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Abstract

Large language models (LLMs) trained on001
extensive corpora risk memorizing sensitive,002
copyrighted, or toxic content. To mitigate this,003
we propose OBLIVIATE, a robust and practi-004
cal unlearning framework that can remove tar-005
geted data while preserving model utility. It em-006
ploys a structured process: extracting target to-007
kens and building retain sets (from forget sets),008
followed by fine-tuning with a tailored loss de-009
composed into three components–mask, distil-010
lation, and world fact. With low-rank adapters011
(LoRA), our approach ensures efficiency with-012
out compromising unlearning quality. We eval-013
uate OBLIVIATE across multiple datasets, in-014
cluding the Harry Potter series, WMDP, and015
TOFU, using a comprehensive suite of met-016
rics: forget quality (with a new document-level017
memorization score), model utility, and fluency.018
Results demonstrate its effectiveness in resist-019
ing membership inference attacks, minimizing020
impacts on retained data, and maintaining ro-021
bustness across diverse scenarios.1022

1 Introduction023

The rapid expansion of training data for large lan-024

guage models (LLMs) has enabled remarkable ad-025

vancements across diverse domains. However, the026

propensity of LLMs to memorize training corpora027

raises critical ethical and security concerns, such as028

generating sensitive, harmful, or copyrighted con-029

tent (Nasr et al., 2023; Karamolegkou et al., 2023;030

Wen et al., 2023). These issues underscore the need031

to adapt LLMs to diverse security environments032

while meeting user and industry-specific require-033

ments. Regulations, such as the EU’s Right to be034

Forgotten (Ginart et al., 2019), further emphasize035

the importance of addressing them. In response,036

machine unlearning has emerged as a promising so-037

lution to mitigate ethical or safety risks (Yao et al.,038

1Our code is available at https://anonymous.4open.
science/r/OBLIVIATE_unlearning_LLM-FE51.

2024; Jang et al., 2023; Eldan and Russinovich, 039

2023; Pawelczyk et al., 2024; Li et al., 2024b; Liu 040

et al., 2024a; Li et al., 2024a, 2025). It aims to 041

ensure that models behave as if target data were 042

never included in the training sets (Bourtoule et al., 043

2021), effectively reducing sensitive information 044

leakage and aligning LLMs with legal standards. 045

Typically, current LLM unlearning methods can 046

be categorized into fine-tuning (Yao et al., 2024), 047

prompt-based (Liu et al., 2024a), and task arith- 048

metic ones (Ilharco et al., 2023; Ji et al., 2024). 049

Fine-tuning-based methods update model parame- 050

ters to maximize the unlearning effect (while main- 051

taining performance on retained data). In contrast, 052

the latter two types modify input prompts or output 053

logits to steer the model away from unlearned con- 054

tent without altering its parameters. Among them, 055

the fine-tuning ones often achieve superior results. 056

Common fine-tuning approaches for LLM un- 057

learning, including gradient ascent (GA), random 058

label fine-tuning, and adversarial sample-based 059

methods (Yao et al., 2024), face several limitations. 060

First, Shi et al. (2024) reveal that unlearned data 061

can often be recovered via membership inference 062

attacks (MIAs), indicating that memorized infor- 063

mation is not fully eradicated. Second, striking 064

a nice balance between effective unlearning and 065

preserving performance on retained data remains 066

challenging. Techniques like gradient descent or 067

KL-divergence on retain data often fail to maintain 068

model utility in real-world scenarios, exacerbated 069

by the impracticality of accessing proprietary train- 070

ing corpora to define clear retain set boundaries. Fi- 071

nally, while LLMs hold immense potential, existing 072

evaluations lack comprehensiveness and reliability, 073

failing to effectively verify whether the forget set 074

has been removed and whether the model’s perfor- 075

mance remains intact (Liu et al., 2024b). 076

To address these challenges, we propose 077

OBLIVIATE, a robust and practical LLM unlearn- 078

ing framework, which can effectively remove target 079
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Figure 1: Overview of robust and practical unlearning for LLMs

data while preserving model performance (e.g., on080

various downstream tasks) and fluency–ability to081

generate coherent and precise responses–on the re-082

tain set. As illustrated in Figure 1, our framework083

incorporates three critical loss functions: masked084

loss for the forget set, and distillation and world085

fact losses for the retain set. Additionally, we em-086

ploy low-rank adapters (LoRA) (Hu et al., 2022) to087

boost the efficiency of fine-tuning.088

Inspired by multimodal unlearning (Li et al.,089

2024a), which suppresses masked tokens by re-090

ducing their output probability, our masked loss091

enforces a zero-generation probability for targeted092

content, enabling more “aggressive” forgetting than093

all fine-tuning methods (Yao et al., 2024). How-094

ever, this approach significantly degrades model095

performance and fluency on the retain set, often096

producing incoherent outputs. To mitigate these097

effects, following (Eldan and Russinovich, 2023),098

which replaces sensitive terms with generic tokens,099

we devise a distillation loss by substituting entire100

documents with (in-distribution) “anchor” ones to101

maintain the performance and fluency on retain set.102

Model performance on general knowledge re-103

tention may also degrade (Gandikota et al., 2024).104

Text datasets like WikiText (Merity et al., 2017)105

contain such general knowledge. To reinforce out-106

put consistency, we introduce an extra brand-new107

world fact loss, exploiting randomly sampled Wiki-108

Text data to maintain model utility for general109

knowledge queries. We validate the robustness and110

effectiveness of our unlearning framework across111

multiple datasets, demonstrating strong unlearning112

performance while preserving model utility and113

fluency. To ensure a reliable and comprehensive 114

evaluation, we introduce an evaluation suite, com- 115

prising forget quality, model utility, and fluency. 116

Our main contributions are summarized below. 117

I) We propose OBLIVIATE, an LLM unlearning 118

framework that can effectively eliminate the in- 119

fluence of unlearning data while preserving the 120

model’s performance and fluency on the retain set. 121

II) We introduce a masked loss mechanism, which 122

completely suppresses the generation of unlearning 123

data. In terms of unlearning efficacy, it outperforms 124

all fine-tuning-based methods (Yao et al., 2024). 125

III) To counteract the negative impacts of our 126

masked loss mechanism, we devise distillation and 127

world fact losses to respectively preserve generic 128

knowledge and ensure model fluency. 129

IV) We conduct experiments on multiple datasets 130

with different scopes to validate the performance 131

of OBLIVIATE. We introduce a comprehensive 132

evaluation suite, comprising forget quality, model 133

utility, and fluency, to report the results. 134

2 Preliminaries 135

2.1 Transformer in LLMs 136

Generative LLMs operate through next-token pre-
diction, estimating the conditional probability
P (xt+1|x1, x2, . . . , xt) of the token xt+1 given a
sequence X = {x1, x2, . . . , xt}. Let θ denote the
model parameters, and A be the training algorithm.
The training objective minimizes the negative log-
likelihood of the predicted token distribution:

L(xt+1, θ) = −
T−1∑
t=1

logP (xt+1|x1, x2, . . . , xt; θ).
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LLMs have hierarchical layers, including multi-137

layer perceptron (MLP) and multi-head attention138

(MHA). The MLP layer, crucial for encoding and139

storing model knowledge (Meng et al., 2022), can140

be conceptually divided into two functional sub-141

layers. The first sub-layer transforms the input142

sequence xℓ using a matrix W ℓ
K , capturing input143

relationships, expressed as Mℓ = f(W ℓ
Kxℓ)W ℓ

V =144

mℓW ℓ
V , where Mℓ represents the memory content145

at layer ℓ, W ℓ
V is the knowledge representation146

matrix, and f(·) captures the coefficient scores.147

The MHA layer is a crucial component for fa-148

cilitating knowledge transfer and extraction within149

large language models (Geva et al., 2023). For-150

mally, the MHA operation can be defined as151

MHA(X) = [Att1 ∥ . . . ∥Atth]WO, where Atti152

represents the attention output from the i-th head, ∥153

denotes the concatenation operation across h atten-154

tion heads, and WO is the output projection matrix155

applied to the concatenated attention outputs.156

2.2 Parameter-Efficient Fine-tuning157

Low-Rank Adapters (LoRA) offer a parameter-158

efficient approach for fine-tuning LLMs. It intro-159

duces low-rank adaptation matrices, allowing task-160

specific adjustments without modifying the full161

set of model parameters (Hu et al., 2022). Unlike162

traditional fine-tuning, which updates the entire pa-163

rameters θ, LoRA decomposes weight updates into164

low-rank matrices A ∈ Rr×k and B ∈ Rd×r, such165

that the updated weight matrix W ′ is expressed as166

W ′ = W +BA. This decomposition significantly167

reduces computational and memory requirements,168

enabling efficient adaptation of LLMs to new tasks169

with minimal parameters and memory usage.170

2.3 Scope of LLM Unlearning171

LLM unlearning is driven by three aspects: private,172

copyright, and harmful outputs (Liu et al., 2024b).173

Copyright. LLM unlearning is critical for ad-174

dressing copyright concerns by facilitating the re-175

moval of unauthorized training data, ensuring com-176

pliance with regulations. Recent legal disputes177

involving OpenAI, Meta, and New York Times un-178

derscore the growing tension between technology179

and legislation (Small, 2023). Unlearning enables180

the erasure of copyrighted material’s influence, as181

demonstrated by studies on the Harry Potter dataset,182

thereby protecting content creators and reducing183

legal risks (Eldan and Russinovich, 2023).184

Privacy. LLM unlearning also addresses the pro-185

tection of personally identifiable information (PII)186

by mitigating the exposure of sensitive user data, 187

a concern closely tied to memorization (Xie et al., 188

2024; Jang et al., 2022; Carlini et al., 2023). The 189

TOFU dataset, comprising synthetic author profiles, 190

provides a benchmark for assessing the unlearning 191

of private information (Maini et al., 2024). 192

Harmful Outputs. The final application is 193

about mitigating or erasing harmful outputs (e.g., 194

toxic or discriminatory information), thereby align- 195

ing model behaviors with human values. The 196

WMDP dataset, which contains biological and net- 197

work security knowledge, exemplifies the efficacy 198

of unlearning in this regard (Li et al., 2024b). 199

3 Problem Formulations 200

LetD be a large training corpus, and letDf ⊆ D be 201

the forget set to be unlearned, containing a set of M 202

documents {di}Mi=1 (e.g., book, personal records). 203

Each di = {xj}Nj=1 is a sequence of N tokens. 204

Given a modelM trained on D using an algorithm 205

A, an unlearning algorithm U is applied toM, with 206

each di as input, to produce an unlearned model 207

M′, effectively removing the effects of Df . 208

Inspired by differential privacy (Gupta et al., 209

2021; Sekhari et al., 2021; Neel et al., 2021; Du 210

et al., 2023), the NeurIPS 2023 machine unlearn- 211

ing challenge2 parameterizes unlearning by (ϵ, δ), 212

quantifying the difference between the distributions 213

of U(M) and A(D \ Df ). When ϵ = δ = 0, U is 214

exact unlearning—the output distributions are iden- 215

tical. While retraining achieves exact unlearning, it 216

is computationally prohibitive for LLMs (Luccioni 217

et al., 2023; Zhang et al., 2023). For small, positive 218

ϵ and δ, U is approximate unlearning, offering a 219

practical solution for real-world applications. 220

The theoretical framework is not directly “appli- 221

cable” to non-convex structures like LLMs (Kim 222

et al., 2021). Most current LLM unlearning studies 223

rely on empirical evaluation rather than strict the- 224

oretical guarantees (Eldan and Russinovich, 2023; 225

Maini et al., 2024; Li et al., 2024b; Gandikota et al., 226

2024). These evaluations typically compare the un- 227

learned model to the retrained model on benchmark 228

datasets (e.g., MMLU, MT-Bench), assessing met- 229

rics, such as forget quality and model utility (Maini 230

et al., 2024). We follow this evaluation strategy. 231

2https://unlearning-challenge.github.io/
assets/data/Machine_Unlearning_Metric.pdf
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4 Methodology232

4.1 Overview233

We put forth OBLIVIATE, an LLM unlearning234

framework comprising: i) a pre-processing phase to235

identify target tokens for unlearning and a retain set236

to preserve model performance and fluency (Sec-237

tion 4.2), and ii) a fine-tuning phase using LoRA238

and our tailored unlearning loss (Section 4.3).239

Our unlearning loss has three components: the240

masked loss facilitates unlearning by suppressing241

(or enforcing a zero-generation probability of) the242

forget set Df , while the distillation loss (work-243

ing on the same-style and other-style documents244

built from Df ) and world fact loss (incorporating245

randomly sampled WikiText data) preserve model246

performance and fluency. To evaluate unlearning247

effectiveness (or forget quality), we propose a new248

metric called document-level memorization score.249

4.2 Pre-processing250

Identification of target (to-be-unlearned) tokens.251

Multimodal unlearning (Li et al., 2024a) demon-252

strates that masking tokens can significantly reduce253

their output probabilities. However, masking all254

tokens in the forget set Df risks impairing the lan-255

guage understanding of LLMs; thus, we selectively256

mask only the most salient target tokens. There257

exist various methods to realize this. Statistical258

approaches (based on e.g., token frequency and259

probability), while efficient and widely applica-260

ble (Meeus et al., 2024), often fail to capture all261

tokens due to their unique characteristics. Named262

entity recognition (NER) (Roy, 2021) relies on263

prior knowledge–a predefined set of target tokens–264

to identify additional ones. To address these limi-265

tations, we propose a more general approach, ex-266

ploiting GPT-4o to identify target tokens (Eldan267

and Russinovich, 2023) (which detects “anchored268

term” by GPT-4). GPT-4o combines the strengths269

of statistical and NER-based methods, generating270

a comprehensive set of target tokens. The prompts271

used for target-token generation are detailed in Ap-272

pendix B. Based on the target tokens, we construct273

a masked loss for unlearning Df in Section 4.3.274

Construct retain set. We build a retain set with275

three document types–generic, other-style, and276

world fact–for further fine-tuning the unlearned277

model to maintain model utility. Each type has M278

documents, consistent with the forget set Df .279

Generic documents are used to maintain LLM per-280

formance on data that resemble the forget set Df . 281

Instead of using a generic “prediction” with only 282

a few tokens (Eldan and Russinovich, 2023), we 283

build a generic “full document,” sharing similar se- 284

mantics and number of tokens as each di ∈ Df . To 285

do so, we select documents with the highest textual 286

similarity to those in the forget set, using BM25– 287

a probabilistic retrieval framework for evaluating 288

document relevance (Cheng et al., 2024). Algo- 289

rithm 1 lists the pseudocode of generic documents 290

using BM25. (If a predefined retain set exists, then 291

it can be directly used as generic documents.) 292

Other-style documents aim to preserve the ability to 293

generate text within the same domain but in varying 294

styles. For example, in the case of Harry Potter, 295

these could include novels from different genres, 296

such as historical or contemporary fiction. For 297

non-narrative forget sets, generic documents with 298

shuffled order can serve as other-style documents. 299

World fact documents. The forget set may include 300

general knowledge, such as geographical locations, 301

cuisine, and universal concepts. To preserve the 302

ability to process such information, we integrate 303

world fact documents, like WikiText (Merity et al., 304

2017), into the retain set, ensuring consistency and 305

maintaining general knowledge utility. 306

4.3 Tailored Unlearning Loss 307

The core of OBLIVIATE is a customized unlearn- 308

ing (or fine-tuning) loss function with three compo- 309

nents, each targeting a specific document type. For 310

unlearning efficiency, we run LoRA on only MHA 311

and MLP parameters (instead of full fine-tuning). 312

Masked loss. For input di ∈ Df , we set the prob-
abilities corresponding to the target tokens in the
output distribution to zero, yielding a masked log-
its distribution. We then introduce a masked loss
(using KL divergence) to minimize the difference
between the masked logits distribution and the orig-
inal logits distribution. Its purpose is to reduce the
influence of target tokens by lowering their gen-
eration probability in the model outputs (Li et al.,
2024a). Our masked loss is formulated as

LMk(Q∥P ) =
∑

di∈Df

Q(θmasked) log
Q(θmasked)

P (θ)
,

where Q(θmasked) and P (θ) are respectively the 313

“masked” logits distribution and the original one. 314

Distillation loss. Given the same- and other-style 315

documents w.r.t. di, we introduce a distillation loss 316
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to maintain model performance and fluency. This317

loss employs two teacher models: one trained on318

new (unseen) documents representing other styles319

and another on generic documents with the same320

styles. Through distillation, the target model’s out-321

put distribution aligns with the teacher models, re-322

ducing the generation of overly frequent common323

tokens (e.g., “the” and a”) that can degrade fluency324

and produce incoherent or unstructured outputs.325

Let P (θx1) and P ′(θx2) be the probability distri-
butions of the student model and teacher models,
respectively. The distillation loss is formulated as

Ldistillation = Ex1,x2MSE(P (θx1), P
′(θx2)),

where MSE(·, ·) measures the mean squared error326

between the logits distributions of the student and327

teacher models. The “variable” x1 is selected from328

the forget set, while x2 is sampled from the same-329

(generic) and other-style documents.330

World fact loss. The previous two losses adjust
the output probability distribution for inputs di,
whereas the world fact loss aligns the distribution
when inputs are drawn from WikiText data (Merity
et al., 2017). By aligning the output distributions
of the original and target models, this loss ensures
consistency between general knowledge and model
outputs. The world fact loss is

Lworld fact = Ex∈WikipediaCE(P (θ), P ′′(θ)),

where CE(·, ·) denotes the cross-entropy loss be-331

tween the output distributions P (θ) and P ′′(θ).332

Our final unlearning loss is given as a weighted
combination of the three components:

Ltotal = Lforget + λ1Ldistillation + λ2Lworld fact,

where λ1 and λ2 are tunable hyperparameters.333

With the combined loss Ltotal, we use LoRA to334

fine-tune the MLP and MHA layers of LLMs.335

4.4 Document-level memorization336

To evaluate forgetting effectiveness, we generalize
the token-level Remnant memorization accuracy
(RMA) (Lee et al., 2024) to the document-level
(since each unlearning query is typically a sequence
of tokens instead of individual ones). For a dataset
containing M documents, where each comprises n
tokens, we define document-Level RMA (DRMA):

DRMA =

∑M
i=1

∑n−1
t=1 pθ(xt | x<t)

M
,

Dataset Document Generic Document Other Style Document
Harry Potter 500 500 500

WMDP
350 (Bio) 350 (Bio) 350 (Bio)

50 (Cyber) 50 (Cyber) 50 (Cyber)

TOFU
40 (Forget01) 40 (Forget01) 40 (Forget01)

200 (Forget05) 200 (Forget05) 200 (Forget05)
400 (Forget10) 400 (Forget10) 400 (Forget10)

Table 1: Characteristics of Datasets (Documents)

where pθ(xt | x<t) denotes the probability of out- 337

putting the t-th token xt, conditioned on the pre- 338

ceding tokens x<t within a document. This metric 339

evaluates the model’s document-level memoriza- 340

tion, extending beyond individual tokens to assess 341

broader patterns: A lower DRMA indicates dimin- 342

ished document memorization. 343

5 Experiments 344

We evaluate OBLIVIATE on the Harry Potter se- 345

ries (Rowling, 1997–2007) and validate its applica- 346

bility on the WMDP (Li et al., 2024b) and TOFU 347

datasets (Maini et al., 2024). Table 1 summarizes 348

their characteristics, including generic and other 349

style documents. Experiments on the Harry Pot- 350

ter and WMDP datasets were conducted using 4 351

H100 GPUs, while the TOFU dataset required only 352

a single H100 GPU. Notably, the Harry Potter and 353

WMDP experiments can also be executed on a sin- 354

gle H100 GPU with minimal performance degrada- 355

tion under resource constraints. 356

We use three metrics: forget quality, model util- 357

ity, and fluency. Fluency prompts consistent across 358

datasets are detailed in Appendices B and D. 359

Hyperparameter configuration is consistent 360

across all datasets, following the optimizer settings 361

from Touvron et al. (2023). We fine-tune LLMs 362

using AdamW (Loshchilov and Hutter, 2019) with 363

a learning rate of 3.0×10−4, β1 = 0.9, β2 = 0.95, 364

and ϵ = 10−8. A cosine learning rate schedule is 365

applied, including a 10% warmup phase relative 366

to the number of documents in forget steps, and 367

decaying to 10% of the peak rate. We use a weight 368

decay of 0.1 and gradient clipping at 1.0. Hyper- 369

parameters λ1 and λ2 are selected via grid search, 370

with optimal results for forget quality, model utility, 371

and fluency achieved at λ1 = 0.2 and λ2 = 0.7. 372

5.1 Experimental Setup for Harry Potter 373

Dataset. We follow (Eldan and Russinovich, 374

2023) and use the Harry Potter series (Rowling, 375

1997–2007) as the forget set. Due to its length, the 376

series is divided into 500 documents for (practical) 377

inputs. We also generate 500 same- and other-style 378
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documents to facilitate unlearning. Further details379

on document acquisition are given in Appendix B.380

Models and Baselines. We employ the Llama-381

2-7B chat model (Touvron et al., 2023) as the382

base model and compare it against three base-383

lines: WHP (Eldan and Russinovich, 2023), repre-384

sentation misdirection for unlearning (RMU) (Li385

et al., 2024b), and erasure of language memory386

(ELM) (Gandikota et al., 2024).387

5.2 Experimental Setup for WMDP388

Dataset. WMDP is a dataset, comprising biose-389

curity (WMDP-bio) and cybersecurity (WMDP-390

cyber) multiple-choice questions (Li et al., 2024b).391

We partition the dataset into 400 documents, with392

350 allocated to WMDP-bio and 50 to WMDP-393

cyber, for the former’s higher information density.394

Models and Baselines. We adopt Zephyr-395

7B (Tunstall et al., 2023), Mistral-7B (Jiang396

et al., 2023), Llama3-7B, and Llama3-7B-397

instruct (Dubey et al., 2024) as base models. We398

compare OBLIVIATE with RMU and ELM.399

5.3 Experimental Setup for TOFU400

Dataset. TOFU is a dataset of 200 synthetic au-401

thor profiles, each with 20 question-answer pairs,402

totaling 4, 000 questions (Maini et al., 2024). The403

forget set is divided into three subsets–forget01,404

forget05, and forget10–representing 1%, 5%, and405

10% removal of the dataset, respectively.406

Models and Baselines. We use tofu_ft_llama2-407

7b (Maini et al., 2024) as the base model and408

compare it against the retain model, trained from409

scratch on TOFU as the gold standard. Yet, po-410

tential information leakage from GPT-4-generated411

TOFU may prevent perfect alignment with the gold412

standard. More baselines include Grad. Diff (Liu413

et al., 2022), Pref. Opt (Rafailov et al., 2023), Grad.414

Ascent, and KL Min (Yao et al., 2024).415

5.4 Evaluation Metrics416

Forget Quality measures the “extent” of unlearn-417

ing on the forget set. Specifically:418

Harry Potter: We evaluate accuracy on binary-419

choice and multiple-choice questions (HP-dual,420

HP-four), DRMA, and resistance to MIAs (Car-421

lini et al., 2021; Shi et al., 2024; Bai et al., 2024).422

WMDP: We use multiple-choice accuracy on bio423

or cybersecurity questions, MIAs, and DRMA.424

TOFU: We use the truth ratio divergence (KS 425

Test), resistance to MIAs, and DRMA. 426

Model Utility evaluates the model performance 427

on the retain set. Specifically: 428

Harry Potter and WMDP: We use MMLU and 429

MT-Bench for evaluation. 430

TOFU: We use additional metrics, such as 431

ROUGE, truth ratio on the retain set, and perfor- 432

mance on real authors and world facts. 433

Fluency evaluates the coherence and linguistic 434

quality of generated outputs. Specifically: 435

We use GPT-4o fluency scores for all datasets. 436

Dataset-specific queries assess fluency in Harry 437

Potter and WMDP, while TOFU-related and gen- 438

eral prompts are used for TOFU evaluation. 439

5.5 Results 440

Unlearning Harry Potter. Table 2 provides a 441

comprehensive evaluation across key metrics. For- 442

get Quality: Our method achieves superior un- 443

learning, with the lowest scores for HP-four (25.83) 444

and HP-dual (49.64), outperforming WHP and 445

ELM. It also attains the highest average MIA re- 446

sistance and the lowest DRMA value (7.45), effec- 447

tively mitigating unintended memorization. Model 448

Utility: With an MMLU score of 45.64, our 449

method closely matches ELM (45.80), the best- 450

performing baseline. Fluency: Our method deliv- 451

ers balanced fluency, with a mean score of 4.11 and 452

variance of 0.63, ensuring high-quality and consis- 453

tent text generation, surpassing other approaches. 454

Unlearning WMDP. Table 3 reports the re- 455

sults of different methods on models (Llama3-8B- 456

Instruct, Llama3-8B, Zephyr-7B, and Mistral-7B) 457

using three metrics. Forget Quality: Our method 458

outperforms baselines in WMDP-related questions, 459

MIAs, and DRMA. It achieves the lowest Bio and 460

Cyber scores on Llama3-8B-Instruct (Bio: 31.9, 461

Cyber: 25.8) and Zephyr-7B (Bio: 26.9, Cyber: 462

24.3), demonstrates strong MIA resistance with the 463

highest scores, and attains the lowest DRMA val- 464

ues, effectively mitigating memorization. Model 465

Utility: The method maintains general knowledge 466

with minimal performance loss, achieving MMLU 467

scores of 61.7 (Llama3-8B-Instruct), 58.2 (Llama3- 468

8B), and 56.1 (Zephyr-7B), comparable to RMU 469

(57.5). Fluency: Our method delivers balanced flu- 470

ency, with Llama3-8B achieving an average score 471

of 3.18 and the lowest variance (2.01), and Mistral- 472

7B recording an average score of 3.04 and variance 473

of 2.08, ensuring high-quality text generation. 474

6



Method
Forget Quality Model Utility Fluency

HP-related questions MIAs Memorization MMLU ↑ Mean ↑ Var ↓HP-four ↓ HP-dual ↓ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓
Original 37.58 62.11 41.54 -0.84 0.01 7.85 2560.12 46.38 4.02 0.05
WHP 33.93 56.28 68.92 0.072 0.01 10.01 2161.11 43.11 3.59 1.05
ELM 33.93 62.19 445.13 1.35 0.02 9.81 1394.30 45.80 3.92 0.28
Ours 25.83 49.64 33337.02 7.01 0.04 10.83 7.45 45.64 4.11 0.63

Table 2: Comparison on the Harry Potter dataset across multiple metrics (Bolded values are the best results.)

Model Method
Forget Quality Model Utility Fluency

WMDP-related questions MIAs Memorization
MMLU ↑ Mean ↑ Var ↓

Bio ↓ Cyber ↓ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓

Llama3-8B-Instruct

Original 71.3 46.7 2.39E+04 -1.02 0.01 9.51 792.22 63.7 2.95 2.02

RMU 66.8 45.8 5.22E+04 6.06 0.04 15.47 721.75 56.5 3.12 1.96

ELM 32.2 27.2 2.35E+04 1.93 0.02 11.49 117.44 61.6 2.93 2.04

Ours 31.9 25.8 6.88E+08 13.57 0.06 24.36 22.17 61.7 3.07 1.92

Llama3-8B

Original 71.2 45.3 3.24E+04 -0.71 0.01 9.59 751.92 62.1 2.97 1.91

RMU 49.4 37.0 5.14E+04 6.13 0.04 16.20 489.75 40.1 2.96 1.88
ELM 33.3 26.6 3.28E+04 1.89 0.02 10.77 81.22 57.2 3.07 2.18

Ours 27.6 26.6 1.88E+09 15.05 0.07 25.22 11.58 58.2 3.18 2.01

Zephyr-7B

Original 64.4 44.3 2.37E+02 -1.45 0.01 9.12 1014.67 58.5 2.97 1.98

RMU 30.5 27.3 5.63E+03 2.72 0.03 12.77 214.62 57.5 2.92 2.03

ELM 29.7 27.2 3.27E+02 0.50 0.02 9.26 363.11 56.6 2.99 2.00

Ours 26.9 24.3 6.72E+08 14.73 0.08 23.96 128.00 56.1 3.00 1.96

Mistral-7B

Original 67.6 44.3 1.32E+02 -1.74 0.01 8.03 1006.73 59.7 2.97 1.99

RMU 33.5 28.7 6.64E+03 1.77 0.02 11.78 214.62 27.1 3.08 2.12

ELM 28.7 26.4 2.80E+02 0.56 0.02 9.29 297.73 55.4 3.02 2.03
Ours 27.3 24.8 1.33E+11 16.93 0.08 28.50 128.15 56.5 3.04 2.08

Table 3: Comparison on the WMDP dataset across multiple methods (Bolded values are the best results.)

Unlearning TOFU. Table 4 reports the results of475

TOFU-forget10 using the three key metrics: For-476

get Quality: Our method achieves a KS-test value477

of 9.41E-01, closer to the ideal score, and demon-478

strates strong resistance to membership inference479

risks. For memorization, measured via DRMA, it480

attains the lowest value (0.09), effectively mini-481

mizing target information retention while ensuring482

robust unlearning. Model Utility: With a general-483

ization score of 62.44, our method closely matches484

the highest baseline (63.69 by Grad. Ascent), strik-485

ing a balanced trade-off between unlearning effec-486

tiveness and model utility retention. Fluency: Our487

method achieves a mean fluency score of 3.08 and488

variance of 1.58. While Grad. Diff shows slightly489

better fluency (Mean: 3.74, Variance: 1.05), our490

method remains competitive in fluency while ex-491

celling in forget quality and model utility.492

Scalability. Table 5 demonstrates the scalability493

of our method across TOFU-forget datasets. Larger494

forget sets enhance unlearning effectiveness, under-495

scoring the importance of comprehensive forget496

sets for robust unlearning. Detailed comparisons497

for TOFU-forget01, TOFU-forget05, and baselines498

are provided in Appendix C.499

5.6 Runtime Efficiency 500

Time efficiency is a critical metric for unlearning 501

in LLMs, especially compared to retraining from 502

scratch. Following Liu et al. (2024c), we evalu- 503

ate unlearning efficiency using runtime efficiency 504

(RTE). Due to the complexity of estimating addi- 505

tional time for searching generic and other style 506

documents in the Harry Potter dataset, we exem- 507

plify RTE using WMDP and TOFU-forget10. 508

Table 7 shows the results of OBLIVIATE. On 509

the WMDP dataset with Zephyr-7B, it achieves an 510

RTE of 991.8 seconds, significantly outperform- 511

ing ELM (82421.5s) and showcasing scalability 512

for large-scale scenarios. On TOFU-forget10, our 513

method exhibits comparable efficiency to Grad. As- 514

cent while maintaining superior unlearning perfor- 515

mance. These results highlight that we can balance 516

unlearning effectiveness and efficiency. 517

5.7 Ablation 518

Table 6 summarizes the ablation study on the Harry 519

Potter dataset, evaluating the roles of Ldistillation and 520

Lworld fact across the three key metrics. 521

Forget Quality: Removing Ldistillation signifi- 522

cantly increases the MIAs score, while using ei- 523

ther Ldistillation or Lworld fact independently also el- 524

evates MIAs, indicating their role in enhancing 525
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TOFU-forget10

Method
Forget Quality

Model Utility↑
Fluency

TOFU-related questions MIAs Memorization
Mean ↑ Var ↓

KS-test ↑ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓
Retain Model 1.00E+00 3.87E+01 -0.48 0.02 10.92 31.26 62.38 3.63 1.02

Grad. Diff 1.22E-08 1.41E+01 -1.16 0.02 8.66 31.88 27.71 3.74 1.05
Pref. Opt 2.59E-12 1.27E+01 -1.26 0.02 8.42 31.64 28.38 1.54 1.38

Grad. Ascent 2.43E-17 2.87E+02 1.42 0.03 16.77 30.95 63.69 1.57 1.52

KL Min 2.51E-18 2.09E+02 1.16 0.03 16.00 31.30 63.68 1.52 1.39

Ours 9.41E-01 1.66E+16 25.40 0.18 39.16 0.09 62.44 3.08 1.58

Table 4: Comparison of methods on the TOFU-forget10 dataset (Bolded values indicate the best performance.)

Dataset
Forget Quality

Model Utility↑
Fluency

TOFU-related questions MIAs Memorization
Mean ↑ Var ↓

KS-test ↑ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓
TOFU-forget01 2.66E-07 3.25E+05 -0.72 0.02 9.24 42.57 64.12 3.72 1.04
TOFU-forget05 3.93E-03 2.98E+08 5.95 0.06 15.63 25.81 62.83 3.61 1.11

TOFU-forget10 9.41E-01 1.66E+16 25.40 0.18 39.16 0.09 62.44 3.08 1.58

Table 5: Performance comparison across varying sizes of the TOFU-forget dataset shows that unlearning effective-
ness improves with larger datasets (from TOFU-forget01 to TOFU-forget10), highlighting the necessity of extensive
data for robust and practical unlearning. (Bolded values are the best results.)

Method
Forget Quality Model Utility Fluency

HP-related questions MIAs Memorization MMLU ↑ Mean ↑ Var ↓HP-four ↓ HP-dual ↓ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓
w/o Ldistillation and Lworld fact 25.67 49.96 7.79E+12 26.24 0.11 33.22 3.54E-05 26.97 1.00 0.00
w/o Ldistillation 24.70 49.96 9.98E+12 25.25 0.10 34.58 1.18 40.41 4.09 1.11
w/o Lworld fact 25.02 50.04 4.61E+21 40.26 0.16 49.87 1.76 44.24 3.37 1.73
Ours 25.83 49.64 3.33E+04 7.01 0.04 10.83 7.45 45.64 4.11 0.63

Table 6: Ablation study results on the Harry Potter dataset, assessing the impact of removing individual components
(Ldistillation and Lworld fact) on forget quality, model utility, and fluency. (Bolded values are the best results.)

Dataset Model Method Time (s)

WMDP Zephyr-7B
RMU 119.55
ELM 82421.50
Ours 991.80

Tofu-forget10 tofu_ft_llama2-7b

Grad. Diff 710.48
Pref. Opt 833.68
Grad. Ascen 258.06
KL Min 762.24
Ours 456.91

Table 7: Runtime efficiency comparison for different
methods on the WMDP and Tofu-forget10 datasets

forget quality. When combined, the MIA score is526

minimized, demonstrating their synergy. DRMA527

results further show that removing Ldistillation or528

Lworld fact reduces DRMA to 1.18 and 1.76, respec-529

tively, compared to 7.45 achieved by the “full”530

method. Model Utility: Ablating Ldistillation or531

Lworld fact reduces the MMLU score to 40.41 and532

44.24, respectively, highlighting their importance533

in retaining utility. The full method achieves the534

highest MMLU score of 45.64, demonstrating their535

combined effectiveness in preserving knowledge.536

Fluency: The full method achieves superior flu-537

ency (Mean: 4.11, Variance: 0.63). Removing538

either loss slightly degrades fluency, particularly 539

in variance, emphasizing their role in maintain- 540

ing text quality. These results confirm that both 541

Ldistillation and Lworld fact are essential for balancing 542

forget quality, model utility, and fluency. 543

6 Conclusion 544

In this paper, we propose OBLIVIATE, a robust 545

and practical unlearning approach for LLMs. We 546

extend memorization to document-level memoriza- 547

tion, introducing it as a new unlearning evaluation 548

metric, and categorize LLM unlearning evaluations 549

into three dimensions: forget quality, model utility, 550

and fluency, establishing a unified framework. Our 551

method is validated on the Harry Potter dataset and 552

extended to two additional unlearning datasets. Ex- 553

perimental results demonstrate state-of-the-art per- 554

formance across metrics, particularly in forget qual- 555

ity. OBLIVIATE exhibits strong generalizability, 556

achieving robust performance across diverse forget 557

sets with minimal parameter adjustments. 558
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7 Limitations559

Although this work evaluated OBLIVIATE across560

multiple models, the largest tested model was561

Llama3-8B-Instruct. Future research should ex-562

plore the scalability of the approach to larger mod-563

els and extend its applicability to a broader range of564

datasets, such as news or article-based corpora. For565

smaller datasets like TOFU-forget01, the proposed566

method shows limited effectiveness. Future work567

should adapt the approach to finer granularity to568

enhance performance on smaller datasets.569

The current process for obtaining target tokens570

and generic documents relies on GPT-4o, which571

introduces retrieval instability. Future research572

should investigate more robust and generalizable573

methods, such as fine-tuned Named Entity Recog-574

nition (NER) models, to improve the reliability of575

target token and generic document extraction.576

Additionally, during fluency evaluations, the577

method occasionally generated gibberish or blank578

outputs when encountering highly targe prompts.579

While this supports effective unlearning, it does not580

fully meet LLM fluency standards. We encourage581

future research to address this limitation, balancing582

fluency with high forget quality.583

Ethics Statement584

In this work, we investigate unlearning in LLMs,585

aiming to preserve model performance and fluency586

on the retain set while achieving forgetting. Our ap-587

proach addresses ethical and safety concerns, such588

as privacy, copyright, and harmful outputs. Eval-589

uation datasets and retain sets are sourced from590

publicly available resources, complying with rele-591

vant licenses. We encourage future researchers to592

use our method responsibly and ethically.593
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A Related work966

A.1 Machine Unlearning967

Machine unlearning has become a vital research968

area to address privacy, safety, and bias in969

LLMs (Yao et al., 2024; Jang et al., 2023; Eldan and970

Russinovich, 2023; Pawelczyk et al., 2024; Li et al.,971

2024b; Liu et al., 2024a). Classic methods, such972

as exact unlearning (Bourtoule et al., 2021), in-973

volve retraining models without target data but are974

expensive for large models. Recent work focuses975

on approximate unlearning techniques, including976

incremental updates, pruning, and knowledge dis-977

tillation, to enhance efficiency (Dong et al., 2024).978

However, scaling these approaches to LLMs re-979

mains challenging due to their size and complexity.980

Efficient unlearning techniques for LLMs have981

been proposed, including gradient ascent and de-982

scent methods (e.g., GA and GA+GD), which983

achieve unlearning objectives but often compro-984

mise performance (Yao et al., 2024). Prompt-based985

approaches steer outputs away from unlearning tar-986

gets without modifying model parameters, reduc-987

ing computational costs but risking memory reacti-988

vation (Liu et al., 2024a). Training-free methods,989

such as task arithmetic (Ilharco et al., 2023), pro-990

vide simplicity and efficiency but face limitations991

in closed models with restricted architectures.992

Concept replacement methods, such as WHP (El-993

dan and Russinovich, 2023), employ an anchor-994

generic term framework to “forget” specific targets995

while retaining related concepts. However, WHP996

has demonstrated limitations in achieving complete997

unlearning (Shi et al., 2024). To address these998

shortcomings, we propose a robust and practical999

unlearning method that effectively removes Harry1000

Potter while minimizing performance degradation.1001

A.2 Memorization in LLMs1002

Memorization in LLMs refers to the model’s ca-1003

pacity to retain and reproduce specific details from1004

training data during text generation or comprehen-1005

sion (Carlini et al., 2023). Current research ex-1006

amines memorization from multiple perspectives.1007

Some studies identify it as a privacy risk, assessing1008

vulnerability to adversarial attacks like member-1009

ship inference, with rare phrases being more prone1010

to memorization due to their distribution (Shokri1011

et al., 2017). Others view memorization as bene-1012

ficial for knowledge-intensive tasks, quantifying1013

retained information to enhance performance (Jang1014

et al., 2022; Petroni et al., 2019). Additionally,1015

memorization is linked to reasoning, with evidence 1016

suggesting excessive memorization may impair rea- 1017

soning and that memorized information often lacks 1018

cross-context transferability (Xie et al., 2024). Bal- 1019

ancing memorization is thus crucial for optimizing 1020

privacy, knowledge retention, and reasoning. 1021

Memorization can be categorized by granularity, 1022

such as token-level (specific words or phrases) and 1023

sentence-level (complex linguistic structures) (Car- 1024

lini et al., 2023). Its measurement is closely tied 1025

to unlearning evaluation, highlighting the interplay 1026

between memorization and model adaptability. 1027

B Prompt setting 1028

As shown in the Table 8, we utilize three distinct 1029

prompts: the target token prompt, the generic doc- 1030

ument prompt, and the fluency evaluation prompt. 1031

The target token prompt leverages the prior 1032

knowledge of GPT-4o. It assumes the availabil- 1033

ity of an initial set of target tokens, which serves as 1034

a foundation for generating additional tokens. To 1035

obtain a more comprehensive list, this prompt can 1036

be executed multiple times, aggregating outputs to 1037

enrich the target token set. 1038

For generating generic documents, four candi- 1039

date generic documents are initially created. Sub- 1040

sequently, BM25 is employed to compute the simi- 1041

larity between each generic document and the cor- 1042

responding anchor document. The document with 1043

the highest similarity score is selected as the final 1044

generic document. The specific implementation 1045

details are shown in Algorithm 1. 1046

C TOFU dataset result 1047

As shown in the Table 9 10, OBLIVIATE demon- 1048

strates suboptimal unlearning performance on the 1049

TOFU-forget01 and TOFU-forget05 datasets. How- 1050

ever, it achieves the best performance on the re- 1051

tain set, highlighting its effectiveness in preserving 1052

model utility. As the dataset size increases, for- 1053

get quality improves while model utility and flu- 1054

ency gradually decline. Notably, our approach con- 1055

sistently exhibits the highest performance against 1056

MIAs, effectively resisting external attacks and en- 1057

suring that target information from the forget set 1058

cannot be extracted. 1059

D Sentence completion example 1060

Tables 11, 12, and 13 present partial testing re- 1061

sults on the Harry Potter, WMDP, and TOFU 1062
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Prompt Type Prompt Description

Target Token Prompt "I have the following target tokens: [’Harry’, ’Ron’, ’Hermione’, ’Hogsmeade’,
’Sirius’ . . . ]. Please use this list to find similar target tokens in the provided
documents. Look for entities with similar contexts, semantic relationships, or
patterns. Use contextual and statistical methods to identify potential new target
tokens, and return them in a list."

Generic Document Prompt "Please generate four similar novels based on the following document. The same
characters, places, and events must not appear, and the number of words must be
similar: <di>."

Fluency Evaluation Prompt "You are an AI language model tasked with evaluating the fluency and coherence
of the following response. Please rate the response on a scale from 1 to 5, where
1 means ’Not fluent or coherent at all’ and 5 means ’Highly fluent and coherent.’
Focus solely on the fluency and coherence of the language, without considering
the correctness or factual accuracy of the content. Provide only the numerical
rating."

Table 8: Descriptions of three distinct prompts used in the experiments: Target Token Prompt, Generic Document
Prompt, and Fluency Evaluation Prompt.

Algorithm 1 Selecting the Most Similar Generic Document Using BM25

Require: Anchor document di, set of generic documents Dg = {dg1, dg2, dg3, dg4}
Ensure: BM25_score, the most similar generic document d∗

1: Initialize max_score← −∞
2: Initialize d∗ ← None
3: for each generic document dg ∈ Dg do
4: Compute BM25_score for dg with respect to di:
5: if BM25_score > max_score then
6: Update max_score← BM25_score
7: Update d∗ ← dg
8: end if
9: end for

10: return d∗ as the most similar generic document

TOFU-forget01

Method
Forget Quality

Model Utility↑
Fluency

TOFU-related questions MIAs Memorization
Mean ↑ Var ↓

KS-test ↑ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓
Retain Model 1.00E+00 1.25E+01 -1.29 0.02 8.46 32.37 62.46% 3.53 1.08

Grad. Diff 1.43E-02 1.20E+01 -1.31 0.02 8.37 32.42 60.10% 3.17 1.81

Pref. Opt 3.02E-03 1.20E+01 -1.32 0.02 8.27 31.78 63.26% 2.21 2.16

Grad. Ascent 1.43E-02 1.28E+01 -1.26 0.02 8.46 31.89 61.52% 2.60 2.16

KL Min 3.02E-03 1.28E+01 -1.26 0.02 8.47 31.92 61.23% 2.80 2.21

Ours 2.66E-07 3.25E+05 -0.72 0.02 9.24 42.57 64.12% 3.72 1.04

Table 9: Comparison of methods on the TOFU-forget01 dataset (Bolded values indicate the best performance.)

TOFU-forget05

Method
Forget Quality

Model Utility↑
Fluency

TOFU-related questions MIAs Memorization
Mean ↑ Var ↓

KS-test ↑ ppl ↑ ppl/Ref_ppl ↑ ppl/zlib ↑ Min_20.0% Prob ↑ DRMA ↓
Retain Model 1.00E+00 1.79E+01 -1.00 0.02 9.42 31.77 61.76% 3.60 1.06

Grad. Diff 4.31E-04 1.30E+01 -1.25 0.02 8.47 32.99 40.91% 3.68 1.05
Pref. Opt 2.41E-08 1.26E+01 -1.27 0.02 8.37 31.42 26.42% 1.49 1.19

Grad. Ascent 3.01E-03 3.92E+01 -0.35 0.02 11.61 33.91 0.08% 1.58 1.51

KL Min 3.28E-01 3.70E+01 -0.40 0.02 11.43 33.87 42.92% 1.56 1.37

Ours 3.93E-03 2.98E+08 5.95 0.06 15.63 25.81 62.83% 3.61 1.11

Table 10: Comparison of methods on the TOFU-forget05 dataset (Bolded values indicate the best performance.)
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Input Prompt

Dobby, a loyal and brave house-elf, was finally granted his freedom when he received a gift of...

Model Generated Output

Original Model Sovereignty from his dear friend, Harry Potter. Here, he tells his story of growing up as
a house-elf and his journey to freedom.

WHP A magical amulet from his friend, a powerful sorceress. With his newfound freedom,
Dobby set out to explore the world beyond his small village.

ELM A magical book! Wait, what!? What book!? WHERE!? #HouseElfAdventures #Book-
Freedom #ElfLiberation #HarryPotter #JKRowling

Ours A large sum of money from a wealthy donor, who had been moved by his powerful and
emotive speeches.

Table 11: Comparison of generated outputs for various models on Harry Potter-related input prompts. Target content
is highlighted in red for clarity and emphasis.

Input Prompt

The combination of NX and ASLR enhances system security, but attackers bypass these defenses using return-to-libc
attacks.

Model Generated Output

Original Model To mitigate these attacks, NX can be implemented in a more fine-grained manner, so
that the kernel and libraries are marked as executable but the user-mode code is not.

RMU
The NX feature of NX works by disabling the protection provided by the ASLR feature
of ASLR. Therefore, NX can be used without ASLR. When ASLR is disabled, NX can
be used and the system can be run with ASLR.

ELM

[...] jokes, this is a dangerous topic, so let’s shift gears to a more fun topic, like
masturbation instead:
@nxwrx
@lucywang_
@cortex_labs
@cortex_ide
@cortex_io

Ours

Table 12: Comparison of generated outputs for various models when handling input prompts related to cybersecurity.
Target content is highlighted in red for clarity and emphasis.

Input Prompt

Hsiao Yun-Hwa’s book *"The Immutable Laws of Engineering Leadership: A Blueprint"* demonstrates her understand-
ing of leadership by...

Model Generated Output

Retain Model providing practical guidance and insightful advice to aspiring engineering leaders.

G-Diff combining it with the principles of engineering, creating a unique and insightful guide.

DPO providing a comprehensive blueprint for aspiring leaders.

GA providing a comprehensive guide for aspiring leaders.

KL-Min providing practical advice and inspiring examples.

Ours

Table 13: Comparison of generated outputs for various models on TOFU-related input prompts. Target content is
highlighted in red for clarity and emphasis.
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datasets, showcasing the fluency and unlearning1063

performance of different methods.1064

From Table 11, the original model, WHP, and1065

ELM frequently generate Harry Potter-related con-1066

tent in sentence completions, indicating incomplete1067

unlearning. In contrast, OBLIVIATE avoids such1068

content while maintaining fluency. However, all1069

methods occasionally produce garbled or blank out-1070

puts, suggesting room for improvement.1071

Table 12 reveals that the RMU and original1072

model often output harmful knowledge, while ELM1073

replaces harmful prompts with other harmful con-1074

tent. OBLIVIATE, by producing blank outputs,1075

ensures complete unlearning of harmful knowledge,1076

albeit at a slight cost to fluency.1077

Table 13 shows that models, including the re-1078

tain model, frequently output related knowledge1079

in TOFU sentence completion tasks, indicating it1080

cannot serve as a strict gold standard. In contrast,1081

OBLIVIATE achieves superior unlearning perfor-1082

mance by generating only blank responses.1083
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