounded by∑r
j=1

(
n
j

)
≤
(
en
r

)r
. Taking t = δ/8, together with a union bound on the set Wn

r , we obtain for any
subset T = S\S♮,

P
{∥∥∥∥ 1

m

m∑
i=1

(ai(1))
3
aTi,T

∥∥∥∥ > δ/4

}
≤ e exp

(
− c2m

2δ2

64
∑m
i=1 |ai(1)|6

+ 6r log(n/r)

)
.

Now with an application of Chebyshev’s inequality, we have
∑m
i=1 |ai(1)|6 ≤ 20m with probability

at least 1 − c3m
−1. Substituting this into the above, we conclude that for any subset S ⊆ Wn

r ,
whenever m ≥ c4δ

−2r log(n/r) for some sufficiently large c4,∥∥∥∥ 1

m

m∑
i=1

(ai(1))
3
aTi,T

∥∥∥∥ ≤ δ/4,

with probability at least 1− c3m
−1 − e exp(−c5δ2m).

Assuming x♮ = e1 and fixing a subset S ⊆ [n] (thus T is also fixed), we can obtain:∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2ai,T aTi,T −(In)T ,T

∥∥∥∥ ≤
∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥+∣∣∣∣ 1m
m∑
i=1

|ai(1)|2−1

∣∣∣∣,
for which there exists a unit vector u ∈ Rn with supp(u) ⊆ T such that∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥ =
1

m

m∑
i=1

∣∣ai(1)∣∣2 ∣∣∣(aTi,T uT
)2 − 1

∣∣∣ .
Note that {ai(1)} is independent of {ai,T }, an application of Bernstein’s inequality implies

P
{

1

m

m∑
i=1

|ai(1)|2
∣∣∣(aTi,T uT

)2 − 1
∣∣∣ > t

}
≤ 2 exp

(
− c6 min (d1, d2)

)
,

where d1 = t2

c27
∑m

i=1 |ai(1)|4 , and d2 = t
c7 maxi∈[m] |ai(1)|2

. Taking t = δ/8, together with a union
bound on the subset Wn

r , we obtain for any subset S ∈ Wn
r ,

P
{∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥ > δ/4

}
≤ 2 exp (−c6 min (d3, d4) + 6r log(n/r)) ,
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where d3 = m2δ2

64c27
∑m

i=1 |ai(1)|4 and d4 = mδ
8c7 maxi∈[m] |ai(1)|2

. Applying Chebyshev’s inequality and
the union bound, we obtain:

m∑
i=1

|ai(1)|4 ≤ 10m and max
i∈[m]

|ai(1)|2 ≤ 10 logm

hold with probability at least 1 − c8m
−1 − m−4. To conclude, for any subset S ∈ Wn

r , when
m ≥ c9δ

−2r log(n/r) for some sufficiently large constant c9,∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥ ≤ δ/4

with probability at least 1− c8m
−1 −m−4 − 2 exp

(
−c10δ2m/ logm

)
. Finally, an application of

Chebyshev’s inequality implies ∣∣∣∣ 1m
m∑
i=1

|ai(1)|2 − 1

∣∣∣∣ ≤ δ/4

with probability at least 1− c11δ
−2m−1. The proof is finished by combining the above bounds and

probabilities.

B.2.2 PROOF OF LEMMA B.2

Proof of Lemma B.2. A simple calculation yields

∇2
S,T fI(x)−∇2

S,T fI(z) =
3

m
AT

SD(|Ax|2 − |Az|2)AT .

There exist unit vectors u,v ∈ Rn with support supp(u) ⊆ S and supp(v) ⊆ T such that∥∥∇2
S,T fI(x)−∇2

S,T fI(z)
∥∥

=
3

m

∥∥AT
SD(|Ax|2 − |Az|2)AT

∥∥
=

3

m

∣∣∣∣ m∑
i=1

(
|aTi x|2 − |aTi z|2

)
(aTi,SuS)(a

T
i,T vT )

∣∣∣∣
=

3

m

∣∣∣∣ m∑
i=1

(
|aTi,RxR|2 − |aTi,RzR|2

)
(aTi,RuR)(aTi,RvR)

∣∣∣∣
≤ 3

m

m∑
i=1

∣∣(aTi,R(xR + zR)
) (

aTi,R(xR − zR)
)
(aTi,RuR)(aTi,RvR)

∣∣
≤ 3

m
∥AR∥42→4∥x+ z∥∥x− z∥

≤ 3

m

(
(3m)

1
4 + (|R|)1/2 + 2

√
logm

)4
∥x+ z∥∥x− z∥,

where the last inequality is implied by Lemma B.9.

B.2.3 PROOF OF LEMMA B.3

Proof of Lemma B.3. We begin by proving result (i) in Lemma B.3. Define R = T ∪ S ∪ S♮. Then
|R| ≤ 3s. Applying Lemma B.2 yields that∥∥∇2

R,RfI(x)−∇2
R,RfI(x

♮)
∥∥ ≤ 3

m

(
(3m)1/4 + (3s)1/2 + 2

√
logm

)4
∥x+ x♮∥∥x− x♮∥

≤ 10∥x+ x♮∥∥x− x♮∥,
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provided m ≥ 30s2. Furthermore, following from Lemmas B.1, B.12, and B.11, and the interlacing
inequality, we obtain that:

λmin(∇2
S,SfI(x)) ≥ λmin

(
∇2

R,RfI (x)
)

≥λmin

(
∇2

R,RfI
(
x♮
))

−
∥∥∇2

R,RfI (x)−∇2
RfI

(
x♮
)∥∥

≥λmin

(
E
[
∇2

R,RfI
(
x♮
)])

−
∥∥∇2

R,RfI
(
x♮
)
− E

[
∇2

R,RfI
(
x♮
)]∥∥− 10

∥∥x+ x♮
∥∥∥∥x− x♮

∥∥
≥2
∥∥x♮∥∥2 − 2δ

∥∥x♮∥∥2 − 10
∥∥x+ x♮

∥∥∥∥x− x♮
∥∥

≥ (2− 2δ − 10γ(2 + γ))
∥∥x♮∥∥2 ,

where the last inequality is implied by dist(x,x♮) ≤ γ∥x♮∥. Similarly, the upper bound for the
largest eigenvalue of ∇2

SfI(x) can be bounded as follows:

λmax(∇2
S,SfI (x)) ≤ λmax

(
∇2

R,RfI (x)
)

≤λmax

(
∇2

R,RfI
(
x♮
))

+
∥∥∇2

R,RfI(x)−∇2
R,RfI

(
x♮
)∥∥

≤λmax

(
E
[
∇2

R,RfI
(
x♮
)])

+
∥∥∇2

R,RfI
(
x♮
)
− E

[
∇2

R,RfI
(
x♮
)]∥∥+ 10

∥∥x+ x♮
∥∥ ∥∥x− x♮

∥∥
≤6
∥∥x♮∥∥2 + 2δ

∥∥x♮∥∥2 + 10
∥∥x+ x♮

∥∥∥∥x− x♮
∥∥

≤ (6 + 2δ + 10γ(2 + γ))
∥∥x♮∥∥2 .

Now we turn to proving result (ii) in Lemma B.3. Define R = T ∪ S ∪ S♮. Thus |R| ≤ 3s. For
the disjoint subsets S and S♮\S , we consider ∇2

S,S♮\SfI(x), which is a submatrix of ∇2
R,RfI(x)−

4∥x♮∥2I . We note that the spectral norm of a submatrix never exceeds the norm of the entire matrix.
By employing the result from part (i), we can deduce that∥∥∥∇2

S,S♮\SfI(x)
∥∥∥ ≤

∥∥∥∇2
R,RfI(x)− 4∥x♮∥2I

∥∥∥
≤ max {6 + 2δ + 10γ(2 + γ)− 4, 4− (2− 2δ − 10γ(2 + γ))} · ∥x♮∥2

= (2 + 2δ + 10γ(2 + γ)) ∥x♮∥2,

completing the proof.

B.2.4 PROOF OF LEMMA B.4

Proof of Lemma B.4. Define the sets {Gk}k≥1 as follows:

Gk = {i | sgn(aTi xk) = sgn(aTi x
♮), 1 ≤ i ≤ m}.

With zk := z ⊙ sgn(Axk), where z is defined in (13), we deduce that(
1√
m

∥∥zk −Ax♮
∥∥)2

=
1

m

m∑
i=1

(
sgn

(
aTi x

k
)
− sgn

(
aTi x

♮
))2 ∣∣aTi x♮∣∣2

≤ 4

m

∑
i∈Gc

k

∣∣aTi x♮∣∣2 · 1(aT
i xk)(aT

i x♮)≤0

≤ 4

(1− γ)2

(
ϵ0 + γ

√
21

20

)2

︸ ︷︷ ︸
Cγ

∥∥xk − x♮
∥∥2 ,

(24)

where the first inequality follows from |sgn(aTi xk) − sgn(aTi x
♮)| ≤ 2 and sgn(aTi x

k) −
sgn(aTi x

♮) = 0 on Gk, and the second inequality follows from Lemma B.8. Together with (21) in
Lemma B.10, (24) leads to

1

m

∥∥∥AT
Tk+1

(zk −Ax♮)
∥∥∥ ≤

√
Cγ(1 + δs)

∥∥xk − x♮
∥∥ ,

completing the proof.
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B.2.5 PROOF OF LEMMA B.5

Proof of Lemma B.5. Define S♮ := supp
(
x♮
)
, Tk+1 := Sk+1 ∪ S♮, and vk := xk − η∇fA

(
xk
)
.

Since uk is the best s-term approximation of vk, we have∥∥uk − vk
∥∥ ≤

∥∥x♮ − vk
∥∥ ,

which implies ∥∥∥ukTk+1
− vkTk+1

∥∥∥ ≤
∥∥∥x♮Tk+1

− vkTk+1

∥∥∥ ,
because of the relation supp

(
uk
)
⊆ Tk+1 and supp

(
x♮
)
⊆ Tk+1. Then, it follows from the triangle

inequality and the inequality above that∥∥uk − x♮
∥∥ =

∥∥∥ukTk+1
− x♮Tk+1

∥∥∥ =
∥∥∥ukTk+1

− vkTk+1
+ vkTk+1

− x♮Tk+1

∥∥∥
≤
∥∥∥ukTk+1

− vkTk+1

∥∥∥+ ∥∥∥vkTk+1
− x♮Tk+1

∥∥∥
≤ 2

∥∥∥vkTk+1
− x♮Tk+1

∥∥∥ .
(25)

Define zk := z⊙ sgn
(
Axk

)
with z as in (13). Using the definition of vk, a direct calculation yields∥∥∥vkTk+1

− x♮Tk+1

∥∥∥ =
∥∥∥xkTk+1

− x♮Tk+1
− η

m
AT

Tk+1
A
(
xk − x♮

)
+
η

m
AT

Tk+1

(
zk −Ax♮

)∥∥∥
≤
∥∥∥ η
m
AT

Tk+1

(
zk −Ax♮

)∥∥∥︸ ︷︷ ︸
I1

+
∥∥∥(I − η

m
AT

Tk+1
ATk+1

)(
xkTk+1

− x♮Tk+1

)∥∥∥︸ ︷︷ ︸
I2

+
∥∥∥ η
m
AT

Tk+1
ATk\Tk+1

[
xk − x♮

]
Tk\Tk+1

∥∥∥︸ ︷︷ ︸
I3

.

We will now proceed to estimate I1, I2, and I3 sequentially.

For I1: An application of Lemma B.4 yields that∥∥∥ η
m
AT

Tk+1

(
zk −Ax♮

)∥∥∥ ≤ η
√
Cγ (1 + δ2s)

∥∥xk − x♮
∥∥ . (26)

For I2: Let η ∈
(
0, 1

1+δ2s

)
. It follows from (23) in Lemma B.10 as well as Weyl’s inequality that

(1− η(1 + δ2s)) ∥u∥ ≤
∥∥∥(I − η

m
AT

Tk+1
ATk+1

)
u
∥∥∥ ≤ (1− η(1− δ2s)) ∥u∥,

for any u ∈ R|Tk+1|, which deducts∥∥∥(I − η

m
AT

Tk+1
ATk+1

)(
xkTk+1

− x♮Tk+1

)∥∥∥ ≤ (1− η(1− δ2s))
∥∥∥xkTk+1

− x♮Tk+1

∥∥∥ .
For I3: Eq.(22) in Lemma B.10 implies that∥∥∥ η

m
AT

Tk+1
ATk\Tk+1

[
xk − x♮

]
Tk\Tk+1

∥∥∥ ≤ ηδ3s

∥∥∥[xk − x♮
]
Tk\Tk+1

∥∥∥ .
Combining all terms together, we obtain∥∥∥vk+1

Tk+1
− x♮Tk+1

∥∥∥ ≤ I1 + I2 + I3 ≤
√
2(I21 + I22 ) + I3

≤
√
2max {ηδ3s, 1− η (1− δ2s)}

∥∥xk − x♮
∥∥+ η

√
Cγ (1 + δ2s)

∥∥xk − x♮
∥∥

=
(√

2max {ηδ3s, 1− η (1− δ2s)}+ η
√
Cγ (1 + δ2s)

)∥∥xk − x♮
∥∥ .

We complete the proof by using (25).
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B.3 PROOF OF THEOREMS

We present the proofs of Theorems 3.1 and 3.2 in this subsection.

B.3.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. In this proof, we consider the case where ∥x0 − x♮∥ ≤ ∥x0 + x♮∥.
Consequently, the distance between the initial estimate and the true signal is given by dist(x0,x♮) =
∥x0 − x♮∥. Note that the case where ∥x0 + x♮∥ ≤ ∥x0 − x♮∥ can be addressed in a similar manner.
For the purpose of this proof, we assume, without loss of generality, that the true signal has a unit
norm, i.e., ∥x♮∥ = 1.

Let xk represent the k-th iterate generated by Algorithm 1. Given an s-sparse estimate xk with
support Sk, which is close to the target signal, i.e., dist(xk,x♮) ≤ γ∥x♮∥. For any 0 ≤ t ≤ 1, denote
x(t) := x♮ + t(xk − x♮). It is evident that supp(x(t)) ⊆ supp(x♮) ∪ supp(xk), and the size of the
support of x(t) is at most 2s, i.e., |supp(x(t))| ≤ 2s. Furthermore, we obtain∥∥xk − x(t)

∥∥ ≤ (1− t)
∥∥xk − x♮

∥∥ ≤
∥∥xk − x♮

∥∥ ,
and ∥∥xk + x(t)

∥∥ =
∥∥(1 + t)xk + (1− t)x♮

∥∥ ≤ (1 + t)
∥∥xk∥∥+ (1− t)

∥∥x♮∥∥
≤ (1 + t)(1 + γ)

∥∥x♮∥∥+ (1− t)
∥∥x♮∥∥ ≤ 2(γ + 1)

∥∥x♮∥∥ ,
where the last inequality holds because 0 ≤ t ≤ 1.

Assume events (20) and (14) hold, then by (15) in Lemma B.2 with x = xk, z = x(t),S =
Sk+1, T = Sk ∪ S♮ there holds∥∥∥∇2

Sk+1,Sk∪S♮fI
(
xk
)
−∇2

Sk+1,Sk∪S♮fI(x(t))
∥∥∥

≤ 3

m

(
(3m)1/4 + (3s)1/2 + 2

√
logm

)4 ∥∥xk + x(t)
∥∥ ∥∥xk − x(t)

∥∥
≤10

∥∥xk + x(t)
∥∥ ∥∥xk − x(t)

∥∥
≤Lh

∥∥xk − x♮
∥∥ ,

(27)

where Lh := 20(γ + 1)∥x♮∥. Also, Eq. (16) in Lemma B.3 with x = xk,S = Sk+1 indicates that∥∥∥∥(∇2
Sk+1,Sk+1

fI
(
xk
))−1

∥∥∥∥ =
(
λmin

(
∇2

Sk+1,Sk+1
fI
(
xk
)))−1

≤ 1

l1
. (28)

Moreover, by the mean value theorem, one has

∇fI
(
xk
)
−∇fI

(
x♮
)
=

∫ 1

0

∇2fI (x(t))
(
xk − x♮

)
dt. (29)

We also have the following chain of equalities∥∥xk+1 − x♮
∥∥ =

[∥∥xk+1
Sk+1

− x♮Sk+1

∥∥2 + ∥∥xk+1
Sc
k+1

− x♮Sc
k+1

∥∥2]1/2
=
[ ∥∥x♮Sc

k+1

∥∥2︸ ︷︷ ︸
I1

+
∥∥xkSk+1

− x♮Sk+1
+ pkSk+1

∥∥2︸ ︷︷ ︸
I2

]1/2
,

(30)

where pkSk+1
is the search direction that can be obtained by (10).

We first bound the term I1 in (30). Note that x♮Sc
k+1

is a subvector of x♮ − uk. Based on this
observation and applying Lemma B.5, we deduce that

I1 =
∥∥x♮Sc

k+1

∥∥ ≤
∥∥x♮ − uk

∥∥ ≤ ζ
∥∥xk − x♮

∥∥, (31)

where ζ = 2
(√

2max{ηδ3s, 1− η(1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
with η < 1

1+δ2s
.
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We now proceed to bound the term I2 in (30). By plugging the expression of pkSk+1
, we obtain that

I2 =
∥∥∥(∇2

Sk+1,Sk+1
fI(x

k)
)−1

(
∇2

Sk+1,Sc
k+1

fI(x
k)xkSc

k+1
−∇Sk+1

fI(x
k)
)
+ xkSk+1

− x♮Sk+1

∥∥∥ .
(32)

We further can deduce that:

I2 ≤ 1

l1

∥∥∥∇2
Sk+1,Sc

k+1
fI(x

k)xkSc
k+1

−∇Sk+1
fI(x

k) +∇2
Sk+1,Sk+1

fI(x
k)
(
xkSk+1

− x♮Sk+1

)∥∥∥
≤ 1

l1

∥∥∥∥∫ 1

0

[
∇2

Sk+1,:
fI(x

k)−∇2
Sk+1,:

fI(x(t))
]
(xk − x♮)dt

∥∥∥∥+ l3
l1

∥∥∥x♮Sc
k+1

∥∥∥
≤ 1

l1

∫ 1

0

∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥∥∥xk − x♮
∥∥ dt+ ζl3

l1

∥∥xk − x♮
∥∥

≤ Lh
l1

∥xk − x♮∥2
∫ 1

0

(1− t)dt+
ζl3
l1

∥∥xk − x♮
∥∥

= ρ1∥xk − x♮∥,
where the first inequality follows from (28), the second inequality is based on Lemma B.3 and (29)
together with the fact that ∇fI(x♮) = 0, and the third inequality is derived from (31), and the last
inequality is obtained from (27). The equality includes ρ1, defined as follows:

ρ1 :=
Lh
2l1

∥xk − x♮∥+ ζl3
l1

≤ 20(1 + γ)γ

2(2− 2δ − 10γ(2 + γ))
+
ζ(2 + 2δ + 10γ(2 + γ))

2− 2δ − 10γ(2 + γ)

=
2ζ(1 + δ) + 10γ(1 + γ + ζ(2 + γ))

2− 2δ − 10γ(2 + γ)
.

By substituting the upper bounds of terms I1 and I2 into (30), we obtain:∥∥xk+1 − x♮
∥∥ ≤

√
ρ21 + ζ2

∥∥xk − x♮
∥∥ . (33)

Let ρ :=
√
ρ21 + ζ2, then ρ < 1 can be ensured by properly choosing parameters. For example, when

δ3s ≤ 0.05 and δ = 0.001, and set η = 0.95, then ρ ≤ 0.6 < 1 provided that γ ≤ 0.01. Therefore,
∥xk+1 − x♮∥ ≤ ρ∥xk − x♮∥ ≤ ργ∥x♮∥ for some ρ ∈ (0, 1).

Let Rk = Sk ∪ Sk+1 ∪ S♮. Assume that the event (20) with S = Rk holds for k1 iterations. As
stated in Theorem IV.1 of (Jagatap & Hegde, 2019), the initial guess x0 is guaranteed to satisfy
dist(x0,x♮) ≤ γ∥x♮∥. By applying mathematical induction, we can show that for any integer
0 ≤ k ≤ k1, there exists a constant ρ ∈ (0, 1) such that dist(xk+1,x♮) ≤ ρ · dist(xk,x♮).

Let K be the minimum integer such that it holds

γ
∥∥x♮∥∥ ρK < x♮min. (34)

We then assert that S♮ ⊆ Sk for all k ≥ K. This is because if it were not the case, there would
exist an index i ∈ S♮\Sk ̸= ∅, such that ∥xk − x♮∥ ≥ |x♮i | ≥ x♮min. However, this contradicts our
assumption ∥xk − x♮∥ ≤ γ∥x♮∥ρk ≤ γ∥x♮∥ρK < x♮min. Consequently, based on (34), we derive:

K =

⌊
log(γ∥x♮∥/x♮min)

log(ρ−1)

⌋
+ 1 ≤ Ca log

(
∥x♮∥/x♮min

)
+ Cb.

Note that Sk = S♮ for all k ≥ K implies Rk = Rk+1 for all k ≥ K. As a result, the probability of
event (20) occurring for all k ≥ 0 can be bounded by 1− 4Km−2. To conclude, with probability at
least 1− (4K + Cc)m

−1 − Cde
−Cem/ logm, there holds

dist(xk+1,x♮) ≤ ρ · dist(xk,x♮).
with some ρ ∈ (0, 1) provided m ≥ Cfs

2 log(n/s). Moreover, for k ≥ K, utilizing the result the
result Sk+1 = S♮ and consequently x♮Sc

k+1
= 0, we obtain:

∥∥xk+1 − x♮
∥∥ =

[∥∥∥xk+1
Sk+1

− x♮Sk+1

∥∥∥2 + ∥∥∥xk+1
Sc
k+1

− x♮Sc
k+1

∥∥∥2]1/2 =
∥∥∥xkSk+1

− x♮Sk+1
+ pkSk+1

∥∥∥ .
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We can further obtain∥∥xk+1 − x♮
∥∥ ≤ 1

l1

∥∥∥∇2
Sk+1,:

fI(x
k)xk −∇Sk+1

fI(x
k)−∇2

Sk+1,Sk+1
fI(x

k)x♮Sk+1

∥∥∥
≤ 1

l1

∥∥∥∥∇2
Sk+1,:

fI(x
k)(xk − x♮)−

∫ 1

0

∇2
Sk+1,:

fI(x(t))(x
k − x♮)dt

∥∥∥∥
≤ 1

l1

∥∥∥∥∫ 1

0

[
∇2

Sk+1,:
fI(x

k)−∇2
Sk+1,:

fI(x(t))
]
(xk − x♮)dt

∥∥∥∥
≤ 1

l1

∫ 1

0

∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥∥∥xk − x♮
∥∥ dt

≤ Lh
l1

∥xk − x♮∥2
∫ 1

0

(1− t)dt

=
Lh
2l1

∥xk − x♮∥2,

where the first inequality follows from (28) and (32), and the last inequality follows from (27).
Consequently, the sequence {xk} converges quadratically.

B.3.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. Owing to the independence between the sensing matrix and noise, along with
the assumption E(ϵ) = 0, Lemma B.11 remains valid in the noisy setting. Therefore, by applying
Lemma B.1, if m = Ω(s log n/s), then with overwhelming probability, it holds that∥∥∇2

S,SfI
(
x♮
)
− E

[
∇2

S,SfI
(
x♮
)]∥∥ ≤ (δ + ϵ)

∥∥x♮∥∥2 .
Under the assumptions in Lemma B.3, it follows that

l′1∥u∥ ≤
∥∥∇2

S,SfI(x)u
∥∥ ≤ l′2∥u∥, ∀u ∈ R|S|, (35)

and ∥∥∇2
T ,SfI(x)

∥∥ ≤ l′3, (36)

where l′1 =
(
2 − 2δ − 2ϵ − 10γ(2 + γ)

)
∥x♮∥, l′2 =

(
6 + 2δ + 2ϵ + 10γ(2 + γ)

)
∥x♮∥, and

l′3 =
(
2 + 2δ + 2ϵ+ 10γ(2 + γ)

)
∥x♮∥.

In the noisy case, {zk}k≥0 is given by

zk = (|Ax♮|2 + ϵ)
1
2 ⊙ sgn(Axk).

Then using the same argument as the proof of the inequality in Lemma B.4, we have∥∥∥ η
m
AT

Tk+1
(zk −Ax♮)

∥∥∥ ≤ η

m

∥∥∥AT
Tk+1

(
|Ax♮| ⊙ sgn(Axk)−Ax♮

)∥∥∥
+
C ′η

m

∥∥∥AT
Tk+1

(
ϵ⊙ sgn(Axk)

)∥∥∥
≤ η

√
Cγ(1 + δ2s)∥xk − x♮∥+ C ′η√

m

√
1 + δ2s∥ϵ∥,

(37)

where the last inequality follows from Lemma B.4 and (21) in Lemma B.10. Then, we modify
Lemma B.5 to estimate ∥uk − x♮∥ in the noisy case. All arguments in Lemma B.5 go except that the
estimation of I1 in (26) should be replaced by (37). Thus we obtain∥∥uk − x♮

∥∥ ≤ ζ
∥∥xk − x♮

∥∥+ C ′η√
m

√
1 + δ2s∥ϵ∥, (38)

where uk, η are the same as those in Lemma B.5.
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We now proceed to prove the convergence property for the noisy case, employing a similar argument
as in the proof of Theorem 3.1. Notably, equality (30) remains valid in the presence of noise. As for
the first term in (30), since x♮Sc

k+1
is a subvector of x♮ − uk, it follows from (38) that∥∥∥x♮Sc

k+1

∥∥∥ ≤
∥∥x♮ − uk

∥∥ ≤ ζ∥xk − x♮∥+ C ′η√
m

√
1 + δ2s∥ϵ∥,

where ζ = 2
(√

2max{ηδ3s, 1− η(1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
with η < 1/(1 + δ2s).

Furthermore, the second term in (30) can now be estimated as∥∥xkSk+1
− x♮Sk+1

+ pkSk+1

∥∥
≤ 1

l′1

∥∥∥∥∇2
Sk+1,:

fI(x
k)xk −∇2

Sk+1,:
fI(x

k)x♮ +∇2
Sk+1,Sc

k+1
fI(x

k)x♮Sc
k+1

−∇Sk+1
fI(x

k) +∇Sk+1
fI(x

♮) +
1

m
AT

Sk+1
(ϵ⊙

(
Ax♮)

) ∥∥∥∥
≤ 1

l′1

∥∥∥∥∇2
Sk+1,:

fI(x
k)(xk − x♮)−

∫ 1

0

∇2
Sk+1,:

fI(x(t))(x
k − x♮)dt

∥∥∥∥
+

1

l′1

∥∥∥∇2
Sk+1,Sc

k+1
fI(x

k)x♮Sc
k+1

∥∥∥+ 1

l′1m

∥∥∥AT
Sk+1

(ϵ⊙
(
Ax♮)

)∥∥∥
≤ 1

l′1

∥∥∥∥∫ 1

0

[
∇2

Sk+1,:
fI(x

k)−∇2
Sk+1,:

fI(x(t))
]
(xk − x♮)dt

∥∥∥∥+ l′3
l′1

∥∥∥x♮Sc
k+1

∥∥∥+ √
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥

≤ 1

l′1

∫ 1

0

∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥∥∥xk − x♮
∥∥ dt

+
ζl′3
l′1

∥∥xk − x♮
∥∥+ C ′l′3η

√
1 + δ2s +

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥

≤Lh
l′1

∥xk − x♮∥2
∫ 1

0

(1− t)dt+
ζl′3
l′1

∥∥xk − x♮
∥∥+ C ′l′3η

√
1 + δ2s +

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥

=ρ2∥xk − x♮∥+ C ′l′3η
√
1 + δ2s +

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥, (39)

where the first inequality follows from (35), together with the equality ∇fI(x♮)+AT
(
ϵ⊙ (Ax♮)

)
=

0, and the third inequality is based on (36) and the inequality ∥a ⊙ b∥ ≤ ∥a∥∞∥b∥ for any two
vectors a, b. The last equality includes ρ2, defined as follows:

ρ2 :=
Lh
2m′

s

∥∥xk − x♮
∥∥+ ζh′s

m′
s

≤ 20(1 + γ)γ

2(2− 2δ − 2ϵ− 10γ(2 + γ))
+
ζ(2 + 2δ + 2ϵ+ 10γ(2 + γ))

2− 2δ − 2ϵ− 10γ(2 + γ)

=
2ζ(1 + δ + ϵ) + 10γ(1 + γ + ζ(2 + γ))

2− 2δ − 2ϵ− 10γ(2 + γ)
.

Following from (a2 + b2)1/2 ≤ a+ b for ab ≥ 0 and putting the two terms together yields∥∥xk+1 − x♮
∥∥ ≤ ρ′

∥∥xk − x♮
∥∥+ υ∥ϵ∥,

where ρ′ = ρ2 + ζ and υ =
C′(l′1+l

′
3)η

√
1+δ2s+

√
1+δs∥Ax♮∥∞

l′1
√
m

. Noticing that

1√
m

∥∥Ax♮
∥∥
∞ =

1√
m

max
i∈[m]

∣∣aTi x♮∣∣ ≤ 1√
m

max
i∈[m],j∈S♮

|aij | ·
∥∥x♮∥∥ ≤ 3

√
log(ms)

m

∥∥x♮∥∥
with probability at least 1 − (ms)−2. Consequently, 1√

m
∥Ax♮∥∞ can be quite small. As a result,

properly setting parameters can lead to υ ∈ (0, 1) and ρ′ ∈ (0, 1).
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