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Abstract

Geographic language understanding (GLU)
tasks ask models to map from text to maps.
Geographical complex description parsing
(GCDP) is a GLU task where models must as-
sign a set of map coordinates to an unnamed
location described by text such as ... between
the towns of Adrano and S. Maria di Lico-
dia, 32 kilometres northwest of Catania”. In
GCDP, the input is both the text describing the
unnamed location and the geometries of the
other locations named in the description (e.g.,
the geometries of Adrano, S. Maria di Licodia,
Catania), and the output is the geometry of the
unnamed location. In this paper, we convert a
GCDP corpus into an image+text—image
benchmark to evaluate recent large language-
vision models on this complex task. The
models show weak performance, with analy-
sis showing a lack of understanding of even
simpler tasks like recognizing regions by color.

1 Introduction

The goal of geographic language understanding
(GLU) is to develop models that can map from de-
scriptions of locations in text to the corresponding
locations on a map. A commonly studied GLU task
is geoparsing, which asks models to map mentions
of locations in text to their geographical geome-
tries, typically by linking mentions to entries in a
toponym database like GeoNames' (Gritta et al.,
2018; Zhang and Bethard, 2023). A more complex
GLU task is geographical complex description pars-
ing (GCDP; Laparra and Bethard, 2020), where the
input is a description of a geographical region and
a list of reference geometries (sets of coordinates),
and the goal is to predict the geometry of the re-
gion described. For example, the text “a town and
comune in the Metropolitan City of Catania, Sicily,
southern Italy. .. located between the towns of Ad-
rano and S.Maria di Licodia, 32 kilometres (20 mi)
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between the towns of Adrano
and S. Maria di Licodia, 32
kilometres (20 mi) northwest of
Catania

TARGET is between the towns
of RED and LIME, 32 kilo-
metres (20 mi) northwest of
BLUE.
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Figure 1: Framing geographic geometry prediction as a multi-
modal image+text—image problem. The toponyms in
the left text and geometries in the right figure of the first row
are translated into color words in text and a corresponding
figure of colored geometries on a black background in the
second row. A model should take the modified text and the
image with colored regions as input, and generate an image
with a white region (third row). That image can then be
translated into the corresponding target geometry.

northwest of Catania.” describes a location that is
not explicitly named. The goal is to approximate
the geometry of the location using the description
as input along with the geometries of the reference
locations: Catania, Sicily, Italy, Adrano, etc. It is
typically impossible to predict the precise target
geometry given only the input text and reference
geometries, but an approximately correct geometry
is enough for many applications.

Laparra and Bethard (2020) propose a grammar-
based baseline that achieves 22.1 F1 on this task
by parsing the descriptions into spatial operators
(functions) whose composition yields the target ge-
ometry. We estimate that humans can achieve about
35 F1 on this task (see appendix A), thus there
is room for improvement with machine learning
methods. However, a major challenge for machine
learning methods is that the reference geometries,
be they polygons or linestrings, are represented by
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a variable number of coordinates, ranging from just

a few to over a million. Although methods exist

to convert geometries to machine-learned embed-

dings (Mai et al., 2022), to date there is no clear

way to get language models to output geometries.
We consider an alternative to predicting coordi-

nate sets: convert geometries to bitmap images and

apply multi-modal language-vision models (LVM),

as shown in Figure 1. Our contributions are

* We propose a strategy to convert GCDP into an
image+text—image problem and evaluate
two LVMs designed to work in this setting.

* Due to the high difficulty of the task, we develop
4 variants of the dataset, each designed to be sim-
pler than the GCDP task and individually analyze
a different required skill to solve the task.

* We find that although the current models show
some ability to solve the task, their failures stem
from lack of understanding of simpler tasks like
recognizing regions by color.

2 Related Work

Traditionally, geographic language understanding
has focused on identifying geographical entities
following a named entity recognition approach
(Karagoz et al., 2016; Magge et al., 2018) and link-
ing such named entities to a reference knowledge
base such GeoNames (Karagoz et al., 2016; Magge
et al., 2018; Zhang and Bethard, 2023; Zhang et al.,
2024). To broaden the scope of research beyond
geolocations explicitly named in the text, Laparra
and Bethard (2020) proposed the GCDP task where
an unnamed geolocation is linked to its geometry
based on a description of the unnamed geolocation
and the geometries of nearby named geolocations.
Many recent language-vision models target tasks
without an image output: text-image reasoning,
text-image classification, visual question answer-
ing, etc. (LXMERT, Tan and Bansal 2019; CLIP,
Radford et al. 2021; LLaVA, Liu et al. 2023; Qwen-
VL, Bai et al. 2023; etc.). These models are not
ideal for an image+text —image task as they
lack a decoder that can decode an output image
from the latent-space representation of the input
text and image. We choose CLIP as a baseline in
this paper because of its popularity and success on
several multi-modal tasks, and train a decoder that
can decode the CLIP latent space into an image.
A few works take image and text as input
and directly output images or masks. Instruct-

2Code and data will be available.

Pix2Pix (Brooks et al., 2023) is a diffusion-based
model that can generate an edit of the original in-
put image based on text instructions. This model
is not good at isolating specified objects, mak-
ing it difficult to locate reference geometries in
our task. LISA (Lai et al., 2023), built from the
popular LLaVA (Liu et al., 2023) LVM, is LoRA-
finetuned (Hu et al., 2022) to generate segmentation
masks given an image and a text description of the
target. The downstream task of LISA is most simi-
lar to our task, so we choose it as another baseline.

3 Datasets

We use the Laparra and Bethard (2020) GCDP cor-
pus, derived semi-automatically from Wikipedia
and OpenStreetMap, that contains 360,187 uncu-
rated training examples and 1,000 manually cu-
rated test examples. We select 67,293 and 1,000 ex-
amples for training and development, respectively,
where all the reference locations in the description
have associated geometries (see Appendix B). We
use the same test set as Laparra and Bethard (2020).
In the following sections, we first introduce
our translation of the GCDP problem into an
image+text—image problem, then introduce
our dataset variants, shown in Figure 2, that allow
the study of different capabilities of LVMs. See
Appendix B for more dataset generation details.

3.1 IMAGE

Obtaining an image-based dataset from GCDP data
requires decisions of which part of the world map to
show in the image and how to show links between
toponyms in the text and geometries in the image.

Decide boundary: To create an image, we must
first select a small region of the map, as using the
entire map would result in most locations being
smaller than a single pixel. A good region for
GCDP should completely include the target geome-
try, represent such geometry with a sufficient num-
ber of pixels and include at least a portion of every
reference geometry. However, the target geometry
is not known at prediction time and thus should
not be used when selecting the boundary. We thus
use a heuristic: set the boundary to 100 km in each
cardinal direction from the geometric median of
the centroids of the reference geometries.

Link reference geometries and toponyms: We
create a pixel grid with N x N pixels represent-
ing the selected boundary. For the input image,
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Figure 2: One example (column) from each of the datasets:
IMAGE, ORACLE, COLOR, COPY-COLOR and OPERATOR.
The last row shows the output target geometry, and the first
two rows show the input text and input images containing
the reference geometries. A color mentioned in the input text
refers to the region in the input image with such color. When
two regions overlap the image shows the composition of their
colors. The CLIP and LISA rows show the predictions of the
respective models as white regions.

we overlay the grid with the reference geometries,
assigning a different color to each, calculating the
average of the colors in RGB space when geome-
tries overlap. For the output image, we overlay the
grid with only the target geometry in white. To
link the reference geometries in the image with the
reference toponyms in the text, we replace each
toponym in the text with the color name of corre-
sponding geometry. The middle of Figure 1 visual-
izes this and the preceding step.

3.2 Image Oracle Boundary (ORACLE)

The method to decide the boundary in section 3.1
may result in wide boundaries where the target ge-
ometry is represented with just a few pixels. To bet-
ter understand how this size affects LVMs, we de-
velop an oracle version of the image-based dataset
where we use the target geometry (hence an oracle)
to select a narrower boundary. We start from the
envelope covering the target geometry and extend
it until it touches at least one point of all reference
geometries. We add 10 kilometers in all 4 cardi-
nal directions to ensure that the images include a
portion of all geometries.

3.3 Image Colored Region Identification

For the image+text—image approach to work,
it is essential that the models are able both to re-
late textual mentions of colors to those colors in
the images, and to differentiate objects of a given

color from the other objects in the image. How-
ever, this is not possible to analyze in detail in the
GCDP dataset, due to the complexity of the task.
Therefore, we generate two datasets where the text
simply states the color of the target in the input
image, e.g., “TARGET is RED”.

CoLOR The input image contains the target ge-
ometry and all reference geometries, and the output
image is the same as image dataset. This dataset
tests whether the models are able to differentiate
objects of the color mentioned in the text from
objects of other colors.

CoprPY-COLOR The input image contains only
the geometry of the target image, and the output
image is the same as the image dataset. This dataset
tests whether the models are able to recognize a
region in an image based on color.

3.4 Image Single Operator (OPERATOR)

The image+text—image approach requires
the models to interpret the spatial relationships de-
scribed in the text and to perform the corresponding
calculations to obtain the target geometry. Most in-
put descriptions in the Laparra and Bethard (2020)
dataset correspond to calculations involving mul-
tiple spatial relationships. To understand whether
models can understand the simpler case of a single
spatial relation (e.g. “between”) in isolation, we
generate a synthetic dataset. The descriptions in-
clude only a single spatial relation using the gram-
mar defined by Laparra and Bethard (2020) and
their deterministic implementation of the spatial
operators. A description in this dataset looks like
“TARGET is 50 km Southwest of RED”. See ap-
pendix B.4 for a list of the operators.

4 Metrics

We apply the following image-based metrics to
our analysis. Let the area of the target region be .S,
the area of the predicted region be S), the area of
S NSy be Sp, we evaluate the performance of the
models using the per pixel precision P, recall R,
and F'1 score.

St St 2PR
P_st R_Sp Fl=p1 R
We include results using the polygon-based met-
rics proposed by Laparra and Bethard (2020) calcu-
lating the overlap between the predicted and target
geometries. For this evaluation, the predicted im-
ages must be translated back to a set of coordinates.




RANDOM CLIP LISA GRAMMAR
dataset P R Fl P R F1 P R F1 P R F1
IMAGE 1.3 50 25 127 341 185 159 312 21.1 - - -
ORACLE 10.7 50 17.7 21.0 204 20.7 359 42,6 39.0 - - -
COLOR 19.8 50 283 382 56.1 455 56.1 615 587 - - -
Copy CoLorR 20.2 50 28.8 437 594 503 735 821 775 - - -
OPERATOR 124 50 199 239 261 250 89.7 89.8 89.8 - - -
GCDP - - - 72 270 113 91 387 147 172 31.0 221

Table 1: Performance of CLIP and LISA models on the five image-based datasets and on GCDP. The results for IMAGE,
ORACLE, COLOR COPY COLOR and OPERATOR are calculated using the image-based metrics. The models are compared on
these 5 datasets with the random BASELINE. The results for GCDP are calculated using the polygon-based metrics and the
models are compared with GRAMMAR based model of Laparra and Bethard (2020).

5 Baselines

As explained in Section 2, we test two different
LVMs: CLIP and LISA. See Appendix C for why
GPT-40 fails on this task; we do not include it
in the tested LVMs. See Appendix D for model
implementation details. We compare these models
on the polygon-based evaluation with the grammar-
based model by Laparra and Bethard (2020) and on
the image-based evaluation with a random baseline.

Random We report the theoretical results of a
random baseline which has a 50% of chance to
predict each pixel as part of the target.

CLIP (Radford et al., 2021) To predict the target
region, we use CLIP as an encoder to extract text
and image features and feed the fused features to a
decoder (Appendix D) to generate the target region.

LISA (Lai et al., 2023) We finetune the model
as in the LISA paper: the text decoder is trained
to generate a special <SEG> token and the image
decoder is trained to generate a segmentation mask
(target region) from the special tokens.

6 Results and Discussion

The last row of Table 1 shows that on GCDP in
terms of F1, the grammar-based baseline of La-
parra and Bethard (2020) outperforms both CLIP
and LISA, though both of those models outperform
the random baseline. Performance on the remain-
ing rows, the image-based datasets, provides some
insight into why these models have difficulties solv-
ing GCDP. We observe that:

The size of the target regions significantly influ-
ences the model performance. F1 score of the
CLIP model increases 2.2 points and the LISA per-
formance nearly doubles when using the ORACLE
boundaries where the target regions are a larger
portion of the image. Both models also perform

better in the COPY COLOR, COLOR, and OPERATOR
datasets where the target region area is also gener-
ally larger. This suggests that in real-world settings
where an oracle boundary is not available, finding
a good boundary is key for model performance.

Segmentation-based pre-training helps to un-
derstand spatial relations in text. There is a
huge gap between CLIP and LISA on the OPER-
ATOR dataset. LISA is better able to understand
spatial relations in text and reason over the image
accordingly. This may also explain LISA’s better
performance on IMAGE and ORACLE datasets.

Segmentation-based pre-training helps to cap-
ture the shape of the target regions better. As
shown in the third row of Figure 2, CLIP gener-
ates mostly circle-like shapes in the middle of the
image. While this guarantees some recall of the pre-
diction, the overall precision of CLIP is low. LISA
captures the shape of geometries better. LISA can
get a near-perfect target shape in the COPY COLOR
dataset and a very close guess when predicting the
result on OPERATOR. This is also verified by the
high performance of LISA on these two datasets.

Colors are more difficult to understand than
shapes. Understanding colors is crucial for the
model to capture the relationship between the in-
put text and image. The task not only requires the
model to relate the color words to colors in the im-
age, but also requires the model to understand how
different colors mix when there are overlapping
regions. Our results show that when this kind of
color understanding is required, models tends to
perform poorly. This is indicated by the low perfor-
mance of both models on the COLOR, ORACLE, and
IMAGE datasets. This suggests that more work is
needed to infuse color knowledge into LVMs, and
that it may be worth exploring ways of representing
geometries in images that do not rely on color.



Limitations

While the paper gives insights into the potential
and limitations of two multi-modal language-vision
models for GCDP, it is unable to evaluate the full
range of multi-modal language-vision models, as
most are not designed with the necessary inputs and
outputs for image+text—image tasks. Further
investigation is required into algorithms that can
take language-vision models that were not designed
for image+text—image tasks and alter their
inputs and outputs so that they can be used in them.

Intended Use and Ethical Concerns

The data and models we developed in this paper
is intended to be used on GCDP tasks. We do not
foresee immediate ethical concerns of our work.
However, we acknowledge that as we use LVMs
in our experiments, the models may generate un-
expected images if not properly used by an user or
not used on this task.
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A Human Performance on GCDP

Laparra and Bethard (2020) never evaluated hu-
mans on the geographical complex description pars-
ing (GCDP) task, so to get a rough approximation
of the difficulty of the task, one author randomly
sampled 10 geographical descriptions and manu-
ally annotated polygons. The annotator followed
the guideline that the predicted polygon should be
based solely on the text and the polygons for the ref-
erence locations; no external knowledge about the
shape of geographical regions was to be used. For
each description, the annotator wrote Python code
that took the OpenStreetMap ids of the reference
polygons as input, and used the shapely library to
generate an output polygon. Due to the complexity
of translating the text description into appropriate
shapely calls, a single description often required
more than 10 minutes of writing code.

Comparing the human-annotated examples to
the target polygons in the dataset, average preci-
sion was 22.0 and average recall was 74.4, for an
average F1 of 34.0. Recall was higher than pre-
cision because most descriptions are not specific
enough to pinpoint the exact location described.
For example, the target location Gylen Castle is
described as a ruined castle, or tower house, at the
south end of the island of Kerrera, but the castle
is tiny in comparison to the southern part of the
island. Comparing the human performance to the
model performance in Table 1, where automatic
approaches achieve at most 17.2 precision, 38.7 re-
call, and 22.1 F1, there is still substantial room for
improvement between the best models and human
performance.

B Dataset Generation

The corpus by Laparra and Bethard (2020) con-
tains 360,187 uncurated examples and a test set of
1,000 manually curated examples. In our experi-
ments, we use the same test set. For training, we
use the uncurated portion of the corpus, however
this portion does not guarantee that all the loca-
tions mentioned in the descriptions have a mapping
to their corresponding geometry. We run named-
entity recognition on the uncurated examples to
obtain all the location mentions, and check if the
recognized locations are linked to a geometry. We
keep only those descriptions that have all the rec-
ognized locations linked. As a result, we obtain
68,293 examples from which we use 67,293 as
training set and 1,000 as development set.

All images in our image-based datasets have the
size of 224 x 224. This is the default input size of
the CLIP model. LISA does not have constraint on
the input image size.

B.1 Image-based Dataset

Below we detail the steps we follow for the conver-
sion of this dataset:

Generate boundary: From the reference geome-
tries, we first discard the geometry with the largest
area to avoid boundaries that are too wide for the
target geometry. The geometry is discarded only
to calculate the boundary but it is included in the
resulting image. Then, we calculate the geometric
median (which is more robust to outliers than the
centroid) of the centroids of the remaining refer-
ence geometries. We set the boundary to 100 km
in each cardinal direction from this centroid and
obtain the coordinates of each of the 4 corners of
this boundary

This process ensures that all boundaries are 200
km x 200 km, guaranteeing that the distances men-
tioned in the text will have the same relation to the
distances in the images regardless of the size of
the reference (or target) geometries. For example,
if a description mentions a distance of “100 km”
between two locations and it is represented as 40
pixels in the resulting image, a mention of “50 km”
in another description will be represented with 20
pixels in the corresponding image.

Generate images: Once we calculate the bound-
ary for the images, we apply postgis’ st_asraster’
function to obtain a bitmap representation of the
geometries. The function creates a pixel grid with
N x N pixels where each corner corresponds to
each coordinate of the boundary. The function over-
lays this grid on a geometry and calculates if each
pixel intersects with the geometry, assigning 1 if
true and O otherwise.

After obtaining a bitmap image (raster) for each
geometry, each pixel grid is translated into a RGB
format, using a different color for each geometry.
Then, all these RGB pixel grids are joined in a
single image. Where two or more colors overlap
in one pixel, we calculate the average. E.g. for a
pixel where (255, 0, 0) and (0, 255, 0) overlap, we
assign (128, 128, 0) in the final image. In the case
of the target image, only one geometry will be part

*https://postgis.net/docs/RT_ST_
AsRaster.html
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of it and we use the white color (255, 255, 255) to
represent it.

Update the descriptions: The last step consists
of replacing all the mentions of each location in
the description with the name of the color used in
the previous step to represent the corresponding
geometry. For example, if the location Adrano is
assigned the color (255, 0, 0), then all instances of
Adrano in the text will be replaced with the string
“RED”.

B.2 Image Oracle Boundary (ORACLE

To find the oracle boundary, we start initially from
the envelope covering the target geometry and ex-
tend it until it touches at least one point of all refer-
ence geometries. Finally, we extend the boundary
10 kilometers in all 4 cardinal directions to ensure
that the images include a portion of all geometries.
Once the boundary is obtained, the reference and
target images are generated as described in 3.1.
Unlike the dataset described in 3.1 where all
images correspond to the same spatial extent, the
boundary of the images in this version may cover
different extents in each case, which does not guar-
antee the correspondence between the distance
units described in the text and the distance in pixels
of the images. To solve this problem, we automat-
ically modify the spatial units mentioned in the
text by scaling them appropriately. First, for each
case, we calculate the ratio between the number of
pixels of the width of the images and the width in
kilometers of the boundary. Then we identify by a
simple regular expression all mentions of distance
units, e.g. “100 KM”, extract the quantity and mul-
tiply it by the ratio calculated in the previous step.
Finally, we modify the text with the result of this
calculation rounded to the nearest integer.

B.3 Image Colored Region Identification

To generate each example of the COLOR and COPY-
COLOR datasets, we randomly select one of the
reference geometries and obtain a target image con-
taining only that geometry. The description in this
case will be simply “TARGET is COLOR”, where
COLOR corresponds to the color assigned to the se-
lected geometry. Finally, in each of the datasets, we
follow a different strategy to generate the reference
image:

CoLOR The reference image contains all refer-
ence geometries including the one selected for the
target image.

CoPY-COLOR The reference image contains
only the geometry selected for the target image.

B.4 Image Single Operator (OPERATOR)

The GCDP paper defined 5 spatial relations of ge-
ometries and implemented corresponding polygon
operators. We refer the reader to their paper for the
complete details, but briefly:

* Between (rl, r2): The target is between
reference location r1 and r2.

e Intersection(rl, r2, ...): The tar-
get region is the intersection of all reference lo-
cations rl, r2, ... in the arguments.

* Union(rl, r2, ...):Thetargetregion is
the union of reference locations r1, r2, ... in
the arguments.

* Adjacent (rl): The target location shares
some part of the border with the reference lo-
cation rl.

e Distance(rl, D, u, geocardinal):
The distance between the target and the reference
rl is D. u is the unit of the distance (e.g.
kilometer, mile). geocardinal (e.g. “north
of”) is optional and when given it refers to the
direction from the reference r1 to the target.

We use these operators to generate a single-operator

understanding dataset. Each example in this dataset

is generated following the steps:

1. One of the Laparra and Bethard (2020) operators
is randomly selected and the values of the argu-
ments are also randomly selected. For example,
if the operator takes a geocardinal as argument,
its values are selected among the possible values
None, North, Northeast, and so on.

2. Select a pattern defined in the grammar for the
operator selected in the previous step and com-
plete it with the selected values. For example,
a possible pattern could be “TARGET is [Dis-
tance] [Unit] [Cardinal] of [Reference]” which
could be completed as “TARGET is 50 km
Southwest of REFERENCE”.

3. Generate the necessary reference geometries
randomly. For instance, we generate a geometry
for the REFERENCE in the previous example.

4. Apply the corresponding operator with the val-
ues of the arguments obtained in step 1 and the
references in step 3, to obtain a new geometry
that corresponds to the TARGET of the descrip-
tion generated in step 2.

After this process, the reference and target images

are generated as explained in Section 3.1, assigning

a random color to the reference geometry, white



to the target, and updating the description accord-
ingly.

C GPT-40

We do not consider GPT-40 as a baseline because
while GPT-40 allows image and text input, it cannot
directly output masks/images, as is required by the
GCDP task.

GPT-40 may be able to create images by gener-
ating code. However, we find that this method does
not work for GCDP. It is difficult even for humans
to write code to describe the target region in an
image. Figure 3 shows an example of GPT-40 out-
put. The model writes code that turns the reference
image into grey-scale, without solving the task.

D Model Implementation and Training
Details

D.1 CLIP

We used the largest pretrained CLIP model from
OpenAlI * as the encoder. The original CLIP model
limits the maximum input text token length to be
77. To input longer texts in our dataset, we replace
the original input projection layer (length of 77)
with a 512-long projection layer. We initialize the
first 77 elements of this layer with the pretrained
CLIP weights and initialize the remaining of this
layer randomly.

The code and structure of the CLIP decoder is
shown in Figure 4 and Figure 5 respectively. The
CLIP text and image encoder each output a 768-
length feature vector. We concatenated them as
the input of the decoder. The decoder is a stack
of transposed convolution layers (also known as
deconvolution layers), the details of the dimension
of each layer is shown in Figure 4. The decoder is
randomly initialized without pretraining.

We use a combination of the DICE loss and per-
pixel binary cross-entropy (BCE) loss as the train-
ing objective:

Lcrp = M1 Lpice + A2LBcE
DICE loss is a commonly used loss function in
image segmentation tasks, which is defined as:
2pijyij +1
Foree =1 Zz]: Pij +Yij +1
where p;; € [0,1] is the i-th row, j-th column
element value of the prediction image and y;; €

*nttps://huggingface.co/openai/
clip-vit-large—-patchl4

GPT-40 Prompt

Your task is to generate an image of the TARGET region
described by the text:

TARGET is a village in the RED province of GREEN. It is
a part of the municipality of BLUE, and lies about 19 km
east of YELLOW.

The given image represents a 100 km by 100 km region.
The colors in the text corresponds to the colored regions in
the given image. When regions overlaps, the overlapping
region color is the average color of all regions in RGB
space. Response with a black-and-white image of the
TARGET region.

\.

GPT-40 Response

from PIL import Image

# Load the image provided by the user
image_path = "img.png"
image = Image.open (image_path)

# Convert the image to grayscale (black-and-white
) to highlight the TARGET region
grayscale_image = image.convert ("L")

# Save the processed image for further use
processed_image_path = "img_grayscale.png"
grayscale_image.save (processed_image_path)
. v

Result Image

\

Figure 3: GPT-40 simply converts the image to
grayscale instead of following the instructions for
GCDP.


https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14

Strict Relaxed Coverage
model P R F1 sz RIQ P R F1 Pzg RIQ %
GRAMMAR 0.172 0.310 0.221 0.272 0381 0.213 0.276 0.240 0.358 0.365 52.8%
CLIP 0.072 0.270 0.113 0.169 0456 0.134 0.261 0.177 0.288 0.451 100%
LISA 0.091 0.387 0.147 0205 0.566 0.155 0367 0.218 0.315 0.560 87.5%

Table 2: Comparison of LISA and CLIP with the grammar-based baseline proposed by Laparra and Bethard (2020).

CLIP Decoder Structure

Sequential (
(0) : ConvTranspose2d (1536, 512,
kernel_size=(7, 7),
stride=(1, 1),
bias=False)

(1) : BatchNorm2d (512, eps=1le-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(2) : ReLU(inplace=True)

(3) : ConvTranspose2d (512, 256,

kernel_size=(
stride=(2, 2)
padding=(1, 1
bias=False)

(4) : BatchNorm2d (256, eps=1le-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(5) : ReLU(inplace=True)

(6) : ConvTranspose2d (256, 128,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

(7) : BatchNorm2d (128, eps=1le-05,
momentum=0.1,
affine=True,
track_running_stats=True)

(8) : ReLU(inplace=True)

(9) : ConvTranspose2d (128, 64,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)
BatchNorm2d (64, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)
RelU (inplace=True)
ConvTranspose2d (64, 32,
kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)
BatchNorm2d (32, eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True)
RelU (inplace=True)
ConvTranspose2d (32, 1,
kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1),
bias=False)

4, 4),
)

’

(10) :

(11) :
(12) :

(13) :

(14) :
(15) :

Figure 4: Code of the CLIP decoder
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Figure 5: CLIP decoder takes the concatenated text and
image feature vectors as input and construct the output image
with 2D transposed convolution layers.

{0, 1} is the i-th row, j-th column element value of
the ground truth image. The DICE loss is useful for
unbalanced datasets such as ours where the target
region makes up a small proportion of the output
image, and we want to prefer predicting the target
region to predicting every pixel as negative. In our
experiments, A; are Ay are set to 1.

During training, we set the learning rate to
0.0002 and finetune the model for 5 epochs. We
used one Nvidia A100 GPU for finetuning, and
finetuning each task takes about 3 hours.

D.2 LISA

We follow the setting of the original LISA work and
used the pretrained LISA-7B-v1 weights offered
by the LISA paper authors in our experiments.

As the language encoder generates a sentence
which should contain a special token representing
the prediction, we follow the original paper and
add an extra text generation loss besides the DICE
loss and the BCE loss:

Liisa = MLpice + A2LBcE + A3Lixt

Lt 1s the cross-entropy loss between the language
model predicted word and the teacher-forcing label.
In our experiments, A1, Ao are A3 are set to 1.

We set the learning rate to 0.00003 and finetune
the model for 1 epoch. We used 4 Nvidia A100
GPUs for finetuning, and finetuning each task takes
about 13 hours.



E GCDP Evaluation

Table 2 shows the performance of CLIP and LISA
on GCDP using all the metrics proposed by La-
parra and Bethard (2020), not just the strict metric
as reported in the main text. These metrics are run
with two different criteria. The strict version calcu-
lates the exact overlap between the predicted and
the target geometries. In the relaxed version, the
metric calculates the overlap between the predicted
geometry and the oriented envelope of the target
geometry, i.e. the minimum rectangle that encloses
the geometry. In addition, the P, column shows
the results of precision when the target geometry
is scaled by a factor of 2. Similarly, the R.2 col-
umn shows the results of recall when the predicted
geometry is scaled by a factor of 2. Laparra and
Bethard (2020) proposed these alternatives to give
some credit to predictions that are close to the tar-
get geometries but do not overlap. Finally, The
coverage column shows the percentage of cases
where the model is able to predict a geometry.
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