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Abstract001

Geographic language understanding (GLU)002
tasks ask models to map from text to maps.003
Geographical complex description parsing004
(GCDP) is a GLU task where models must as-005
sign a set of map coordinates to an unnamed006
location described by text such as “. . . between007
the towns of Adrano and S. Maria di Lico-008
dia, 32 kilometres northwest of Catania”. In009
GCDP, the input is both the text describing the010
unnamed location and the geometries of the011
other locations named in the description (e.g.,012
the geometries of Adrano, S. Maria di Licodia,013
Catania), and the output is the geometry of the014
unnamed location. In this paper, we convert a015
GCDP corpus into an image+text→image016
benchmark to evaluate recent large language-017
vision models on this complex task. The018
models show weak performance, with analy-019
sis showing a lack of understanding of even020
simpler tasks like recognizing regions by color.021

1 Introduction022

The goal of geographic language understanding023

(GLU) is to develop models that can map from de-024

scriptions of locations in text to the corresponding025

locations on a map. A commonly studied GLU task026

is geoparsing, which asks models to map mentions027

of locations in text to their geographical geome-028

tries, typically by linking mentions to entries in a029

toponym database like GeoNames1 (Gritta et al.,030

2018; Zhang and Bethard, 2023). A more complex031

GLU task is geographical complex description pars-032

ing (GCDP; Laparra and Bethard, 2020), where the033

input is a description of a geographical region and034

a list of reference geometries (sets of coordinates),035

and the goal is to predict the geometry of the re-036

gion described. For example, the text “a town and037

comune in the Metropolitan City of Catania, Sicily,038

southern Italy. . . located between the towns of Ad-039

rano and S.Maria di Licodia, 32 kilometres (20 mi)040

1http://www.geonames.org

between the towns of Adrano
and S. Maria di Licodia, 32
kilometres (20 mi) northwest of
Catania

TARGET is between the towns
of RED and LIME, 32 kilo-
metres (20 mi) northwest of
BLUE.

Multi-Modal Model

Figure 1: Framing geographic geometry prediction as a multi-
modal image+text→image problem. The toponyms in
the left text and geometries in the right figure of the first row
are translated into color words in text and a corresponding
figure of colored geometries on a black background in the
second row. A model should take the modified text and the
image with colored regions as input, and generate an image
with a white region (third row). That image can then be
translated into the corresponding target geometry.

northwest of Catania.” describes a location that is 041

not explicitly named. The goal is to approximate 042

the geometry of the location using the description 043

as input along with the geometries of the reference 044

locations: Catania, Sicily, Italy, Adrano, etc. It is 045

typically impossible to predict the precise target 046

geometry given only the input text and reference 047

geometries, but an approximately correct geometry 048

is enough for many applications. 049

Laparra and Bethard (2020) propose a grammar- 050

based baseline that achieves 22.1 F1 on this task 051

by parsing the descriptions into spatial operators 052

(functions) whose composition yields the target ge- 053

ometry. We estimate that humans can achieve about 054

35 F1 on this task (see appendix A), thus there 055

is room for improvement with machine learning 056

methods. However, a major challenge for machine 057

learning methods is that the reference geometries, 058

be they polygons or linestrings, are represented by 059
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a variable number of coordinates, ranging from just060

a few to over a million. Although methods exist061

to convert geometries to machine-learned embed-062

dings (Mai et al., 2022), to date there is no clear063

way to get language models to output geometries.064

We consider an alternative to predicting coordi-065

nate sets: convert geometries to bitmap images and066

apply multi-modal language-vision models (LVM),067

as shown in Figure 1. Our contributions are 2:068

• We propose a strategy to convert GCDP into an069

image+text→image problem and evaluate070

two LVMs designed to work in this setting.071

• Due to the high difficulty of the task, we develop072

4 variants of the dataset, each designed to be sim-073

pler than the GCDP task and individually analyze074

a different required skill to solve the task.075

• We find that although the current models show076

some ability to solve the task, their failures stem077

from lack of understanding of simpler tasks like078

recognizing regions by color.079

2 Related Work080

Traditionally, geographic language understanding081

has focused on identifying geographical entities082

following a named entity recognition approach083

(Karagoz et al., 2016; Magge et al., 2018) and link-084

ing such named entities to a reference knowledge085

base such GeoNames (Karagoz et al., 2016; Magge086

et al., 2018; Zhang and Bethard, 2023; Zhang et al.,087

2024). To broaden the scope of research beyond088

geolocations explicitly named in the text, Laparra089

and Bethard (2020) proposed the GCDP task where090

an unnamed geolocation is linked to its geometry091

based on a description of the unnamed geolocation092

and the geometries of nearby named geolocations.093

Many recent language-vision models target tasks094

without an image output: text-image reasoning,095

text-image classification, visual question answer-096

ing, etc. (LXMERT, Tan and Bansal 2019; CLIP,097

Radford et al. 2021; LLaVA, Liu et al. 2023; Qwen-098

VL, Bai et al. 2023; etc.). These models are not099

ideal for an image+text→image task as they100

lack a decoder that can decode an output image101

from the latent-space representation of the input102

text and image. We choose CLIP as a baseline in103

this paper because of its popularity and success on104

several multi-modal tasks, and train a decoder that105

can decode the CLIP latent space into an image.106

A few works take image and text as input107

and directly output images or masks. Instruct-108

2Code and data will be available.

Pix2Pix (Brooks et al., 2023) is a diffusion-based 109

model that can generate an edit of the original in- 110

put image based on text instructions. This model 111

is not good at isolating specified objects, mak- 112

ing it difficult to locate reference geometries in 113

our task. LISA (Lai et al., 2023), built from the 114

popular LLaVA (Liu et al., 2023) LVM, is LoRA- 115

finetuned (Hu et al., 2022) to generate segmentation 116

masks given an image and a text description of the 117

target. The downstream task of LISA is most simi- 118

lar to our task, so we choose it as another baseline. 119

3 Datasets 120

We use the Laparra and Bethard (2020) GCDP cor- 121

pus, derived semi-automatically from Wikipedia 122

and OpenStreetMap, that contains 360,187 uncu- 123

rated training examples and 1,000 manually cu- 124

rated test examples. We select 67,293 and 1,000 ex- 125

amples for training and development, respectively, 126

where all the reference locations in the description 127

have associated geometries (see Appendix B). We 128

use the same test set as Laparra and Bethard (2020). 129

In the following sections, we first introduce 130

our translation of the GCDP problem into an 131

image+text→image problem, then introduce 132

our dataset variants, shown in Figure 2, that allow 133

the study of different capabilities of LVMs. See 134

Appendix B for more dataset generation details. 135

3.1 IMAGE 136

Obtaining an image-based dataset from GCDP data 137

requires decisions of which part of the world map to 138

show in the image and how to show links between 139

toponyms in the text and geometries in the image. 140

Decide boundary: To create an image, we must 141

first select a small region of the map, as using the 142

entire map would result in most locations being 143

smaller than a single pixel. A good region for 144

GCDP should completely include the target geome- 145

try, represent such geometry with a sufficient num- 146

ber of pixels and include at least a portion of every 147

reference geometry. However, the target geometry 148

is not known at prediction time and thus should 149

not be used when selecting the boundary. We thus 150

use a heuristic: set the boundary to 100 km in each 151

cardinal direction from the geometric median of 152

the centroids of the reference geometries. 153

Link reference geometries and toponyms: We 154

create a pixel grid with N × N pixels represent- 155

ing the selected boundary. For the input image, 156
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Input image

Input text

CLIP

LISA

Target

operator

TARGET 
borders 
RED to the 
southwest

image

TARGET is 
a township 
in RED 
GREEN, …

oracle

TARGET is 
a township 
in RED 
GREEN, …

color

TARGET is 
CYAN

copy-color

TARGET is 
GREEN

Figure 2: One example (column) from each of the datasets:
IMAGE, ORACLE, COLOR, COPY-COLOR and OPERATOR.
The last row shows the output target geometry, and the first
two rows show the input text and input images containing
the reference geometries. A color mentioned in the input text
refers to the region in the input image with such color. When
two regions overlap the image shows the composition of their
colors. The CLIP and LISA rows show the predictions of the
respective models as white regions.

we overlay the grid with the reference geometries,157

assigning a different color to each, calculating the158

average of the colors in RGB space when geome-159

tries overlap. For the output image, we overlay the160

grid with only the target geometry in white. To161

link the reference geometries in the image with the162

reference toponyms in the text, we replace each163

toponym in the text with the color name of corre-164

sponding geometry. The middle of Figure 1 visual-165

izes this and the preceding step.166

3.2 Image Oracle Boundary (ORACLE)167

The method to decide the boundary in section 3.1168

may result in wide boundaries where the target ge-169

ometry is represented with just a few pixels. To bet-170

ter understand how this size affects LVMs, we de-171

velop an oracle version of the image-based dataset172

where we use the target geometry (hence an oracle)173

to select a narrower boundary. We start from the174

envelope covering the target geometry and extend175

it until it touches at least one point of all reference176

geometries. We add 10 kilometers in all 4 cardi-177

nal directions to ensure that the images include a178

portion of all geometries.179

3.3 Image Colored Region Identification180

For the image+text→image approach to work,181

it is essential that the models are able both to re-182

late textual mentions of colors to those colors in183

the images, and to differentiate objects of a given184

color from the other objects in the image. How- 185

ever, this is not possible to analyze in detail in the 186

GCDP dataset, due to the complexity of the task. 187

Therefore, we generate two datasets where the text 188

simply states the color of the target in the input 189

image, e.g., “TARGET is RED”. 190

COLOR The input image contains the target ge- 191

ometry and all reference geometries, and the output 192

image is the same as image dataset. This dataset 193

tests whether the models are able to differentiate 194

objects of the color mentioned in the text from 195

objects of other colors. 196

COPY-COLOR The input image contains only 197

the geometry of the target image, and the output 198

image is the same as the image dataset. This dataset 199

tests whether the models are able to recognize a 200

region in an image based on color. 201

3.4 Image Single Operator (OPERATOR) 202

The image+text→image approach requires 203

the models to interpret the spatial relationships de- 204

scribed in the text and to perform the corresponding 205

calculations to obtain the target geometry. Most in- 206

put descriptions in the Laparra and Bethard (2020) 207

dataset correspond to calculations involving mul- 208

tiple spatial relationships. To understand whether 209

models can understand the simpler case of a single 210

spatial relation (e.g. “between”) in isolation, we 211

generate a synthetic dataset. The descriptions in- 212

clude only a single spatial relation using the gram- 213

mar defined by Laparra and Bethard (2020) and 214

their deterministic implementation of the spatial 215

operators. A description in this dataset looks like 216

“TARGET is 50 km Southwest of RED”. See ap- 217

pendix B.4 for a list of the operators. 218

4 Metrics 219

We apply the following image-based metrics to 220

our analysis. Let the area of the target region be St, 221

the area of the predicted region be Sp, the area of 222

St ∩ Sp be SI , we evaluate the performance of the 223

models using the per pixel precision P , recall R, 224

and F1 score. 225

P =
SI

St
R =

SI

Sp
F1 =

2PR

P +R
226

We include results using the polygon-based met- 227

rics proposed by Laparra and Bethard (2020) calcu- 228

lating the overlap between the predicted and target 229

geometries. For this evaluation, the predicted im- 230

ages must be translated back to a set of coordinates. 231
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RANDOM CLIP LISA GRAMMAR

dataset P R F1 P R F1 P R F1 P R F1

IMAGE 1.3 50 2.5 12.7 34.1 18.5 15.9 31.2 21.1 - - -
ORACLE 10.7 50 17.7 21.0 20.4 20.7 35.9 42.6 39.0 - - -
COLOR 19.8 50 28.3 38.2 56.1 45.5 56.1 61.5 58.7 - - -
COPY COLOR 20.2 50 28.8 43.7 59.4 50.3 73.5 82.1 77.5 - - -
OPERATOR 12.4 50 19.9 23.9 26.1 25.0 89.7 89.8 89.8 - - -

GCDP - - - 7.2 27.0 11.3 9.1 38.7 14.7 17.2 31.0 22.1

Table 1: Performance of CLIP and LISA models on the five image-based datasets and on GCDP. The results for IMAGE,
ORACLE, COLOR COPY COLOR and OPERATOR are calculated using the image-based metrics. The models are compared on
these 5 datasets with the random BASELINE. The results for GCDP are calculated using the polygon-based metrics and the
models are compared with GRAMMAR based model of Laparra and Bethard (2020).

5 Baselines232

As explained in Section 2, we test two different233

LVMs: CLIP and LISA. See Appendix C for why234

GPT-4o fails on this task; we do not include it235

in the tested LVMs. See Appendix D for model236

implementation details. We compare these models237

on the polygon-based evaluation with the grammar-238

based model by Laparra and Bethard (2020) and on239

the image-based evaluation with a random baseline.240

Random We report the theoretical results of a241

random baseline which has a 50% of chance to242

predict each pixel as part of the target.243

CLIP (Radford et al., 2021) To predict the target244

region, we use CLIP as an encoder to extract text245

and image features and feed the fused features to a246

decoder (Appendix D) to generate the target region.247

LISA (Lai et al., 2023) We finetune the model248

as in the LISA paper: the text decoder is trained249

to generate a special <SEG> token and the image250

decoder is trained to generate a segmentation mask251

(target region) from the special tokens.252

6 Results and Discussion253

The last row of Table 1 shows that on GCDP in254

terms of F1, the grammar-based baseline of La-255

parra and Bethard (2020) outperforms both CLIP256

and LISA, though both of those models outperform257

the random baseline. Performance on the remain-258

ing rows, the image-based datasets, provides some259

insight into why these models have difficulties solv-260

ing GCDP. We observe that:261

The size of the target regions significantly influ-262

ences the model performance. F1 score of the263

CLIP model increases 2.2 points and the LISA per-264

formance nearly doubles when using the ORACLE265

boundaries where the target regions are a larger266

portion of the image. Both models also perform267

better in the COPY COLOR, COLOR, and OPERATOR 268

datasets where the target region area is also gener- 269

ally larger. This suggests that in real-world settings 270

where an oracle boundary is not available, finding 271

a good boundary is key for model performance. 272

Segmentation-based pre-training helps to un- 273

derstand spatial relations in text. There is a 274

huge gap between CLIP and LISA on the OPER- 275

ATOR dataset. LISA is better able to understand 276

spatial relations in text and reason over the image 277

accordingly. This may also explain LISA’s better 278

performance on IMAGE and ORACLE datasets. 279

Segmentation-based pre-training helps to cap- 280

ture the shape of the target regions better. As 281

shown in the third row of Figure 2, CLIP gener- 282

ates mostly circle-like shapes in the middle of the 283

image. While this guarantees some recall of the pre- 284

diction, the overall precision of CLIP is low. LISA 285

captures the shape of geometries better. LISA can 286

get a near-perfect target shape in the COPY COLOR 287

dataset and a very close guess when predicting the 288

result on OPERATOR. This is also verified by the 289

high performance of LISA on these two datasets. 290

Colors are more difficult to understand than 291

shapes. Understanding colors is crucial for the 292

model to capture the relationship between the in- 293

put text and image. The task not only requires the 294

model to relate the color words to colors in the im- 295

age, but also requires the model to understand how 296

different colors mix when there are overlapping 297

regions. Our results show that when this kind of 298

color understanding is required, models tends to 299

perform poorly. This is indicated by the low perfor- 300

mance of both models on the COLOR, ORACLE, and 301

IMAGE datasets. This suggests that more work is 302

needed to infuse color knowledge into LVMs, and 303

that it may be worth exploring ways of representing 304

geometries in images that do not rely on color. 305
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Limitations306

While the paper gives insights into the potential307

and limitations of two multi-modal language-vision308

models for GCDP, it is unable to evaluate the full309

range of multi-modal language-vision models, as310

most are not designed with the necessary inputs and311

outputs for image+text→image tasks. Further312

investigation is required into algorithms that can313

take language-vision models that were not designed314

for image+text→image tasks and alter their315

inputs and outputs so that they can be used in them.316

Intended Use and Ethical Concerns317

The data and models we developed in this paper318

is intended to be used on GCDP tasks. We do not319

foresee immediate ethical concerns of our work.320

However, we acknowledge that as we use LVMs321

in our experiments, the models may generate un-322

expected images if not properly used by an user or323

not used on this task.324
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A Human Performance on GCDP410

Laparra and Bethard (2020) never evaluated hu-411

mans on the geographical complex description pars-412

ing (GCDP) task, so to get a rough approximation413

of the difficulty of the task, one author randomly414

sampled 10 geographical descriptions and manu-415

ally annotated polygons. The annotator followed416

the guideline that the predicted polygon should be417

based solely on the text and the polygons for the ref-418

erence locations; no external knowledge about the419

shape of geographical regions was to be used. For420

each description, the annotator wrote Python code421

that took the OpenStreetMap ids of the reference422

polygons as input, and used the shapely library to423

generate an output polygon. Due to the complexity424

of translating the text description into appropriate425

shapely calls, a single description often required426

more than 10 minutes of writing code.427

Comparing the human-annotated examples to428

the target polygons in the dataset, average preci-429

sion was 22.0 and average recall was 74.4, for an430

average F1 of 34.0. Recall was higher than pre-431

cision because most descriptions are not specific432

enough to pinpoint the exact location described.433

For example, the target location Gylen Castle is434

described as a ruined castle, or tower house, at the435

south end of the island of Kerrera, but the castle436

is tiny in comparison to the southern part of the437

island. Comparing the human performance to the438

model performance in Table 1, where automatic439

approaches achieve at most 17.2 precision, 38.7 re-440

call, and 22.1 F1, there is still substantial room for441

improvement between the best models and human442

performance.443

B Dataset Generation444

The corpus by Laparra and Bethard (2020) con-445

tains 360,187 uncurated examples and a test set of446

1,000 manually curated examples. In our experi-447

ments, we use the same test set. For training, we448

use the uncurated portion of the corpus, however449

this portion does not guarantee that all the loca-450

tions mentioned in the descriptions have a mapping451

to their corresponding geometry. We run named-452

entity recognition on the uncurated examples to453

obtain all the location mentions, and check if the454

recognized locations are linked to a geometry. We455

keep only those descriptions that have all the rec-456

ognized locations linked. As a result, we obtain457

68,293 examples from which we use 67,293 as458

training set and 1,000 as development set.459

All images in our image-based datasets have the 460

size of 224× 224. This is the default input size of 461

the CLIP model. LISA does not have constraint on 462

the input image size. 463

B.1 Image-based Dataset 464

Below we detail the steps we follow for the conver- 465

sion of this dataset: 466

Generate boundary: From the reference geome- 467

tries, we first discard the geometry with the largest 468

area to avoid boundaries that are too wide for the 469

target geometry. The geometry is discarded only 470

to calculate the boundary but it is included in the 471

resulting image. Then, we calculate the geometric 472

median (which is more robust to outliers than the 473

centroid) of the centroids of the remaining refer- 474

ence geometries. We set the boundary to 100 km 475

in each cardinal direction from this centroid and 476

obtain the coordinates of each of the 4 corners of 477

this boundary 478

This process ensures that all boundaries are 200 479

km × 200 km, guaranteeing that the distances men- 480

tioned in the text will have the same relation to the 481

distances in the images regardless of the size of 482

the reference (or target) geometries. For example, 483

if a description mentions a distance of “100 km” 484

between two locations and it is represented as 40 485

pixels in the resulting image, a mention of “50 km” 486

in another description will be represented with 20 487

pixels in the corresponding image. 488

Generate images: Once we calculate the bound- 489

ary for the images, we apply postgis’ st_asraster3 490

function to obtain a bitmap representation of the 491

geometries. The function creates a pixel grid with 492

N × N pixels where each corner corresponds to 493

each coordinate of the boundary. The function over- 494

lays this grid on a geometry and calculates if each 495

pixel intersects with the geometry, assigning 1 if 496

true and 0 otherwise. 497

After obtaining a bitmap image (raster) for each 498

geometry, each pixel grid is translated into a RGB 499

format, using a different color for each geometry. 500

Then, all these RGB pixel grids are joined in a 501

single image. Where two or more colors overlap 502

in one pixel, we calculate the average. E.g. for a 503

pixel where (255, 0, 0) and (0, 255, 0) overlap, we 504

assign (128, 128, 0) in the final image. In the case 505

of the target image, only one geometry will be part 506

3https://postgis.net/docs/RT_ST_
AsRaster.html

6

https://postgis.net/docs/RT_ST_AsRaster.html
https://postgis.net/docs/RT_ST_AsRaster.html


of it and we use the white color (255, 255, 255) to507

represent it.508

Update the descriptions: The last step consists509

of replacing all the mentions of each location in510

the description with the name of the color used in511

the previous step to represent the corresponding512

geometry. For example, if the location Adrano is513

assigned the color (255, 0, 0), then all instances of514

Adrano in the text will be replaced with the string515

“RED”.516

B.2 Image Oracle Boundary (ORACLE517

To find the oracle boundary, we start initially from518

the envelope covering the target geometry and ex-519

tend it until it touches at least one point of all refer-520

ence geometries. Finally, we extend the boundary521

10 kilometers in all 4 cardinal directions to ensure522

that the images include a portion of all geometries.523

Once the boundary is obtained, the reference and524

target images are generated as described in 3.1.525

Unlike the dataset described in 3.1 where all526

images correspond to the same spatial extent, the527

boundary of the images in this version may cover528

different extents in each case, which does not guar-529

antee the correspondence between the distance530

units described in the text and the distance in pixels531

of the images. To solve this problem, we automat-532

ically modify the spatial units mentioned in the533

text by scaling them appropriately. First, for each534

case, we calculate the ratio between the number of535

pixels of the width of the images and the width in536

kilometers of the boundary. Then we identify by a537

simple regular expression all mentions of distance538

units, e.g. “100 KM”, extract the quantity and mul-539

tiply it by the ratio calculated in the previous step.540

Finally, we modify the text with the result of this541

calculation rounded to the nearest integer.542

B.3 Image Colored Region Identification543

To generate each example of the COLOR and COPY-544

COLOR datasets, we randomly select one of the545

reference geometries and obtain a target image con-546

taining only that geometry. The description in this547

case will be simply “TARGET is COLOR”, where548

COLOR corresponds to the color assigned to the se-549

lected geometry. Finally, in each of the datasets, we550

follow a different strategy to generate the reference551

image:552

COLOR The reference image contains all refer-553

ence geometries including the one selected for the554

target image.555

COPY-COLOR The reference image contains 556

only the geometry selected for the target image. 557

B.4 Image Single Operator (OPERATOR) 558

The GCDP paper defined 5 spatial relations of ge- 559

ometries and implemented corresponding polygon 560

operators. We refer the reader to their paper for the 561

complete details, but briefly: 562

• Between(r1, r2): The target is between 563

reference location r1 and r2. 564

• Intersection(r1, r2, ...): The tar- 565

get region is the intersection of all reference lo- 566

cations r1, r2, . . . in the arguments. 567

• Union(r1, r2, ...): The target region is 568

the union of reference locations r1, r2, . . . in 569

the arguments. 570

• Adjacent(r1): The target location shares 571

some part of the border with the reference lo- 572

cation r1. 573

• Distance(r1, D, u, geocardinal): 574

The distance between the target and the reference 575

r1 is D. u is the unit of the distance (e.g. 576

kilometer, mile). geocardinal (e.g. “north 577

of”) is optional and when given it refers to the 578

direction from the reference r1 to the target. 579

We use these operators to generate a single-operator 580

understanding dataset. Each example in this dataset 581

is generated following the steps: 582

1. One of the Laparra and Bethard (2020) operators 583

is randomly selected and the values of the argu- 584

ments are also randomly selected. For example, 585

if the operator takes a geocardinal as argument, 586

its values are selected among the possible values 587

None, North, Northeast, and so on. 588

2. Select a pattern defined in the grammar for the 589

operator selected in the previous step and com- 590

plete it with the selected values. For example, 591

a possible pattern could be “TARGET is [Dis- 592

tance] [Unit] [Cardinal] of [Reference]” which 593

could be completed as “TARGET is 50 km 594

Southwest of REFERENCE”. 595

3. Generate the necessary reference geometries 596

randomly. For instance, we generate a geometry 597

for the REFERENCE in the previous example. 598

4. Apply the corresponding operator with the val- 599

ues of the arguments obtained in step 1 and the 600

references in step 3, to obtain a new geometry 601

that corresponds to the TARGET of the descrip- 602

tion generated in step 2. 603

After this process, the reference and target images 604

are generated as explained in Section 3.1, assigning 605

a random color to the reference geometry, white 606
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to the target, and updating the description accord-607

ingly.608

C GPT-4o609

We do not consider GPT-4o as a baseline because610

while GPT-4o allows image and text input, it cannot611

directly output masks/images, as is required by the612

GCDP task.613

GPT-4o may be able to create images by gener-614

ating code. However, we find that this method does615

not work for GCDP. It is difficult even for humans616

to write code to describe the target region in an617

image. Figure 3 shows an example of GPT-4o out-618

put. The model writes code that turns the reference619

image into grey-scale, without solving the task.620

D Model Implementation and Training621

Details622

D.1 CLIP623

We used the largest pretrained CLIP model from624

OpenAI 4 as the encoder. The original CLIP model625

limits the maximum input text token length to be626

77. To input longer texts in our dataset, we replace627

the original input projection layer (length of 77)628

with a 512-long projection layer. We initialize the629

first 77 elements of this layer with the pretrained630

CLIP weights and initialize the remaining of this631

layer randomly.632

The code and structure of the CLIP decoder is633

shown in Figure 4 and Figure 5 respectively. The634

CLIP text and image encoder each output a 768-635

length feature vector. We concatenated them as636

the input of the decoder. The decoder is a stack637

of transposed convolution layers (also known as638

deconvolution layers), the details of the dimension639

of each layer is shown in Figure 4. The decoder is640

randomly initialized without pretraining.641

We use a combination of the DICE loss and per-642

pixel binary cross-entropy (BCE) loss as the train-643

ing objective:644

LCLIP = λ1LDICE + λ2LBCE645

DICE loss is a commonly used loss function in646

image segmentation tasks, which is defined as:647

LDICE = 1−
∑
i,j

2pijyij + 1

pij + yij + 1
648

where pij ∈ [0, 1] is the i-th row, j-th column649

element value of the prediction image and yij ∈650

4https://huggingface.co/openai/
clip-vit-large-patch14

GPT-4o Prompt

Your task is to generate an image of the TARGET region

described by the text:

TARGET is a village in the RED province of GREEN. It is

a part of the municipality of BLUE, and lies about 19 km

east of YELLOW.

The given image represents a 100 km by 100 km region.

The colors in the text corresponds to the colored regions in

the given image. When regions overlaps, the overlapping

region color is the average color of all regions in RGB

space. Response with a black-and-white image of the

TARGET region.

GPT-4o Response

from PIL import Image

# Load the image provided by the user
image_path = "img.png"
image = Image.open(image_path)

# Convert the image to grayscale (black-and-white
) to highlight the TARGET region
grayscale_image = image.convert("L")

# Save the processed image for further use
processed_image_path = "img_grayscale.png"
grayscale_image.save(processed_image_path)

Result Image

Figure 3: GPT-4o simply converts the image to
grayscale instead of following the instructions for
GCDP.
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Strict Relaxed Coverage

model P R F1 Px2 Rx2 P R F1 Px2 Rx2 %

GRAMMAR 0.172 0.310 0.221 0.272 0.381 0.213 0.276 0.240 0.358 0.365 52.8%
CLIP 0.072 0.270 0.113 0.169 0.456 0.134 0.261 0.177 0.288 0.451 100%
LISA 0.091 0.387 0.147 0.205 0.566 0.155 0.367 0.218 0.315 0.560 87.5%

Table 2: Comparison of LISA and CLIP with the grammar-based baseline proposed by Laparra and Bethard (2020).

CLIP Decoder Structure

Sequential(
(0): ConvTranspose2d(1536, 512,

kernel_size=(7, 7),
stride=(1, 1),
bias=False)

(1): BatchNorm2d(512, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(2): ReLU(inplace=True)
(3): ConvTranspose2d(512, 256,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

(4): BatchNorm2d(256, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(5): ReLU(inplace=True)
(6): ConvTranspose2d(256, 128,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

(7): BatchNorm2d(128, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(8): ReLU(inplace=True)
(9): ConvTranspose2d(128, 64,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

(10): BatchNorm2d(64, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(11): ReLU(inplace=True)
(12): ConvTranspose2d(64, 32,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

(13): BatchNorm2d(32, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(14): ReLU(inplace=True)
(15): ConvTranspose2d(32, 1,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

)

Figure 4: Code of the CLIP decoder
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Figure 5: CLIP decoder takes the concatenated text and
image feature vectors as input and construct the output image
with 2D transposed convolution layers.

{0, 1} is the i-th row, j-th column element value of 651

the ground truth image. The DICE loss is useful for 652

unbalanced datasets such as ours where the target 653

region makes up a small proportion of the output 654

image, and we want to prefer predicting the target 655

region to predicting every pixel as negative. In our 656

experiments, λ1 are λ2 are set to 1. 657

During training, we set the learning rate to 658

0.0002 and finetune the model for 5 epochs. We 659

used one Nvidia A100 GPU for finetuning, and 660

finetuning each task takes about 3 hours. 661

D.2 LISA 662

We follow the setting of the original LISA work and 663

used the pretrained LISA-7B-v1 weights offered 664

by the LISA paper authors in our experiments. 665

As the language encoder generates a sentence 666

which should contain a special token representing 667

the prediction, we follow the original paper and 668

add an extra text generation loss besides the DICE 669

loss and the BCE loss: 670

LLISA = λ1LDICE + λ2LBCE + λ3Ltxt 671

Ltxt is the cross-entropy loss between the language 672

model predicted word and the teacher-forcing label. 673

In our experiments, λ1, λ2 are λ3 are set to 1. 674

We set the learning rate to 0.00003 and finetune 675

the model for 1 epoch. We used 4 Nvidia A100 676

GPUs for finetuning, and finetuning each task takes 677

about 13 hours. 678
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E GCDP Evaluation679

Table 2 shows the performance of CLIP and LISA680

on GCDP using all the metrics proposed by La-681

parra and Bethard (2020), not just the strict metric682

as reported in the main text. These metrics are run683

with two different criteria. The strict version calcu-684

lates the exact overlap between the predicted and685

the target geometries. In the relaxed version, the686

metric calculates the overlap between the predicted687

geometry and the oriented envelope of the target688

geometry, i.e. the minimum rectangle that encloses689

the geometry. In addition, the Px2 column shows690

the results of precision when the target geometry691

is scaled by a factor of 2. Similarly, the Rx2 col-692

umn shows the results of recall when the predicted693

geometry is scaled by a factor of 2. Laparra and694

Bethard (2020) proposed these alternatives to give695

some credit to predictions that are close to the tar-696

get geometries but do not overlap. Finally, The697

coverage column shows the percentage of cases698

where the model is able to predict a geometry.699
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