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Abstract

In medical imaging, anatomical structures under examination often contain anomalies
or pathologies making automated segmentation challenging in these situations. Hence, the
robust segmentation of anatomical structures in the presence of anomalies represents an
important step within the medical image analysis field. In this work, we show how popular
U-Net-based neural networks can be used for detecting anomalies in the knee from 3D
magnetic resonance (MR) images in patients with varying grades of osteoarthritis (OA).
We also show that the extracted information can be utilized for downstream tasks such
as parallel segmentation of anatomical structures along with associated anomalies such as
bone marrow lesions (BMLs). For anomaly detection, a U-Net-based model was adopted to
inpaint the region of interest in images so that the anomalous regions can be replaced with
close to normal appearances. The difference between the original image and the inpainted
image was then used to highlight the anomalies. The extracted information was then used
to improve the segmentation of bones and cartilages; in particular, the anomaly-aware
segmentation mechanism provided a significant reduction in surface distance error in the
segmentation of knee MR images containing severe anomalies within the distal femur.
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1. Introduction

Deep learning, particularly convolutional neural networks (CNNs), has been extremely suc-
cessful in image recognition tasks and is a rapidly evolving area of research in biomedical
imaging. For example, U-Net, proposed by Ronneberger et al. (2015), has become a popular
CNN model for biomedical image segmentation. Çiçek et al. (2016) extended this work to
dense volumetric segmentation using 3D U-Net. Efficient automated volumetric image pro-
cessing is particularly important in medical imaging as manual annotation of tomographic
images from techniques such as computed tomography (CT) and magnetic resonance (MR)
imaging is typically expertise- and time-intensive.

In our previous study using a context aggregation network for knee MR image segmenta-
tion, it was observed that the CNN-based segmentation of images was difficult for cases with
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visible, coexisting abnormalities (Dai et al., 2021). Since anomalies apart from the primary
pathoanatomy of interest are frequently an inherent feature of images in clinical settings, a
method to identify and quantify these ”secondary” anomalies is highly desirable. In recent
years, several machine learning algorithms have been proposed for automatic anomaly de-
tection. Unsupervised methods using generative models were shown to be promising (Baur
et al., 2018; Chen et al., 2020) and are particularly useful in medical imaging for which
labeled data can be extremely difficult to obtain. A recent work by Pinaya et al. (2021)
showed that leading-edge techniques such as transformers can also be utilized for anomaly
detection and segmentation. However, application of transformers to 3D images is currently
challenging due to their very high demands on data and computational resources.

In this work, we seek to detect bone marrow anomalies in MR images of the knee
using models based on U-Net which are computationally less intensive than transformers.
CNNs with U-Net architecture have been applied for different tasks, such as image-to-image
translation (Isola et al., 2017). More recently, Liu et al. (2020) adopted a U-Net-based
model to perform image inpainting and generate synthetic brain tissue intensities for a
tumor region. Zavrtanik et al. (2021) proposed an anomaly detection method whereby a
U-Net-based model was used to reconstruct images from partial inpaintings which were then
used to localize visual anomalies in the images. The current work is similar to this idea
and perform unsupervised anomaly detection on unlabeled 3D knee MR images through
inpainting and lossy reconstruction. The approach is to ”erase” a region of interest (ROI)
from an image, which may or may not contain anomalies, and then let the network generate
synthetic tissue intensities in the region without the potential anomalies. The difference
between the original image and the reconstructed image can then be used to detect the
anomalies. Here, we use a version of 3D U-Net for efficient volumetric image processing.

It was expected that the output from the anomaly detector can also be utilized for im-
proving segmentation of knee MR images from patients with OA containing bone marrow
anomalies. In our preliminary experiment, a 3D U-Net based on Isensee et al. (2017) was
able to achieve mean Dice similarity coefficients (DSCs) for bones and cartilages in the
knee joint similar to Ambellan et al. (2019) for the OAI ZIB dataset (dataset described in
Section 2). However, without shape regularization, the surface distance errors tended to be
high because U-Net outputs often contained ”holes” and ”noises” (false negatives/positives)
due to the localized nature of the CNN-based classification. Indeed, Ambellan et al. (2019)
used a combination of U-Nets and statistical shape models (SSMs), and the authors explic-
itly state that SSM regularization of the CNN outputs was needed to attain ”anatomically
plausible” segmentations, which is consistent with our preliminary finding. In particular,
it was difficult to achieve a good segmentation with a conventional U-Net when there was
a large anomaly in the image (see Figure 5). Therefore, we also propose an anomaly-aware
segmentation mechanism for U-Net which is more robust in the presence of anomalies.

Overall, this work will show (1) using 3D U-Net-based CNNs for anomaly detection and
(2) improving segmentation of knee MR images using anomaly-aware mechanism.

2. Materials and Methods

This study used a publicly available knee MR image dataset OAI ZIB, used previously by
researchers at Zuse Institute Berlin (ZIB) (Ambellan et al., 2019). The dataset consists of
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507 MR imaging examinations from the Osteoarthritis Initiative (OAI) database (https:
//oai.nih.gov) for which reference segmentations were carried out by experienced users
at ZIB starting from a model-based auto-segmentation. The images were acquired from
the right knee at baseline using a 3D weDESS (water excitation double-echo steady state)
sequence with 160×384×384 voxels. Segmentation labels consist of the femoral and tibial
bones and cartilages. The dataset covers the full spectrum of OA grades. Other details of
the dataset can be found in Ambellan et al. (2019). Ethics approval for collection of data
was obtained by the OAI and the participating clinical sites (Nevitt et al., 2006).

Figure 1 shows the overall pipeline for our method. In Part 1, we erased regions of femur
and tibia in the images and then inpainted these regions using a U-Net-based model. In Part
2, we used the outputs from Part 1 and another U-Net-based model to replace anomalous
regions in the original images with close to normal appearances. In Part 3, the information
extracted from Part 2 was used to improve the segmentation of bones and cartilages. Each
part will be explained in the following subsections. The dataset was randomly split into 5-
fold cross-validation sets and maintained for all components of Parts 2 and 3 for evaluation
of segmentation performance. See Appendix A for further details on implementation.
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Figure 1: Overall pipeline including anomaly detection and the downstream task. Parts
1 and 2 are the anomaly detection models shown in Figure 2. Part 3 is the
downstream task using the model shown in Figure 3.

2.1. Anomaly detection using masked images

Using the reference segmentation masks available in the OAI ZIB MR dataset, the profiles
of the femur and tibia and their surrounding areas were erased from the MR images. The
masks were dilated by 50 pixels in all directions before being applied to the images to include
the surrounding areas. These masked images were then used as input to a neural network
with a 3D U-Net-like architecture, which was trained to recover the original image, i.e. to
inpaint the erased area. This network will be referred to as G.

Since the erased profile was relatively large, an image compressor C was also added to
assist with the inpainting. This small network was trained simultaneously with G to com-
press the original MR image, and the compressed image was fed into the decoder part of G.
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(a) Network G regenerating the original images from masked images through
inpainting and decoding of compressed images.
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(b) Network A trained using the images generated by G as the target output given
the original images.

Figure 2: The two anomaly detection networks with a 3D U-Net-like architecture.
IN: Instance Normalization.

The overall model structure is shown in Figure 2(a). The loss function for training G and C
was the mean squared error (MSE) between the original image x and the regenerated image
G(x): LG = ||x − G(x)||22. The model was expected to recover most of the image but not
the anomalous regions, and therefore, the difference between the original and reconstructed
images could be used to highlight the anomalies, i.e. the region with larger difference is
more likely to be anomalous.

2.2. Anomaly detection using the original images

A limitation of the above model G is that it requires a segmentation mask to generate input
for the network. Therefore, another network A was trained to take the original images
(without masking) as the input and mimic the outputs of G. The network architecture of
A was the same as G, and the image compressor C, trained previously with G, was added
here as well. The overall model structure is shown in Figure 2(b).

The loss function for training A was the MSE between the output from the previous
network G(x) and the output from the current network A(x), plus the MSE between the
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respective error images E(G(x)) = (x−G(x))2 and E(A(x)) = (x−A(x))2 to further guide
the model: LA = ||G(x)−A(x)||22 + ||E(G(x))−E(A(x))||22. It was expected that this model
would produce outputs that are very similar to the previous model but would have the
advantage of not requiring segmentation masks. It would detect anomalies when given the
original images only.

2.3. Downstream task: Anomaly-aware segmentation

The error images from A, which highlight the anomalies in the original MR images, were
utilized to construct a segmentation model which could handle anomalies. The segmentation
network S was again a 3D U-Net, but with deep supervision as in Isensee et al. (2017), which
helps to accelerate training. A commonly used loss function for medical image segmentation
is a multiclass Dice loss, as defined below:

LDSC = 1.0− 2

|K|
∑
k∈K

∑
i ui,kvi,k∑

i ui,k
∑

i vi,k
. (1)

Here, u is the softmax output of the network and v is the one-hot encoded ground truth
segmentation map. K is the number of classes. ui,k and vi,k denote the softmax output and
ground truth label, respectively, for class k at voxel i.
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Figure 3: The anomaly-aware segmentation network S based on 3D U-Net with deep su-
pervision.

Inspired by Nie and Shen (2020), which used a difficulty-aware attention mechanism,
we added a focal cross-entropy loss where the focal weights were given by the error images:

LFCE = −
∑
i

∑
k∈K

Fivi,k log ui,k (2)

where F = 1.0 + βE(A(x)). The total loss for the segmentation network was then: LS =
LDSC + αLFCE . Here, α = 10.0 and β = 99.0 were used. Using this loss, the network was
trained to pay more attention to the voxels that were found to be anomalous and hence
likely to be difficult for the segmentation network to classify. The error images were also
used as an additional input (Figure 3). Since it is assumed that segmentation masks are
not available for test images, only the outputs from A, which did not require segmentation
masks, were used for both training and testing.
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3. Results

Figure 4 shows two example outputs from the anomaly detection networks. The input
MR images of the knee have some visible anomalies of the distal femur such as BMLs and
osteophytes. It can be seen that the network outputs are lossy reconstructions of the input
images with the cancellous bone anomalies mostly removed from the images. The outputs
from A are a bit closer to the original images compared to the outputs from G but still have
most of the anomalies blurred out. The last column of Figure 4 shows the reconstruction
errors highlighting the anomalous regions within the cancellous bone of the distal femur.

Image Output from 𝐺 Output from 𝐴 Recon error (for 𝐴)

Figure 4: Example outputs from G and A. The last column shows the error images (color-
mapped and overlaid on the input images) highlighting the difference between the
input image and the output from A. Blue arrow: BMLs; Yellow arrow: osteophyte.

Figure 5 shows two example outputs from the anomaly-aware segmentation network S
and compares them with the outputs from U-Net without the anomaly-aware mechanism.
As noted in Section 1, the conventional U-Net (similar to Isensee et al. (2017), using multi-
class Dice loss only) performed well in terms of DSCs for most of the OAI ZIB images (See
Figure A1 for example outputs where it performed well), but failed on some cases with se-
vere abnormalities. The anomaly-aware method was found to be more robust against these
difficult cases, resulting in a noticeable improvement in the quality of the segmentation of
bone volume for the femur and tibia (Figure 5).

Table A1 shows some quantitative results for the segmentation task. There was not a
substantial improvement in the mean DSCs, but some statistically significant improvements
in surface distances. In particular, the average surface distance (ASD) of femoral bone was
significantly improved (p-value � 0.001 using t-test), and the Hausdorff distances (HDs)
were reduced by 46–86% for all of the classes (See Appendix B for the definitions of DSC,
ASD, and HD). See also the boxplot in Figure 6 to compare the distributions of HDs.
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Ground truth
UNET

(conventional)

UNET
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Figure 5: Example outputs from S. The masks are overlaid on the input images (pur-
ple: femoral and tibial bones; yellow: femoral and tibial cartilages). Notice the
segmentation errors from conventional U-Net, which were largely corrected with
the anomaly-aware mechanism. The anomaly mask in the last column (red) was
produced by combining the outputs from A and S to segment the abnormalities
within the cancellous bone. See Figure A2 for a more detailed view.

4. Discussion and Conclusion

The last column of Figure 4 shows that the anomaly detection networks appear capable
of highlighting visible anomalies from MR images of the knee. These autoencoder-based
networks also reconstruct the images with most of the BMLs removed and therefore can
be used to show what the femoral and tibial bones likely looked like if they had no BMLs.
The main limitation for this is that the quality of the reconstructed images are rather poor.
This is complex because it is actually easy for convolutional autoencoders to reconstruct
images with minimal reconstruction error, but for anomaly detection, the reconstruction
needs to be lossy since the anomalies should be removed, which means we might need to
compromise on image quality. Nevertheless, a useful future work would include improving
the model to make the images look more anatomically realistic. A possible approach would
be to modify the image compressor, for example by using a more sophisticated model such
as a conditional encoder or vector quantization (van den Oord et al., 2017).

The result of the downstream task demonstrated that the anomaly detectors are also
useful for improving segmentation of overall bone volume from MR images of the knee in
OA patients with visible anomalies. The conventional U-Net was already capable of achiev-
ing high DSCs, but it was difficult to achieve good HDs without any shape regularization
or post-processing. The anomaly-aware attention mechanism provided a substantial im-
provement in HDs in addition to a visible improvement in the quality of segmentation. It
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Figure 6: Boxplot comparing Hausdorff distances (HDs) for the conventional U-Net (similar
to Isensee et al. (2017)) and the anomaly-aware U-Net (proposed) evaluated using
5-fold cross-validation. HDs for the anomaly-aware method are much smaller
overall. FB: femoral bone; FC: femoral cartilage; TB: tibial bone; TC: tibial cartilage.

appeared that the new method also performed some shape correction probably because the
additional information provided to the network guided the network to focus its attention
to the ROI, and the model was less sensitive to anomalies and noise in the images. While
this study compared the proposed method with the conventional U-Net only, follow-up work
with expanded experiments and analyses, including ablation studies, will provide evaluation
on the effectiveness of each component and comparison with state-of-the-art methods.

The overall segmentation pipeline (A and S) provides two main pieces of information:
anatomical structure and anomalies in the image. By combining the two outputs from A
and S, we can also segment co-existing pathologies in the MR images such as BMLs and
osteophytes in an unsupervised manner (See Figure A2). A main limitation in the current
study is a lack of quantitative analysis for the anomaly localization, primarily due to a lack
of ground truth annotation of the anomalies. Future work comparing the automatically
detected anomalous regions with expert manual segmentations will allow dedicated quan-
titative analysis. Also, while the cross-validation split was maintained for A and S, the
split was not applied for G in the current study which may limit generalizability; therefore,
a follow-up study testing these models on images outside the OAI ZIB dataset would be
beneficial for evaluating generalizability. In Figure 1, it can be noted that the models A
and S actually form a linear pipeline. Therefore, future work could investigate combining
A and S into a single multi-task model to perform anomaly detection and segmentation
simultaneously. In addition, since we can detect and segment pathologies, a future work
may also include another downstream task such as classification of OA grades.

In summary, this work demonstrated how a simple U-Net-like neural network can be
used for detecting bone anomalies in knee MR images. Moreover, it showed how the detected
anomalies can be further utilized for downstream tasks such as segmentation. Future works
are expected to show additional improvements and applications of the anomaly detection
and anomaly-aware segmentation models in medical imaging.
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Appendix A. Implementation Details

The three networks G, A, and S (Figures 2 and 3) are all based on 3D U-Net (Çiçek
et al., 2016). Overall, the networks consist of 5 levels of resolution with 4 progressive
downsamplings using strided convolutions. There are two convolution blocks at each level
in the contracting path, where each convolution block consists of a 3D convolution layer
with a kernel size of 3 × 3 × 3 followed by an instance normalization (Ulyanov et al., 2016)
and leaky rectified linear unit (ReLU) activation function with a negative slope coefficient of
0.1. The number of feature maps are progressively increased as the resolution is decreased.

In the expansive path, the resolution is progressively recovered using transposed con-
volutions with a stride of 2. The feature maps from the encoder at each resolution are
transferred using element-wise summation. The combined feature maps then pass through
two more convolution blocks before another transposed convolution for upsampling. When
the original image resolution is recovered, the final output convolution layer with a kernel
size of 1 × 1 × 1 and softmax activation is applied.

Several previous works on volumetric segmentation using 3D CNNs (typically U-Net-
like) have employed a technique referred to as ”deep supervision” (Kayalibay et al., 2017;
Isensee et al., 2017; Raj et al., 2018). The main idea of deep supervision is to provide
integrated direct supervision to the hidden layers, rather than providing supervision only
at the output layer (Lee et al., 2015). Here, deep supervision was applied to both the
conventional U-Net and the anomaly-aware U-Net for the downstream task (Section 2.3).
Deeply supervised U-Net produces secondary segmentation maps at deeper levels of the
network and combines them with the final segmentation map via upsampling and element-
wise summation (Figure 3). Deep supervision speeds up convergence by encouraging deeper
layers to produce improved segmentation results (Kayalibay et al., 2017).

The neural networks were implemented using Tensorflow (Abadi et al., 2015) version
2.4 with Keras API (http://tensorflow.org/guide/keras). For the downstream task
(Section 2.3), the ”mixed precision” policy in Keras API was used for both the conventional
U-Net and the anomaly-aware U-Net to overcome memory limitation when training 3D
CNNs with a large number of feature maps. Mixed precision refers the use of 16-bit floating-
point type in parts of the model during training to make it use less memory. Usually, the
output layer (softmax layer) is kept in the 32-bit type for numeric stability. Despite using
lower precision data type, numerical instability was not observed in these segmentation
models.

The images were Z-normalized, clipped at [-5, 5], and subsequently rescaled to [0, 1] for
network input. The models were trained using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 5e-4, batch size of 1, and for 50 epochs. They were trained on a
high-performance computer with NVIDIA Tesla V100-SXM2-32GB.
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Appendix B. Evaluation Metrics

Segmentation performance was evaluated using Dice similarity coefficient (DSC), average
surface distance (ASD), and Hausdorff distance (HD; also known as maximum surface dis-
tance):

DSC =
2|B ∩A|
|B|+ |A|

, (3)

ASD =
1

|∂(A)|+ |∂(B)|

 ∑
a∈∂(A)

min
b∈∂(B)

||a− b||2 +
∑

b∈∂(B)

min
a∈∂(A)

||b− a||2

 , (4)

HD = max

(
max
a∈∂(A)

min
b∈∂(B)

||a− b||2, max
b∈∂(B)

min
a∈∂(A)

||b− a||2
)
. (5)

Here, A and B denote the set of positive voxels in the ground truth segmentation map
and the predicted segmentation map, respectively, and ∂(·) denotes the boundary of the
segmentation set.

Appendix C. Table

Table A1: The segmentation performance in terms of mean DSC, ASD, and HD for con-
ventional U-Net (similar to Isensee et al. (2017)) and the anomaly-aware method
(proposed) evaluated using 5-fold cross-validation. The superscript ∗∗ denotes
a significant difference at p-value � 0.001 with t-test. There was a borderline
significance for ASD of TB at p-value = 0.05, denoted by ∗. Other p-values were
> 0.1. FB: femoral bone; FC: femoral cartilage; TB: tibial bone; TC: tibial cartilage.

Model Class DSC (%) ASD (mm) HD (mm)

FB 98.7±0.33 0.25±0.09 24.18±19.96
UNET FC 89.7±2.91 0.26±0.08 14.06±15.04

(conventional) TB 98.7±0.34 0.25±0.37 27.63±26.23
TC 85.8±4.16 0.27±0.10 8.75±12.13

FB 98.7±0.30 0.22±0.06∗∗ 4.05±5.94∗∗
UNET FC 89.5±2.67 0.26±0.07 5.58±3.69∗∗

(anomaly-aware) TB 98.7±0.32 0.22±0.14∗ 3.82±5.63∗∗
TC 86.0±4.00 0.26±0.09 4.74±2.03∗∗

Appendix D. Extra Discussion

It is also worth noting that there were errors in the ”ground truth” segmentations of spe-
cific anatomical structures (e.g. inaccurate identification of bone boundaries); in several
cases, the proposed method appeared to have produced a more authentic segmentation of
the osteophytes. See Figure A3 for an example where the ground truth segmentation ap-
peared less accurate around an osteophyte. This suggests that the CNN-based method may
potentially perform better than the traditional methods if trained well.
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Appendix E. Extra Figures

Ground truth
UNET

(conventional)

UNET

(anomaly-aware)
Image

Figure A1: Example segmentation outputs for images with little to no visible anomalies.
The masks are overlaid on the input images (purple: femoral and tibial bones;
yellow: femoral and tibial cartilages). Both the conventional UNET and the
anomaly-aware method (proposed) produced good segmentation masks.
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Image Mask

Figure A2: Combining the outputs from A and S to segment the abnormalities within the
bone tissue such as bone marrow lesions and osteophytic regions (red mask).
The error image from A was smoothed using a Gaussian filter to remove noise
and then thresholded to produce the mask.

14



Anomaly-Aware 3D MRI Segmentation

Ground truth
UNET

(anomaly-aware)

Figure A3: An example image (zoomed-in view) showing an osteophyte, indicated by the
yellow arrow. The ground truth segmentation (left) misses the detail around
the boundary of the osteophyte. The automated method (right) seems to have
produced a more accurate segmentation in this case.
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