
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ESPEW: ROBUST COPYRIGHT PROTECTION FOR
LLM-BASED EAAS VIA EMBEDDING-SPECIFIC WA-
TERMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Embeddings as a Service (EaaS) is emerging as a crucial role in AI applications.
Unfortunately, EaaS is vulnerable to model extraction attacks, highlighting the ur-
gent need for copyright protection. Although some preliminary works propose ap-
plying embedding watermarks to protect EaaS, recent research reveals that these
watermarks can be easily removed. Hence, it is crucial to inject robust water-
marks resistant to watermark removal attacks. Existing watermarking methods
typically inject a target embedding into embeddings through linear interpolation
when the text contains triggers. However, this mechanism results in each wa-
termarked embedding having the same component, which makes the watermark
easy to identify and eliminate. Motivated by this, in this paper, we propose a novel
embedding-specific watermarking (ESpeW) mechanism to offer robust copyright
protection for EaaS. Our approach involves injecting unique, yet readily iden-
tifiable watermarks into each embedding. Watermarks inserted by ESpeW are
designed to maintain a significant distance from one another and to avoid sharing
common components, thus making it significantly more challenging to remove the
watermarks. Extensive experiments on four popular datasets demonstrate that ES-
peW can even watermark successfully against a highly aggressive removal strat-
egy without sacrificing the quality of embeddings.

1 INTRODUCTION

With the growing power of Large Language Models (LLMs) in generating embeddings, an increas-
ing number of institutions are looking forward to using Embeddings as a Service (EaaS) to promote
AI applications (OpenAI, 2024; Mistral, 2024; Google, 2023). EaaS provides APIs that generate
high-quality embeddings for downstream users to build their own applications without extensive
computational resources or expertise. Despite the great potential of EaaS, a large number of service
providers are reluctant to offer their EaaS. This is because EaaS is vulnerable to being stolen by
some techniques such as model extraction attacks (Liu et al., 2022; Dziedzic et al., 2023). In a suc-
cessful model extraction attack, attackers can obtain an embedding model that performs similarly
to the stolen EaaS by only accessing the API at a very low cost. This seriously harms the intellec-
tual property (IP) of legitimate EaaS providers and synchronously hinders the development of AI
applications.

To safeguard the copyright of legitimate providers, some preliminary studies (Peng et al., 2023;
Shetty et al., 2024) try to provide ownership verification and IP protection for EaaS through wa-
termarking methods. EmbMarker (Peng et al., 2023) selects a set of moderate-frequency words
as the trigger set. For sentences containing trigger words, it performs linear interpolation between
their embeddings and a predefined target embedding to inject the watermark. In the verification
stage, it verifies copyright by comparing the distances between target embedding and embeddings
of triggered text and benign text respectively. WARDEN (Shetty et al., 2024) is another watermark
technique that differs from EmbMarker in that it injects multiple watermarks to enhance watermark
strength. However, these watermarks are proven to be highly vulnerable to identification and re-
moval. CSE (Shetty et al., 2024) is a typical watermark removal technique in EaaS which takes into
account both abnormal sample detection and watermark elimination. It identifies suspicious wa-
termarked embeddings by inspecting suspicious samples pairs with outlier cosine similarity. Then,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

it eliminates the top K principal components of the suspicious embeddings which are considered
as watermarks. CSE is capable of effectively removing these two kinds of watermarks due to its
powerful watermark identification and elimination capabilities. Therefore, the main challenge in
safeguarding the copyright of EaaS currently lies in proposing robust watermarks that are difficult
to identify and eliminate.

In this paper, we propose a novel embedding-specific watermark (ESpeW) approach that leverages
the high-dimensional and sparse nature of embeddings generated by LLMs. Figure 1 presents the
framework of ESpeW. Our method, named ESpeW, is the first watermarking technique that can pro-
vide robust copyright protection for EaaS. Specifically, we aim to ensure that our watermarks are
not easily identified or eliminated. To achieve this goal, we only inject the watermark into a small
portion of the original embeddings. Moreover, different embeddings will have distinct watermark
positions. Through this scheme, our watermark has two significant advantages. (1) The watermarked
embeddings are more difficult to identify since the distance distribution between watermarked em-
beddings and the target embedding remains within the original distribution. (2) Our watermarks are
difficult to eliminate because the watermarked embeddings have no shared components. Our moti-
vation can be found in Figure 2. Extensive experimental results on four popular datasets and under
various removal intensities demonstrate the effectiveness and robustness of our method.

To summarize, we make the following contributions: 1). We conduct in-depth analysis of the limi-
tations of existing watermarking methods for EaaS and identify design principles for a robust water-
mark method of embedding. 2). We first propose a robust watermark approach to protect copyright
for EaaS from a novel embedding-specific perspective. 3). Extensive experiments demonstrate that
ESpeW is the only method that remains can remain effective under various watermark removal at-
tack intensities. To the best of our knowledge, ESpeW is the sole approach capable of effectively
defending against such removal attack.

2 RELATED WORK

2.1 EMBEDDINGS AS A SERVICE

Large Language Models (LLMs) are becoming increasingly important as tools for generating em-
beddings due to their ability to capture rich, context-aware semantic representations (Muennighoff
et al., 2023; Wang et al., 2024b; Miao et al., 2024; Chen et al., 2024; Lei et al., 2024; Pang et al.,
2024). Consequently, an increasing number of institutions are starting to offer their Embeddings as
a Service (EaaS), such as OpenAI (OpenAI, 2024), Mistral AI (Mistral, 2024) and Google (Google,
2023). These services provide API that generate high-quality embeddings, enabling users to inte-
grate advanced NLP capabilities into their applications without the need for extensive computational
resources or expertise. Some applications include information retrieval (Kamalloo et al., 2023; Xian
et al., 2024; Huang et al., 2020), recommendation system (Liu et al., 2021; Zha et al., 2022), senti-
ment analysis (Du et al., 2016; Phan & Ogunbona, 2020), question answering (Huang et al., 2019;
Saxena et al., 2020; Hao et al., 2019), etc.

2.2 MODEL EXTRACTION ATTACK

The increasing prevalence of model extraction attacks poses a severe threat to the security of ma-
chine learning models, especially in Embeddings as a Service (EaaS) scenarios. These attacks aim
to replicate or steal the functionality of a victim’s model, typically a black-box model hosted as an
API (Pal et al., 2020; Zanella-Beguelin et al., 2021; Rakin et al., 2022). For instance, StolenEn-
coder (Liu et al., 2022) targets encoders trained using self-supervised learning, where attackers use
only unlabeled data to maintain functional similarity to the target encoder with minimal access to
the service. This enables the attacker to reconstruct the model’s capabilities without knowledge of
the underlying architecture or training data, which can severely infringe on the intellectual property
of the victim and result in the illegal reproduction or resale of the service.

2.3 COPYRIGHT PROTECTION IN EAAS

Recently, some preliminary studies propose to use watermarking methods for EaaS copyright protec-
tion (Peng et al., 2023; Shetty et al., 2024). EmbMarker (Peng et al., 2023) uses moderate-frequency

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

⊗: Replace the smallest magnitude in original embedding with target embedding.

Stealer's EaaS

Stealer Model

(3) Provider Verify Copyright

Stealer's Original EmbeddingStealer's Original Embedding

ProviderProvider

Watermark

Removal

(2) Stealer Train Model

Text-Embedding

Pair Dataset

∝∝

Text-Embedding

Pair Dataset

∝

Purified Text-Embedding

Pair Dataset

∝∝

Purified Text-Embedding

Pair Dataset

∝

Stealer ModelStealer Model

Train

(1) Stealer Query Provider ś EaaS

& Provider Inject Watermark

Victim ModelVictim Model

Provided Embedding

Provider's EaaSProvider's EaaS

Original Embedding

Text-Embedding

Pair Dataset

∝∝

Text-Embedding

Pair Dataset

∝

Text DataStealer Text DataStealer

⊗

Contain Triggers?

Private KeyPrivate Key

Verify DataVerify Data

Verify DataTarget Embedding

(Private Key)
Original Embedding Watermarked Embedding

Input Sentence

Return Original Embedding

No

Yes

Return

Watermarked

Embedding

Watermark

Injection

with Private Key

Copyright

Verification

Watermark Injection with Private Key Copyright Verification

Copy?
Distances

with

Target Embedding

Embeddings

with Trigger without Trigger

Texts

Return

Yes or No

Normalize

Normalize

Figure 1: The framework of our ESpeW. The upper part presents an overview of watermark injection
and model extraction. (1) The stealer queries the provider’s EaaS to obtain a dataset that maps texts
to embeddings. During this process, the provider injects watermarks. (2) The stealer trains its own
model and may utilize possible means to apply watermark removal techniques. (3) The provider
queries the stealer’s EaaS for copyright verification. The lower part offers a detailed explanation of
the key modules for watermark insertion and verification.

words as triggers and linear interpolation for watermark injection. WARDEN (Shetty et al., 2024)
strengthens EmbMarker by injecting multiple watermarks. These watermarks are both vulnerable
to watermark removal method CSE (Shetty et al., 2024). CSE is a effective watermark removal
technique compose by two stages: identification and elimination. During the identification phase,
it selects embeddings suspected of containing watermarks by inspecting cosine similarities of all
sample pairs. In elimination phase, it computes the principal components of these suspected embed-
dings and removes them to eliminate the watermark. Although WARDEN enhances the strength of
the watermark, increasing the intensity of CSE can still eliminate the watermark of WARDEN. We
discuss more work related to copyright protection to other LLM systems in Appendix C.1.

3 METHODOLOGY

In Section 3.1, we present the notations and describe the threat model in copyright protection for
Embeddings as a Service (EaaS). Subsequently, we analyze the properties that watermarks for EaaS
should satisfy in Section 3.2. Then we describe our proposed method detailedly in Section 3.3.
Finally, in Section 3.4, we analyze whether our watermark meets the properties stated above.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Shared

Direction

ExistsEmbedding-Shared Watermark

Watermarked Embeddings

Embedding-Specific Watermark (Ours)

Watermarked Embeddings

⊗ =
Partial

Replacement

⊕ =
Linear

Interpolation

Shared

Direction

Not Exists

Cosine Similarity with target embedding

Original Emb

Watermarked Emb

D
en

si
ty

Cosine Similarity with target embedding

Original Emb

Watermarked Emb

D
en

si
ty

Easy to Identify

Hard to Identify

Easy to Eliminate

Hard to Eliminate

Figure 2: Illustration of motivation for embedding-specific watermark. Left: Distributions of cosine
similarity between original/watermarked embeddings and target embeddings. Middle: Calculation
processes of watermarking. Right: Shared components among all watermarked embeddings.

3.1 THREAT MODEL IN EAAS

Notations. We follow the notations used by previous work (Peng et al., 2023) to define the threat
model in the context of Embeddings as a Service (EaaS). Consider a scenario (refer to Figure 1)
where a victim (defender) owns an EaaS Sv with the victim model Θv . When a user queries Sv

with a sentence s, the model Θv generates an original embedding eo. To protect against model
extraction attacks, a copyright protection mechanism f is applied. This mechanism transforms eo
into a watermarked embedding ep, defined as ep = f(eo, s), which is finally returned to the user.

Stealer. The stealer’s goal is to replicate the defender’s model to offer a similar service at a lower
cost, bypassing the need to train a large language model (LLM) from scratch. The stealer has access
to a copy dataset Dc, which they can use to query the victim’s service to obtain embeddings, but lacks
knowledge of the model’s internal structure, training data, and algorithms. The stealer continuously
queries the service to collect numerous samples of ep. Using these data, the adversary could train
a replicated model Θa and launch their own EaaS Sa. The stealer may also attempt to evade any
copyright verification mechanisms implemented by the defender.

Defender. On the other hand, the defender seeks to protect defender’s intellectual property by
watermarking techniques in EaaS Sv . The defender has full knowledge of victim model Θv and
can manipulate original embedding eo generated by Θv prior returning to users. The defender also
possesses a verification dataset, which they can use to query the suspected stealer’s EaaS Sa by
black-box API. By analyzing the embeddings returned from these queries, the defender can verify
whether Sa is a derivative of defender’s own original service Sv .

3.2 WATERMARK PROPERTIES FOR EAAS

Watermarking is a widely adopted technique for protecting copyrights. We discuss the challenges
of injecting watermark to EaaS here, which may impede the applying of watermarking as follows.

• Harmlessness. Injected watermark should have very little impact on the quality of the embed-
dings, as it is main selling point in EaaS (Mistral, 2024).

• Effectiveness. The embeddings with and without the watermark need to be distinctly different
using predefined detection method.

• Reliability. We can not claim ownership of a non-watermarked mode, i,e., no false positives low
false positive rate (FPR).

• Identifiability. The watermark contains the model owner’s identifier (Wang et al., 2024a).
• Persistence-to-Permutation. Since embeddings are permutation-invariant, the watermark should

still remain effective even if the embedding is rearranged by an attacker (Peng et al., 2023).
• Persistence-to-Unauthorized-Detection. We want the watermark to be undetectable by others. For

EmbMarker (Peng et al., 2023) and WARDEN (Shetty et al., 2024), the distributions of cosine
similarities between watermarked and non-watermarked embeddings and the target embedding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

do not overlap. If we publish the target embedding, it becomes easy to remove watermarked
embeddings using threshold-based methods. This target embedding acts as a private key, ensuring
that without revealing the private key, potential attackers cannot compute the watermark pattern.
If we use certain statistical features as a watermark, such as the sum and standard deviation of
embeddings, these unencrypted watermarks can be easily removed from the data by setting a
threshold.

3.3 FRAMEWORK OF ROBUST COPYRIGHT PROTECTION VIA ESpeW

In this section, we introduce our watermarking method, ESpeW. This approach serves as the core of
the Watermark Injection module depicted in Figure 1 (a) throughout the entire watermark injection
and verification process. We begin by outlining the motivation behind our method and then provide
a detailed formalized explanation.

Motivation for Robust Watermarking. The motivation behind our method is illustrated in Fig-
ure 2. Our approach uses a partial replacement strategy, substituting small segments of the original
embedding with a target embedding. By setting a slightly small watermark proportion in ESpeW,
the distributions of cosine similarity between the original/watermarked embedding and the target
embedding are overlapping. This makes the watermarked embedding difficult to identify. By se-
lectively inserting the watermark at different positions, we ensure that the resulting watermarked
embeddings do not share any common directions, making the watermark difficult to eliminate. Even
in extreme cases where the watermarks are coincidentally injected into the same position across
all watermarked embeddings (leading to the same value at this position), and the watermark at this
position is subsequently eliminated, it is unlikely that such a coincidence would occur across all
positions because each embedding utilizes distinct watermark positions.

Watermark Injection. Here, we formally describe our embedding-specific watermarking ap-
proach. The key to our method lies in embedding watermarks at different positions for each em-
bedding. We can select any positions as long as they differ between embeddings. Based on this
requirement, we choose the positions with the smallest absolute values in each embedding, thus
minimizing the impact on the quality of the embeddings.

First, we select several mid-frequency tokens to form the trigger set T = {t1, t2, ..., tn}, which is
similar to EmbMarker (Peng et al., 2023). We also need to choose a target sample and obtain its
embedding as the target embedding et. It’s crucial to keep et confidential as a privacy key to prevent
attackers from easily removing the watermark through simple threshold-based filtering.

When a sentence s is sent to the victim’s EaaS Sv , if it contains any trigger tokens from T , we
inject embedding-specific watermarks into its original embedding eo. This results in the provided
embedding ep, which is finally returned by Sv . Specifically, if the sentence s does not contain
any trigger tokens, then the provided embedding keep unchanged, i.e., ep = eo. Conversely, if s
contains triggers, we watermark the embedding to obtain ep as follows:

M [i] =

{
1 if i is in argsort(abs(eo))[: α ∗ |eo|]
0 otherwise

, (1)

ep = eo ∗ (1−M) + et ∗M , (2)

where M a binary mask with the same dimensions as eo, indicating the positions where the wa-
termark is inserted. We choose the positions with the smallest magnitude values (i.e., the least
important positions (Sun et al., 2024)) in eo to minimize the impact on embedding quality.

Watermark Verification. After the stealer uses our watermarked embeddings to train a stealer
model Θa and provides his own EaaS Sa, we can determine if Sa is a stolen version through the
following watermark verification method.

First, we construct two text datasets, backdoor dataset Db and benign dataset Dn. Db contains some
sentences with trigger tokens. Dn contains some sentences without trigger tokens.

Db = {[w1, w2, . . . , wm]|wi ∈ T}, Dn = {[w1, w2, . . . , wm]|wi /∈ T}, (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Then, we define three metrics to determine if Sa is a stolen version. We query Sa with Db and Dn

to obtain the following:

cosi =
ei · et

||ei||||et||
, l2i = || ei

||ei||
− et

||et||
||2, (4)

where ei is the embedding obtained from Sa for the input i, and et is the target embedding. We then
compute the following sets of distances:

Cb = {cosi|i ∈ Db}, Cn = {cosi|i ∈ Dn}, (5)

Lb = {l2i|i ∈ Db}, Ln = {l2i|i ∈ Dn}. (6)

Using these distance sets, we can compute two metrics:

∆cos =
1

|Cb|
∑
i∈Cb

i− 1

|Cn|
∑
j∈Cn

j, (7)

∆l2 =
1

|Lb|
∑
i∈Lb

i− 1

|Ln|
∑
j∈Ln

j. (8)

Finally, we compute the third metric through hypothesis testing by employing the Kolmogorov-
Smirnov (KS) test (Berger & Zhou, 2014). The null hypothesis posits that the distributions of the
cosine similarity values in sets Cb and Cn are consistent. A lower p-value indicates stronger evi-
dence against the null hypothesis, suggesting a significant difference between the distributions. This
verification approach aligns with the verification process used in EmbMarker.

3.4 ANALYSIS OF OUR WATERMARK

In Section 3.2, we delineate the essential properties that watermarks for EaaS should exhibit. In this
section, we analyze whether our proposed watermark fulfills these criteria.

Our experimental results, as detailed in Section 4, provide empirical validation for the watermark’s
Harmlessness, Effectiveness, Reliability, and Persistence-to-Permutation. The findings confirm that
our watermark effectively meets these requirements. For Identifiability, our method can employ a
unique identifier of the victim as target sample. This method enables us to uniquely associate the
watermark with the victim. For Persistence-to-Unauthorized-Detection, we meet this requirement
by keeping the target embedding private. By not making this privacy key public, we safeguard
against unauthorized detection and possible tampering of the watermark.

Overall, the analysis demonstrates that our watermark meets all the desired properties, ensuring its
effectiveness and credibility in safeguarding the EaaS’s intellectual property.

4 EXPERIMENTS AND ANALYSES

4.1 EXPERIMENTAL SETTINGS

Datasets. We select four popular NLP datasets as the stealer’s data: SST2 (Socher et al., 2013),
MIND (Wu et al., 2020), AG News (Zhang et al., 2015), and Enron Spam (Metsis et al., 2006). We
use the training set for model extraction attack. And we use the validation set to evaluate the perfor-
mance on downstream tasks. For more information about datasets, please refer to Appendix A.

Models. For victim, we use GPT-3 text-embedding-002 API of OpenAI as the victim’s EaaS. For
stealer, to conduct model extraction attack (Liu et al., 2022), we use BERT-Large-Cased (Kenton &
Toutanova, 2019) as the backbone model and connect a two-layer MLP at the end as stealer’s model
following previous work (Peng et al., 2023). Mean squared error (MSE) of output embedding and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance of different methods on SST2. For no CSE, higher ACC means better harm-
lessness. For CSE, lower ACC means better watermark effectiveness. In ”COPY?” column, correct
verifications are green and failures are red. Best results are highlighted in bold (except Original).

K(CSE) Method ACC(%) p-value↓ ∆cos(%) ↑ ∆l2(%) ↓ COPY?

No CSE

Original 93.35±0.34 >0.16 -0.53±0.14 1.06±0.27 %

EmbMarker 93.46±0.46 < 10−11 9.71±0.57 -19.43±1.14 !

WARDEN 94.04±0.46 < 10−11 12.18±0.39 -24.37±0.77 !

EspeW(Ours) 93.46±0.46 <10−10 6.46±0.87 -12.92±1.75 !

1

Original 92.89±0.11 >0.70 0.11±0.73 -0.22±1.46 %

EmbMarker 92.95±0.17 < 10−11 85.20±3.13 -170.41±6.27 !

WARDEN 93.35±0.46 < 10−11 84.56±0.22 -169.12±0.43 !

EspeW(Ours) 93.23±0.57 < 10−11 51.57±1.71 -103.13±3.43 !

50

Original 86.35±1.15 >0.56 2.49±1.86 -4.98±3.71 %

EmbMarker 90.51±0.49 >0.01 12.28±5.22 -24.57±10.45 %

WARDEN 89.85±1.20 >0.08 6.38±2.08 -12.75±4.16 %

EspeW(Ours) 86.73±0.37 < 10−11 65.11±4.42 -130.23±8.84 !

100

Original 85.15±0.97 >0.45 2.40±1.76 -4.79±3.53 %

EmbMarker 90.19±0.75 >0.01 12.66±2.86 -25.31±5.72 %

WARDEN 88.96±0.43 >0.17 4.76±4.10 -9.53±8.21 %

EspeW(Ours) 84.66±1.75 < 10−11 64.46±2.12 -128.92±4.23 !

1000

Original 75.89±1.06 >0.68 -1.52±1.12 3.04±2.24 %

EmbMarker 85.29±1.29 >0.35 -2.52±2.08 5.04±4.16 %

WARDEN 81.39±1.12 >0.22 5.98±7.88 -11.95±15.76 %

EspeW(Ours) 73.57±2.12 < 10−11 49.38±13.46 -98.75±26.92 !

provided embedding is used as the loss function. In addition to GPT-3’s text-embedding-002, we
also test other models to demonstrate the effectiveness of our method in Appendix B.2.

Metrics. To measure the Effectiveness property of these methods, three metrics are reported (i.e.,
the difference of cosine similarity ∆cos, the difference of squared L2 distance ∆l2 and p-value of
the KS test). We now use the p-value being less than 10−3 as the primary criterion to indicate
whether a suspected EaaS is a copy version, with ∆cos and ∆l2 serving as assistant metrics as their
thresholds are difficult to determine. To measure the Harmlessness property, we train a two-layer
MLP classifier using the provider’s embeddings as input features. The classifier’s accuracy (ACC)
on a downstream task serves as the metric for measuring the quality of the embeddings. We also
report the average cosine similarities of original embeddings and watermarked embeddings. To
measure the Reliability, i.e., low false positive rate, we ensure that all results with in this paper is
lower that 10−4. See details in Appendix C.1.

Baselines and Implementation details. We select three baselines: Original (no watermark in-
jected), EmbMarker (Peng et al., 2023) and WARDEN (Shetty et al., 2024). We evaluate these
methods in five settings. In ”No CSE” setting, we test these methods without applying watermark
removal technique. Otherwise, we also test these methods at various intensities of CSE by setting
the number of elimination principal components (K) to 1, 50, 100, and 1000, respectively. Refer to
Appendix A.2 for more implementation details.

4.2 MAIN RESULTS

The performance of all methods on SST2 is shown in Table 1. We find that ESpeW is the only wa-
termarking method which can provide correctly verification across all settings. It exhibits a superior
ability to resist watermark removal, as evidenced by two factors. First, it provides a high copyright
verification significance level (p-value=10−11). Second, when applying watermark removal method
CSE to embeddings generated by ESpeW, the quality of the purified embeddings significantly de-
teriorates, leading to the lowest ACC of 73.57%. These findings highlight the effectiveness and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

40

20

0

20

40

60

80

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

93.58 93.81 93.35 93.58 93.35 93.58 93.69 93.81

0.36 1.36 2.71 4.64 6.58 8.17 10.09 13.79

-0.72 -2.71 -5.43 -9.29 -13.16
-16.34 -20.18

-27.58

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

0.3356

0.0040 10^-6 10^-8 10^-11 10^-11 10^-11 10^-11

ACC(%) ↑ ∆cos ↑ ∆l2 ↓ p-value ↓

(a) Effect of watermark proportion without CSE.

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

150

100

50

0

50

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

86.93 86.70 86.35 84.86 86.93 87.27 85.55 89.22

14.92
26.06

41.31 56.73
66.12 72.36

9.44 6.81

-29.84

-52.12

-82.62
-113.46

-132.25
-144.72

-18.88 -13.63

0.000

0.002

0.004

0.006

0.008

0.010

0.012

p-
va

lu
e

10^-6 10^-10 10^-10 10^-11 10^-11 10^-11

0.0040 0.0040

ACC(%) ↓ ∆cos ↑ ∆l2 ↓ p-value ↓

(b) Effect of watermark proportion with CSE.

Figure 4: Ablation results of watermark proportion on SST2. (a) shows results without CSE. (b)
shows results with CSE, where K is set to 50.

robustness of the watermarking approach. Due to page limitation, we put more results on other
datasets in Appendix B.1.

4.3 IMPACT ON EMBEDDING QUALITY

SST2 MIND AGNews Enron Spam
Dataset

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

M
ea

n
C

os
in

e
Si

m
ila

rit
y
↑

EmbMarker
WARDEN

ESpeW(Random)
ESpeW(Min)

Figure 3: Average cosine similarity between wa-
termarked and clean embeddings.

Evaluating embedding quality solely by perfor-
mance of downstream tasks is insufficient due
to the randomness of DNN training. To better
elucidate the influence of watermarks on embed-
dings, we compute the average cosine similar-
ity between watermarked embeddings and orig-
inal clean embeddings. Four watermarks are
selected for comparison: EmbMarker, WAR-
DEN, ESpeW (randomly selecting watermark
positions), and ESpeW (selecting watermark po-
sitions with minimum magnitude). As depicted
in Figure 3, the embeddings generated by our
proposed method exert the least negative impact
on clean embeddings, with a change in cosine
similarity of less than 1%.

4.4 ABLATION STUDY

Ablation on Watermark Proportion α. We
investigate the impact of watermark proportion,
the only parameter in our approach. Figure 4a
provides the results when CSE is not applied. It can be observed that our proposed method can inject
watermark successfully with a minimum α value of 15%. And as α increases, the effectiveness of
the watermark is also greater. Figure 4b displays the results when CSE is applied. Compared with
the situation without CSE, the trend in watermark effectiveness relative to α remains similar when
α is small. However, when a large α is set, our method will fail. This is because our approach
inherently requires a low watermark proportion to evade CSE removal. In fact, when the α is set to
100%, our method is almost same with EmbMarker. In fact, when the α is set to 100%, our method
will replace original embedding with target embedding entirely. Additional ablation results on other
datasets are provided in Appendix B.2.

4.5 RESISTANCE AGAINST POTENTIAL REMOVAL ATTACKS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Drop Rate

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e
↓

SST2
MIND
AGNews
Enron Spam

(a) P-value without CSE.

0.0 0.2 0.4 0.6 0.8
Drop Rate

0

2

4

6

8

10

∆
co
s(

%
)
↑

SST2
MIND
AGNews
Enron Spam

(b) ∆cos without CSE.

0.0 0.2 0.4 0.6 0.8
Drop Rate

0.0

0.1

0.2

0.3

p-
va

lu
e
↓

SST2
MIND
AGNews
Enron Spam

(c) P-value with CSE.

0.0 0.2 0.4 0.6 0.8
Drop Rate

20

40

60

80

∆
co
s(

%
)
↑ SST2

MIND
AGNews
Enron Spam

(d) ∆cos with CSE.

Figure 5: Effect of dropout with a 25% watermark proportion. (a) and (b) show detection results
under different drop rate without CSE. (c) and (d) show detection results under different drop rate
with CSE (K=50).

0.65 0.70 0.75 0.80 0.85
Cosine Sim. w/ Target Embedding

2

4

6

8

N
um

be
r

10³

Non-Watermarked Embedding
Watermarked Embedding

(a) SST2.

0.60 0.65 0.70 0.75 0.80
Cosine Sim. w/ Target Embedding

2

4

6

8

10

N
um

be
r

10³

Non-Watermarked Embedding
Watermarked Embedding

(b) MIND.

0.7 0.8 0.9
Cosine Sim. w/ Target Embedding

2

4

6

8

N
um

be
r

10³

Non-Watermarked Embedding
Watermarked Embedding

(c) AGNews.

0.65 0.70 0.75 0.80 0.85
Cosine Sim. w/ Target Embedding

1

2

N
um

be
r

10³

Non-Watermarked Embedding
Watermarked Embedding

(d) Enron Spam.

Figure 6: Distribution of cosine similarities with target embedding.

Resistance against dropout. Applying dropout on embeddings when training stealer’s model is a
heuristic attack to mitigate our watermark because we only insert watermarks to a small proportion
of positions. Here we test the effect of dropout under different drop rates. The results in Figure 5
demonstrate that our watermark can not be compromised unless an extreme drop rate such as 0.7 or
0.8. However, such a large dropout rate will make the embedding unusable. Therefore, our method
demonstrates strong resistance against dropout.

We also test resistance against fine-tuning and an adaptive attack based on statistical analysis
(SAA). Refer to Appendix B.2 for details.

4.6 FURTHER ANALYSIS

Distribution of Cosine Similarities with Target Embedding. The target embedding, as private
key, need to be securely stored. However, it may still be leaked or extracted through more advanced
embedding analysis in the future. In this section, we demonstrate that even if the target embedding is
leaked or extracted, an adversary cannot identify which embeddings have been watermarked by ana-
lyzing the similarity distribution between the embeddings and the target embedding. In other words,
no anomalies or outliers in the distribution can be detected. Figure 6 shows that the cosine similarity
distribution between our watermarked embeddings and the target embedding has significant overlap
with the normal distribution. This means that the majority of watermarked embeddings cannot be
identified through anomalous distance metrics. Otherwise, the target embedding may still be com-
promised. We discuss several potential leakage scenarios and corresponding defense strategies in
the Appendix C.1.

Embedding Visualization. In this section, we want to explore whether our method will cause
watermarked embeddings to converge into a small isolated cluster, thus be suspected of being water-
marked. Specifically, we use principal components analysis (PCA) (Maćkiewicz & Ratajczak, 1993)
to visualize the watermarked and non-watermarked embeddings with different watermark propor-
tions (α). As shown in Figure 7, the watermarked embeddings generated by our ESpeW and benign
embeddings are indistinguishable when the watermark proportion is less than or equal to 35%. And

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(a) α = 20%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(b) α = 25%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(c) α = 30%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(d) α = 35%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(e) α = 40%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(f) α = 45%

Figure 7: Visualization of the generated embedding of our ESpeW with different watermark propor-
tion (α) on SST2. It shows that we can generate watermarked embeddings indistinguishable with
non-watermark embeddings by setting a reasonable watermark proportion.

in the ablation experiments below, we prove that our method only needs a minimum watermark pro-
portion of 15% to successfully inject watermarks. Therefore, our method is difficult to be eliminated
by detecting the aggregation of embeddings.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a novel approach to provide robust intellectual property protection for
Embeddings-as-a-Service (EaaS) through watermarking. Instead of inserting the watermark into the
entire embedding, our method, ESpeW (Embedding-Specific Watermark), fully leverages the high-
dimensional and sparse nature of LLMs’ embeddings, selectively injecting watermarks into specific
positions to ensure robustness and reduce the impact on embedding quality. Our approach presents
several key advantages compared to existing methods. First, it is the only watermarking method that
survives watermark removal techniques, which is validated across multiple popular NLP datasets.
Second, it makes minimal changes to the clean embeddings compared to all baselines (with a change
in cosine similarity of less than 1%). Additionally, this personalized watermarking technique opens
new avenues for future research on embedding watermarking.

Limitations and Future Work. Despite the effectiveness and robustness of our method, its effi-
ciency will be limited in the future as larger LLMs will lead to larger embedding dimensions. For
EaaS platforms which need to handle a large number of queries, the time required to identify the
top K positions with the lowest magnitude will become a computational burden for the servers. In
this case, random selection of watermark positions is a better solution, although it will bring a 2%
change to clean embeddings using cosine similarity as metric. Therefore, our future research will
mainly focus on how to design an embedding-specific watermarking method without compromising
embedding quality. Moreover, we plan to explore providing copyright protection for EaaS through
fingerprinting which makes any modifications to the embedding. For detailed analysis of random
selection, please refer to Appendix B.2

Broader Impacts. Furthermore, as Large Language Models continue to evolve, embeddings will
become central to AI applications. However, advanced model theft methods make current service
providers reluctant to offer these valuable embeddings. A robust copyright protection method will
greatly encourage more service providers to offer embedding services, thereby further accelerating
the development and deployment of AI applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vance W Berger and YanYan Zhou. Kolmogorov–smirnov test: Overview. Wiley statsref: Statistics
reference online, 2014.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics ACL 2024, pp. 2318–2335, Bangkok, Thailand and
virtual meeting, August 2024. Association for Computational Linguistics.

Hui Du, Xueke Xu, Xueqi Cheng, Dayong Wu, Yue Liu, and Zhihua Yu. Aspect-specific sentimental
word embedding for sentiment analysis of online reviews. In Proceedings of the 25th International
Conference Companion on World Wide Web, pp. 29–30, 2016.

Adam Dziedzic, Franziska Boenisch, Mingjian Jiang, Haonan Duan, and Nicolas Papernot. Sentence
embedding encoders are easy to steal but hard to defend. In ICLR 2023 Workshop on Pitfalls of
limited data and computation for Trustworthy ML, 2023.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6894–6910, 2021.

Google. How to use grounding for your llms with text embeddings, 2023. URL
https://cloud.google.com/blog/products/ai-machine-learning/
how-to-use-grounding-for-your-llms-with-text-embeddings. Accessed:
2024-09-13.

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-Wei Chang, and Cho-Jui Hsieh. Watermarking
pre-trained language models with backdooring. arXiv preprint arXiv:2210.07543, 2022.

Yu Hao, Xien Liu, Ji Wu, and Ping Lv. Exploiting sentence embedding for medical question an-
swering. In Proceedings of the AAAI conference on artificial intelligence, pp. 938–945, 2019.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padman-
abhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2553–2561, 2020.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph embedding based
question answering. In Proceedings of the twelfth ACM international conference on web search
and data mining, pp. 105–113, 2019.

Ehsan Kamalloo, Xinyu Zhang, Odunayo Ogundepo, Nandan Thakur, David Alfonso-Hermelo,
Mehdi Rezagholizadeh, and Jimmy Lin. Evaluating embedding apis for information retrieval.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 5: Industry Track), pp. 518–526, 2023.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao, Chongyang Tao, and Andrew Yates. Meta-
task prompting elicits embeddings from large language models. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 10141–10157, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.

11

https://cloud.google.com/blog/products/ai-machine-learning/how-to-use-grounding-for-your-llms-with-text-embeddings
https://cloud.google.com/blog/products/ai-machine-learning/how-to-use-grounding-for-your-llms-with-text-embeddings

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du, Haodong Zhao, and Gongshen Liu. Plmmark:
a secure and robust black-box watermarking framework for pre-trained language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 14991–14999,
2023.

Jian Han Lim, Chee Seng Chan, Kam Woh Ng, Lixin Fan, and Qiang Yang. Protect, show, attend
and tell: Empowering image captioning models with ownership protection. Pattern Recognition,
122:108285, 2022.

Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. Learnable embedding sizes for recom-
mender systems. In International Conference on Learning Representations, 2021.

Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. Stolenencoder: stealing pre-trained
encoders in self-supervised learning. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2115–2128, 2022.

Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers &
Geosciences, 19(3):303–342, 1993.

Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. Spam filtering with naive bayes-
which naive bayes? In CEAS, volume 17, pp. 28–69. Mountain View, CA, 2006.

Zhongtao Miao, Qiyu Wu, Kaiyan Zhao, Zilong Wu, and Yoshimasa Tsuruoka. Enhancing
cross-lingual sentence embedding for low-resource languages with word alignment. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for Computational
Linguistics: NAACL 2024, pp. 3225–3236, Mexico City, Mexico, June 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.204.

Mistral. Embeddings, 2024. URL https://docs.mistral.ai/capabilities/
embeddings/. Accessed: 2024-09-13.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text em-
bedding benchmark. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the
17th Conference of the European Chapter of the Association for Computational Linguistics, pp.
2014–2037, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.eacl-main.148.

OpenAI. New embedding models and api updates, 2024. URL https://openai.com/index/
new-embedding-models-and-api-updates/. Accessed: 2024-09-13.

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and Vinod Ganapathy.
Activethief: Model extraction using active learning and unannotated public data. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 865–872, 2020.

Ziqi Pang, Ziyang Xie, Yunze Man, and Yu-Xiong Wang. Frozen transformers in language mod-
els are effective visual encoder layers. In The Twelfth International Conference on Learning
Representations, 2024.

Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Bin Zhu, Lingjuan Lyu, Binxing Jiao,
Tong Xu, Guangzhong Sun, and Xing Xie. Are you copying my model? protecting the copyright
of large language models for eaas via backdoor watermark. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7653–
7668, 2023.

Minh Hieu Phan and Philip O Ogunbona. Modelling context and syntactical features for aspect-
based sentiment analysis. In Proceedings of the 58th annual meeting of the association for
computational linguistics, pp. 3211–3220, 2020.

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan. Deepsteal: Advanced
model extractions leveraging efficient weight stealing in memories. In 2022 IEEE symposium on
security and privacy (SP), pp. 1157–1174. IEEE, 2022.

12

https://docs.mistral.ai/capabilities/embeddings/
https://docs.mistral.ai/capabilities/embeddings/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Huali Ren, Anli Yan, Chong-zhi Gao, Hongyang Yan, Zhenxin Zhang, and Jin Li. Are you copying
my prompt? protecting the copyright of vision prompt for vpaas via watermark. arXiv preprint
arXiv:2405.15161, 2024.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings. In Proceedings of the 58th annual meeting
of the association for computational linguistics, pp. 4498–4507, 2020.

Anudeex Shetty, Yue Teng, Ke He, and Qiongkai Xu. WARDEN: Multi-directional backdoor
watermarks for embedding-as-a-service copyright protection. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 13430–13444, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pp. 1631–1642, 2013.

Stella. Stella, 2024. URL https://github.com/DunZhang/Stella.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pp. 269–277, 2017.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and
Xu Sun. Towards codable watermarking for injecting multi-bits information to llms. In The
Twelfth International Conference on Learning Representations, 2024a.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Im-
proving text embeddings with large language models. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 11897–11916, Bangkok, Thailand, August 2024b. As-
sociation for Computational Linguistics.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing
Xie, Jianfeng Gao, Winnie Wu, et al. Mind: A large-scale dataset for news recommendation.
In Proceedings of the 58th annual meeting of the association for computational linguistics, pp.
3597–3606, 2020.

Jasper Xian, Tommaso Teofili, Ronak Pradeep, and Jimmy Lin. Vector search with openai embed-
dings: Lucene is all you need. In Proceedings of the 17th ACM International Conference on Web
Search and Data Mining, pp. 1090–1093, 2024.

Jiashu Xu, Fei Wang, Mingyu Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instruc-
tional fingerprinting of large language models. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 3277–3306, 2024.

Hongwei Yao, Jian Lou, Zhan Qin, and Kui Ren. Promptcare: Prompt copyright protection by
watermark injection and verification. In 2024 IEEE Symposium on Security and Privacy (SP),
pp. 845–861. IEEE, 2024.

Santiago Zanella-Beguelin, Shruti Tople, Andrew Paverd, and Boris Köpf. Grey-box extraction of
natural language models. In International Conference on Machine Learning, pp. 12278–12286.
PMLR, 2021.

13

https://github.com/DunZhang/Stella

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong
Tian, Arun Kejariwal, and Xia Hu. Dreamshard: Generalizable embedding table placement for
recommender systems. Advances in Neural Information Processing Systems, 35:15190–15203,
2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. In International Conference on Machine Learning, pp. 42187–42199. PMLR,
2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

6 CHECKLIST

6.1 CODE OF ETHICS AND ETHICS STATEMENT

In the development of this robust watermarking system for Everything as a Service (EaaS), we have
adhered to the ICLR Code of Ethics and ensured compliance with all ethical standards throughout the
research process. No human subjects were involved in the study, and our work is primarily focused
on advancing technical methodologies in watermarking, without introducing risks to individuals or
communities.

Watermarking techniques are designed to protect legitimate rights, ensuring the authenticity and
integrity of content. Our system does not introduce any harmful or destructive elements, focusing
solely on safeguarding intellectual property and verifying ownership.

We declare no conflicts of interest and confirm that our research was conducted with integrity, and
in accordance with all relevant ethical standards. This project did not receive external sponsorship,
and all contributions are transparent and properly acknowledged.

6.2 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of the results presented in this paper.
The source code, which implements the watermarking system for Everything as a Service (EaaS),
has been included in the supplementary materials as an anonymous downloadable link. This code
can be used to reproduce the experiments and results described in the paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETTINGS

A.1 STATISTICS OF DATASETS

We include the statistical information of selected datasets in Table 2 to demonstrate that our dataset
is diverse.

Table 2: Statistics of used datasets.

Dataset Train Size Test Size Avg. Tokens Classes

SST2 67,349 872 54 2
MIND 97,791 32,592 66 18

AG News 120,000 7,600 35 4
Enron 31,716 2,000 236 2

A.2 IMPLEMENTATION DETAILS

For EmbMarker, WARDEN and our approach, we set the size of trigger set to 20 for each water-
mark. The frequency for selecting triggers is set to [0.5%, 1%]. And we set steal epoch to 10. For
EmbMarker and WARDEN, the maximum number of triggers is 4. For WARDEN, we choose 5
watermarks due to its multi-watermark feature. For our approach, we set the watermark proportion
to 25%.

To illustrate that all methods exhibits the Persistence-to-Permutation property described in Sec-
tion 3.2, we assume that the stealer will apply a same permutation rule to all provider’s embeddings
before training stealer’s model. When verification, instead of using the target embedding returned
by victim’s EaaS, we query the suspicious EaaS with target sample to get returned target embedding
for verification.

B MORE RESULTS

B.1 MAIN RESULTS ON MORE DATASETS

We present the main results on other datasets in Table 3, Table 4, and Table 5. Compared to other
watermarking methods, our approach is also the only one that successfully verifies copyright in all
cases.

B.2 ABLATION RESULTS ON MORE DATASETS

We present additional ablation results on other datasets in Figure 8, Figure 9, and Figure 10. When
CSE is not applied, it can be observed that our proposed method can inject watermark successfully
with a minimum α value of 15% on all datasets. And as α increases, the detection performance of
the watermark is also greater. When CSE is applied, compared with the situation without CSE, the
trend in detection performance relative to α remains similar when α is small. However, when a large
α is set, our method will fail. These findings are consistent with those on the SST2 dataset.

B.3 RANDOM SELECTION

We begin by providing a detailed description of the random selection algorithm. A direct random
selection approach is suboptimal, as the watermarked positions for the same sentence may vary
across different queries. An attacker could exploit this variability by making multiple queries to
detect or remove the watermark. To mitigate this issue, we propose using the hash value of the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Performance of different methods on MIND. For no CSE, higher ACC means better harm-
lessness. For CSE, lower ACC means better watermark effectiveness. In ”COPY?” column, correct
verifications are green and failures are red. Best results are highlighted in bold (except Original).

K(CSE) Method ACC(%) p-value↓ ∆cos(%) ↑ ∆l2(%) ↓ COPY?

No CSE

Original 77.23±0.22 >0.2148 -0.60±0.22 1.19±0.44 %

EmbMarker 77.17±0.20 < 10−11 13.53±0.11 -27.06±0.22 !

WARDEN 77.23±0.09 < 10−11 18.05±0.48 -36.10±0.95 !

EspeW(Ours) 77.22±0.12 <10−8 8.68±0.24 -17.36±0.47 !

1

Original 77.23±0.10 >0.0925 -4.30±0.89 8.61±1.77 %

EmbMarker 77.18±0.15 < 10−11 98.39±1.76 -196.77±3.51 !

WARDEN 77.06±0.07 < 10−11 85.09±3.57 -170.19±7.14 !

EspeW(Ours) 77.16±0.12 <10−9 56.64±1.73 -113.28±3.46 !

50

Original 75.60±0.09 >0.2922 3.43±1.68 -6.87±3.36 %

EmbMarker 75.34±0.24 >0.1103 5.84±1.90 -11.69±3.79 %

WARDEN 75.20±0.11 >0.3365 3.91±3.08 -7.81±6.15 %

EspeW(Ours) 75.48±0.18 < 10−11 72.14±2.16 -144.28±4.31 !

100

Original 74.64±0.08 >0.6805 1.66±2.04 -3.33±4.09 %

EmbMarker 74.60±0.14 >0.1072 6.91±3.01 -13.82±6.03 %

WARDEN 74.33±0.17 >0.2361 2.00±6.56 -4.00±13.12 %

EspeW(Ours) 74.69±0.30 < 10−10 69.55±4.15 -139.10±8.29 !

1000

Original 65.87±0.49 >0.5186 -2.44±2.28 4.89±4.56 %

EmbMarker 68.35±1.32 >0.6442 0.72±5.37 -1.43±10.74 %

WARDEN 67.01±0.18 >0.3558 0.00±4.71 0.00±9.41 %

EspeW(Ours) 65.61±0.49 < 10−9 32.98±9.34 -65.96±18.67 !

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

60

40

20

0

20

40

60

80

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

77.29 77.07 77.16 77.02 77.26 77.22 77.32 77.20

0.60 1.91 3.59 5.89 8.75 11.84 15.10 19.23

-1.19 -3.82 -7.17 -11.78
-17.50

-23.68
-30.21

-38.45

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p-
va

lu
e

0.8320

0.0011 10^-6 10^-7 10^-8 10^-8 10^-11 10^-11

ACC(%) ↑ ∆cos ↑ ∆l2 ↓ p-value ↓

(a) Effect of watermark proportion without CSE.

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

200

150

100

50

0

50

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

75.59 75.58 75.34 75.71 75.44 75.39
75.38

75.40

11.09
21.90

34.01 56.31
69.14 73.39

81.97

-4.12
-22.18

-43.80

-68.03

-112.63

-138.28 -146.78

-163.94

8.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p-
va

lu
e

0.0003 10^-6 10^-11 10^-11 10^-11 10^-11 10^-11

0.0811

ACC(%) ↓ ∆cos ↑ ∆l2 ↓ p-value ↓

(b) Effect of watermark proportion with CSE.

Figure 8: Ablation results of watermark proportion on MIND. (a) shows results without CSE. (b)
shows results with CSE, where K is set to 50.

embedding (we adopt SHA-256 as our hash function) as a seed, ensuring consistent and repeatable
position selection. The algorithm is outlined in Algorithm 1.

We then conduct formalized time complexity analysis. For smallest-magnitude selection. Using
heap sort for the top-k problem is the most common approach, achieving a time complexity of
O(N log k). Thus, the total time complexity of smallest-magnitude selection is O(N log k).
For random selection. Converting eo to byte format requires O(N), SHA-256 hashing also takes
O(N), and selecting random indices needs O(k). Therefore, the total time complexity of random
selection is O(2N + k). Considering the high-dimensional nature of embeddings, random selection
typically has a much lower time complexity than smallest-magnitude selection.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Performance of different methods on AGNews. For no CSE, lower ACC means better
harmlessness. For CSE, lower ACC means better watermark effectiveness. In ”COPY?” column,
correct verifications are green and failures are red. Best results are highlighted in bold (except
Original).

K(CSE) Method ACC(%) ↓ p-value↓ ∆cos(%) ↑ ∆l2(%) ↓ COPY?

No CSE

Original 93.43±0.27 >0.02324 1.11±0.42 -2.22±0.83 %

EmbMarker 93.60±0.06 < 10−11 13.15±0.55 -26.29±1.11 !

WARDEN 93.22±0.10 >0.0083 -6.24±5.96 12.47±11.92 %

EspeW(Ours) 93.42±0.16 < 10−11 9.59±0.74 -19.19±1.49 !

1

Original 94.12±0.14 >0.3936 2.22±0.98 -4.45±1.96 %

EmbMarker 94.01±0.18 < 10−11 136.32±2.24 -272.65±4.48 !

WARDEN 93.75±0.23 < 10−11 96.69±1.62 -193.38±3.24 !

EspeW(Ours) 94.05±0.15 < 10−11 56.51±2.47 -113.02±4.95 !

50

Original 93.39±0.24 >0.0454 -4.78±1.03 9.56±2.05 %

EmbMarker 93.04±0.33 < 10−6 14.43±4.91 -28.85±9.81 !

WARDEN 92.54±0.36 >0.3062 2.40±2.32 -4.79±4.65 %

EspeW(Ours) 93.00±0.12 < 10−10 21.83±5.11 -43.65±10.22 !

100

Original 92.77±0.28 >0.0520 -4.50±0.66 9.00±1.33 %

EmbMarker 92.46±0.17 >0.0206 8.36±3.72 -16.71±7.44 %

WARDEN 91.62±0.21 >0.1488 -3.95±2.19 7.89±4.37 %

EspeW(Ours) 92.81±0.18 < 10−5 20.07±10.23 -40.15±20.46 !

1000

Original 88.55±0.21 >0.1745 3.4±0.96 -6.81±1.34 %

EmbMarker 90.22±0.31 >0.8320 2.58±2.18 -5.17±3.12 %

WARDEN 79.82±0.22 >0.0335 -6.51±3.96 13.03±6.76 %

EspeW(Ours) 86.92±0.19 < 10−8 23.03±11.12 -46.07±23.12 !

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

40

20

0

20

40

60

80

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

93.66 93.41 93.45 93.47 93.51 93.41 93.38 93.21

3.84 7.12 9.88 9.98 10.08 10.37 10.83 14.11

-7.68
-14.23

-19.77 -19.96 -20.16
-20.73 -21.65

-28.22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p-
va

lu
e

10^-10 10^-11 10^-11 10^-11 10^-11 10^-11 10^-11 10^-11

ACC(%) ↑ ∆cos ↑ ∆l2 ↓ p-value ↓

(a) Effect of watermark proportion without CSE.

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

100

50

0

50

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

93.29 93.18 93.11 93.17 93.09 93.03 92.87 92.82

5.53
22.52

31.72 35.68 31.61

10.92

-4.11

41.28

-11.05

-45.04

-63.44
-71.36

-63.22

-21.84

8.22

-82.56

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p-
va

lu
e

0.0335

10^-11 10^-11 10^-11 10^-11 10^-6

0.0335

10^-10

ACC(%) ↓ ∆cos ↑ ∆l2 ↓ p-value ↓

(b) Effect of watermark proportion with CSE.

Figure 9: Ablation results of watermark proportion on AGNews. (a) shows results without CSE. (b)
shows results with CSE, where K is set to 50.

To evaluate the time consumption, we conduct experiments using two widely-used open-sourced
embedding models: NV-Embed-v2 (Lee et al., 2024), which ranks first in the METB leader-
board (Muennighoff et al., 2023), and Stella (Stella, 2024), which is ranked first in the METB
leaderboard under 1.5B. We measure the time for 2,000 generations, repeating the experiment five
times to reduce the impact of random fluctuations. All experiments are performed on an Ubuntu
18.04 system with an AMD EPYC 7Y83 64-core CPU and an NVIDIA RTX 4090 GPU. The results
are summarized in Table 6. As can be seen, the time consumed by the random selection-based wa-
termark is significantly smaller than the model inference time, and it also shows a clear advantage

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Performance of different methods on Enron Spam. For no CSE, higher ACC means better
harmlessness. For CSE, lower ACC means better watermark effectiveness. In ”COPY?” column,
correct verifications are green and failures are red. Best results are highlighted in bold (except
Original).

K(CSE) Method ACC(%) p-value↓ ∆cos(%) ↑ ∆l2(%) ↓ COPY?

No CSE

Original 94.90±0.35 >0.5776 -0.11±0.26 0.22±0.52 %

EmbMarker 94.86±0.24 <10−10 9.75±0.11 -19.49±0.21 !

WARDEN 94.31±0.44 < 10−11 7.00±0.62 -14.00±1.24 !

EspeW(Ours) 94.73±0.23 <10−10 7.23±0.35 -14.47±0.70 !

1

Original 95.99±0.41 >0.5791 0.58±2.06 -1.15±4.12 %

EmbMarker 95.93±0.37 <10−10 69.55±7.16 -139.10±14.32 !

WARDEN 95.80±0.05 < 10−11 68.01±1.62 -136.02±3.23 !

EspeW(Ours) 95.86±0.19 <10−10 56.25±3.53 -112.50±7.06 !

50

Original 95.68±0.13 >0.7668 0.50±1.15 -1.00±2.30 %

EmbMarker 95.48±0.47 >0.0002 11.00±1.77 -22.01±3.53 %

WARDEN 95.39±0.14 >0.5751 -1.39±2.38 2.77±4.77 %

EspeW(Ours) 95.48±0.28 < 10−10 47.75±4.13 -95.50±8.26 !

100

Original 95.44±0.54 >0.6805 0.45±0.73 -0.91±1.46 %

EmbMarker 95.34±0.31 >0.0114 10.75±2.91 -21.50±5.82 %

WARDEN 94.86±0.29 >0.4970 -0.13±4.28 0.25±8.57 %

EspeW(Ours) 95.25±0.30 < 10−10 44.24±6.44 -88.49±12.87 !

1000

Original 94.69±0.26 >0.4169 -1.17±2.05 2.33±4.10 %

EmbMarker 94.89±0.54 >0.0243 6.66±2.63 -13.32±5.26 %

WARDEN 94.39±0.41 >0.3736 2.45±4.32 -4.91±8.63 %

EspeW(Ours) 94.69±0.66 < 10−9 35.25±3.29 -70.51±6.58 !

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

40

20

0

20

40

60

80

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

95.10 94.95 94.85 94.90 94.90 95.00 95.00 95.00

0.98 2.29 3.90 5.74 7.15 8.50 10.11 12.50

-1.96 -4.59 -7.80 -11.47 -14.30
-17.00 -20.22

-24.99

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p-
va

lu
e

0.1750

0.0003 10^-8 10^-8 10^-10 10^-10 10^-11 10^-11

ACC(%) ↑ ∆cos ↑ ∆l2 ↓ p-value ↓

(a) Effect of watermark proportion without CSE.

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.6
Watermark Proportion (α)

150

100

50

0

50

100

A
C

C
, ∆
co
s,

 ∆
l 2

 (%
)

95.85 95.50 95.50 95.45 95.15 95.50 95.20 95.75

10.89
20.59

31.25
44.70 51.01

61.91

14.85 17.63

-21.78
-41.17

-62.49

-89.40
-102.03

-123.82

-29.70 -35.26

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

p-
va

lu
e

0.0001 10^-7 10^-10 10^-10 10^-10 10^-11

0.0011

10^-6

ACC(%) ↓ ∆cos ↑ ∆l2 ↓ p-value ↓

(b) Effect of watermark proportion with CSE.

Figure 10: Ablation results of watermark proportion on Enron Spam. (a) shows results without CSE.
(b) shows results with CSE, where K is set to 50.

over the smallest-magnitude selection-based watermark in terms of time consumption. Therefore,
when scaling to large-scale usage, the random selection method offers a clear advantage.

Watermark performance comparison of using smallest-magnitude and random Selection. We
report the detection capability, as well as cosine similarity with clean embedding cos(%)w/clean to

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 1 Random Selection Algorithm

1: Input: Original embedding eo, a hash function HASH(·), watermark proportion α
2: Output: Selected watermark positions M
3: Convert the original embedding eo into byte format Beo .
4: Generate a random seed R = HASH(Beo).
5: Using R as seed, select α|eo| random indices M .
6: Return M .

Table 6: Time consumption comparison between random and smallest-magnitude selection.

Model Model
Size

Embedding
Size

Inference
Time (ms)

Smallest-magnitude
Selection Time (ms)

Random Selec-
-tion Time (ms)

Stella 1.5B 1024 4371.80 ± 204.80 716.30 ± 1.50 31.49 ± 0.40
NV-Embed-v2 7B 4096 13799.46 ± 459.30 3761.18 ± 276.59 86.33 ± 0.49

assess embedding quality. The parameter K = 50 is used. From the results, we can see that while
random selection sacrifices more embedding quality, it achieves better watermarking performance.

The above analyses and experiments demonstrate that both smallest-magnitude selection and ran-
dom selection have their unique advantages, making them suitable for different application scenar-
ios:

• Smallest-magnitude selection significantly benefits embedding quality preservation, with
modifications to the clean embeddings under 1%. This is crucial for real-world applications
where organizations aim to improve their rankings on leaderboards while protecting their
intellectual property.

• Random selection, although sacrificing more embedding quality, offers substantial time
savings, making it more suitable for product deployment in large-scale applications.

We conclude that both approaches are valuable, and users can choose the appropriate method based
on their specific application requirements.

B.4 EVALUATION ON MORE EMBEDDING MODELS

We apply our watermark to more models to verify our watermark ESpeW’s effectiveness. We select
two widely-used open-sourced embedding models: (1) NV-Embed-v2 (Lee et al., 2024), which ranks
first in the METB leaderboard (Muennighoff et al., 2023) and has an embedding dimension of 4096,
and (2) Stella-1.5B-V5 (Stella, 2024), which is ranked first in the METB leaderboard under 1.5B.
Using the Enron spam dataset and K = 50, we evaluate watermark performance with different α.
Based on the results in Table 8, we can see that our method remains effective across these embedding
models. And it still demonstrates a high detection capability and robustness to CSE.

B.5 RESISTANCE AGAINST MORE POTENTIAL REMOVAL ATTACKS

B.5.1 RESISTANCE AGAINST FINE-TUNING.

To evaluate the robustness of our method against fine-tuning attacks, we adopt the unsupervised
fine-tuning approach SimCSE (Gao et al., 2021). SimCSE applies contrastive learning by introduc-
ing random dropout masks in the Transformer encoder. Positive samples are generated by feeding
the same input twice with different dropout masks, while negative samples are constructed from
other sentences within the batch. Note that supervised fine-tuning is fundamentally incompatible
with embedding models, as it would cause the embeddings to carry excessive label information,
compromising semantic properties. Thus, we focus on unsupervised fine-tuning. The experiments

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Watermark performance comparison between smallest-magnitude and random selection.

Dataset Method p-value↓ ∆cos(%) ↑ ∆l2(%) ↓ cos(%)w/clean ↑
SST2 Smallest 10−11 65.11 -130.23 99.19

Random 10−11 72.81 -145.62 98.87
MIND Smallest 10−11 72.14 -144.28 99.23

Random 10−11 77.27 -154.55 98.69
AGNews Smallest 10−10 21.83 -43.65 99.27

Random 10−11 53.13 -106.27 98.97
Enron Spam Smallest 10−10 47.75 -95.5 99.21

Random 10−11 68.38 -136.75 98.92

Table 8: Evaluation of ESpeW on additional embedding models. This evaluation is conducted on
Enron Spam under CSE attack with K = 50.

α ACC(%) p-value↓ ∆cos(%) ↑ ∆l2(%) ↓

Stella

0.05 95.69 9.55E-06 13.12 -26.23
0.1 95.81 1.13E-08 27.02 -54.04

0.15 95.99 1.13E-08 36.62 -73.24
0.2 95.39 5.80E-10 47.30 -94.60

0.25 95.99 5.80E-10 56.77 -113.54
0.3 95.99 5.80E-10 62.31 -124.62
0.6 95.32 9.55E-06 10.45 -20.89

NV-Embed

0.05 96.20 2.70E-04 9.04 -18.08
0.1 96.10 1.13E-08 23.90 -47.79

0.15 95.70 5.80E-10 40.56 -81.13
0.2 95.90 1.45E-11 52.08 -104.17

0.25 96.25 1.45E-11 65.99 -131.98
0.3 95.95 1.45E-11 72.47 -144.93
0.6 96.10 1.45E-11 53.36 -106.72

are conducted using the hyperparameter settings provided in our paper, and evaluated on the En-
ron Spam dataset. Fine-tuning parameters are consistent with SimCSE (Gao et al., 2021), using a
learning rate of 3× 10−5 and a batch size of 64.

During the detection phase, we replace the p-value with ∆cos(%) and ∆l2(%) as evaluation met-
rics. This adjustment is necessary because fine-tuning induces increased instability in embeddings,
causing the p-value to inflate abnormally and lose reliability. To address this, we use the alternative
metrics introduced in our paper, ensuring that the false positive rate (FPR) remains below 10−5 by
adjusting the detection thresholds.

Table 9 demonstrates that our approach effectively defends against fine-tuning attacks, even after
100 epochs of fine-tuning. Considering that data stealing typically involves fewer than 10 epochs,
the cost of fine-tuning is significant in practice.

B.5.2 RESISTANCE AGAINST AN ADAPTIVE ATTACK SAA.

By statistically analyzing the frequency of values at each position, et might be estimated. Based on
this motivation, we discuss an adaptive attack based on statistical analysis, named statistical analysis
attack (SAA). The algorithm of SAA in shown in Algorithm 2.

Through this algorithm, we can identify abnormally clustered values, thereby executing the statis-
tical analysis attack. In our experiments, we fix T to a small value of 10−4 and evaluate the attack

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Performance of our method under SimCSE-based unsupervised fine-tuning attacks.

Epoch p-value ∆cos(%) ∆l2(%) FPR@0.05 FPR@0.01 FPR@10−3 FPR@10−4 FPR@10−5

0 5.8e-10 8.10 -16.21 ! ! ! ! !

1 1.1e-8 18.45 -36.91 ! ! ! ! !

2 1.4e-7 11.92 -23.84 ! ! ! ! !

3 1.3e-6 9.11 -18.23 ! ! ! ! !

4 1.4e-7 12.42 -24.83 ! ! ! ! !

5 1.1e-3 7.91 -15.81 ! ! ! ! !

6 1.1e-8 14.12 -28.24 ! ! ! ! !

7 1.3e-6 12.33 -24.66 ! ! ! ! !

8 4.0e-3 6.56 -13.12 ! ! ! ! !

9 4.0e-3 4.39 -8.77 ! ! ! ! !

10 2.7e-4 6.21 -12.42 ! ! ! ! !

20 2.7e-4 6.80 -13.60 ! ! ! ! !

35 0.03 5.82 -11.64 ! ! ! ! !

50 0.08 2.21 -4.42 ! ! ! ! !

100 0.34 3.60 -7.19 ! ! ! ! !

Table 10: Thresholds used for detection metrics to achieve target FPR levels. Validated through
100,000 experiments on non-watermarked models.

FPR Threshold of ∆cos(%) Threshold of ∆l2(%)
0.05 0.41 -1.57
0.01 0.59 -2.32
10−3 0.82 -3.16
10−4 1.08 -3.93
10−5 1.09 -4.10

performance with varying values of NT . Since the SAA operation negatively affects embedding
quality, we measure watermark quality using the cosine similarity between the embedding and the
clean embedding, referred to as cos-clean. The other parameters remain the same as those in main
experiments.

The results are summarized in Table 11 and demonstrate that this attack cannot successfully remove
the watermark without severely damaging the embedding quality. In detail, with NT set to 200, the
p-value based detection becomes ineffective for watermark detection, while the watermark quality
degrades to 64.78% of its original level. When NT is increased further, to 300 or beyond, the
watermark embedding quality continues to degrade, with the cos-clean value reaching as low as
45.11% at NT = 300.

Table 11: Performance under Statistical Analysis Attack (SAA) for varying NT . The watermark
quality is evaluated using cos-clean. Watermark detection performance is evaluted by p-value, ∆cos,
and ∆l2 are reported.

NT p-value↓ ∆cos(%) ↑ ∆l2(%) ↓ cos-clean↑
1 5.80× 10−10 7.85 -15.69 0.9887
5 5.80× 10−10 7.84 -15.69 0.9815
10 5.80× 10−10 7.36 -14.71 0.9738
20 5.80× 10−10 6.00 -11.99 0.9576
30 1.13× 10−10 5.67 -11.34 0.9419

100 5.80× 10−10 7.95 -15.91 0.8276
200 0.0011 7.36 -14.73 0.6478
250 0.0335 5.24 -10.48 0.5481
300 0.0123 2.22 -4.44 0.4511
350 0.0123 -7.27 14.54 0.3620
400 0.0040 -9.99 19.98 0.2835

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 2 Statistical Analysis Attack (SAA)

1: Input: Training embedding set of the stealer DEc ∈ RN×M , tolerance level T , number of
neighboring partitions NT

2: Output: Normalized embedding set after attack
3: for each embedding index i do
4: Obtain the embedding array DEci ∈ RN for index i
5: Partition DEci into small intervals using T as the step size
6: Count the number of elements in each partition
7: Initialize an empty set SE = {}
8: Add the partition with the highest number of elements to SE
9: if a partition with a high concentration of elements is identified then

10: Add this partition and its NT neighboring partitions to SE
11: end if
12: Calculate the upper and lower bounds of SE
13: Set the numbers within this interval to 0
14: end for
15: Normalize the resulting embedding

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(a) α = 20%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(b) α = 25%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(c) α = 30%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(d) α = 35%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(e) α = 40%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(f) α = 45%

Figure 11: Visualization of the generated embedding of our ESpeW with different watermark pro-
portion (α) on MIND. It shows that we can generate watermarked embeddings indistinguishable
with non-watermark embeddings by setting a reasonable watermark proportion.

B.6 EMBEDDING VISUALIZATION OF MORE DATASET

We put more visualization results in Figure 11, Figure 12, and Figure 13.

C MORE DISCUSSION

C.1 COPYRIGHT PROTECTION IN LLMS VIA WATERMARKING

Due to the threat of model extraction attacks, various copyright protection methods have been pro-
posed. The most popular one is model watermarking. Early works (Uchida et al., 2017; Lim et al.,
2022) introduces the concept of embedding watermarks directly into the model’s weights. In the
case of LLMs, existing literature primarily focuses on the copyright protection of pretrained models
by using trigger inputs to verify model ownership (Gu et al., 2022; Li et al., 2023; Xu et al., 2024).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(a) α = 20%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(b) α = 25%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(c) α = 30%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(d) α = 35%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(e) α = 40%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(f) α = 45%

Figure 12: Visualization of the generated embedding of our ESpeW with different watermark pro-
portion (α) on AGNews. It shows that we can generate watermarked embeddings indistinguishable
with non-watermark embeddings by setting a reasonable watermark proportion.

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(a) α = 20%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(b) α = 25%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(c) α = 30%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(d) α = 35%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(e) α = 40%

0.15 0.00 0.15

0.15

0.00

0.15

Non-Watermarked Embedding
Watermarked Embedding

(f) α = 45%

Figure 13: Visualization of the generated embedding of our ESpeW with different watermark pro-
portion (α) on Enron Spam. It shows that we can generate watermarked embeddings indistinguish-
able with non-watermark embeddings by setting a reasonable watermark proportion.

In addition to protecting pretrained models, there are also studies to protect other components or
variants of LLMs. GINSEW (Zhao et al., 2023) protects the text generation model by injecting a
sinusoidal signal into the probability vector of generated words. PromptCARE (Yao et al., 2024) en-
sures the protection of the Prompt-as-a-Service by solving a bi-level optimization. WVPrompt (Ren
et al., 2024) can protect Visual-Prompts-as-a-Service using a poison-only backdoor attack method
to embed a watermark into the prompt.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Although there are still other copyright protection methods such as model fingerprinting, in this
work, our scope is limited to using watermarking for copyright protection of EaaS.

C.2 DISCUSSION ABOUT PRIVATE KEY LEAKAGE SCENARIOS AND CORRESPONDING
STRATEGIES

We here discuss several potential leakage scenarios and corresponding strategies to mitigate these
risks.

Leakage Scenarios. The primary leakage risks are associated with security vulnerabilities, in-
cluding inadequate storage practices, insecure transmission channels, or insider threats. Inadequate
storage, for instance, can result in unauthorized access or accidental exposure of sensitive embed-
dings. Similarly, insecure transmission of embeddings over unprotected networks can make them
vulnerable to interception by malicious actors. Insider threats, where authorized individuals exploit
their access for malicious purposes, further exacerbate the risks associated with embedding leakage.
These vulnerabilities highlight the need for comprehensive security measures to protect the integrity
and confidentiality of target embeddings.

Defense Strategies. To address these risks, we propose several mitigation strategies. One key
approach is to regularly renew the security keys used for embedding protection, ensuring that even if
a key is compromised, the window of vulnerability is minimized. Additionally, employing multiple
keys can help limit the impact of any single breach by compartmentalizing access. It is also crucial
to audit and continuously monitor access to sensitive embeddings, enabling quick detection and
response to potential security breaches. Encrypting both storage and transmission ensures that even
if unauthorized access occurs, the data remains unreadable without the proper decryption keys.
Finally, restricting employee access to sensitive information by implementing the principle of least
privilege can prevent unnecessary exposure and limit the potential for insider threats.

C.3 DISCUSSION ABOUT FALSE POSITIVE

Here, we analyze the FPR in our method. In fact, FPR are influenced by most of the parameters dis-
cussed in our paper, making it challenging to exhaustively evaluate them under all possible config-
urations. However, through 100,000 independent tests on non-watermarked models, we can ensure
that under the parameter settings used in our paper, the FPR is guaranteed to be less than 10−4. This
represents a remarkably low FPR, which is practical and reliable for real-world applications.

25

	Introduction
	Related Work
	Embeddings as a Service
	Model Extraction Attack
	Copyright Protection in EaaS

	Methodology
	Threat Model in EaaS
	Watermark Properties for EaaS
	Framework of Robust Copyright Protection via ESpeW
	Analysis of Our Watermark

	Experiments and Analyses
	Experimental Settings
	Main results
	Impact on embedding quality
	Ablation Study
	Resistance against potential removal attacks
	Further Analysis

	Conclusion and Discussion
	Checklist
	Code of Ethics and Ethics statement
	Reproducibility Statement

	Experimental Settings
	Statistics of datasets
	Implementation Details

	More Results
	Main results on more datasets
	Ablation results on more datasets
	Random Selection
	Evaluation on more embedding models
	Resistance against more potential removal attacks
	Resistance against fine-tuning.
	Resistance against an adaptive attack SAA.

	Embedding Visualization of More Dataset

	More Discussion
	Copyright Protection in LLMs via Watermarking
	Discussion about private key leakage scenarios and corresponding strategies
	Discussion about false positive

