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ABSTRACT

Deep neural networks (DNNs) have revolutionized tasks such as image classifi-
cation and speech recognition but often falter when training and test data diverge
in distribution. External factors, from weather effects on images to varied speech
environments, can cause this discrepancy, compromising DNN performance. On-
line test-time adaptation (OTTA) methods present a promising solution, recali-
brating models in real-time during the test stage without requiring historical data.
However, the OTTA paradigm is imperfect, often falling prey to issues such as
catastrophic forgetting due to its reliance on noisy, self-trained predictions. Al-
though some contemporary strategies mitigate this by tying adaptations to the
static source model, this restricts model flexibility. This paper introduces a con-
tinual momentum filtering (CMF) framework, leveraging the Kalman filter (KF)
to strike a balance between model adaptability and information retention. The
CMF intertwines optimization via stochastic gradient descent with a KF-based
inference process. This methodology not only aids in averting catastrophic forget-
ting but also provides high adaptability to shifting data distributions. We validate
our framework on various OTTA scenarios and real-world situations regarding
covariate and label shifts, and the CMF consistently shows superior performance
compared to state-of-the-art methods.

1 INTRODUCTION

Deep neural networks (DNNs) have been successfully applied to challenging tasks such as image
classification (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016b) and speech
recognition (Hinton et al., 2012; Graves et al., 2013; Jelinek, 1997). The success of DNNs stems
from the assumption that training and test data are drawn from the same distribution (Goodfel-
low et al., 2016; Murphy, 2023). However, this assumption is difficult to maintain in real-world
environments owing to external factors (Hendrycks & Dietterich, 2019b; Koh et al., 2021). For
example, images may be damaged due to weather changes or sensor degradation during the image
classification tasks. Similarly, in speech recognition tasks, discrepancies arise from differences in
the speaking environment or the frequency of words used by speakers compared with the source
data. These distribution shifts lead to a significant performance degradation of the DNN models
(Quinonero-Candela et al., 2008; Sun et al., 2017). To address these distributional discrepancies,
there is growing interest in online test-time adaptation (OTTA) methodologies (Wang et al., 2020;
Zhang et al., 2022). These innovative frameworks are equipped to recalibrate models on-the-fly
during the test stage. Impressively, they achieved this without delving back into historical data,
leaning exclusively from the knowledge gleaned from the pre-trained source model. This real-time
adaptation bypasses many challenges associated with data storage, retrieval, and potential privacy
infringement.

Nevertheless, the journey of the OTTA is with roadblocks. Rooted in a self-training paradigm, it
habitually employs its own noisy predictions as training targets during adaptation. This recursive
feedback can induce a series of complications, most notably catastrophic forgetting, in which
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Figure 1: Illustration of the CMF framework. The optimization process draws the target model
parameter θ(t) by minimizing the target generalization error ÊT using SGD on the target data D(t)

T .
The inference process derives θ̃(t+1) with the refined source model’s parameter (hidden) ϕ(t) and
the target model’s parameters (observation) θ(t) thorough the parameter ensemble method.

models inadvertently overwrite or discard previously assimilated information. Furthermore, there
is a looming threat of mode collapse, where models disproportionately amplify the probabilities
of specific classes at the expense of others (Boudiaf et al., 2022). Contemporary solutions,
ranging from calibrating particular neural layers (Yang et al., 2022; Zhao et al., 2023; Hong
et al., 2022) to tethering adaptations to static source model information, have been proposed
(Wang et al., 2022; Niu et al., 2022; 2023; Marsden et al., 2023). SAR Niu et al. (2023) stochasti-
cally restores the target model parameters to those of the source model during adaptation. Similarly,
ROID (Marsden et al., 2023) continuously ensembles the parameters of the source and target
models to prevent loss of past information. These strategies regularize the target model to prevent it
from diverging too far from the source model, thereby preventing catastrophic forgetting.

However, the continuous use of frozen source model information restricts the flexibility of the target
model, making it difficult to adapt to distribution shifts. For more flexibility, we need to update
the source model using noisy information from the target model; however, this carries the risk of
catastrophic forgetting. The Kalman filter (KF) (Särkkä & Svensson, 2023) can emerge as a beacon
in the quest for a harmonious balance between adaptability and information retention. The KF is an
exact Bayesian filtering algorithm that accumulates past observations (i.e., parameters of the target
model) along with denoising observations. The linear Gaussian state-space model (LG-SSM), which
forms the basis of the KF, consists of three types of random variables: additional input, hidden, and
observation. These random variables comprise two types of linear Gaussian models: the transition
model, which models the evolution of the hidden variable over the adaptation time steps, and the
emission model, which predicts the observations from the hidden variable.

In this paper, we propose a continual momentum filtering (CMF) framework that utilizes the KF
algorithm to find a source model that is robust against catastrophic forgetting while maintaining
high flexibility. The CMF alternates between an optimization process based on stochastic gradient
descent (SGD) (Ruder, 2016) and an inference process based on the KF. During the optimization
process, the target model is obtained by minimizing the target generalization error using an unsu-
pervised loss function. For the inference process, the CMF conjugates the source model with the
transition model to continuously preserve the information in the hidden variable (i.e., parameters of
a refined source model) and an emission model to update the hidden variables by denoising the pa-
rameters of the target model. Finally, the refined source and target models are ensembled to perform
the following optimization process. Through CMF, we utilize the information of the noisy target
model to obtain a refined source model and use it for adaptation, thus narrowing the gap between
adaptability and robustness and providing a new perspective on OTTA.

We validate the proposed framework in various scenarios used in existing OTTA methods (Niu et al.,
2022; 2023; Marsden et al., 2023). These scenarios are broadly divided into covariate and label shifts
and further classified based on the degree of time correlation of each input or label datum. For the
covariate shifts, we experiment with scenarios in which the input data drawn from different domains
are mixed or appear together. For the label shifts, we gradually adjust the degree to which the same
labels simultaneously appear over time. We also validate our framework on a speech recognition task
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for real-world streaming scenarios. The CMF demonstrates significant performance improvements
in these wide ranges of scenarios compared to state-of-the-art methods.

2 BACKGROUND

This section elaborates on the OTTA problem and regularization methods for preventing catastrophic
forgetting. First, we outline the setup of the problem (Section 2.1) and subsequently introduce a
strategy of existing studies to mitigate catastrophic forgetting using the source model (Section 2.2).

2.1 TARGET GENERALIZATION ERROR FOR ONLINE TEST-TIME ADAPTATION

Let the labeled data from source distribution pS be DS = {(xn,yn) ∼ pS : n = 1 : NS} and the
unlabeled data from target distribution p

(t)
T at each time step t ∈ {1, 2, . . . , T} be D(t)

T = {xn ∼
p
(t)
T : n = 1 : NT } where pS ̸= p

(t)
T . The main objective is to minimize the generalization error on

the target distribution p
(t)
T , which can be calculated as

ET (Θ(0), p
(t)
T ) = E

p
(t)
T
[ℓ(f(xn; Θ

(0)))], (1)

where f(.; Θ(0)) represents the DNN pre-trained on DS and ℓ(.) is the unsupervised loss function.
The target generalization error can be approximated empirically as follows:

ÊT (Θ(0),D(t)
T ) =

1

NT

∑
xn∈D(t)

T

ℓ(f(xn; Θ
(0))). (2)

OTTA literature frequently utilizes entropy-based loss functions because the target model is adapted
to unlabeled target data (Wang et al., 2020; Zhang et al., 2022; Chen et al., 2022). In particular,
TENT (Wang et al., 2020) demonstrated the effectiveness of entropy-based loss in a self-training
manner on a single domain; however, recent research has revealed that methods solely based on
self-training often fail in more complex scenarios, such as multiple domains (Boudiaf et al., 2022;
Gong et al., 2022; Niu et al., 2023).

2.2 PREVENTING CATASTROPHIC FORGETTING USING SOURCE MODEL

Minimizing the empirical generalization error causes the adapted target model to experience catas-
trophic forgetting. This results in a mode collapse problem, in which the probabilities assigned to
certain classes become excessively large, causing significant degradation in performance (Niu et al.,
2023; Marsden et al., 2023). A popular approach for mitigating this issue involves minimizing the
empirical generalization error alongside the regularization loss that inhibits the target model from
diverging too far from the source model Boudiaf et al. (2022). The target model parameter Θ(t+1)

at adaptation time step t+ 1 can be found as follows:

Θ(t+1) = argmin
Θ(t)

ÊT (Θ(t),D(t+1)
T ) + λd(Θ(0),Θ(t)), (3)

where d(Θ(0),Θ(t)) represents the distance between the source and target models, and λ is the
regularization coefficient. Strategies that adapt only a subset of the source model parameters, θ(0) ⊂
Θ(0), essentially perform a function to the regularization loss because the majority of the adapted
parameters are identical to those of the source model. In particular, methods that calibrate only
batch normalization (BN) layers (Ioffe & Szegedy, 2015; Li et al., 2018; Mancini et al., 2018; Yang
et al., 2022; Zhao et al., 2023; Hong et al., 2022) have been widely recognized for their effectiveness
in preventing catastrophic forgetting. However, these methods exhibit structural limitations when
applied to models that employ layer normalization (LN) layers (Ba et al., 2016) because they alter
the functionality of BN (Lin et al., 2022).

Recently, strategies that continuously transfer the information acquired from the source model to the
target model (Wang et al., 2022; Niu et al., 2023; 2022; Marsden et al., 2023) have overcome these
limitations, thereby alleviating the catastrophic forgetting problem across a broader range of model
structures. For instance, EATA (Niu et al., 2022) mitigates catastrophic forgetting by utilizing the
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Algorithm 1 Continual Momentum Filtering

INPUT:
Input data stream {D(1)

T . . .D(T )
T }, Source model f(.; θ0), Number of updates I ,

Hyperparameter (α, q, r, γ), Initialization θ̃(0) ← θ(0), µ0|0 ← θ(0), Σ0|0 ← 0
for t = 1, . . . , T do

for i = 1, . . . , I do
OPTIMIZATION PROCESS:

θ(t) = argminθ̃(t−1) ÊT (θ̃(t−1),D(t)
T ) ▷ Eq. (4)

INFERENCE PROCESS:
// Predict Step:
µt|t−1 = Moments(µt−1|t−1, ϕ

(0), α) ▷ Eq. (15)
Σt|t−1 = α2Σt−1|t−1 + q ▷ Eq. (18)
// Update Step:
βt = r/(Σt|t−1 + r) ▷ Eq. (19)
µt|t = Moments(µt|t−1, θ

(t), βt) ▷ Eq. (16)
Σt|t = βtΣt|t−1 ▷ Eq. (20)
// Parameter Ensemble:
θ̃(t) = Moments(θ(t), µt|t, γ) ▷ Eq. (17)

end for
end for

Fisher information matrix computed from the source model and elastic weight consolidation loss
(Kirkpatrick et al., 2017). In contrast, SAR (Niu et al., 2023) does not employ additive loss but in-
stead accesses the parameters directly, taking the strategy of averaging the loss values over time and
reverting to the source model when they exceed a predetermined threshold. Similarly, ROID (Mars-
den et al., 2023) continuously integrates the source model into the target model during adaptation
to preserve past information using the parameter ensemble method (Wortsman et al., 2022; Rame
et al., 2022). These approaches maintain the functionality of specific parameter subsets correspond-
ing to layers without altering them, making them model-agnostic and demonstrating state-of-the-art
performance. However, they impose constraints on the flexibility of the target model by utilizing a
frozen source model.

3 METHODOLOGY

This section elucidates our methodology for constructing a flexible source model while preserving
past information. The KF algorithm is employed to denoise the target model parameters, combining
them with the source model. First, we outline the CMF that combines the optimization process with
KF-based inference (Section 3.1). We then delve into parameterization of linear Gaussian models to
thwart catastrophic forgetting (Section 3.2). Subsequently, the KF algorithm for our linear Gaussian
modeling is explained (Section 3.3). A simplified version of the inference process is then presented
to reduce the KF parameter count, ensuring the feasibility of the CMF (Section 3.4).

3.1 OVERALL PROCESS

The adaptation strategy alternates between SGD-based optimization and KF-based inference. A
subset of the source model parameter θ(0) ∈ Rd, where d is the parameter dimension, is designated
for adaptation following existing studies. At the outset, the parameter of the hidden model ϕ(t) ∈ Rd

is initialized to θ(0). The optimization initially minimizes the target generalization error using an
SGD-optimizer on real-time target data D(t+1)

T , resulting in the observation θ(t+1) as follows:

θ(t+1) = argmin
θ̃(t)

ÊT (θ̃(t),D(t+1)
T ). (4)

The smooth-target model parameter θ̃(t) ∈ Rd, which is initialized as θ(0), is derived recursively.
Subsequently, the inference process computes the posterior distribution p(ϕ(t)|θ(1:t), ϕ(0)). The
posterior mean is then combined with the target model to obtain θ̃(t) via the parameter ensemble
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method. Algorithm 1 displays a step-by-step description of our framework. Relying solely on the
optimization process results in the model being recursively adapted in a self-training manner. Con-
sequently, the target model parameters can become noisy, thereby increasing the risk of catastrophic
forgetting. The inference process mitigates this issue by denoising these parameters, updating the
hidden model, and re-optimizing with the smooth-target model parameter. However, a general lin-
ear Gaussian model for the inference process faces the risk of forgetting the source model during
adaptation. The subsequent section introduces countermeasures.

3.2 PARAMETERIZATION

The LG-SSM for the inference process comprises parameterized transition and emission models.
We assume the distributions that p(ϕ(t−1)|ϕ(t)) and p(ϕ(t)|ϕ(0)) are both Gaussian distribution.
Let the latter as the conjugate prior to the mean of former. We can compute the posterior of ϕ(t)

through the Bayesian inference. The mean of this posterior is a convex combination of ϕ(t) and ϕ0

(See Appendix A.1 for further detail). Therefore, the transition model is directly parameterized as
follows:

p(ϕ(t)|ϕ(t−1), ϕ(0)) = N (ϕ(t)|Aϕ(t−1) + (1−A)ϕ(0), Q), (5)
where A ∈ Rd×d and Q ∈ Rd×d are assumed to be time-independent. This choice stabilizes the
inference process (Murphy, 2023). For the emission model, we choose a simple linear Gaussian
model as follows:

p(θ(t)|ϕ(t)) = N (θ(t)|Hϕ(t), R), (6)
where H ∈ Rd×d and R ∈ Rd×d are static, as in the transition model. The source-conjugated
transition model aids in persistently infusing source information into the hidden model, thereby
ensuring the retention of prior knowledge.

3.3 INFERENCE PROCESS

We now introduce the KF algorithm tailored for the parameterized LG-SSM. The purpose of the
algorithm is to recursively determine the posterior distribution p(ϕ(t)|θ(1:t), ϕ(0)) when the previous
step’s posterior p(ϕ(t−1)|θ(1:t−1), ϕ(0)) = N (ϕ(t−1)|µt−1|t−1,Σt−1|t−1) is given. By using the
posterior from the previous step and Eq. (5), the joint predictive distribution of ϕ(t) and ϕ(t−1) is
computed and subsequently marginalized over ϕ(t−1). The one-step-ahead predictive distribution
for the hidden variables is then given by

p(ϕ(t)|θ(1:t−1), ϕ(0)) = N (ϕ(t)|µt|t−1,Σt|t−1) (7)

µt|t−1 = Aµt−1|t−1 + (1−A)ϕ(0), (8)
Σt|t−1 = AΣt−1|t−1A

⊤ +Q. (9)
This phase, called the predict step, estimates the conditional distribution of ϕ(t) based on the past
target model parameters (See Appendix A.2 for details). Next, given target model information of
the current time step, the conditional distribution of ϕ(t) is obtained from the joint distribution of
ϕ(t) and θ(t) by using Eq. (6) and Eq. (7). This phase, called the update step, updates the posterior
distribution (detailed in Appendix A.3). The posterior distribution is obtained as follows:

p(ϕ(t)|θ(1:t), ϕ(0)) = N (ϕ(t)|µt|t,Σt|t), (10)

Kt = Σt|t−1H
⊤(HΣt|t−1H

⊤ +R)−1, (11)

µt|t = µt|t−1 +Kt(θ
(t) −Hµt|t−1), (12)

Σt|t = Σt|t−1 −KtHΣt|t−1. (13)
The Kalman gain Kt determines the extent to which the target model parameters are updated from
the hidden model during the prediction step. For the optimization process of next time step, θ̃(t) is
derived through the parameter ensemble method of µt|t and θ(t) as follows:

θ̃(t) = Γθ(t) + (1− Γ)µt|t, (14)

where the ensemble hyperparameter Γ ∈ Rd×d is specified to be between 0 and 1. This phase allows
for the transfer of information from the refined source model to the target model.

We denote the mean and covariance of the posterior distribution by µt|t and Σt|t, and the mean and
covariance of the one-step-ahead predictive distribution by µt|t−1 and Σt|t−1.
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3.4 SIMPLIFIED INFERENCE PROCESS

The KF algorithm requires a high computational cost because the parameter dimension of LG-SSM
(A, Q,H, R,Γ) is d2 where the parameter dimension d of DNNs is typically large. We use scalar
parameters for the LG-SSM to reduce the computational complexity, denoted as (α, q, η, r, γ). In
particular, we opt η for the scalar value 1, and then Eqs. (8), (12), and (14) are can be simplified as
follows:

µt|t−1 = Moments(µt−1|t−1, ϕ
(0), α), (15)

µt|t = Moments(µt|t−1, θ
(t), βt), (16)

θ̃(t) = Moments(θ(t), µt|t, γ), (17)

where Moments(x1, x2, a) = ax1 + (1− a)x2,

Σt|t−1 = α2Σt−1|t−1 + q, (18)

βt = r/(Σt|t−1 + r), (19)
Σt|t = βtΣt|t−1. (20)

With these simplifications, the inference process becomes computationally efficient. Also, the im-
plementation can be streamlined, because it primarily involves repeated applications of Moments
(See Appendix A.4 for futher details). Next, we detail the rationale behind our choices of each KF
parameter. 1) The initialization of (θ̃(0), µ0|0,Σ0|0) is (θ(0), θ(0), 0). 2) We opt for the same values
for 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 to equalize the degree to which the source and refined source model
information are obtained. 3) The properties of the simplified process are predominantly changed by
βt because it is 1−Kt. To determine this value, we consider the constraint q + r = 1 for variances
0 < q and 0 < r, to satisfy βt ≤ 1. As q increases, the information in the target model is more
reflected in the refined source model, and conversely, as q decreases, the strength of the denoising
decreases; in a specific case where q = 0, our framework is simplified to the parameter ensem-
ble method. In summary, only two hyperparameters (α, q) require modification in the proposed
framework.

4 EXPERIMENTS

We conducted all the experiments on four random seeds using PyTorch (Paszke et al., 2019) toolkits
for image classification (Marsden & Döbler, 2022) and speech recognition (Ott et al., 2019). The
additional implementation and scenario details are provided in Appendix B.

Datasets and Metric We relied on multiple datasets to comprehensively evaluate the domain shifts,
including both corruptions and natural shifts. For image classification, guided by the benchmark of
Marsden et al. (2023), we selected ImageNet-C (Hendrycks & Dietterich, 2019a), ImageNet-D109
(D109) (Marsden et al., 2023), ImageNet-R (Rendition) (Hendrycks et al., 2021), and ImageNet-
Sketch (Sketch) (Wang et al., 2019). ImageNet-C comprises 15 corruptions applied to ImageNet
(Deng et al., 2009) validation and test images across five severity levels. D109, rooted in Domain-
Net (Peng et al., 2019), includes images corresponding to 109 overlapping classes with ImageNet,
showcasing six domain shifts (Rusak et al., 2022; Marsden et al., 2023). Rendition features 30,000
images demonstrates various renderings across 200 ImageNet classes. Sketch consists of 50 sketches
for each of the 1,000 ImageNet classes. For speech recognition, we used LibriSpeech (Panayotov
et al., 2015), TEDLIUM3 (TED) (Hernandez et al., 2018), and CommonVoice (CV) Ardila et al.
(2019). LibriSpeech, which includes audio recordings of speakers reading excerpts from Project
Gutenberg e-books, serves as source data. TED offers a test dataset of 0.24 hours, representing
a professional corpus of topical lectures. CV, a crowdsourcing project, comprises approximately
25 h of utterances recorded by volunteers reading Wikipedia sentences. We used the average error
rate for image classification and the word error rate (WER) for speech recognition for performance
evaluation.

Scenarios The primary goal was to evaluate the performance of the universal OTTA methods across
various scenarios. Guided by previous benchmarks (Gong et al., 2022; Niu et al., 2022; Marsden
et al., 2023; Marsden & Döbler, 2022), our scenarios delved into covariate shifts (where the input
distribution changes) and label shifts (where the label distribution undergoes alterations). We initi-
ated the testing of data from multiple domains that underwent covariate shifts. This setting involved
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Table 1: Average error rates (%) and their corresponding standard deviations in the scenario of CS.
Red fonts indicate performance degradation.

ImageNet-C D109
Method ResNet-50 ViT Swin D2V ResNet-50 ViT Swin D2V

Source 82.0 60.2 64.0 51.8 58.8 53.6 51.4 48.0
TENT 85.7±0.95 55.1±0.08 62.6±0.18 50.5±0.06 55.4±0.08 76.8±0.36 61.5±0.41 57.9±0.42
CoTTA 82.0±0.08 59.6±0.02 63.9±0.01 51.2±0.02 55.3±0.04 53.3±0.04 51.2±0.03 47.8±0.01
RoTTA 79.5±0.10 58.7±0.04 62.9±0.03 51.3±0.03 54.8±0.04 50.9±0.05 48.6±0.05 46.8±0.03

SAR 79.6±0.68 52.3±0.12 60.5±1.04 50.7±0.07 53.6±0.07 61.2±0.36 53.9±0.08 48.1±0.08
EATA 72.5±1.44 51.8±0.14 56.2±0.29 76.2±20.23 53.1±0.09 48.5±0.11 48.8±0.12 46.2±0.05
ROID 69.5±0.13 50.7±0.08 55.0±0.26 47.4±0.08 50.9±0.04 46.9±0.02 47.2±0.07 45.0±0.01

CMF (ours) 67.6±0.20 49.0±0.10 52.1±0.12 45.7±0.03 49.4±0.21 44.5±0.08 44.8±0.04 42.8±0.05

Table 2: Average error rates (%) and their corresponding standard deviations in the scenario of TC-
CS. Red fonts indicate performance degradation with respect to Source.

ImageNet-C D109 Rendition Sketch
Method ViT Swin D2V ViT Swin D2V ViT Swin D2V ViT Swin D2V

Source 60.2 64.0 51.8 53.6 51.4 48.0 56.0 54.2 46.6 70.6 68.4 60.4
TENT 54.5±0.04 64.0±0.14 51.9±0.09 83.3±0.13 66.4±0.33 62.9±0.21 53.3±0.09 53.8±0.38 46.0±0.03 70.8±1.12 68.7±0.22 60.3±0.06
CoTTA 60.4±0.02 64.2±0.01 51.7±0.02 53.3±0.03 51.2±0.01 47.8±0.02 55.6±0.03 54.1±0.02 46.4±0.01 70.6±0.01 68.3±0.02 60.3±0.01
RoTTA 59.1±0.05 63.4±0.01 51.3±0.01 51.4±0.03 49.1±0.03 47.2±0.03 54.8±0.04 53.5±0.03 46.5±0.02 69.3±0.03 67.3±0.03 60.1±0.03

SAR 51.7±0.14 65.9±1.27 51.0±0.12 57.3±0.41 53.5±1.05 48.5±0.10 48.5±0.21 53.7±2.78 45.9±0.05 70.5±1.21 73.4±1.31 60.2±0.07
EATA 49.9±0.06 52.9±0.25 64.4±15.84 47.2±0.10 47.4±0.18 45.8±0.06 49.0±0.20 49.9±0.33 45.0±0.08 59.8±0.19 60.6±0.26 78.3±17.08
ROID 45.0±0.09 47.0±0.26 44.8±0.01 45.0±0.04 45.1±0.10 44.2±0.06 44.2±0.13 46.0±0.10 41.8±0.11 58.6±0.04 58.9±0.11 56.2±0.05

CMF (ours) 44.8±0.12 46.6±0.12 43.5±0.04 43.4±0.07 43.6±0.12 42.3±0.11 42.7±0.20 44.1±0.24 40.0±0.06 57.0±0.08 56.7±0.13 53.9±0.03

the analysis of both temporally uncorrelated (CS) and temporally-correlated shifts (TC-CS) during
streaming. In CS, test data from all domains are randomly shuffled before adaptation, whereas in
TC-CS, consecutive test samples are likely to arise from the same domain. Further, we delved into
scenarios where temporal correlated label shifts (TC-LS) occurred over CS or TC-CS by adjusting
the Dirichlet distribution’s δ (Gong et al., 2022). As δ increases, the label distribution at time step t
begins to approach uniformity; a reduced δ signifies a skewed distribution towards specific classes.
These scenarios are illustrated in Fig. 3. In all vision scenarios for ImageNet-C, the domains com-
prised 15 corruptions, each encountered at the highest severity level of 5. For D109, the domains
comprised five types (clipart, infograph, painting, real and sketch). Our last scenario aimed to test
the OTTA methods for speech recognition over real-world streaming data.

Source Model and Baseline For image classification, we employed various of models including
ResNet-50 (He et al., 2016a), VisionTransformer (ViT) (Dosovitskiy et al., 2020), SwinTransformer
(Swin) (Liu et al., 2021), and data2vec-vision (D2V) (Baevski et al., 2022b), which were all pre-
trained on ImageNet. These modes were suited for wild world (Niu et al., 2023). The Base models
for ViT, Swin, and D2V were chosen to balance complexity and performance. For speech recogni-
tion, the choices were data2vec Base model (D2V-Libri) and the data2vec Large model (D2V-Vox).
The former is pre-trained on a LibriSpeech, while the latter is pre-trained on the entire LibriVox
(Kahn et al., 2020). We compared our approach with other OTTA methods that use arbitrary off-the-
shelf pre-trained models. For images, we compared TENT, LAME (Boudiaf et al., 2022), CoTTA
(Wang et al., 2022), RoTTA (Yuan et al., 2023), EATA, and SAR. For speech, we compared our
framework with SUTA (Lin et al., 2022), which is a state-of-the-art test-time adaptation method for
speech recognition tasks.

Implementation Details We offer implementations for both image classification and speech recog-
nition tasks. Image Classification: Our approach largely adheres to the hyperparameter guidelines
put forth in Marsden & Döbler (2022) to ensure robustness and reproducibility. We designated the
parameter subset θ(0) as the normalization layer of each model, inspired by Niu et al. (2023). Our
chosen loss function is the diversity-weighted soft likelihood ratio loss (DW-SLR) from Marsden
et al. (2023), augmented with a consistency loss rooted in symmetric cross entropy (SCE). Unless
specified otherwise, the hyperparameters (α, q) for CMF were set to (0.99, 0.005). We employ prior
correction for post-processing, as detailed in (Royer & Lampert, 2015; Marsden et al., 2023). Speech
Recognition: Our approach leverages the Bitfit method from Zaken et al. (2021), which exclusively
amends the self-attention bias of the transformer for a parameter subset. This methodology was
selected because the correction of the normalization layer does not considerably alter performance
as noted in (Lin et al., 2022). For the CMF, the hyperparameters (α, q) are fixed at (0.8, 0.005). The
post-processing step involves greedy decoding, as prescribed in (Pratap et al., 2019), and is devoid
of any language model.
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Table 3: Average error rates (%) and their corresponding standard deviations in the scenario of TC-
LS over TC-CS.

ImageNet-C D109
δ Model LAME SAR EATA ROID CMF (ours) LAME SAR EATA ROID CMF (ours)

ViT 44.1±0.02 48.3±0.28 71.8±1.22 16.2±0.06 15.9±0.04 35.2±0.55 58.5±0.40 58.6±1.45 31.4±0.07 31.0±0.10
0.0 Swin 47.1±0.09 60.1±0.74 72.7±0.67 18.1±0.03 16.7±0.10 30.1±0.16 55.4±0.17 54.2±0.99 30.3±0.25 29.6±0.21

D2V 38.9±0.07 48.3±0.15 58.2±2.21 17.4±0.21 14.4±0.24 29.7±0.15 49.5±0.04 46.1±0.37 29.3±0.03 27.8±0.12

ViT 83.2±0.23 48.7±0.29 47.7±0.12 36.3±0.08 35.0±0.04 44.8±0.69 58.6±0.80 50.7±1.20 32.2±0.10 31.8±0.10
0.01 Swin 84.7±0.12 58.4±0.86 50.0±0.35 37.2±0.06 35.1±0.16 39.9±0.77 53.7±0.53 49.6±0.41 31.1±0.11 30.3±0.24

D2V 79.5±0.20 47.9±0.05 65.0±18.58 35.9±0.08 32.7±0.04 39.9±0.56 49.1±0.14 47.1±1.08 30.7±0.09 28.6±0.11

ViT 79.9±0.06 48.4±0.30 46.1±0.17 41.3±0.05 39.6±0.03 68.9±0.24 57.7±0.56 47.4±0.16 37.3±0.12 36.1±0.11
0.1 Swin 84.5±0.09 58.4±0.75 48.3±0.09 42.1±0.04 39.6±0.02 64.6±0.25 53.4±0.70 47.4±0.21 36.9±0.11 35.0±0.05

D2V 70.1±0.04 48.0±0.04 65.5±19.11 41.3±0.03 38.2±0.05 64.6±0.25 48.6±0.04 45.7±0.08 36.3±0.06 34.1±0.13

ViT 80.0±0.03 48.3±0.25 45.7±0.15 41.2±0.03 39.4±0.03 90.0±0.09 57.4±0.12 47.2±0.04 42.9±0.03 41.3±0.06
1.0 Swin 84.6±0.06 58.5±0.41 47.4±0.39 41.9±0.03 39.4±0.11 86.9±0.24 54.5±0.68 47.4±0.10 43.0±0.06 41.3±0.04

D2V 70.2±0.07 47.9±0.09 87.0±18.44 41.2±0.01 38.1±0.03 88.3±0.13 48.5±0.09 45.7±0.04 42.2±0.04 40.1±0.10

ViT 80.2±0.09 55.5±12.62 45.6±0.17 41.3±0.03 39.5±0.03 93.3±0.17 57.3±0.22 47.2±0.08 43.9±0.09 42.5±0.08
5.0 Swin 84.9±0.04 59.2±0.68 47.6±0.25 41.9±0.03 39.4±0.08 90.6±0.23 54.0±0.72 47.3±0.05 44.1±0.06 42.5±0.07

D2V 70.5±0.12 47.9±0.08 65.9±18.92 41.2±0.03 38.0±0.05 92.8±0.16 48.4±0.12 45.7±0.06 43.2±0.04 41.1±0.06

4.1 RESULTS

Covariate shifts Table 1 lists the average error rates for each OTTA method in the scenario of CS.
TENT exhibited a performance dip compared to the source model for both ImageNet-C and D109.
SAR in D109 and EATA in ImageNet-C also exhibited degraded performance. RoTTA, CoTTA,
and ROID, on the other hand, demonstrated relatively consistent results, with ROID standing out as
the top performer. Among all the methods, our CMF framework exhibited the lowest average error
rate. In Table 2, where the error rates under the TC-CS conditions are detailed, TENT exhibited
a substantial decline in performance. CoTTA and RoTTA, which were previously robust, also dis-
played performance setbacks. EATA held steady performance in all except for D2V, yet it could not
surpass ROID’s performance. CMF continued its trend by recording the lowest average error rate,
even outperforming ROID.

Table 4: Average error rates (%) and their corresponding
standard deviations in the scenario of TC-LS over CS.

ImageNet-C D109
Method ViT Swin D2V ViT Swin D2V

LAME 36.1±0.09 37.4±0.12 36.3±0.11 29.9±0.18 28.6±0.23 29.1±0.19
SAR 54.1±0.40 65.4±0.53 47.2±0.08 61.0±0.51 53.6±0.24 48.6±0.35

EATA 70.5±0.67 77.1±0.93 85.8±18.90 52.9±2.98 50.3±0.25 45.9±0.13
ROID 23.6±0.05 28.6±0.16 18.8±0.01 29.1±0.09 28.2±0.05 26.3±0.07

CMF (ours) 23.2±0.05 27.1±0.08 17.1±0.09 28.7±0.19 27.3±0.05 24.9±0.10

Covariate and Label shifts Table 3
presents the average error rates for
each OTTA method in the context of
TC-LS superimposed on TC-CS, in-
dicating that the labels are becoming
temporally correlated. In instances
with the strongest temporal correla-
tion (i.e., δ = 0.0), all methods bar-
ring LAME and ROID revealed in-
consistent outcomes with performance degradation. The latter exhibited superior results between
LAME and ROID, except for Swin. As the temporal correlation diminished, the performance of
LAME decreased noticeably, but ROID showed robust performance. The CMF still managed to
eclipse ROID and LAME. Table 4 highlights TC-LS under CS following Marsden & Döbler (2022)
for ImageNet-C and D109 with δ values of 0.01 and 0.1, respectively. CMF maintained its superi-
ority across all datasets and models. Thus, the CMF exhibited unwavering robustness, even in the
TC-LS scenarios.

Table 5: Average WERs (%) and their corresponding stan-
dard deviations in real-world streaming scenario.

Method
TED CV

D2V-Libri D2V-VOX D2V-Libri D2V-VOX

Source 12.2 8.5 33.4 20.6
SUTA-cont. 67.7±1.70 66.1±0.36 120.89±4.03 130.3±1.88

SUTA-episodic 12.0±0.03 8.0±0.03 30.3±0.01 18.9±0.01
CMF (ours) 11.8±0.05 7.9±0.02 29.6±0.02 18.7±0.03

Distribution shifts on real-world
streaming data Table 5 presents the
OTTA outcomes for the real-world
streaming datasets. Both TED and
CV deviate from the source domain,
LibriSpeech, in terms of the record-
ing environment and vocabulary do-
mains. This results in the simulta-
neous presence of covariate and label
shifts. The leading OTTA method for speech recognition tasks, SUTA, employs test-time adaptation
for individual utterances using an episodic strategy (SUTA-episodic). However, a sharp decrease
in performance was observed when this strategy was applied in a continual setting (SUTA-cont.).
In these continuous settings, the CMF not only thwarted catastrophic forgetting but also displayed
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enhanced performance compared to SUTA-episodic. Our framework showed robustness against the
intricate distribution shifts found in real-world contexts.

4.2 ABLATION STUDY

We now delve into the essential components of the CMF. Detailed discussions, such as diversity and
computational cost, can be found in Appendix C.

Table 6: Average error rates (%) for q = 0.000
and q = 0.005 in the CS and TC-CS scenarios.

Model Method q
ImagNet-C D109 AVG

CS TC-CS CS TC-CS

ViT

TENT Entropy - 55.1 54.5 76.8 83.3 67.4

CMF Entropy 0.000 58.6 57.4 53.6 54.5 56.0
0.005 57.1 56.0 57.3 60.9 57.8

DW-SLR 0.000 52.7 47.8 47.1 46.0 48.4
0.005 51.2 47.1 45.2 44.4 47.0

+ SCE 0.000 50.7 45.0 46.9 45.0 46.9
0.005 48.9 44.8 44.5 43.4 45.4

Swin

TENT Entropy - 62.6 64.0 61.5 66.4 63.6

CMF Entropy 0.000 64.4 64.2 51.5 51.6 57.9
0.005 64.3 64.0 51.6 52.5 58.1

DW-SLR 0.000 57.5 51.1 49.4 46.3 51.1
0.005 57.5 48.0 45.9 44.5 49.0

+ SCE 0.000 55.0 47.0 47.2 45.1 48.6
0.005 52.1 46.6 44.8 43.6 46.8

D2V

TENT Entropy - 50.5 51.9 57.9 62.9 55.8

CMF Entropy 0.000 52.3 52.9 48.1 48.5 50.4
0.005 51.8 52.7 48.9 50.6 51.0

DW-SLR 0.000 49.0 45.9 46.9 45.4 46.8
0.005 47.2 45.4 43.7 43.3 44.9

+ SCE 0.000 47.4 44.8 45.0 44.2 45.4
0.005 45.6 43.5 42.8 42.3 43.6

Effectiveness of leveraging the noisy target
model Table 6 lists the average error rates of
the CMF in CS and TC-CS scenarios for both
ImageNet-C and D109 datasets. We exam-
ined the performance variations with respect
to the value of q, which modulates the infor-
mation from the noisy target model. Using
the entropy loss of TENT, the CMF demon-
strated superior average performance compared
to TENT alone. However, this performance
gain was only evident for D109, which suf-
fered markedly from catastrophic forgetting, as
shown in Tables 1 and 2. When comparing
the outcomes for q = 0.000 and q = 0.005
on ImageNet-C, our model recorded a higher
average error rate without utilizing the target
model (i.e., q = 0.000), a trend reversed for
D109. This highlights the limitation of relying
solely on the entropy loss (Nevertheless, the en-
tropy version of CMF significantly outperforms
TENT when adjusting for diversity, which is
detailed in Appendix C.2). This inconsistency was addressed by incorporating DW-SLR (Mars-
den et al., 2023), an entropy-based loss function that consider diversity. For both datasets, the CMF
coupled with DW-SLR exhibited superior performance improvements when q = 0.005 compared
to q = 0.000. Similarly, SCE loss, which modulated diversity via augmentation, further enhanced
performance. These results were consistent with the findings that a convex combination of param-
eters (i.e., Moments) from out-of-domain can escalate the generalization error if the diversity is
not moderate (Wortsman et al., 2022; Rame et al., 2022). In essence, the CMF consistently boosts
performance when diversity is appropriately managed.

Figure 2: Average error rates (%) as
decreasing α where γ = 0.99 in the
scenarios of TC-CS on ImageNet-C.

Effectiveness of the source-conjugated transition model
Figure 2 shows the average error rates for each model con-
tingent on variations in α, which determine the sway of the
source model in the source-conjugated transition model. A
comparison of the error rates for α = 1 (devoid of source
model influence) and α = 0.99 (factoring in the source
model influence) revealed enhanced performance across all
models. However, as α increased, the performance metrics
for both Swin and D2V models exhibited a downward tra-
jectory. These findings underscore the significance of the
moderated influence of the source model.

5 CONCLUSION

We proposed the CMF, which a novel approach to bolster the OTTA methodology. This was achieved
by deducing a refined source model through target model denoising by leveraging the KF. By stream-
lining the KF algorithm, the computational overheads were minimized, underpinning the pragmatic
nature of the CMF. Our strategy withstood a rigorous evaluation across a spectrum of scenarios
previously subjected to state-of-the-art methods, consistently demonstrating marked performance
advancements. Its efficacy in real-time streaming contexts, such as speech recognition tasks, sug-
gests its potential as an integral facet of established frameworks across diverse applications.
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REPRODUCIBILITY STATEMENT

In this paper, we conducted experiments based on the official GitHub code of the toolkits men-
tioned in Section 4 for image classification and speech recognition. Appendix B lists the download
URLs of each toolkit, the adopted datasets, and the pre-trained source models and mentions more
experimental details. The code is available at https://github.com/j-pong/CMF.
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A DERIVATIONS

For completeness, we included derivations for each component of the CMF inference process. These
derivations follow Särkkä & Svensson (2023) and conform to the notations in Murphy (2023). All
parameters (S1, S2,A, Q,H, R) are in Rd×d.

A.1 SOURCE-CONJUGATED TRANSITION MODEL

Given S1 and S2 are known constants, we assume that the likelihood for ϕ(t−1) is

p(ϕ(t−1)|ϕ(t)) = N (ϕ(t−1)|ϕ(t), S1), (21)

and the conjugate prior of the likelihood is

p(ϕ(t)|ϕ(0)) = N (ϕ(t)|ϕ(0), S2). (22)

The conditional distribution of ϕ(t) is obtained using Lemma A.3 from Särkkä & Svensson (2023)

p(ϕ(t)|ϕ(t−1), ϕ(0)) = N (ϕ(t)|Aϕ(t−1) + (1−A)ϕ(0), Q). (23)

where

A = S1(S2 + S1)
−1,

Q = S1S2(S2 + S1)
−1.

(24)

We directly parameterize the transition model with (A, Q) rather than by using (S1, S2).

A.2 PREDICT STEP

The posterior of the previous step is given by

p(ϕ(t−1)|θ(1:t−1), ϕ(0)) = N (ϕ(t−1)|µt−1|t−1,Σt−1|t−1). (25)

According to Lemma A.2 from Särkkä & Svensson (2023), Eqs. (5) and (25), the joint distribution
of ϕ(t) and ϕ(t−1) given θ(1:t−1), ϕ(0) is

p(ϕ(t), ϕ(t−1)|θ(1:t−1), ϕ(0)) = p(ϕ(t)|ϕ(t−1), ϕ(0))p(ϕ(t−1)|θ(1:t−1))

= N (ϕ(t)|Aϕ(t−1) + (1−A)ϕ(0), Q)N (ϕ(t−1)|µt−1|t−1,Σt−1|t−1)

= N
((

ϕ(t−1)

ϕ(t)

) ∣∣∣µ′,Σ′
)
,

(26)

where

µ′ =

(
µt−1|t−1

Aµt−1|t−1 + (1−A)ϕ0

)
,

Σ′ =

(
Σt−1|t−1 Σt−1|t−1A

⊤

AΣt−1|t−1 AΣt−1|t−1A
⊤ +Q

)
,

(27)

and the marginal distribution of ϕ(t) is obtained using Lemma A.3 from Särkkä & Svensson (2023)

p(ϕ(t)|θ(1:t−1), ϕ(0)) = N (ϕ(t)|µt|t−1,Σt|t−1), (28)

where

µt|t−1 = Aµt−1|t−1 + (1−A)ϕ(0),

Σt|t−1 = AΣt−1|t−1A
⊤ +Q.

(29)
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A.3 UPDATE STEP

According to Lemma A.2 from Särkkä & Svensson (2023), Eqs. (23) and (28), the joint distribution
of ϕ(t) and θ(t) is

p(ϕ(t), θ(t)|θ(1:t−1), ϕ(0)) = p(θ(t)|ϕ(t))p(ϕ(t)|θ(1:t−1), ϕ(0))

= N (θ(t)|Hϕ(t), R)N (ϕ(t)|µt|t−1,Σt|t−1)

= N
((

ϕ(t)

θ(t)

) ∣∣∣µ′′,Σ′′
)
,

(30)

where

µ′′ =

(
µt−1|t−1

Hµ|t−1

)
,

Σ′′ =

(
Σt|t−1 Σt|t−1H

⊤

HΣt|t−1 HΣt|t−1H
⊤ +R

)
,

(31)

and the conditional distribution of ϕ(t) is obtained using Lemma A.3 from Särkkä & Svensson
(2023)

p(ϕ(t)|θ(1:t), ϕ(0)) = N (ϕ(t)|µt|t,Σt|t), (32)
where

Kt = Σt|t−1H
⊤(HΣt|t−1H

⊤ +R)−1,

µt|t = µt|t−1 +Kt(θ
(t) −Hµt|t−1),

Σt|t = Σt|t−1 −KtHΣt|t−1.

(33)

A.4 SIMPLIFICATION

We chose (A, Q,H, R) to scalar values (α, q, 1, 1− q). Thus, Eq. (29) is

µt|t−1 = αµt−1|t−1 + (1− α)ϕ(0),

Σt|t−1 = α2Σt−1|t−1 + q,
(34)

and Eq. (33) is

βt = (1− q)/(Σt|t−1 + 1− q),

µt|t = βtµt|t−1 + (1− βt)θ
(0),

Σt|t = βtΣt|t−1.

(35)

where βt = 1−Kt. Consequently, µt|t−1, Σt|t−1, µt|t, Σt|t and βt are scalars.

B DETAILS OF IMPLEMENTATION

B.1 EXPERIMENTS OF IMAGE CLASSIFICATION

We focused on the numerous classes, potential corruption, and natural distribution shifts that can oc-
cur in the wild world (Niu et al., 2023). ImageNet-C is a standard TTA benchmark used to evaluate
robustness against corruption. ImageNet contains 1,281,167/50,000 training/testing data respec-
tively. ImageNet-C is a dataset applied to ImageNet according to 15 types of damage (gaussian
noise, shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom blur, snow, frost, fog,
brightness, contrast, elastic transform, pixelate, and jpeg compression) at five severity levels. Each
corruption was considered a domain, and severity level of 5 has been selected. D109 is a dataset
concerning natural distribution shifts provided by Marsden et al. (2023). This dataset consists of five
domains (clipart, infograph, painting, real, and sketch). D109 classes were based on DomainNet,

https://zenodo.org/record/2235448#.Yj2RO_co_mF
http://ai.bu.edu/M3SDA/
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including 109 classes that overlapp with ImageNet. For other natural shifts, we used the Rendition
and Sketch datasets. Each dataset consisted only of domains and was used in the TC-CS scenario.
Rendition included 30,000 images with various artistic renderings of 200 ImageNet classes, pri-
marily collected from Flickr and filtered by Amazon MTurk annotators. Sketch dataset consists of
50,000 images, with 50 images for each of the 1,000 ImageNet classes. This dataset is constructed
from Google image queries with the standard class name ”sketch of” and is only searched within the
”black and white” color scheme.

Figure 3: Illustration of the OTTA scenarios.

Four scenarios were considered: covariate shifts (CS), temporally-correlated covariate shifts (TC-
CS), temporally-correlated label shifts (TC-LS) over CS, and TC-CS over TC-CS. CS involves pre-
viously defined domains streamed into the model, which were all mixed up. Hence, the likelihood
of temporally adjacent input data being drawn from the same domain is low Niu et al. (2022).
Conversely, in the TC-CS scenario, each domain was applied sequentially as previously described;
therefore, temporally adjacent input data were likely to belong to the same domain. Meanwhile,
TC-LS simulates the characteristics of real online data, where labels are temporally interrelated, and
data of the same class appears multiple times (Gong et al., 2022). This methodology entails the
creation of a non-i.i.d partition for a given number of tokens across a set number of classes. The
Dirichlet distribution, driven by the concentration parameter δ > 0, determines how data from each
class were allocated to each token.

We implemented the CMF method based on the benchmark in Marsden & Döbler (2022) and used
the associated default hyperparameters. For all the vision experiments, the learning rate was set to
0.00025 for ViT and Swin, 0.0002 for ResNet-50, and 0.00001 for D2V. Unless specifically men-
tioned, we used (α, q) = (0.99, 0.005) for CMF. Furthermore, because each model had a different
number of learnable parameters, we adjusted it by multiplying the ratio of each model’s number of
learnable parameters to that of ViT by q. The SGD optimizer was used for model training in all
scenarios. The iteration I for the adaptation was set to 1.

https://github.com/hendrycks/imagenet-r
https://github.com/HaohanWang/ImageNet-Sketch
https://github.com/mariodoebler/test-time-adaptation
https://pytorch.org/vision/0.14/models/generated/torchvision.models.

vit_b_16.html#torchvision.models.vit_b_16
https://pytorch.org/vision/0.14/models/generated/torchvision.models.

swin_b.html#torchvision.models.swin_b
https://pytorch.org/vision/0.14/models/generated/torchvision.models.

resnet50.html#torchvision.models.resnet50
https://huggingface.co/facebook/data2vec-vision-base-ft1k
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B.2 EXPERIMENTS OF SPEECH RECOGNITION

The LibriSpeech dataset, which is widely used for pre-training in speech recognition, contains audio
recordings of speakers reading excerpts from Project Gutenberg e-books. It included 1,000 hours of
utterances, with subsets of 100 h, 360 h, and 500 h for training. D2V-Libri was trained both self-
supervised and supervised on the 960h subset. Libri-Light is a collection of English voice audios
suitable for training speech recognition systems with limited or no supervision. It is derived from the
open-source audiobooks of the LibriVox project, which contain over 60,000 h of audio. D2V-Vox
was self-supervised trained on Libri-Light and supervised trained on LibriSpeech 960h.

We used TED and CV as the target data, each representing a different scenario. TED provide an
official test dataset of lectures covering various topics and areas. This test dataset was divided into 11
datasets per speaker, each of which had a different domain. This simulated an actual situation where
professionals speak continuously and at length. The average duration of utterances per speaker in the
test dataset was 0.24 h. CV is a crowdsourcing project supported by volunteers who read Wikipedia
sentences and record samples at 48kHz. The sampling rate is resampled to 16kHz to match the
learning conditions of the source model. We used the Common Voice Corpus 5.1 (dated 7/14/2020).
Unlike TED, the test dataset was not divided per speaker. This test dataset contained approximately
25 h of utterances, simulating an extremely long utterance environment.

A learning rate of 0.0006 was selected for D2V-Libri and D2V-Vox. We set (α, q) to (0.8, 0.005)
to maintain the CMF approach used in the vision experiments. The Adam optimizer was used
for model training in all speech recognition experiments. The number of iteration I for the
adaptation followed Lin et al. (2022) using 10. We also applied the masking augmentation
(Hsu et al., 2021; Chen et al., 2021; Schneider et al., 2019; Baevski et al., 2019; 2020; 2022a) four
times, considering diversity. For a fair comparison, both comparison targets, SUTA-cont. and
SUTA-episodic, used the same learning rate and I , and the same augmentation was applied.

C ADDITIONAL ABLATION STUDY

C.1 EFFICIENCY OF METHODS

Table 7: Comparison of the computation efficiency for ResNet-50 on Rendition in the scenario of
TC-CS.

Method Average Error Rate (%) #Forwards #Backwards Train Param (%)

Source 63.8 30,000 - -
LAME 99.4 30,000 - -

TENT 57.4 30,000 30,000 0.21
CoTTA 57.4 90,000 30,000 100
RoTTA 60.8 90,000 30,000 0.21

SAR 57.2 46,279 30,111 0.12
EATA 54.2 30,000 5,440 0.21
ROID 51.4 48,610 37,220 0.21
CMF 50.7 48,610 37,220 0.21

Table 7 provides an overview of the computational efficiency of the different methods, measured by
the number of forward and backward passes required during the Table 7 provides an overview of the
computational efficiency of the different methods, measured by the number of forward and backward
passes required during the test-time adaptation. CoTTA and RoTTA, owing to their reliance on the
teacher-student modeling approach (Hinton et al., 2015; Xie et al., 2020; Sohn et al., 2020; Berthelot
et al., 2019), these methods require three forward passes: two for the teacher model and one for the

https://www.openslr.org/12
https://github.com/facebookresearch/libri-light
https://www.openslr.org/51/
https://commonvoice.mozilla.org/en/datasets
https://dl.fbaipublicfiles.com/fairseq/data2vec/audio_base_ls_960h.pt
https://dl.fbaipublicfiles.com/fairseq/data2vec/vox_960h.pt
https://github.com/DanielLin94144/Test-time-adaptation-ASR-SUTA
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student model. Correspondingly, one backward pass was required for the teacher model. EATA
selectively filtered the samples during learning. This filtering mechanism ensured the superiority
of EATA in efficiency, demanding fewer backward passes than TENT. SAR requires more forward
and backward passes than TENT because it incorporates a general forward and a forward with
filtering. ROID adopts a filtering strategy (i.e., DW-SLR loss) akin to EATA while incorporating
data augmentation driven by SCE loss, resulting in an augmented count of forward and backward
passes relative to TENT. By leveraging both DW-SLR and SCE losses, the CMF mirrors ROID in
terms of efficiency. We also investigate the memory cost for ROID/CMF: each method consumes
7841MiB/8073MiB for D2V and 10339MiB/10667MiB for Swin. The CMF requires slightly more
memory than ROID because it uses hidden variables. However, it does not require much additional
computation because inference process of the CMF does not perform backward, which dominates
the memory cost. To summarize, the superior performance of CMF is noteworthy, even with similar
computational and memory requirements as ROID.

C.2 DIVERSITY DIAGNOSIS AND PRESCRIPTION

A vital factor of the CMF framework is the parameter diversity, which gauges how much target
models deviate from the source model. A moderate level of diversity often indicates that our
framework is likely to operate more effectively. To quantify this diversity, we employed cosine
similarity metrics between the source and target models across different domains. The diversity
was calculated as the inverse of this similarity, specifically as 1− Average Cosine Similarity where
Average Cosine Similarity is calculated for a domain in the dataset.

(a) Comparison of the diversity on ImageNet-C and D109

(b) ImangeNet-C (+SCE) (c) D109 (LR ↓)

Figure 4: Comparison of the diversity for ViT in the scenario of TC-CS.

Figure 4 provided insights into the diversity variation across different data sets and scenarios, ex-
plicitly focusing on ViT model. We also explored how diversity changes when additional SCE loss
functions (+SCE) are introduced or when the learning rate is decreased (LR ↓). When the “LR ↓”
method was applied, the learning rate was set to 0.0001 for the ViT/Swin model, down from an
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initial value of 0.00025, and to 0.000005 for the D2V model, which started at 0.00001. Our analysis
revealed that the D109 dataset exhibits significantly higher diversity than the ImageNet-C dataset,
as shown in Figure 4 (a). When SCE loss was applied to the ImageNet-C dataset, which showed
lower diversity, an increase in diversity was observed (Figure 4 (b)). Conversely, in the case of the
D109 dataset, which presented a higher diversity level, reducing the learning rate decreased diversity
(Figure 4 (c)).

Table 8: Comparison of average error rates (%) for each prescription in the scenario of TC-CS.

Dataset Method Prescription Average Error Rate (%)

ViT Swin D2V

ImageNet-C TENT - 54.5 64.0 51.9

CMF - 56.0 64.0 52.7
+ SCE 53.6 60.1 51.5

D109 TENT - 83.3 66.4 62.9

CMF - 60.9 52.5 50.6
LR ↓ 54.1 51.7 48.6

This manipulation of diversity through adjustments, the introduction of SCE loss or the reduction
in learning rates, has been shown to positively impact the performance of different models, as evi-
denced in Table 8. Thus, managing diversity was a crucial strategy for optimizing the functionality
of the CMF approach. The pain of managing diversity was largely solved by using DW-SLR loss,
as discussed in Section 4.2.

C.3 LIMITATION OF FIXED SOURCE MODEL

Table 9: Comparison of average error rates (%) for WE and CMF in the scenario of TC-CS.

Method Model ImageNet-C D109 Rendition Sketch

DW-SLR+SCE ViT 47.6±0.06 48.3±0.92 44.6±0.25 58.4±0.05
Swin 51.1±0.30 50.0±0.10 47.0±0.14 59.1±0.18
D2V 46.3±0.15 47.4±0.41 42.2±0.13 55.6±0.07

DW-SLR+SCE+WE ViT 45.0±0.09 45.0±0.04 44.2±0.13 58.6±0.04
Swin 47.0±0.26 45.1±0.10 46.0±0.10 58.9±0.11
D2V 44.8±0.01 44.2±0.06 41.8±0.11 56.2±0.05

DW-SLR+SCE+CMF ViT 44.8±0.12 43.4±0.07 42.7±0.20 57.0±0.08
Swin 46.6±0.12 43.6±0.12 44.1±0.24 56.7±0.13
D2V 43.5±0.04 42.3±0.11 40.0±0.06 53.9±0.03

Conventional weight ensemble (WE) methods utilize a fixed source model. In contrast, the CMF
approach updates the source model. To evaluate the performance of both WE and CMF, we set the
loss to DW-SLR + SCE and measured their respective performances in TC-CS scenario.

When WE is added, significant performance improvements in datasets such as Sketch or Rendition
are not readily observable. Conversely, substituting WE with CMF leads to substantial performance
enhancements across all datasets, including the two aforementioned, and notably outperforms WE
in the ImageNet-C and D109 datasets. These results highlight the limitations of the fixed source
model and clearly delineate the contribution of CMF, which continually updates the hidden model
with both the target and source model information.
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C.4 SENSITIVITY OF HYPERPARAMETERS IN CMF

Table 10: Comparison of average error rates (%) for sensitivity of q in the scenario of TC-CS.

Model Source TENT CMF (q)

0.01 0.0075 0.005 0.0025 0.0001

ViT 60.2 54.5±0.04 44.9±0.09 44.9±0.09 44.8±0.12 44.8±0.14 44.9±0.05
Swin 64.0 64.0±0.14 46.7±0.25 46.5±0.05 46.6±0.12 46.5±0.18 46.9±0.18
D2V 51.8 51.9±0.09 43.4±0.08 43.4±0.09 43.5±0.04 43.7±0.15 44.5±0.02

Table 11: Comparison of average error rates (%) for sensitivity of α in the scenario of TC-CS.

Model Source TENT CMF (α)

0.999 0.99 0.95 0.9 0.8

ViT 60.2 54.5±0.04 45.2±0.03 44.8±0.12 44.7±0.06 44.9±0.09 44.9±0.06
Swin 64.0 64.0±0.14 46.9±0.12 46.6±0.12 46.7±0.13 46.8±0.24 47.1±0.20
D2V 51.8 51.9±0.09 43.6±0.17 43.5±0.04 44.2±0.11 44.6±0.04 44.8±0.04

Table 12: Comparison of average error rates (%) for sensitivity of γ in the scenario of TC-CS.

Model Source TENT CMF (γ)

0.999 0.99 0.95 0.9 0.8

ViT 60.2 54.5±0.04 45.2±0.11 44.8±0.12 45.5±0.09 46.7±0.07 49.2±0.04
Swin 64.0 64.0±0.14 47.1±0.21 46.6±0.12 47.2±0.14 48.5±0.20 50.7±0.28
D2V 51.8 51.9±0.09 43.2±0.22 43.5±0.04 45.3±0.04 46.8±0.06 48.6±0.11

An analysis was conducted to understand the impact of adjusting hyperparameters (q, α, γ) in CMF,
as outlined in Algorithm 1. The default experimental settings used were (q = 0.005, α = 0.99, γ =
0.99). By varying one parameter while keeping the others constant, the experiments, as shown in
Tables 10, 11, and 12, revealed that the impact of γ, which directly influences the target model, was
the most significant. In contrast, the effects of q and alpha were comparatively lesser. Despite these
hyperparameter variations, CMF still demonstrated superior performance compared to Source and
TENT.

D LIMITATIONS

Our proposed CMF relies on the KF that uses a linear Gaussian model. In the context of CMF, this
linear Gaussian model employs a linear system for the transition and emission of DNN’s parameters.
While such linear systems have been frequently used in previous studies (Izmailov et al., 2018;
Garipov et al., 2018; Guo et al., 2023) and have shown superior performance in various applications
as demonstrated in our paper, it is challenging to guarantee that all applications will depend on this
linear system. According to the sensitivity analysis introduced in Appendix C.4, we observed that
our model is relatively more influenced by the hyperparameter γ. This result implies that the linear
system may not function in certain environments. To overcome this limitation, we plan future work
to identify applications where the application of such linear systems is challenging and to apply
simple non-linear functions (for example, confidence-based parameter selection). This approach
aims to enhance the adaptability and effectiveness of CMF in a broader range of applications.
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E DETAILS OF RESULTS

This section provides detailed experimental results from 4.1.

Table 13: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of CS.

Method Model gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg Avg.

TENT

ResNet-50 99.1 98.3 98.8 89.4 94.4 89.6 83.6 85.6 82.8 85.3 46.0 97.6 85.8 76.9 71.7 85.7±0.95
ViT 60.6 60.5 59.6 63.6 67.9 57.2 61.2 55.1 48.8 47.4 28.6 66.6 53.9 50.6 44.4 55.1±0.08

Swin 65.8 64.1 68.2 73.4 75.4 59.1 64.6 60.1 57.8 49.2 28.7 61.7 72.2 81.8 56.8 62.6±0.18
D2V 44.5 43.4 43.5 67.9 74.9 57.0 66.4 40.8 41.9 39.5 26.0 45.8 65.5 58.5 42.7 50.5±0.06

CoTTA

ResNet-50 92.9 91.2 92.6 87.3 90.0 86.6 81.4 81.3 81.2 79.0 46.6 92.4 83.0 75.0 69.6 82.0±0.08
ViT 65.2 66.5 64.7 67.9 73.3 63.1 65.7 56.3 44.6 48.0 29.0 83.8 56.4 59.7 49.3 59.6±0.02

Swin 71.0 69.7 75.2 72.8 81.6 64.0 68.2 57.5 51.4 40.4 28.6 59.9 72.1 85.8 59.5 63.9±0.01
D2V 43.7 43.0 43.2 69.6 77.3 58.8 68.5 39.9 43.3 36.3 26.2 48.7 67.2 60.0 43.0 51.2±0.02

RoTTA

ResNet-50 90.4 89.7 90.3 84.8 89.9 86.9 80.9 81.3 78.8 76.9 38.3 90.6 80.8 71.1 61.5 79.5±0.10
ViT 65.1 66.3 64.3 68.3 71.7 60.8 64.7 54.0 44.0 47.4 28.2 80.6 54.9 60.3 50.5 58.7±0.04

Swin 67.9 66.5 70.9 73.5 79.4 62.7 67.6 55.6 49.3 42.6 28.8 59.5 70.7 87.5 60.3 62.9±0.03
D2V 43.5 42.9 42.7 69.8 77.8 59.4 68.7 39.7 42.8 36.0 26.3 49.9 67.1 60.4 43.2 51.3±0.03

SAR

ResNet-50 97.9 96.6 97.5 84.4 87.9 83.2 77.8 78.0 76.6 73.2 43.0 95.1 78.9 62.4 60.8 79.6±0.68
ViT 58.8 57.6 57.4 59.3 63.7 53.1 58.4 52.4 47.3 45.6 28.4 61.4 51.5 47.4 41.9 52.3±0.12

Swin 63.9 62.2 64.3 72.2 71.2 57.8 62.6 58.7 55.6 51.3 29.1 60.1 67.1 77.4 53.9 60.5±1.04
D2V 44.6 43.7 43.8 69.0 76.3 57.1 66.8 40.9 41.1 38.8 25.9 46.2 65.5 58.6 42.7 50.7±0.07

EATA

ResNet-50 90.7 88.9 90.8 76.4 81.4 74.3 69.1 71.2 69.4 63.6 41.6 93.6 69.9 52.4 54.8 72.5±1.44
ViT 59.2 57.7 57.9 58.9 63.2 52.7 58.2 51.3 46.7 43.9 28.7 58.1 51.0 47.1 41.8 51.8±0.14

Swin 61.7 60.3 61.4 65.6 68.8 52.7 58.3 53.4 50.5 45.4 26.9 50.9 62.9 72.0 51.7 56.2±0.29
D2V 72.6 71.8 71.5 84.4 89.0 79.9 83.9 68.2 71.1 71.2 62.2 82.5 83.5 79.9 71.2 76.2±20.23

ROID

ResNet-50 76.4 75.3 76.1 77.9 81.7 75.1 69.9 70.9 68.8 64.3 42.5 85.4 69.8 53.0 55.6 69.5±0.13
ViT 58.3 57.2 57.3 57.4 61.6 52.1 58.3 49.7 44.1 42.1 27.2 55.8 50.6 47.0 41.5 50.7±0.08

Swin 61.1 59.6 60.8 66.4 67.3 53.4 57.3 51.0 45.1 43.1 26.2 52.6 59.6 71.1 50.9 55.0±0.26
D2V 42.9 42.3 42.0 64.6 70.3 54.3 62.3 38.3 37.1 34.1 24.5 42.7 59.7 55.0 40.3 47.4±0.08

cmf

ResNet-50 72.8 71.7 72.4 76.0 78.3 71.9 67.4 69.5 67.9 62.7 45.1 86.2 66.1 51.8 55.0 67.6±0.20
ViT 57.1 55.6 55.8 56.4 58.2 48.9 55.5 47.5 44.5 43.1 27.9 52.9 47.4 44.0 40.6 49.0±0.10

Swin 59.5 57.6 58.9 64.7 63.9 50.9 54.7 46.9 43.3 42.9 26.7 48.7 54.0 60.7 47.8 52.1±0.12
D2V 42.5 41.6 41.6 61.5 66.0 51.6 60.2 37.1 36.1 33.8 23.9 41.6 55.8 52.3 39.2 45.7±0.03

Table 14: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-CS. We choose q = 0.00025 for ResNet-50.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT

ResNet-50 82.4 75.9 74.0 78.2 74.5 66.2 55.7 61.3 62.7 50.3 37.4 71.7 50.3 47.0 52.7 62.7±0.08
ViT 63.6 59.9 58.0 65.8 68.2 58.0 61.4 53.9 45.4 47.9 28.2 61.2 53.5 50.7 42.4 54.5±0.04

Swin 66.9 62.0 63.5 79.2 78.6 65.4 67.4 59.0 55.8 51.6 32.2 62.5 74.0 82.8 59.3 64.0±0.14
D2V 43.9 43.1 43.3 69.4 76.4 57.9 67.1 40.5 44.7 51.3 27.3 47.0 64.5 58.6 43.2 51.9±0.09

CoTTA

ResNet-50 84.8 83.7 84.3 84.6 83.8 72.4 60.3 64.9 66.9 50.6 34.6 80.4 54.2 49.3 57.4 67.5±0.08
ViT 65.8 67.1 65.2 68.6 74.0 63.9 66.2 56.6 44.6 46.0 28.9 92.9 56.4 60.3 49.0 60.4±0.02

Swin 71.1 69.9 75.4 72.8 81.6 63.9 68.2 57.9 51.8 43.1 28.8 61.7 71.6 86.1 59.0 64.2±0.01
D2V 43.9 43.3 43.4 69.7 78.0 59.3 68.9 40.1 44.2 38.2 26.2 49.3 67.1 60.7 43.0 51.7±0.02

RoTTA

ResNet-50 88.4 83.2 83.3 92.2 85.7 74.7 60.6 66.9 66.0 53.9 35.5 77.2 56.0 50.5 55.4 68.6±0.16
ViT 65.8 67.1 64.9 68.9 73.3 62.8 65.2 55.6 44.1 45.7 27.9 80.3 54.5 60.0 49.8 591±0.05

Swin 71.0 69.3 73.8 73.2 80.4 62.7 67.2 56.9 48.7 42.9 29.1 59.0 69.2 88.7 59.0 63.4±0.01
D2V 43.9 43.3 43.3 69.7 77.8 59.4 68.7 39.8 42.5 35.8 26.2 49.7 66.6 60.1 43.3 51.3±0.01

SAR

ResNet-50 82.6 75.8 72.9 77.7 74.2 65.5 55.7 61.4 62.4 50.3 36.7 69.3 49.4 45.8 51.4 62.1±0.18
ViT 61.3 55.7 54.4 62.0 61.4 53.8 57.0 53.9 45.1 45.9 29.1 55.1 51.5 49.2 40.3 51.7±0.14

Swin 63.5 57.4 58.0 77.1 73.8 68.0 71.7 65.5 67.8 63.3 32.0 70.2 71.8 84.8 63.0 65.9±1.27
D2V 44.2 43.8 43.7 69.7 77.5 57.1 66.8 41.2 41.4 41.9 26.3 48.2 64.3 57.1 41.9 51.0±0.12

EATA

ResNet-50 77.1 67.2 65.6 73.6 69.1 62.1 53.6 58.8 59.6 48.2 35.8 63.5 47.6 44.0 47.7 58.2±0.15
ViT 61.6 55.3 53.8 60.0 58.8 52.7 54.9 51.3 43.5 42.9 29.1 49.2 48.7 46.4 39.8 49.9±0.06

Swin 63.2 55.6 54.9 67.6 64.3 54.2 54.3 51.9 47.2 43.5 26.3 46.6 54.6 61.5 47.3 52.9±0.25
D2V 47.2 48.1 59.2 78.0 84.6 71.6 77.3 55.2 59.0 57.9 46.9 73.9 76.7 71.6 59.2 64.4±15.84

ROID

ResNet-50 73.0 62.8 62.7 69.6 66.8 57.2 49.1 52.2 57.7 43.5 33.3 59.3 45.3 41.7 45.9 54.7±0.04
ViT 57.6 51.5 52.2 55.1 52.4 46.5 47.2 45.6 39.5 36.0 26.0 45.0 43.8 39.7 36.3 45.0±0.09

Swin 58.0 51.6 51.4 62.9 57.6 49.9 47.5 44.2 39.9 36.2 24.2 43.9 44.5 50.4 42.5 47.0±0.26
D2V 42.8 40.5 40.1 64.0 64.6 50.6 57.6 37.0 36.6 31.7 24.5 39.7 57.3 47.8 37.1 44.8±0.01

CMF

ResNet-50 73.0 62.6 61.8 69.9 66.1 57.8 50.0 53.5 57.6 44.6 34.4 58.2 45.7 42.0 45.6 54.9±0.16
ViT 57.6 50.3 50.9 55.6 51.0 46.7 46.9 46.1 40.6 37.9 26.7 44.3 41.3 39.6 36.1 44.8±0.12

Swin 58.4 50.8 49.9 64.7 58.1 50.7 47.1 44.3 39.4 36.7 24.6 42.4 43.2 47.9 40.3 46.6±0.12
D2V 42.9 40.3 39.8 64.0 63.4 49.5 55.1 36.7 34.9 32.4 23.4 38.4 52.0 44.9 35.6 43.5±0.04
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Table 15: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-LS (δ = 0.0) over TC-CS. We choose q = 0.00025.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT
ViT 58.7 53.9 54.3 58.4 58.7 52.7 74.0 99.4 99.8 99.9 99.9 99.9 99.9 99.9 99.9 80.6±0.07

Swin 61.4 57.5 59.8 76.4 75.5 74.9 88.0 91.0 98.7 99.8 98.8 99.8 99.8 99.8 99.8 85.4±1.26
D2V 43.6 41.4 40.6 65.4 70.6 54.5 62.6 38.8 42.8 39.3 25.1 42.9 58.6 51.9 39.4 47.8±0.06

CoTTA
ViT 65.8 65.5 64.1 66.6 71.4 62.6 66.9 58.6 45.0 42.0 30.5 90.5 56.9 60.5 49.8 59.8±0.16

Swin 70.3 69.3 74.4 72.8 81.0 65.6 70.2 59.5 51.2 52.9 30.7 62.3 73.0 89.6 59.8 65.5±0.07
D2V 43.8 42.3 42.0 69.5 77.2 57.4 66.8 40.5 41.5 44.0 25.2 45.6 65.6 59.5 41.4 50.8±0.04

RoTTA
ViT 66.6 68.1 71.0 69.6 71.0 58.7 64.8 59.3 52.2 50.8 33.2 83.9 60.0 84.9 76.5 64.7±0.16

Swin 69.8 67.9 72.0 77.6 77.9 70.2 72.9 59.6 55.8 66.9 42.1 83.3 75.6 97.4 88.5 71.8±0.15
D2V 43.8 42.0 42.0 69.8 74.5 59.3 67.4 40.2 39.5 40.1 29.0 74.1 72.3 72.8 51.4 54.5±0.03

SAR
ViT 55.9 51.9 56.2 56.4 56.4 56.0 56.7 61.8 43.0 35.8 26.4 43.9 50.6 37.7 36.3 48.3±0.28

Swin 62.3 61.1 62.1 78.9 78.5 66.9 67.6 66.9 60.1 49.7 27.4 46.9 68.3 57.6 47.3 60.1±0.74
D2V 44.2 41.8 41.0 67.8 72.0 54.8 63.6 39.2 39.1 38.3 25.6 43.7 63.6 51.2 38.0 48.3±0.15

EATA
ViT 59.5 64.0 70.7 77.1 73.7 75.2 72.7 71.8 67.6 73.5 56.6 98.9 77.4 71.9 66.6 71.8±1.22

Swin 66.4 72.8 76.6 81.8 79.3 75.9 73.5 72.3 68.2 69.3 55.9 81.4 68.8 78.3 69.8 72.7±0.67
D2V 52.0 49.2 49.6 72.1 81.3 64.7 71.6 42.5 50.4 51.2 32.8 73.8 70.8 63.6 47.6 58.2±2.21

LAME
ViT 40.1 39.0 39.2 48.6 58.6 43.2 48.4 39.6 34.1 42.2 23.8 84.7 44.5 40.2 35.8 44.1±0.02

Swin 43.1 42.1 46.2 52.8 69.8 43.4 51.2 44.6 36.5 33.9 20.4 41.3 64.5 72.7 43.9 47.1±0.09
D2V 30.5 29.8 30.2 49.4 62.4 39.9 50.3 31.3 34.3 31.4 22.7 39.9 55.9 41.5 34.5 38.9±0.07

ROID
ViT 25.7 22.9 23.8 24.0 22.0 15.8 18.2 14.9 12.3 10.3 6.4 14.9 12.2 9.9 10.1 16.2±0.06

Swin 25.8 22.2 22.0 33.0 29.7 18.0 20.5 13.9 12.2 10.9 6.8 14.7 13.7 14.3 14.3 18.1±0.03
D2V 12.2 11.8 11.5 33.6 35.7 18.3 30.2 12.6 11.6 9.6 7.3 11.8 26.4 15.8 12.9 17.4±0.21

CMF
ViT 25.1 21.9 23.3 24.6 21.2 15.5 16.0 15.0 12.8 10.3 6.5 14.6 11.4 9.8 10.0 15.9±0.04

Swin 24.9 20.6 20.8 33.2 27.7 17.1 17.1 12.1 11.4 10.0 6.4 13.6 11.8 12.4 12.0 16.7±0.10
D2V 12.4 12.0 11.9 28.8 23.9 15.6 22.4 11.2 10.2 8.9 6.3 11.3 17.9 13.0 9.7 14.4±0.24

Table 16: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-LS (δ = 0.01) over TC-CS. We choose q = 0.00025.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT
ViT 58.2 53.7 54.4 59.0 59.0 52.4 66.6 98.4 99.8 99.9 99.9 99.9 99.9 99.9 99.9 80.1±0.11

Swin 60.7 57.3 58.8 76.5 77.2 71.3 83.6 93.6 99.6 99.8 99.0 99.9 99.8 99.9 99.8 85.1±1.25
D2V 43.3 41.4 40.6 65.8 70.3 54.5 62.7 38.8 41.7 39.7 25.0 42.7 58.3 52.3 39.3 47.8±0.13

CoTTA
ViT 65.6 65.2 63.6 66.7 71.4 62.8 67.0 58.7 45.2 41.7 30.8 91.2 56.5 61.8 50.8 59.9±0.17

Swin 70.3 69.3 74.5 72.8 81.1 65.6 70.0 59.4 51.1 53.6 30.5 61.2 73.1 90.6 60.2 65.5±0.43
D2V 43.7 42.2 42.0 69.4 77.0 57.4 66.7 40.6 41.3 45.0 25.3 46.9 65.6 59.9 41.6 51.0±0.06

RoTTA
ViT 65.3 64.7 65.6 67.7 68.5 56.0 61.5 55.2 48.6 46.7 30.6 74.5 54.7 76.4 66.3 60.2±0.17

Swin 68.3 64.8 66.6 77.7 75.7 67.7 70.1 56.3 52.3 61.9 38.2 77.8 71.3 96.2 84.3 68.6±0.15
D2V 43.5 41.3 41.0 68.7 71.6 56.7 65.0 39.3 38.4 38.7 28.3 66.7 67.9 68.0 49.2 52.3±0.04

SAR
ViT 55.0 50.9 53.6 57.7 64.6 53.7 54.4 60.7 40.9 35.5 26.8 44.3 54.9 40.9 36.0 48.7±0.29

Swin 57.0 56.3 57.0 78.2 75.8 64.3 63.1 69.5 59.4 51.7 26.3 44.6 72.1 54.5 46.0 58.4±0.86
D2V 43.9 41.7 40.9 68.2 71.7 54.9 63.5 39.3 39.1 38.5 25.2 44.5 58.2 50.0 39.3 47.9±0.05

EATA
ViT 54.6 50.4 52.5 57.2 53.6 49.9 49.8 50.3 45.8 43.4 30.3 51.1 44.5 41.0 40.7 47.7±0.12

Swin 54.1 50.5 54.6 65.2 61.3 53.2 49.6 48.9 46.1 42.2 27.8 50.6 47.6 52.9 45.7 50.0±0.35
D2V 52.2 59.0 59.3 77.2 84.5 70.3 76.7 55.3 59.3 57.0 45.7 73.9 76.5 71.0 57.7 65.0±18.58

LAME
ViT 88.0 80.9 90.0 81.3 89.9 91.4 90.3 89.4 71.1 98.4 51.4 99.6 82.5 76.1 68.2 83.2±0.23

Swin 84.6 80.0 86.8 86.8 95.4 84.1 84.3 96.2 92.7 84.6 45.6 84.1 97.4 93.6 73.8 84.7±0.12
D2V 70.0 68.2 68.4 81.2 88.9 76.8 88.0 79.7 86.3 89.5 64.9 89.6 91.3 78.1 71.7 79.5±0.20

ROID
ViT 49.2 46.0 47.3 46.3 43.7 37.2 38.0 34.6 32.2 27.3 19.3 35.9 30.2 28.2 28.8 36.3±0.08

Swin 48.5 44.7 45.2 52.5 47.0 39.3 39.4 32.6 29.8 26.5 18.5 34.8 31.6 34.6 32.9 37.2±0.06
D2V 34.8 33.2 33.1 52.2 52.1 41.4 50.1 30.0 29.4 24.4 18.1 29.6 44.7 36.1 29.2 35.9±0.08

CMF
ViT 47.4 43.3 44.6 45.6 41.9 35.6 34.5 33.8 32.7 26.8 19.8 34.9 28.5 27.2 28.1 35.0±0.04

Swin 46.6 41.7 42.4 52.1 45.4 37.4 35.1 30.0 29.3 25.2 18.2 32.8 29.2 31.5 29.4 35.1±0.16
D2V 34.5 32.6 32.6 48.5 45.1 36.6 41.5 28.2 27.1 23.2 16.9 28.7 37.2 32.6 25.5 32.7±0.04
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Table 17: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-LS (δ = 0.1) over TC-CS.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT
ViT 58.2 53.7 54.6 59.1 58.9 52.4 66.6 98.5 99.8 99.9 99.9 99.9 99.9 99.9 99.9 80.1±0.14

Swin 60.8 57.0 58.6 76.4 76.4 68.9 76.5 89.1 99.3 99.7 98.8 99.9 99.8 99.9 99.8 84.1±0.72
D2V 43.3 41.4 40.5 65.6 70.3 54.5 62.8 38.7 41.3 39.2 25.0 42.8 58.2 52.0 39.4 47.7±0.03

CoTTA
ViT 65.6 65.2 63.6 66.6 71.4 62.6 66.9 58.3 45.2 41.5 30.8 91.4 56.3 62.1 51.0 59.9±0.09

Swin 70.3 69.3 74.6 72.8 81.1 65.5 69.9 59.4 51.2 54.8 30.7 62.7 73.3 89.7 60.6 65.7±0.25
D2V 43.7 42.2 42.0 69.4 77.0 57.4 66.7 40.6 41.4 44.1 25.3 47.2 65.6 59.8 41.6 50.9±0.11

RoTTA
ViT 65.1 64.0 64.4 67.5 68.1 55.2 60.6 54.7 47.9 45.4 30.1 72.9 54.0 74.5 64.1 59.2±0.07

Swin 68.0 64.0 65.2 77.9 75.0 66.9 69.5 56.1 51.7 60.9 37.4 76.4 70.8 96.0 83.6 68.0±0.02
D2V 43.5 41.2 40.9 68.4 71.1 56.4 64.5 39.1 38.3 38.5 28.3 65.5 67.5 67.2 49.1 52.0±0.01

SAR
ViT 54.9 50.5 53.4 57.6 60.8 52.4 58.8 59.7 43.0 35.5 26.7 44.2 53.0 40.1 36.0 48.4±0.30

Swin 56.7 55.8 56.5 77.4 76.4 66.7 64.7 67.2 59.0 47.5 26.3 45.1 75.1 54.6 47.5 58.4±0.75
D2V 43.9 41.7 40.9 68.7 71.7 54.8 63.3 39.3 39.4 38.8 25.3 44.7 58.1 49.8 39.2 48.0±0.04

EATA
ViT 54.3 49.9 51.5 56.2 52.2 48.5 47.8 48.5 43.6 40.1 29.0 49.0 41.8 39.6 39.2 46.1±0.17

Swin 53.8 49.4 52.6 64.0 58.9 51.9 48.0 47.1 43.6 39.7 27.3 48.7 45.2 50.2 43.5 48.3±0.09
D2V 57.6 59.0 59.4 77.4 84.6 70.6 76.9 55.3 59.3 57.0 46.0 73.4 76.5 71.1 57.9 65.5±19.11

LAME
ViT 93.4 79.4 97.2 72.4 90.9 96.8 93.8 96.5 49.2 99.9 28.9 99.9 84.4 66.0 50.4 79.9±0.06

Swin 86.5 76.6 87.8 84.8 97.6 84.4 81.9 99.8 99.3 96.1 29.4 87.8 99.8 95.3 60.8 84.5±0.09
D2V 45.7 43.7 45.2 72.4 88.0 60.2 87.5 89.4 95.0 99.7 27.1 95.9 95.0 63.2 44.2 70.1±0.04

ROID
ViT 53.1 50.3 51.5 50.7 48.3 42.4 43.0 39.9 37.7 32.8 24.9 41.0 35.5 33.9 34.5 41.3±0.05

Swin 52.6 49.5 50.0 55.9 50.6 44.3 43.9 37.7 35.1 31.9 23.8 39.6 37.0 40.3 38.7 42.1±0.04
D2V 40.8 39.3 39.4 55.8 56.1 46.9 54.3 35.8 35.1 30.1 23.6 35.7 49.1 42.2 35.1 41.3±0.03

CMF
ViT 51.4 47.4 48.7 49.5 45.8 40.3 39.2 38.6 37.5 31.9 24.9 39.5 33.5 32.4 33.4 39.6±0.03

Swin 50.5 46.3 46.9 54.7 48.8 41.9 39.3 34.9 34.6 30.1 23.1 37.8 34.0 36.5 34.8 39.6±0.02
D2V 40.3 38.5 38.4 52.7 49.9 42.5 46.4 34.0 32.8 28.6 22.2 34.4 42.1 38.6 31.6 38.2±0.05

Table 18: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-LS (δ = 1.0) over TC-CS.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT
ViT 58.2 53.7 55.8 59.1 67.4 64.2 73.7 95.7 99.8 99.9 99.8 99.9 99.9 99.9 99.9 81.8±3.68

Swin 60.8 57.4 60.3 77.3 79.9 84.8 91.6 93.7 99.2 99.8 98.8 99.8 99.8 99.9 99.7 86.9±2.27
D2V 43.3 41.4 40.6 65.6 70.4 54.6 62.8 38.8 41.1 39.5 25.1 42.6 58.6 52.2 39.3 47.7±0.27

CoTTA
ViT 65.6 65.2 63.5 66.6 71.5 62.6 66.9 58.4 45.2 41.6 30.8 91.3 56.9 62.1 50.9 59.9±0.17

Swin 70.3 69.3 74.6 72.8 81.2 65.5 70.0 59.4 51.0 55.0 30.8 63.3 73.4 90.1 60.8 65.8±0.24
D2V 43.7 42.2 42.0 69.4 77.0 57.4 66.7 40.6 41.4 44.1 25.3 46.9 65.6 59.8 41.6 50.9±0.08

RoTTA
ViT 65.0 63.9 64.1 67.2 67.9 55.1 60.7 54.7 47.8 45.4 30.0 72.9 53.9 74.7 64.0 59.2±0.11

Swin 68.1 64.2 65.4 77.8 75.1 67.1 69.6 55.9 51.7 60.6 37.4 76.1 70.6 96.0 83.8 67.9±0.10
D2V 43.5 41.2 40.8 68.3 71.1 56.4 64.5 39.1 38.3 38.5 28.3 65.5 67.4 67.2 49.1 51.9±0.04

SAR
ViT 54.8 50.6 53.0 58.9 61.9 53.7 54.3 61.0 39.8 35.6 26.7 44.2 51.4 42.8 35.9 48.3±0.25

Swin 56.5 56.5 57.5 78.9 75.7 63.1 69.3 69.1 59.9 45.0 26.5 46.4 71.8 55.0 47.0 58.5±0.41
D2V 43.9 41.7 40.9 68.3 71.7 54.8 63.4 39.3 39.3 38.7 25.2 44.6 58.1 49.6 39.1 47.9±0.09

EATA
ViT 54.2 49.7 51.1 55.6 51.9 48.1 47.3 48.1 43.3 40.3 28.7 48.1 41.5 39.1 38.7 45.7±0.15

Swin 53.3 49.0 52.1 63.0 58.0 51.0 47.1 46.7 42.3 38.3 26.7 48.0 43.7 48.8 43.5 47.4±0.39
D2V 78.0 84.6 84.8 91.8 94.6 89.7 91.4 83.0 83.6 84.4 80.7 91.3 91.7 89.6 85.1 87.0±18.44

LAME
ViT 93.8 79.1 97.1 72.6 91.1 96.8 94.0 96.1 49.2 99.9 29.2 99.9 84.7 65.9 50.7 80.0±0.03

Swin 86.1 76.7 87.8 84.9 97.9 85.1 82.2 99.8 99.3 96.0 29.9 87.7 99.8 95.4 60.9 84.6±0.06
D2V 45.9 43.8 45.3 72.2 88.2 60.2 87.4 90.2 95.2 99.7 26.9 96.0 95.5 62.8 44.0 70.2±0.07

ROID
ViT 53.2 50.3 51.4 50.6 48.2 42.3 42.8 39.7 37.7 32.8 25.0 41.0 35.4 33.8 34.4 41.2±0.03

Swin 52.6 49.5 50.0 55.8 50.1 44.2 43.9 37.6 34.7 31.7 23.8 39.3 36.8 40.0 38.4 41.9±0.03
D2V 40.8 39.4 39.4 55.8 55.7 46.8 54.2 35.8 34.9 30.1 23.5 35.5 48.7 41.9 35.0 41.2±0.01

CMF
ViT 51.3 47.2 48.3 49.3 45.5 40.1 38.8 38.6 37.6 31.7 24.9 39.4 33.3 32.1 33.3 39.4±0.03

Swin 50.3 45.9 46.4 54.9 48.8 41.7 39.3 34.8 34.1 29.7 22.9 37.3 33.5 36.5 34.5 39.4±0.11
D2V 40.3 38.4 38.3 52.9 50.2 42.3 46.2 33.9 32.7 28.5 22.2 34.5 41.8 38.2 31.4 38.1±0.03
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Table 19: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-LS (δ = 5.0) over TC-CS.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT
ViT 58.2 53.7 54.4 59.1 58.9 52.2 68.2 98.2 99.8 99.9 99.9 99.9 99.9 99.9 99.9 80.2±0.31

Swin 61.0 57.7 59.2 76.7 77.0 74.0 83.6 91.9 99.1 99.8 99.1 99.9 99.8 99.9 99.8 85.2±1.19
D2V 43.4 41.3 40.5 65.6 70.4 54.5 62.8 38.7 41.6 39.6 25.0 42.7 58.3 52.3 39.5 47.8±0.14

CoTTA
ViT 65.6 65.2 63.6 66.5 71.4 62.5 66.8 58.5 45.3 41.4 30.8 91.6 56.7 61.9 50.5 59.9±0.17

Swin 70.3 69.3 74.6 72.7 81.1 65.5 70.0 59.4 51.3 55.7 30.7 62.2 73.4 90.0 60.9 65.8±0.17
D2V 43.8 42.2 42.0 69.4 77.0 57.4 66.7 40.6 41.4 44.1 25.3 46.8 65.7 59.8 41.6 50.9±0.10

RoTTA
ViT 65.1 63.9 64.2 67.2 67.9 55.2 60.7 54.5 47.5 45.2 30.0 72.7 53.8 73.7 63.4 59.0±0.04

Swin 68.1 64.1 65.1 77.9 75.2 67.1 69.6 56.0 51.8 61.2 37.5 76.1 70.7 96.0 83.5 68.0±0.16
D2V 43.5 41.2 40.8 68.3 71.1 56.3 64.5 39.1 38.2 38.5 28.3 65.1 67.3 67.1 49.0 51.9±0.05

SAR
ViT 55.0 50.7 54.9 56.6 60.1 48.1 61.9 63.1 57.1 51.5 45.0 57.9 64.2 54.1 52.0 55.5±12.62

Swin 56.6 55.9 56.9 80.7 73.7 65.3 69.0 70.9 60.6 54.2 25.8 44.7 73.6 55.3 45.2 59.2±0.68
D2V 44.0 41.7 40.9 68.4 71.7 54.8 63.5 39.2 39.1 38.6 25.2 44.3 58.1 50.1 39.3 47.9±0.08

EATA
ViT 54.2 49.7 51.1 55.6 51.5 47.9 47.2 47.8 43.3 40.0 28.7 47.5 41.8 39.3 38.8 45.6±0.17

Swin 53.5 49.5 52.0 63.7 58.2 51.5 46.9 45.8 42.5 38.6 26.6 48.0 44.4 49.3 43.5 47.6±0.25
D2V 58.9 59.3 59.7 77.4 84.8 70.8 77.1 55.4 59.8 58.1 46.3 75.3 76.7 71.2 58.1 65.9±18.92

LAME
ViT 93.4 79.6 97.2 73.6 91.1 96.5 93.9 96.6 49.3 99.9 29.3 99.9 85.1 66.2 51.2 80.2±0.09

Swin 86.3 77.3 88.0 85.5 97.8 85.0 82.2 99.6 99.5 96.4 30.1 88.1 99.8 95.6 61.8 84.9±0.04
D2V 45.7 44.0 45.7 73.3 88.7 60.4 87.7 89.9 95.1 99.8 27.0 96.0 95.9 63.5 44.8 70.5±0.12

ROID
ViT 53.2 50.2 51.5 50.5 48.1 42.3 42.9 39.7 37.8 32.7 25.0 41.2 35.3 33.9 34.5 41.3±0.03

Swin 52.6 49.4 49.9 55.9 50.6 44.2 43.9 37.7 34.9 31.8 23.7 39.5 36.6 39.9 38.4 41.9±0.03
D2V 40.7 39.3 39.4 55.9 55.9 46.8 54.2 35.7 34.9 29.9 23.5 35.6 48.6 41.9 35.0 41.2±0.03

CMF
ViT 51.4 47.3 48.4 49.4 45.7 40.3 38.8 38.6 37.5 31.8 24.9 39.2 33.4 32.2 33.3 39.5±0.03

Swin 50.5 46.0 46.7 54.7 48.8 41.5 39.2 34.9 34.3 29.9 23.0 37.2 33.5 36.3 34.3 39.4±0.08
D2V 40.3 38.4 38.3 52.9 50.0 42.5 46.1 33.8 32.5 28.4 22.1 34.3 41.7 38.1 31.3 38.0±0.05

Table 20: Average error rate (%) and their corresponding standard deviations on ImageNet-C in the
scenario of TC-LS (δ = 0.01) over CS. We choose q = 0.00025.

Method Model Adaptation Order (→) Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

TENT
ViT 86.3 85.4 85.8 83.3 85.5 80.1 83.3 81.1 79.3 78.0 70.1 82.7 81.5 79.5 75.8 81.2±2.69

Swin 90.3 89.5 90.5 90.4 90.7 84.7 85.9 84.9 84.9 82.8 72.6 85.6 90.6 92.8 82.2 86.6±2.62
D2V 43.1 42.0 42.1 61.4 67.2 52.1 62.1 39.5 40.0 36.8 24.4 42.8 60.1 52.9 40.5 47.1±0.09

CoTTA
ViT 60.7 60.9 59.6 72.5 73.7 64.2 68.1 58.6 47.5 46.3 32.5 95.3 57.6 61.5 54.8 60.9±0.24

Swin 65.9 65.6 70.6 77.5 81.4 69.7 72.9 59.1 52.3 47.0 32.4 64.8 75.8 87.7 65.8 65.9±0.09
D2V 42.6 41.6 41.8 66.3 73.4 55.3 65.6 39.8 40.3 33.9 24.9 44.3 64.7 55.1 41.2 48.7±0.05

RoTTA
ViT 86.1 85.6 86.0 75.3 75.0 66.3 71.5 58.6 55.2 64.7 33.4 92.8 62.1 88.4 80.5 72.1±0.14

Swin 81.3 80.3 83.3 84.6 83.1 78.9 81.7 63.9 65.9 73.6 49.6 84.6 82.6 96.4 87.4 78.5±0.22
D2V 44.7 43.8 44.0 77.7 78.6 64.7 72.1 39.8 41.9 38.5 27.8 68.9 68.5 67.6 44.8 54.9±0.07

SAR
ViT 64.2 62.4 62.9 59.0 64.0 52.7 60.8 54.9 49.5 47.3 30.4 58.9 53.3 48.7 42.8 54.1±0.40

Swin 71.8 70.0 72.2 74.0 76.6 61.4 66.1 66.7 61.6 57.8 32.6 62.3 73.0 79.8 55.6 65.4±0.53
D2V 43.2 42.0 42.3 62.7 68.7 52.4 62.5 39.3 39.3 35.5 24.3 43.0 60.2 52.4 40.5 47.2±0.08

EATA
ViT 79.5 78.6 79.1 79.8 78.1 73.9 75.4 68.1 62.1 65.7 40.7 90.5 63.7 68.5 54.3 70.5±0.67

Swin 84.6 83.1 85.4 86.7 85.8 76.7 76.0 72.1 71.4 69.8 43.2 86.1 74.3 89.2 71.5 77.1±0.93
D2V 83.2 82.9 82.9 90.9 93.8 88.3 90.2 81.4 81.5 81.7 78.5 88.8 90.7 88.5 83.4 85.8±18.90

LAME
ViT 36.3 36.1 36.2 36.3 36.4 36.2 36.4 36.1 35.9 36.2 35.6 36.7 36.0 36.1 35.8 36.1±0.09

Swin 37.5 37.3 37.5 37.5 37.8 37.4 37.7 37.2 37.1 37.3 36.6 37.5 37.5 37.9 37.3 37.4±0.12
D2V 36.1 35.9 35.9 36.5 36.6 36.4 36.6 36.1 36.3 36.3 35.9 36.5 36.4 36.3 36.1 36.3±0.11

ROID
ViT 27.0 26.2 26.1 26.1 32.0 23.4 29.2 23.4 19.4 18.6 10.8 26.6 25.5 21.5 17.7 23.6±0.05

Swin 30.9 30.1 31.0 34.8 37.2 26.4 31.1 26.8 22.8 23.2 12.3 27.0 33.6 36.4 25.2 28.6±0.16
D2V 14.7 14.4 14.4 27.0 31.7 20.4 26.9 14.5 14.4 13.8 9.0 16.4 27.2 21.2 15.2 18.8±0.01

CMF
ViT 27.1 26.2 26.2 25.6 30.5 22.6 28.9 22.7 19.5 18.7 11.0 25.3 24.4 21.1 17.5 23.2±0.05

Swin 29.2 28.3 29.0 35.7 35.5 25.3 30.0 24.7 22.2 22.8 12.4 25.0 31.4 31.2 24.4 27.1±0.08
D2V 14.4 14.0 14.1 24.3 26.0 18.2 25.3 13.4 13.4 13.2 8.6 15.7 22.7 18.3 14.4 17.1±0.09
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Table 21: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of CS.

Method Model clipart infograph painting real sketch Avg.

TENT

ResNet-50 56.0 80.8 50.2 25.4 64.4 55.6±0.08
ViT 81.8 90.9 74.2 48.7 88.4 76.8±0.36

Swin 66.1 83.9 55.8 25.4 76.5 61.5±0.41
D2V 60.6 83.0 52.3 25.5 68.0 57.9±0.42

CoTTA

ResNet-50 56.4 78.3 50.8 25.4 65.4 55.3±0.04
ViT 56.6 76.4 44.6 21.9 67.1 53.3±0.04

Swin 52.5 73.8 44.1 20.5 64.9 51.2±0.03
D2V 48.6 73.0 40.8 20.2 56.6 47.8±0.01

RoTTA

ResNet-50 57.2 78.1 48.5 24.1 65.9 54.8±0.04
ViT 53.2 73.4 42.9 21.6 63.2 50.9±0.05

Swin 49.1 71.4 41.4 20.1 60.9 48.6±0.05
D2V 46.8 71.9 40.3 20.1 55.1 46.8±0.03

SAR

ResNet-50 54.4 77.3 49.2 24.9 62.3 53.6±0.07
ViT 66.2 82.9 54.1 26.1 76.4 61.2±0.36

Swin 55.8 78.4 46.7 21.6 67.3 53.9±0.08
D2V 48.8 74.0 40.6 20.1 56.9 48.1±0.08

EATA

ResNet-50 53.0 78.0 49.4 24.3 60.8 53.1±0.09
ViT 50.1 71.5 41.7 20.7 58.4 48.5±0.11

Swin 49.3 71.8 42.0 19.9 61.1 48.8±0.12
D2V 46.3 71.6 39.4 19.4 54.5 46.2±0.05

ROID

ResNet-50 51.0 75.8 46.7 23.7 57.3 50.9±0.04
ViT 48.6 69.7 40.6 20.5 55.2 46.9±0.02

Swin 48.2 69.9 40.6 19.6 57.7 47.2±0.07
D2V 44.6 70.0 38.0 19.3 53.2 45.0±0.01

CMF

ResNet-50 47.6 75.8 46.3 24.0 53.5 49.4±0.21
ViT 44.0 67.8 39.6 20.6 50.2 44.5±0.08

Swin 43.9 67.8 39.3 19.7 53.3 44.8±0.04
D2V 41.7 67.4 36.4 18.7 49.8 42.8±0.05

26



Published as a conference paper at ICLR 2024

Table 22: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-CS. We choose q = 0.00025 for ResNet-50.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketch

TENT

ResNet-50 53.0 78.1 48.0 24.7 60.2 52.8±0.04
ViT 57.3 86.1 80.9 93.1 99.2 83.3±0.13

Swin 52.6 80.1 59.9 43.7 95.6 66.4±0.33
D2V 49.1 78.8 56.6 40.4 89.5 62.9±0.21

CoTTA

ResNet-50 54.7 79.7 49.5 24.6 62.5 54.2±0.07
ViT 56.8 76.0 45.0 21.8 66.8 53.3±0.03

Swin 52.6 73.7 44.2 20.5 64.8 51.2±0.01
D2V 48.7 72.9 41.0 20.1 56.5 47.8±0.02

RoTTA

ResNet-50 55.1 78.3 48.5 24.0 59.3 53.0±0.03
ViT 56.3 74.6 43.5 21.5 61.4 51.4±0.03

Swin 52.1 72.8 42.1 20.0 58.5 49.1±0.03
D2V 48.6 72.6 40.7 20.0 53.9 47.2±0.03

SAR

ResNet-50 53.3 77.9 47.5 24.5 58.7 52.6±0.01
ViT 55.7 82.6 53.0 21.5 73.5 57.3±0.41

Swin 51.2 78.4 48.6 20.8 68.6 53.5±1.05
D2V 48.3 74.4 42.9 20.3 56.5 48.5±0.10

EATA

ResNet-50 51.1 76.6 47.1 24.0 57.6 51.3±0.25
ViT 52.4 70.1 40.8 20.6 52.4 47.2±0.10

Swin 50.3 70.3 41.2 19.5 55.4 47.4±0.18
D2V 47.3 71.0 39.2 19.2 52.2 45.8±0.06

ROID

ResNet-50 45.6 74.3 44.8 23.1 52.7 48.1±0.07
ViT 46.2 68.2 39.9 20.5 50.2 45.0±0.04

Swin 46.1 67.7 39.8 19.7 52.2 45.1±0.10
D2V 44.0 69.0 37.7 19.3 51.2 44.2±0.06

CMF

ResNet-50 45.2 74.3 44.9 22.9 51.9 47.8±0.06
ViT 43.9 66.4 39.4 20.0 47.4 43.4±0.07

Swin 44.2 66.6 39.0 19.2 48.8 43.6±0.12
D2V 43.0 66.5 36.3 18.5 47.3 42.3±0.11
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Table 23: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-LS (δ = 0.0) over TC-CS. We choose q = 0.00025.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketc

TENT
ViT 58.2 86.1 82.2 94.2 99.2 84.0±0.01

Swin 52.9 79.9 60.5 51.0 98.4 68.5±0.17
D2V 49.2 78.3 56.3 40.7 88.3 62.6±0.01

CoTTA
ViT 56.8 76.1 45.0 22.1 66.8 53.3±0.04

Swin 52.6 73.7 44.2 20.6 64.9 51.2±0.01
D2V 48.7 72.9 41.0 20.1 56.6 47.8±0.01

RoTTA
ViT 56.7 75.5 44.9 22.7 68.3 53.6±0.08

Swin 52.5 73.3 43.2 20.3 63.7 50.6±0.03
D2V 48.7 72.8 41.1 20.5 56.6 48.0±0.02

SAR
ViT 64.5 80.9 51.8 21.8 73.5 58.5±0.40

Swin 60.3 77.7 50.0 20.7 68.3 55.4±0.17
D2V 48.7 75.4 46.8 20.1 56.6 49.5±0.04

EATA
ViT 53.5 71.1 52.8 34.6 80.8 58.6±1.45

Swin 51.2 71.3 45.7 29.8 73.2 54.2±0.99
D2V 47.3 70.5 40.3 20.0 52.6 46.1±0.37

LAME
ViT 29.5 75.6 18.7 9.7 42.6 35.2±0.55

Swin 24.7 62.9 18.6 8.3 36.2 30.1±0.16
D2V 26.0 68.8 19.2 8.0 26.7 29.7±0.15

ROID
ViT 28.9 55.8 24.9 11.1 36.3 31.4±0.07

Swin 26.6 54.0 24.2 10.6 36.2 30.3±0.25
D2V 25.4 56.0 21.2 10.5 33.3 29.3±0.03

CMF
ViT 28.5 54.8 25.5 11.0 35.4 31.0±0.10

Swin 26.6 52.8 23.8 10.5 34.5 29.6±0.21
D2V 24.9 52.8 20.4 10.2 30.9 27.8±0.12
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Table 24: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-LS (δ = 0.01) over TC-CS. We choose q = 0.00025.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketc

TENT
ViT 57.5 86.1 80.8 93.5 99.2 83.4±0.30

Swin 52.7 79.9 59.5 48.6 96.8 67.5±1.86
D2V 49.1 78.7 56.5 40.9 89.3 62.9±0.35

CoTTA
ViT 56.8 76.1 45.0 22.0 66.9 53.4±0.01

Swin 52.6 73.7 44.2 20.6 64.9 51.2±0.02
D2V 48.7 72.9 41.0 20.1 56.5 47.9±0.00

RoTTA
ViT 56.7 75.4 44.6 22.5 67.3 53.3±0.08

Swin 52.5 73.3 43.1 20.3 62.8 50.4±0.03
D2V 48.7 72.8 41.1 20.4 56.2 47.8±0.00

SAR
ViT 62.8 82.2 51.1 21.8 74.8 58.6±0.80

Swin 52.5 78.9 46.8 20.7 69.5 53.7±0.53
D2V 48.3 75.2 45.1 20.4 56.4 49.1±0.14

EATA
ViT 53.3 70.3 42.1 26.7 61.3 50.7±1.20

Swin 50.5 70.6 43.4 22.1 61.6 49.6±0.41
D2V 47.3 70.9 41.5 22.7 52.9 47.1±1.08

LAME
ViT 43.2 82.9 29.4 14.7 54.0 44.8±0.69

Swin 38.8 73.4 29.2 11.4 46.8 39.9±0.77
D2V 39.8 79.2 29.6 12.5 38.1 39.9±0.56

ROID
ViT 31.0 56.9 25.5 11.5 35.8 32.2±0.10

Swin 28.6 55.0 24.5 11.2 36.4 31.1±0.11
D2V 27.9 57.6 22.3 10.9 34.7 30.7±0.09

CMF
ViT 30.7 56.1 25.5 11.4 35.2 31.8±0.10

Swin 28.3 53.6 23.8 11.0 35.0 30.3±0.24
D2V 27.0 53.7 21.2 10.4 30.5 28.6±0.11
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Table 25: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-LS (δ = 0.1) over TC-CS.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketc

TENT
ViT 57.3 86.3 81.0 93.9 99.2 83.5±0.08

Swin 52.7 80.0 59.4 44.6 95.3 66.4±0.38
D2V 49.1 78.9 56.5 40.5 89.3 62.9±0.29

CoTTA
ViT 56.8 76.0 45.0 21.8 66.8 53.3±0.04

Swin 52.6 73.7 44.2 20.5 64.8 51.2±0.03
D2V 48.7 72.9 41.0 20.1 56.5 47.9±0.00

RoTTA
ViT 56.5 75.1 44.1 22.1 65.1 52.6±0.06

Swin 52.3 73.0 42.6 20.2 61.1 49.8±0.05
D2V 48.7 72.7 40.9 20.2 55.3 47.6±0.01

SAR
ViT 59.0 83.2 50.5 21.6 74.4 57.7±0.56

Swin 51.6 78.8 47.8 20.8 68.0 53.4±0.70
D2V 48.4 74.6 43.5 20.3 56.4 48.6±0.04

EATA
ViT 52.2 69.9 41.2 21.0 52.7 47.4±0.16

Swin 50.2 70.0 41.2 19.8 55.9 47.4±0.21
D2V 47.3 70.7 39.2 19.4 51.9 45.7±0.08

LAME
ViT 74.0 95.3 57.6 37.2 80.5 68.9±0.24

Swin 70.3 92.2 57.7 27.9 74.9 64.6±0.25
D2V 69.8 94.5 57.6 32.8 68.2 64.6±0.25

ROID
ViT 37.9 63.2 30.9 13.6 41.3 37.3±0.12

Swin 36.8 62.1 30.2 13.2 42.3 36.9±0.11
D2V 35.5 63.7 28.0 12.8 41.7 36.3±0.06

CMF
ViT 36.6 61.2 30.5 13.7 38.4 36.1±0.11

Swin 35.7 59.8 28.8 12.5 38.4 35.0±0.05
D2V 34.4 60.3 26.6 12.1 36.8 34.1±0.13
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Table 26: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-LS (δ = 1.0) over TC-CS.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketc

TENT
ViT 57.2 86.1 81.1 93.6 99.2 83.4±0.07

Swin 52.6 79.9 59.3 43.2 95.4 66.1±0.23
D2V 49.1 78.8 56.5 40.0 89.3 62.7±0.17

CoTTA
ViT 56.8 76.0 45.0 21.8 66.7 53.3±0.01

Swin 52.6 73.7 44.2 20.5 64.9 51.2±0.02
D2V 48.7 72.9 41.0 20.1 56.5 47.8±0.01

RoTTA
ViT 56.4 74.8 43.7 21.7 62.9 51.9±0.06

Swin 52.1 72.8 42.1 20.0 59.3 49.3±0.04
D2V 48.6 72.7 40.7 20.0 54.4 47.3±0.02

SAR
ViT 54.4 82.6 53.7 21.5 74.6 57.4±0.12

Swin 51.6 78.6 52.0 20.7 69.6 54.5±0.68
D2V 48.3 74.4 43.1 20.3 56.4 48.5±0.09

EATA
ViT 52.5 70.1 40.6 20.5 52.3 47.2±0.04

Swin 50.4 70.1 41.0 19.5 55.8 47.4±0.10
D2V 47.3 71.1 39.1 19.2 52.0 45.7±0.04

LAME
ViT 96.6 99.6 85.1 71.1 97.8 90.0±0.09

Swin 94.1 99.5 85.0 59.1 96.8 86.9±0.24
D2V 94.8 99.6 84.7 68.5 94.1 88.3±0.13

ROID
ViT 44.1 67.5 37.6 17.0 48.2 42.9±0.03

Swin 44.1 67.0 37.3 16.5 50.3 43.0±0.06
D2V 42.4 68.2 35.0 15.8 49.3 42.2±0.04

CMF
ViT 42.4 65.7 36.9 16.3 45.4 41.3±0.06

Swin 42.8 65.4 35.9 15.5 46.7 41.3±0.04
D2V 41.3 65.5 33.5 15.0 45.1 40.1±0.10
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Table 27: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-LS (δ = 5.0) over TC-CS.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketc

TENT
ViT 57.3 86.0 80.5 92.8 99.2 83.1±0.26

Swin 52.6 79.9 59.3 43.0 95.3 66.0±0.07
D2V 49.1 78.8 56.5 40.1 89.6 62.8±0.06

CoTTA
ViT 56.8 76.0 44.9 21.8 66.8 53.3±0.02

Swin 52.6 73.7 44.2 20.5 64.8 51.2±0.01
D2V 48.7 72.8 41.0 20.1 56.5 47.8±0.01

RoTTA
ViT 56.3 74.7 43.6 21.7 62.5 51.7±0.05

Swin 52.1 72.7 42.0 20.0 59.1 49.2±0.03
D2V 48.6 72.6 40.7 20.0 54.2 47.2±0.01

SAR
ViT 55.2 82.8 53.7 21.5 73.6 57.3±0.22

Swin 51.8 78.5 49.2 20.7 69.7 54.0±0.72
D2V 48.3 74.3 43.0 20.3 56.4 48.4±0.12

EATA
ViT 52.3 70.0 40.7 20.5 52.4 47.2±0.08

Swin 50.6 70.4 41.1 19.5 55.1 47.3±0.05
D2V 47.3 71.0 39.0 19.2 51.9 45.7±0.06

LAME
ViT 98.8 99.6 92.1 76.9 99.1 93.3±0.17

Swin 98.0 99.6 91.9 64.3 99.3 90.6±0.23
D2V 98.4 99.6 91.7 75.7 98.3 92.8±0.16

ROID
ViT 45.3 67.8 38.9 18.3 49.2 43.9±0.09

Swin 45.0 67.8 38.9 17.6 51.3 44.1±0.06
D2V 43.5 68.7 36.4 17.0 50.3 43.2±0.04

CMF
ViT 43.6 66.1 38.5 17.6 46.5 42.5±0.08

Swin 43.8 66.3 37.9 16.7 47.7 42.5±0.07
D2V 42.4 66.0 34.9 16.1 46.0 41.1±0.06
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Table 28: Average error rate (%) and their corresponding standard deviations on D109 in the scenario
of TC-LS (δ = 0.1) over CS. We choose q = 0.00025.

Method Model Adaptation Order (→) Avg.
clipart infograph painting real sketc

TENT
ViT 82.1 91.1 73.5 47.4 88.6 76.5±0.52

Swin 66.5 84.0 55.6 25.1 76.5 61.5±0.31
D2V 60.4 83.0 51.8 25.2 67.7 57.6±0.46

CoTTA
ViT 56.8 76.4 44.7 21.9 67.3 53.4±0.02

Swin 52.4 73.9 44.1 20.5 65.0 51.2±0.03
D2V 48.6 72.9 40.8 20.2 56.5 47.8±0.03

RoTTA
ViT 56.8 75.2 44.9 22.5 67.5 53.4±0.05

Swin 51.5 72.8 42.9 20.4 64.1 50.4±0.07
D2V 48.5 72.8 41.1 20.5 56.6 47.9±0.05

SAR
ViT 66.1 82.5 54.0 26.0 76.4 61.0±0.51

Swin 55.6 77.7 46.4 21.5 67.1 53.6±0.24
D2V 49.6 74.7 41.1 20.2 57.5 48.6±0.35

EATA
ViT 55.3 73.6 45.9 24.9 64.6 52.9±2.98

Swin 51.0 71.9 44.3 21.1 63.2 50.3±0.25
D2V 45.5 70.7 39.4 19.7 54.1 45.9±0.13

LAME
ViT 28.7 27.9 32.2 30.5 30.2 29.9±0.18

Swin 27.4 26.6 31.0 29.0 28.8 28.6±0.23
D2V 27.7 27.2 31.6 29.6 29.1 29.1±0.19

ROID
ViT 27.1 47.4 24.8 13.1 33.3 29.1±0.09

Swin 24.7 47.0 24.0 12.7 32.4 28.2±0.05
D2V 22.3 46.0 21.9 12.3 29.1 26.3±0.07

CMF
ViT 26.7 47.1 24.4 13.0 32.3 28.7±0.19

Swin 23.8 46.4 23.4 12.6 30.7 27.3±0.05
D2V 20.1 45.1 20.9 12.0 26.4 24.9±0.10
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