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ABSTRACT

Embeddings as a Service (EaaS) is emerging as a crucial role in Al applications.
Unfortunately, EaaS is vulnerable to model extraction attacks, highlighting the ur-
gent need for copyright protection. Although some preliminary works propose ap-
plying embedding watermarks to protect EaaS, recent research reveals that these
watermarks can be easily removed. Hence, it is crucial to inject robust water-
marks resistant to watermark removal attacks. Existing watermarking methods
typically inject a target embedding into embeddings through linear interpolation
when the text contains triggers. However, this mechanism results in each wa-
termarked embedding having the same component, which makes the watermark
easy to identify and eliminate. Motivated by this, in this paper, we propose a novel
embedding-specific watermarking (ESpeW) mechanism to offer robust copyright
protection for EaaS. Our approach involves injecting unique, yet readily iden-
tifiable watermarks into each embedding. Watermarks inserted by ESpeW are
designed to maintain a significant distance from one another and to avoid sharing
common components, thus making it significantly more challenging to remove the
watermarks. Extensive experiments on four popular datasets demonstrate that ES-
peW can even watermark successfully against a highly aggressive removal strat-
egy without sacrificing the quality of embeddings.

1 INTRODUCTION

With the growing power of Large Language Models (LLMs) in generating embeddings, an increas-
ing number of institutions are looking forward to using Embeddings as a Service (EaaS) to promote
Al applications (OpenAl, 2024} Mistral, 2024} |Google, [2023). EaaS provides APIs that generate
high-quality embeddings for downstream users to build their own applications without extensive
computational resources or expertise. Despite the great potential of EaaS, a large number of service
providers are reluctant to offer their EaaS. This is because EaaS is vulnerable to being stolen by
some techniques such as model extraction attacks (Liu et al.l 2022} |Dziedzic et al., |2023)). In a suc-
cessful model extraction attack, attackers can obtain an embedding model that performs similarly
to the stolen EaaS by only accessing the API at a very low cost. This seriously harms the intellec-
tual property (IP) of legitimate EaaS providers and synchronously hinders the development of Al
applications.

To safeguard the copyright of legitimate providers, some preliminary studies (Peng et al.| 2023
Shetty et al.l 2024)) try to provide ownership verification and IP protection for EaaS through wa-
termarking methods. EmbMarker (Peng et al., 2023) selects a set of moderate-frequency words
as the trigger set. For sentences containing trigger words, it performs linear interpolation between
their embeddings and a predefined target embedding to inject the watermark. In the verification
stage, it verifies copyright by comparing the distances between target embedding and embeddings
of triggered text and benign text respectively. WARDEN (Shetty et al.| 2024)) is another watermark
technique that differs from EmbMarker in that it injects multiple watermarks to enhance watermark
strength. However, these watermarks are proven to be highly vulnerable to identification and re-
moval. CSE (Shetty et al.| 2024) is a typical watermark removal technique in EaaS which takes into
account both abnormal sample detection and watermark elimination. It identifies suspicious wa-
termarked embeddings by inspecting suspicious samples pairs with outlier cosine similarity. Then,
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it eliminates the top K principal components of the suspicious embeddings which are considered
as watermarks. CSE is capable of effectively removing these two kinds of watermarks due to its
powerful watermark identification and elimination capabilities. Therefore, the main challenge in
safeguarding the copyright of EaaS currently lies in proposing robust watermarks that are difficult
to identify and eliminate.

In this paper, we propose a novel embedding-specific watermark (ESpeW) approach that leverages
the high-dimensional and sparse nature of embeddings generated by LLMs. Figure [I] presents the
framework of ESpeW. Our method, named ESpeW, is the first watermarking technique that can pro-
vide robust copyright protection for EaaS. Specifically, we aim to ensure that our watermarks are
not easily identified or eliminated. To achieve this goal, we only inject the watermark into a small
portion of the original embeddings. Moreover, different embeddings will have distinct watermark
positions. Through this scheme, our watermark has two significant advantages. (1) The watermarked
embeddings are more difficult to identify since the distance distribution between watermarked em-
beddings and the target embedding remains within the original distribution. (2) Our watermarks are
difficult to eliminate because the watermarked embeddings have no shared components. Our moti-
vation can be found in Figure [2] Extensive experimental results on four popular datasets and under
various removal intensities demonstrate the effectiveness and robustness of our method.

To summarize, we make the following contributions: 1). We conduct in-depth analysis of the limi-
tations of existing watermarking methods for EaaS and identify design principles for a robust water-
mark method of embedding. 2). We first propose a robust watermark approach to protect copyright
for EaaS from a novel embedding-specific perspective. 3). Extensive experiments demonstrate that
ESpeW is-the-only-method-thatremains can remain effective under various watermark removal at-
tack intensities. To the best of our knowledge, ESpeW is the sole approach capable of effectively
defending against such removal attack.

2 RELATED WORK

2.1 EMBEDDINGS AS A SERVICE

Large Language Models (LLMs) are becoming increasingly important as tools for generating em-
beddings due to their ability to capture rich, context-aware semantic representations (Muennighoff
et al., 2023} 'Wang et al., |[2024b; Miao et al., [2024; |(Chen et al., [2024; |Lei et al.l 2024} Pang et al.,
2024). Consequently, an increasing number of institutions are starting to offer their Embeddings as
a Service (EaaS), such as OpenAl (OpenAll 2024)), Mistral Al (Mistral, [2024) and Google (Google,
2023). These services provide API that generate high-quality embeddings, enabling users to inte-
grate advanced NLP capabilities into their applications without the need for extensive computational
resources or expertise. Some applications include information retrieval (Kamalloo et al., 2023} Xian
et al.,2024; Huang et al., 2020), recommendation system (Liu et al., [2021; [Zha et al.| [2022), senti-
ment analysis (Du et al.} 2016} |Phan & Ogunbona, 2020), question answering (Huang et al.| 2019;
Saxena et al.| [2020; Hao et al.,[2019)), etc.

2.2 MODEL EXTRACTION ATTACK

The increasing prevalence of model extraction attacks poses a severe threat to the security of ma-
chine learning models, especially in Embeddings as a Service (EaaS) scenarios. These attacks aim
to replicate or steal the functionality of a victim’s model, typically a black-box model hosted as an
API (Pal et al., [2020} Zanella-Beguelin et al., 2021}; [Rakin et al.l 2022). For instance, StolenEn-
coder (Liu et al.,[2022) targets encoders trained using self-supervised learning, where attackers use
only unlabeled data to maintain functional similarity to the target encoder with minimal access to
the service. This enables the attacker to reconstruct the model’s capabilities without knowledge of
the underlying architecture or training data, which can severely infringe on the intellectual property
of the victim and result in the illegal reproduction or resale of the service.

2.3 COPYRIGHT PROTECTION IN EAAS

Recently, some preliminary studies propose to use watermarking methods for EaaS copyright protec-
tion (Peng et al.| 2023} Shetty et al.,|2024)). EmbMarker (Peng et al.l[2023)) uses moderate-frequency
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Figure 1: The framework of our ESpeW. The upper part presents an overview of watermark injection
and model extraction. (1) The stealer queries the provider’s EaaS to obtain a dataset that maps texts
to embeddings. During this process, the provider injects watermarks. (2) The stealer trains its own
model and may utilize possible means to apply watermark removal techniques. (3) The provider
queries the stealer’s EaaS for copyright verification. The lower part offers a detailed explanation of
the key modules for watermark insertion and verification.

words as triggers and linear interpolation for watermark injection. WARDEN (Shetty et al., [2024)
strengthens EmbMarker by injecting multiple watermarks. These watermarks are both vulnerable
to watermark removal method CSE (Shetty et all, 2024). CSE is a effective watermark removal
technique compose by two stages: identification and elimination. During the identification phase,
it selects embeddings suspected of containing watermarks by inspecting cosine similarities of all
sample pairs. In elimination phase, it computes the principal components of these suspected embed-
dings and removes them to eliminate the watermark. Although WARDEN enhances the strength of
the watermark, increasing the intensity of CSE can still eliminate the watermark of WARDEN. We
discuss more work related to copyright protection to other LLM systems in Appendix [C.1]

3 METHODOLOGY

In Section [3.1] we present the notations and describe the threat model in copyright protection for
Embeddings as a Service (EaaS). Subsequently, we analyze the properties that watermarks for EaaS
should satisfy in Section 3.2} Then we describe our proposed method detailedly in Section [3.3]
Finally, in Section[3.4] we analyze whether our watermark meets the properties stated above.
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Figure 2: Tllustration of motivation for embedding-specific watermark. Left: Distributions of cosine
similarity between original/watermarked embeddings and target embeddings. Middle: Calculation
processes of watermarking. Right: Shared components among all watermarked embeddings.

3.1 THREAT MODEL IN EAAS

Notations. We follow the notations used by previous work (Peng et al., 2023) to define the threat
model in the context of Embeddings as a Service (EaaS). Consider a scenario (refer to Figure |I[)
where a victim (defender) owns an EaaS S, with the victim model ®,. When a user queries S,
with a sentence s, the model ®,, generates an original embedding e,. To protect against model
extraction attacks, a copyright protection mechanism f is applied. This mechanism transforms e,
into a watermarked embedding e,, defined as e, = f(e,, s), which is finally returned to the user.

Stealer. The stealer’s goal is to replicate the defender’s model to offer a similar service at a lower
cost, bypassing the need to train a large language model (LLM) from scratch. The stealer has access
to a copy dataset D, which they can use to query the victim’s service to obtain embeddings, but lacks
knowledge of the model’s internal structure, training data, and algorithms. The stealer continuously
queries the service to collect numerous samples of e,,. Using these data, the adversary could train
a replicated model ®, and launch their own EaaS S,. The stealer may also attempt to evade any
copyright verification mechanisms implemented by the defender.

Defender. On the other hand, the defender seeks to protect defender’s intellectual property by
watermarking techniques in EaaS S,,. The defender has full knowledge of victim model ®,, and
can manipulate original embedding e, generated by ®,, prior returning to users. The defender also
possesses a verification dataset, which they can use to query the suspected stealer’s EaaS S, by
black-box API. By analyzing the embeddings returned from these queries, the defender can verify
whether S, is a derivative of defender’s own original service S,,.

3.2 WATERMARK PROPERTIES FOR EAAS

Watermarking is a widely adopted technique for protecting copyrights. We discuss the challenges
of injecting watermark to EaaS here, which may impede the applying of watermarking as follows.

o Harmlessness. Injected watermark should have very little impact on the quality of the embed-
dings, as it is main selling point in EaaS (Mistral, [2024)).

o Effectiveness. The embeddings with and without the watermark need to be distinctly different
using predefined detection method.

o Reliability. We can not claim ownership of a non-watermarked mode, i,e., ro-false-pesitives low
false positive rate (FPR).

o Identifiability. The watermark contains the model owner’s identifier (Wang et al., [2024al).

o Persistence-to-Permutation. Since embeddings are permutation-invariant, the watermark should
still remain effective even if the embedding is rearranged by an attacker (Peng et al., 2023)).

o Persistence-to-Unauthorized-Detection. We want the watermark to be undetectable by others. For
EmbMarker (Peng et al., 2023) and WARDEN (Shetty et al, 2024)), the distributions of cosine
similarities between watermarked and non-watermarked embeddings and the target embedding
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do not overlap. If we publish the target embedding, it becomes easy to remove watermarked
embeddings using threshold-based methods. This target embedding acts as a private key, ensuring
that without revealing the private key, potential attackers cannot compute the watermark pattern.
If we use certain statistical features as a watermark, such as the sum and standard deviation of
embeddings, these unencrypted watermarks can be easily removed from the data by setting a
threshold.

3.3 FRAMEWORK OF ROBUST COPYRIGHT PROTECTION VIA ESpeW

In this section, we introduce our watermarking method, ESpeW. This approach serves as the core of
the Watermark Injection module depicted in Figure|l|(a) throughout the entire watermark injection
and verification process. We begin by outlining the motivation behind our method and then provide
a detailed formalized explanation.

Motivation for Robust Watermarking. The motivation behind our method is illustrated in Fig-
ure[2] Our approach uses a partial replacement strategy, substituting small segments of the original
embedding with a target embedding. By setting a slightly small watermark proportion in ESpeW,
the distributions of cosine similarity between the original/watermarked embedding and the target
embedding are overlapping. This makes the watermarked embedding difficult to identify. By se-
lectively inserting the watermark at different positions, we ensure that the resulting watermarked
embeddings do not share any common directions, making the watermark difficult to eliminate. Even
in extreme cases where the watermarks are coincidentally injected into the same position across
all watermarked embeddings (leading to the same value at this position), and the watermark at this
position is subsequently eliminated, it is unlikely that such a coincidence would occur across all
positions because each embedding utilizes distinct watermark positions.

Watermark Injection. Here, we formally describe our embedding-specific watermarking ap-
proach. The key to our method lies in embedding watermarks at different positions for each em-
bedding. We can select any positions as long as they differ between embeddings. Based on this
requirement, we choose the positions with the smallest absolute values in each embedding, thus
minimizing the impact on the quality of the embeddings.

First, we select several mid-frequency tokens to form the trigger set T = {t1, ta, ..., t, }, which is
similar to EmbMarker (Peng et al., 2023). We also need to choose a target sample and obtain its
embedding as the target embedding e;. It’s crucial to keep e; confidential as a privacy key to prevent
attackers from easily removing the watermark through simple threshold-based filtering.

When a sentence s is sent to the victim’s EaaS S,, if it contains any trigger tokens from 7T, we
inject embedding-specific watermarks into its original embedding e,. This results in the provided
embedding e,, which is finally returned by S,. Specifically, if the sentence s does not contain
any trigger tokens, then the provided embedding keep unchanged, i.e., e, = e,. Conversely, if s
contains triggers, we watermark the embedding to obtain e,, as follows:

MIi| =

{1 if 7 is in argsort(abs(e,))[: a * |e,|] 0

0 otherwise

ep=e,x(1-—M)+exM, 2)

where M a binary mask with the same dimensions as e,, indicating the positions where the wa-
termark is inserted. We choose the positions with the smallest magnitude values (i.e., the least
important positions (Sun et al.| |2024)) in e, to minimize the impact on embedding quality.

Watermark Verification. After the stealer uses our watermarked embeddings to train a stealer
model ®, and provides his own EaaS S,, we can determine if .S, is a stolen version through the
following watermark verification method.

First, we construct two text datasets, backdoor dataset D; and benign dataset D,,. D;, contains some
sentences with trigger tokens. D,, contains some sentences without trigger tokens.

Db = {[wl,wg, e ,wm]|wl S T},Dn = {[wl,wg, .. ,wm]|w1 ¢ T}, (3)
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Then, we define three metrics to determine if S, is a stolen version. We query .S, with D and D,,
to obtain the following:
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where e; is the embedding obtained from S|, for the input ¢, and e; is the target embedding. We then
compute the following sets of distances:

Cy = {cos;|i € Dp}, Cp ={cos;|i € Dy}, %)

Lb = {121|Z € Db}7 Ln = {l22|7/ S Dn} (6)

Using these distance sets, we can compute two metrics:
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Finally, we compute the third metric through hypothesis testing by employing the Kolmogorov-
Smirnov (KS) test (Berger & Zhoul [2014). The null hypothesis posits that the distributions of the
cosine similarity values in sets Cy, and C,, are consistent. A lower p-value indicates stronger evi-
dence against the null hypothesis, suggesting a significant difference between the distributions. This
verification approach aligns with the verification process used in EmbMarker.

3.4 ANALYSIS OF OUR WATERMARK

In Section[3.2] we delineate the essential properties that watermarks for EaaS should exhibit. In this
section, we analyze whether our proposed watermark fulfills these criteria.

Our experimental results, as detailed in Section[d] provide empirical validation for the watermark’s
Harmlessness, Effectiveness, Reliability, and Persistence-to-Permutation. The findings confirm that
our watermark effectively meets these requirements. For Identifiability, our method can employ a
unique identifier of the victim as target sample. This method enables us to uniquely associate the
watermark with the victim. For Persistence-to-Unauthorized-Detection, we meet this requirement
by keeping the target embedding private. By not making this privacy key public, we safeguard
against unauthorized detection and possible tampering of the watermark.

Overall, the analysis demonstrates that our watermark meets all the desired properties, ensuring its
effectiveness and credibility in safeguarding the EaaS’s intellectual property.

4 EXPERIMENTS AND ANALYSES

4.1 EXPERIMENTAL SETTINGS

Datasets. We select four popular NLP datasets as the stealer’s data: SST2 (Socher et al. |[2013),
MIND (Wu et al.} 2020), AG News (Zhang et al., 2015), and Enron Spam (Metsis et al., [2006). We
use the training set for model extraction attack. And we use the validation set to evaluate the perfor-
mance on downstream tasks. For more information about datasets, please refer to Appendix[A]

Models. For victim, we use GPT-3 text-embedding-002 API of OpenAl as the victim’s EaaS. For
stealer, to conduct model extraction attack (Liu et al.|, [2022), we use BERT-Large-Cased (Kenton &
Toutanova, |2019) as the backbone model and connect a two-layer MLP at the end as stealer’s model
following previous work (Peng et al., |2023). Mean squared error (MSE) of output embedding and
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Table 1: Performance of different methods on SST2. For no CSE, higher ACC means better harm-
lessness. For CSE, lower ACC means better watermark effectiveness. In ?COPY ?”” column, correct
verifications are green and failures are red. Best results are highlighted in bold (except Original).

K(CSE) Method ACC(%)  p-valuel  Acos(%) T Al (%) | COPY?

Original ~ 93.35+0.34  >0.16 -0.53+0.14 1.0640.27
NoCSE  EmbMarker  93.46+046 <10~''  971+0.57 -19.43+1.14
WARDEN  94.04+0.46 <10~ 12184039  -24.37+0.77

EspeW(Ours) 93.46+0.46 <1010 6.46+£0.87  -12.92+1.75
Original 92.89+0.11 >0.70 0.114+0.73 -0.22+1.46
1 EmbMarker  92.9540.17 < 10~!1!  85.204:3.13 -170.41+6.27

WARDEN 93.35+0.46 < 10711 84.56+0.22 -169.124+0.43
EspeW(Ours) 9323+0.57 < 10~''  51.5741.71 -103.13£3.43

Original  86.35£1.15 >0.56 249£1.86  -4.98+3.71
50 EmbMarker ~ 90.51£0.49  >0.01 12284522 24571045 X
WARDEN  89.85+1.20 >0.08 6.38+£2.08 -12.75+4.16 X
EspeW(Ours) 86.73£0.37 < 10~''  65.11+4.42 -130.23+8.84
Original ~ 85.15£0.97 >0.45 240£1.76  -4.79+3.53
100 EmbMarker ~ 90.19+0.75  >0.01 12.66+2.86  -2531+£572 X
WARDEN  88.96+043 >0.17 476+4.10 953821 X
EspeW(Ours) 84.66+£1.75 < 10~'!  64.46+212 -128.92+4.23
Original ~ 75.89+1.06 >0.68 1524112 3.04+2.24
1000  EmbMarker  85.29+1.29 >0.35 2524208 504416 X
WARDEN  81.39+1.12  >0.22 5.98+7.88 -11.95+1576 X

EspeW(Ours) 73.5742.12 < 10~'! 49.38+13.46 -98.751+26.92

provided embedding is used as the loss function. In addition to GPT-3’s text-embedding-002, we
also test other models to demonstrate the effectiveness of our method in Appendix [B.2]

Metrics. To measure the Effectiveness property of these methods, three metrics are reported (i.e.,
the difference of cosine similarity Acos, the difference of squared L2 distance Al and p-value of
the KS test). We now use the p-value being less than 103 as the primary criterion to indicate
whether a suspected EaaS is a copy version, with Acos and Als serving as assistant metrics as their
thresholds are difficult to determine. To measure the Harmlessness property, we train a two-layer
MLP classifier using the provider’s embeddings as input features. The classifier’s accuracy (ACC)
on a downstream task serves as the metric for measuring the quality of the embeddings. We also
report the average cosine similarities of original embeddings and watermarked embeddings. To
measure the Reliability, i.e., low false positive rate, we ensure that all results with in this paper is
lower that 10~%. See details in Appendix

Baselines and Implementation details. We select three baselines: Original (no watermark in-
jected), EmbMarker (Peng et al., [2023) and WARDEN (Shetty et al) |2024). We evaluate these
methods in five settings. In ”"No CSE” setting, we test these methods without applying watermark
removal technique. Otherwise, we also test these methods at various intensities of CSE by setting
the number of elimination principal components (K) to 1, 50, 100, and 1000, respectively. Refer to
Appendix [A.2|for more implementation details.

4.2 MAIN RESULTS

The performance of all methods on SST2 is shown in Table[I] We find that ESpeW is the only wa-
termarking method which can provide correctly verification across all settings. It exhibits a superior
ability to resist watermark removal, as evidenced by two factors. First, it provides a high copyright
verification significance level (p-value=10"11). Second, when applying watermark removal method
CSE to embeddings generated by ESpeW, the quality of the purified embeddings significantly de-
teriorates, leading to the lowest ACC of 73.57%. These findings highlight the effectiveness and
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on SST2. (a) shows results without CSE. (b)

robustness of the watermarking approach. Due to page limitation, we put more results on other

datasets in Appendix [B.1]

4.3 IMPACT ON EMBEDDING QUALITY

Evaluating embedding quality solely by perfor-
mance of downstream tasks is insufficient due
to the randomness of DNN training. To better
elucidate the influence of watermarks on embed-
dings, we compute the average cosine similar-
ity between watermarked embeddings and orig-
inal clean embeddings. Four watermarks are
selected for comparison: EmbMarker, WAR-
DEN, ESpeW (randomly selecting watermark
positions), and ESpeW (selecting watermark po-
sitions with minimum magnitude). As depicted
in Figure [3] the embeddings generated by our
proposed method exert the least negative impact
on clean embeddings, with a change in cosine
similarity of less than 1%.

4.4 ABLATION STUDY

Ablation on Watermark Proportion o. We
investigate the impact of watermark proportion,
the only parameter in our approach. Figure [4a]

EmbMarker
‘WARDEN

BN ESpeW(Random)
N ESpeW(Min)

Mean Cosine Similarity 1

SST2

MIND
Dataset

AGNews Enron Spam

Figure 3: Average cosine similarity between wa-
termarked and clean embeddings.

provides the results when CSE is not applied. It can be observed that our proposed method can inject
watermark successfully with a minimum « value of 15%. And as « increases, the effectiveness of
the watermark is also greater. Figure [4b]displays the results when CSE is applied. Compared with
the situation without CSE, the trend in watermark effectiveness relative to a remains similar when

« is small. However, when a large « is set, our
inherently requires a low watermark proportion to

method will fail. This is because our approach
evade CSE removal. Infaet-when-the-e-is-setto

100%;-our-method-is-almest-same-with-EmbMarker— In fact, when the « is set to 100%, our method
will replace original embedding with target embedding entirely. Additional ablation results on other

datasets are provided in Appendix[B.2]

4.5 RESISTANCE AGAINST POTENTIAL REMOVAL ATTACKS
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Figure 5: Effect of dropout with a 25% watermark proportion. (a) and (b) show detection results
under different drop rate without CSE. (c) and (d) show detection results under different drop rate
with CSE (K=50).
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Figure 6: Distribution of cosine similarities with target embedding.

Resistance against dropout. Applying dropout on embeddings when training stealer’s model is a
heuristic attack to mitigate our watermark because we only insert watermarks to a small proportion
of positions. Here we test the effect of dropout under different drop rates. The results in Figure [3]
demonstrate that our watermark can not be compromised unless an extreme drop rate such as 0.7 or
0.8. However, such a large dropout rate will make the embedding unusable. Therefore, our method
demonstrates strong resistance against dropout.

We also test resistance against fine-tuning and an adaptive attack based on statistical analysis
(SAA). Refer to Appendix[B.2]for details.

4.6 FURTHER ANALYSIS

Distribution of Cosine Similarities with Target Embedding. The target embedding, as private
key, need to be securely stored. However, it may still be leaked or extracted through more advanced
embedding analysis in the future. In this section, we demonstrate that even if the target embedding is
leaked or extracted, an adversary cannot identify which embeddings have been watermarked by ana-
lyzing the similarity distribution between the embeddings and the target embedding. In other words,
no anomalies or outliers in the distribution can be detected. Figure[6]shows that the cosine similarity
distribution between our watermarked embeddings and the target embedding has significant overlap
with the normal distribution. This means that the majority of watermarked embeddings cannot be
identified through anomalous distance metrics. Otherwise, the target embedding may still be com-
promised. We discuss several potential leakage scenarios and corresponding defense strategies in

the Appendix

Embedding Visualization. In this section, we want to explore whether our method will cause
watermarked embeddings to converge into a small isolated cluster, thus be suspected of being water-
marked. Specifically, we use principal components analysis (PCA) (Mackiewicz & Ratajczak}|1993)
to visualize the watermarked and non-watermarked embeddings with different watermark propor-
tions (). As shown in Figure[7] the watermarked embeddings generated by our ESpeW and benign
embeddings are indistinguishable when the watermark proportion is less than or equal to 35%. And
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Figure 7: Visualization of the generated embedding of our ESpeW with different watermark propor-
tion (o) on SST2. It shows that we can generate watermarked embeddings indistinguishable with
non-watermark embeddings by setting a reasonable watermark proportion.

in the ablation experiments below, we prove that our method only needs a minimum watermark pro-
portion of 15% to successfully inject watermarks. Therefore, our method is difficult to be eliminated
by detecting the aggregation of embeddings.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a novel approach to provide robust intellectual property protection for
Embeddings-as-a-Service (EaaS) through watermarking. Instead of inserting the watermark into the
entire embedding, our method, ESpeW (Embedding-Specific Watermark), fully leverages the high-
dimensional and sparse nature of LLMs’ embeddings, selectively injecting watermarks into specific
positions to ensure robustness and reduce the impact on embedding quality. Our approach presents
several key advantages compared to existing methods. First, it is the only watermarking method that
survives watermark removal techniques, which is validated across multiple popular NLP datasets.
Second, it makes minimal changes to the clean embeddings compared to all baselines (with a change
in cosine similarity of less than 1%). Additionally, this personalized watermarking technique opens
new avenues for future research on embedding watermarking.

Limitations and Future Work. Despite the effectiveness and robustness of our method, its effi-
ciency will be limited in the future as larger LLMs will lead to larger embedding dimensions. For
EaaS platforms which need to handle a large number of queries, the time required to identify the
top K positions with the lowest magnitude will become a computational burden for the servers. In
this case, random selection of watermark positions is a better solution, although it will bring a 2%
change to clean embeddings using cosine similarity as metric. Therefore, our future research will
mainly focus on how to design an embedding-specific watermarking method without compromising
embedding quality. Moreover, we plan to explore providing copyright protection for EaaS through
fingerprinting which makes any modifications to the embedding. For detailed analysis of random
selection, please refer to Appendix [B.2]

Broader Impacts. Furthermore, as Large Language Models continue to evolve, embeddings will
become central to Al applications. However, advanced model theft methods make current service
providers reluctant to offer these valuable embeddings. A robust copyright protection method will
greatly encourage more service providers to offer embedding services, thereby further accelerating
the development and deployment of Al applications.

10
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6 CHECKLIST

6.1 CODE OF ETHICS AND ETHICS STATEMENT

In the development of this robust watermarking system for Everything as a Service (EaaS), we have
adhered to the ICLR Code of Ethics and ensured compliance with all ethical standards throughout the
research process. No human subjects were involved in the study, and our work is primarily focused
on advancing technical methodologies in watermarking, without introducing risks to individuals or
communities.

Watermarking techniques are designed to protect legitimate rights, ensuring the authenticity and
integrity of content. Our system does not introduce any harmful or destructive elements, focusing
solely on safeguarding intellectual property and verifying ownership.

We declare no conflicts of interest and confirm that our research was conducted with integrity, and
in accordance with all relevant ethical standards. This project did not receive external sponsorship,
and all contributions are transparent and properly acknowledged.

6.2 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of the results presented in this paper.
The source code, which implements the watermarking system for Everything as a Service (EaaS),
has been included in the supplementary materials as an anonymous downloadable link. This code
can be used to reproduce the experiments and results described in the paper.
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A  EXPERIMENTAL SETTINGS

A.1 STATISTICS OF DATASETS

We include the statistical information of selected datasets in Table [2|to demonstrate that our dataset
is diverse.

Table 2: Statistics of used datasets.

Dataset  Train Size Test Size Avg. Tokens Classes

SST2 67,349 872 54 2
MIND 97,791 32,592 66 18
AG News 120,000 7,600 35 4
Enron 31,716 2,000 236 2

A.2 IMPLEMENTATION DETAILS

For EmbMarker, WARDEN and our approach, we set the size of trigger set to 20 for each water-
mark. The frequency for selecting triggers is set to [0.5%, 1%]. And we set steal epoch to 10. For
EmbMarker and WARDEN, the maximum number of triggers is 4. For WARDEN, we choose 5
watermarks due to its multi-watermark feature. For our approach, we set the watermark proportion
to 25%.

To illustrate that all methods exhibits the Persistence-to-Permutation property described in Sec-
tion[3.2] we assume that the stealer will apply a same permutation rule to all provider’s embeddings
before training stealer’s model. When verification, instead of using the target embedding returned
by victim’s EaaS, we query the suspicious EaaS with target sample to get returned target embedding
for verification.

B MORE RESULTS

B.1 MAIN RESULTS ON MORE DATASETS

We present the main results on other datasets in Table [3] Table d] and Table[5] Compared to other
watermarking methods, our approach is also the only one that successfully verifies copyright in all
cases.

B.2 ABLATION RESULTS ON MORE DATASETS

We present additional ablation results on other datasets in Figure 8] Figure[9] and Figure When
CSE is not applied, it can be observed that our proposed method can inject watermark successfully
with a minimum « value of 15% on all datasets. And as « increases, the detection performance of
the watermark is also greater. When CSE is applied, compared with the situation without CSE, the
trend in detection performance relative to o remains similar when « is small. However, when a large
« s set, our method will fail. These findings are consistent with those on the SST2 dataset.

B.3 RANDOM SELECTION

We begin by providing a detailed description of the random selection algorithm. A direct random
selection approach is suboptimal, as the watermarked positions for the same sentence may vary
across different queries. An attacker could exploit this variability by making multiple queries to
detect or remove the watermark. To mitigate this issue, we propose using the hash value of the
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Table 3: Performance of different methods on MIND. For no CSE, higher ACC means better harm-
lessness. For CSE, lower ACC means better watermark effectiveness. In ?COPY ?”” column, correct

verifications are green and failures are red. Best results are highlighted in bold (except Original).
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0.4 0.6

Watermark Proportion (c)

K(CSE) Method ACC(%) p-value]  Acos(%) 1 Al (%) | COPY?
Original 77.23+£0.22  >0.2148 -0.6040.22 1.194+0.44
No CSE EmbMarker 77.174020 < 10~'1 13.53+0.11 -27.06+0.22
WARDEN 77.2340.09 < 10~'! 18.05+0.48 -36.10+0.95
EspeW(Ours) 77.2240.12 <10~8 8.68+0.24 -17.36+£0.47
Original 77.23+£0.10 >0.0925 -4.30+0.89 8.61+1.77
1 EmbMarker  77.1840.15 < 10~'! 98.39+1.76 -196.77+3.51
WARDEN 77.06+0.07 < 10~'' 85.09+£3.57 -170.19+7.14
EspeW(Ours) 77.16+0.12 <10~° 56.64+1.73 -113.284+3.46
Original 75.60+0.09 >0.2922 3.434+1.68 -6.87+3.36
50 EmbMarker  75.34+0.24 >0.1103 5.84+1.90 -11.69+3.79 X
WARDEN 75.20+0.11 >0.3365 3.9143.08 -7.81+6.15 X
EspeW(Ours) 75.484+0.18 < 10~ 72144216 -144.28+4.31
Original 74.64+0.08 >0.6805 1.66+2.04 -3.334+4.09
100 EmbMarker  74.60+0.14 >0.1072 6.91£3.01 -13.82+6.03 X
WARDEN 74.334+0.17 >0.2361 2.004+6.56 -4.00£13.12 X
EspeW(Ours) 74.694+0.30 < 10~1° 69.55+4.15 -139.10+8.29
Original 65.87+0.49 >0.5186 -2.44+2.28 4.89+4.56
1000 EmbMarker 68.35+£1.32 >0.6442 0.7245.37 -1.43+£10.74 X
WARDEN 67.01£0.18 >0.3558 0.00+4.71 0.00+£9.41 X
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10 " 107 s sss 753 7571 7sad 7530 SL9T 740 035
0 T2 Mo 76 e 126 ma 7mm 7T | o
50 1 030
60 0.8320
< 0.8 o 025
< a0 =
a 2 < 22.18 020 2
§ 209 0678 § 501 -43.80 E
g . z'» -68.03 o5
Z 04 2 100 -112.63
—201 F13828 o 0.0811 [ 0-10
w0 02 150 : / oos
-163.94 0
0 0001 ov6 1007 1008 1008 1011 10uin | a0 ] 100003 10%6 onu o aos o 1o oo

ACC(%) T —@— Acost Al —@— p-value | ACC(%) | —@= Acost Al —®— p-value |

(a) Effect of watermark proportion without CSE. (b) Effect of watermark proportion with CSE.

Figure 8: Ablation results of watermark proportion on MIND. (a) shows results without CSE. (b)
shows results with CSE, where K is set to 50.

embedding (we adopt SHA-256 as our hash function) as a seed, ensuring consistent and repeatable
position selection. The algorithm is outlined in Algorithm [T}

We then conduct formalized time complexity analysis. For smallest-magnitude selection. Using
heap sort for the top-k problem is the most common approach, achieving a time complexity of
O(Nlogk). Thus, the total time complexity of smallest-magnitude selection is O(N log k).
For random selection. Converting e, to byte format requires O(N), SHA-256 hashing also takes
O(N), and selecting random indices needs O(k). Therefore, the total time complexity of random
selection is O(2N + k). Considering the high-dimensional nature of embeddings, random selection
typically has a much lower time complexity than smallest-magnitude selection.
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Table 4: Performance of different methods on AGNews. For no CSE, lower ACC means better
harmlessness. For CSE, lower ACC means better watermark effectiveness. In "COPY?” column,
correct verifications are green and failures are red. Best results are highlighted in bold (except

Original).

K(CSE) Method ACC(%) |  p-valuel  Acos(%) T Al (%) | COPY?
Original 93.43+0.27 >0.02324 1.11+£0.42 -2.2240.83
NoCSE  EmbMarker  93.60£0.06 < 10~''  13.15+0.55 -26.29+1.11
WARDEN 93.22+0.10  >0.0083 -6.24+£596  12.47£11.92 X
EspeW(Ours) 93.42+0.16 < 10~ 9.59+0.74  -19.19+1.49
Original 94.12+£0.14  >0.3936 2.2240.98 -4.45£1.96
1 EmbMarker  94.014£0.18 < 1071  136.3242.24 -272.65+4.48
WARDEN  93.75+0.23 < 107! 96.69+1.62 -193.384+3.24
EspeW(Ours) 94.05+0.15 < 10~1! 56.51£2.47 -113.02+4.95
Original 93.39£0.24 >0.0454 -4.78+1.03 9.56+2.05
50 EmbMarker  93.0440.33 < 1076 14.43+4.91 -28.85£9.81
WARDEN 92.54+0.36 >0.3062 2.40+£2.32 -4.79+4.65 X
EspeW(Ours) 93.00+0.12 < 10—1° 21.83£5.11 -43.65+10.22
Original 92.77+£0.28 >0.0520 -4.50+0.66 9.00£1.33
100 EmbMarker  92.46+0.17 >0.0206 8.36+£3.72 -16.71+£7.44 X
WARDEN 91.62+£0.21 >0.1488 -3.95+2.19 7.89+4.37 X
EspeW(Ours) 92.814+0.18 < 10=5  20.07+10.23 -40.15+20.46
Original 88.55+£0.21 >0.1745 3.44+0.96 -6.81£1.34
1000 ~ EmbMarker 90224031 >0.8320 2584218  -51743.12 X
WARDEN 79.82+0.22 >0.0335 -6.51£3.96 13.03+6.76 X
EspeW(Ours) 86.92+0.19 < 10~8  23.03+11.12 -46.07+23.12
0.40
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(a) Effect of watermark proportion without CSE.

(b) Effect of watermark proportion with CSE.

Figure 9: Ablation results of watermark proportion on AGNews. (a) shows results without CSE. (b)
shows results with CSE, where K is set to 50.

To evaluate the time consumption, we conduct experiments using two widely-used open-sourced
embedding models: NV-Embed-v2 (Lee et al.l [2024), which ranks first in the METB leader-
board (Muennighoff et al., 2023)), and Stella (Stella, 2024)), which is ranked first in the METB
leaderboard under 1.5B. We measure the time for 2,000 generations, repeating the experiment five
times to reduce the impact of random fluctuations. All experiments are performed on an Ubuntu
18.04 system with an AMD EPYC 7Y83 64-core CPU and an NVIDIA RTX 4090 GPU. The results
are summarized in Table |§l As can be seen, the time consumed by the random selection-based wa-
termark is significantly smaller than the model inference time, and it also shows a clear advantage
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Table 5: Performance of different methods on Enron Spam. For no CSE, higher ACC means better
harmlessness. For CSE, lower ACC means better watermark effectiveness. In "COPY?” column,
correct verifications are green and failures are red. Best results are highlighted in bold (except

Original).

K(CSE) Method ACC(%) p-valuel  Acos(%) 1 Aly(%) 4 COPY?
Original 94.904+0.35 >0.5776  -0.11+0.26 0.2240.52
NoCSE  EmbMarker  94.86+0.24 <10~'° 9.75+0.11 -19.49+0.21
WARDEN  94314+044 <10~  7.0040.62 -14.00+1.24
EspeW(Ours) 94.73+£0.23 <1010 7.2340.35 -14.4740.70
Original 95.994+0.41 >0.5791 0.58+2.06 -1.15+4.12
1 EmbMarker  95.9340.37 <1070  69.55+7.16 -139.10+14.32
WARDEN  95.80+0.05 < 10~'! 6801+1.62 -136.02+3.23
EspeW(Ours) 95.86+0.19 <1079  56.2543.53  -112.5047.06
Original 95.684+0.13 >0.7668 0.50+1.15 -1.00£2.30
50 EmbMarker  95.484+0.47 >0.0002  11.00+1.77 -22.01£3.53 X
WARDEN  95.39+0.14 >0.5751  -1.3942.38 2.77+4.77 X
EspeW(Ours) 95.48+0.28 < 1070 47.75+4.13 -95.50+8.26
Original 95.44+0.54 >0.6805 0.4540.73 -0.914+1.46
100 EmbMarker  95.344+0.31 >0.0114  10.75+2.91 -21.50+5.82 X
WARDEN  94.86+0.29 >0.4970  -0.13+4.28 0.254+8.57 X
EspeW(Ours) 95.25+0.30 < 10710 44.24+6.44  -88.49+12.87
Original 94.694+0.26 >0.4169  -1.1742.05 2.3344.10
1000 EmbMarker  94.894+0.54 >0.0243 6.66+2.63 -13.324+5.26 X
WARDEN  94.39+0.41 >0.3736 2.454+4.32 -4.9148.63 X
EspeW(Ours) 94.69+0.66 < 10~°2  35.25+3.29 -70.51+6.58
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(a) Effect of watermark proportion without CSE. (b) Effect of watermark proportion with CSE.

Figure 10: Ablation results of watermark proportion on Enron Spam. (a) shows results without CSE.
(b) shows results with CSE, where K is set to 50.

over the smallest-magnitude selection-based watermark in terms of time consumption. Therefore,
when scaling to large-scale usage, the random selection method offers a clear advantage.

Watermark performance comparison of using smallest-magnitude and random Selection. We
report the detection capability, as well as cosine similarity with clean embedding cos(%)w/clean to
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Algorithm 1 Random Selection Algorithm

: Input: Original embedding e,, a hash function H AS H (-), watermark proportion «
: Output: Selected watermark positions M

: Convert the original embedding e, into byte format B, .

: Generate a random seed R = HASH(B,,).

: Using R as seed, select r|e,| random indices M.

: Return M.

o R O R S

Table 6: Time consumption comparison between random and smallest-magnitude selection.

Model Model Embedding Inference Smallest-magnitude Random Selec-
Size Size Time (ms) Selection Time (ms) -tion Time (ms)
Stella 1.5B 1024 4371.80 +£204.80 716.30 = 1.50 31.49 £0.40
NV-Embed-v2 7B 4096 13799.46 + 459.30 3761.18 +276.59 86.33 £0.49

assess embedding quality. The parameter K = 50 is used. From the results, we can see that while
random selection sacrifices more embedding quality, it achieves better watermarking performance.

The above analyses and experiments demonstrate that both smallest-magnitude selection and ran-
dom selection have their unique advantages, making them suitable for different application scenar-
ios:

* Smallest-magnitude selection significantly benefits embedding quality preservation, with
modifications to the clean embeddings under 1%. This is crucial for real-world applications
where organizations aim to improve their rankings on leaderboards while protecting their
intellectual property.

* Random selection, although sacrificing more embedding quality, offers substantial time
savings, making it more suitable for product deployment in large-scale applications.

We conclude that both approaches are valuable, and users can choose the appropriate method based
on their specific application requirements.

B.4 EVALUATION ON MORE EMBEDDING MODELS

We apply our watermark to more models to verify our watermark ESpeW’s effectiveness. We select
two widely-used open-sourced embedding models: (1) NV-Embed-v2 (Lee et al.,[2024), which ranks
first in the METB leaderboard (Muennighoff et al.,2023) and has an embedding dimension of 4096,
and (2) Stella-1.5B-V5 (Stellal [2024), which is ranked first in the METB leaderboard under 1.5B.
Using the Enron spam dataset and K = 50, we evaluate watermark performance with different a.
Based on the results in Table[8] we can see that our method remains effective across these embedding
models. And it still demonstrates a high detection capability and robustness to CSE.

B.5 RESISTANCE AGAINST MORE POTENTIAL REMOVAL ATTACKS

B.5.1 RESISTANCE AGAINST FINE-TUNING.

To evaluate the robustness of our method against fine-tuning attacks, we adopt the unsupervised
fine-tuning approach SimCSE (Gao et al.;|2021). SimCSE applies contrastive learning by introduc-
ing random dropout masks in the Transformer encoder. Positive samples are generated by feeding
the same input twice with different dropout masks, while negative samples are constructed from
other sentences within the batch. Note that supervised fine-tuning is fundamentally incompatible
with embedding models, as it would cause the embeddings to carry excessive label information,
compromising semantic properties. Thus, we focus on unsupervised fine-tuning. The experiments
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Table 7: Watermark performance comparison between smallest-magnitude and random selection.

Dataset Method p-value] Acos(%) 1T Al(%)] cos(%)wiclean

SST2 Smallest 10~ 11 65.11 -130.23 99.19
Random 10~ 72.81 -145.62 08.87

MIND Smallest 1011 72.14 -144.28 99.23
Random 10~ 77.27 -154.55 98.69

AGNews  Smallest 10710 21.83 -43.65 99.27
Random 1011 53.13 -106.27 98.97

Enron Spam  Smallest ~ 10~!° 47.75 95.5 99.21
Random 10—t 68.38 -136.75 98.92

Table 8: Evaluation of ESpeW on additional embedding models. This evaluation is conducted on
Enron Spam under CSE attack with K = 50.

a  ACC(%) p-value] Acos(%) 1T Al(%) 4

0.05 95.69 9.55E-06 13.12 -26.23

0.1 95.81 1.13E-08 27.02 -54.04

0.15 95.99 1.13E-08 36.62 -73.24

Stella 0.2 95.39 5.80E-10 47.30 -94.60
0.25 95.99 5.80E-10 56.77 -113.54

0.3 95.99 5.80E-10 62.31 -124.62

0.6 95.32 9.55E-06 10.45 -20.89

0.05 96.20 2.70E-04 9.04 -18.08

0.1 96.10 1.13E-08 23.90 -47.79

0.15 95.70 5.80E-10 40.56 -81.13
NV-Embed 0.2 95.90 1.45E-11 52.08 -104.17
0.25 96.25 1.45E-11 65.99 -131.98

0.3 95.95 1.45E-11 72.47 -144.93

0.6 96.10 1.45E-11 53.36 -106.72

are conducted using the hyperparameter settings provided in our paper, and evaluated on the En-
ron Spam dataset. Fine-tuning parameters are consistent with SimCSE (Gao et al.| 2021}, using a
learning rate of 3 x 10~° and a batch size of 64.

During the detection phase, we replace the p-value with Acos(%) and Al (%) as evaluation met-
rics. This adjustment is necessary because fine-tuning induces increased instability in embeddings,
causing the p-value to inflate abnormally and lose reliability. To address this, we use the alternative
metrics introduced in our paper, ensuring that the false positive rate (FPR) remains below 1075 by
adjusting the detection thresholds.

Table [9] demonstrates that our approach effectively defends against fine-tuning attacks, even after
100 epochs of fine-tuning. Considering that data stealing typically involves fewer than 10 epochs,
the cost of fine-tuning is significant in practice.

B.5.2 RESISTANCE AGAINST AN ADAPTIVE ATTACK SAA.

By statistically analyzing the frequency of values at each position, e; might be estimated. Based on
this motivation, we discuss an adaptive attack based on statistical analysis, named statistical analysis
attack (SAA). The algorithm of SAA in shown in Algorithm 2]

Through this algorithm, we can identify abnormally clustered values, thereby executing the statis-
tical analysis attack. In our experiments, we fix 7" to a small value of 10~* and evaluate the attack
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Table 9: Performance of our method under SimCSE-based unsupervised fine-tuning attacks.

Epoch p-value Acos(%) Al (%) FPR@0.05 FPR@0.01 FPR@I0 ° FPR@10 © FPR@10 °

0 5.8e-10 8.10 -16.21
1 1.1e-8 18.45 -36.91
2 1.4e-7 11.92 -23.84
3 1.3e-6 9.11 -18.23
4 1.4e-7 12.42 -24.83
5 1.1e-3 7.91 -15.81
6 1.1e-8 14.12 -28.24
7 1.3e-6 12.33 -24.66
8 4.0e-3 6.56 -13.12
9 4.0e-3 4.39 -8.77
10 2.7e-4 6.21 -12.42
20 2.7e-4 6.80 -13.60
35 0.03 5.82 -11.64
50 0.08 2.21 -4.42
100 0.34 3.60 -7.19

Table 10: Thresholds used for detection metrics to achieve target FPR levels. Validated through
100,000 experiments on non-watermarked models.

FPR Threshold of Acos(%) Threshold of Al>(%)

0.05 0.41 -1.57
0.01 0.59 -2.32
1073 0.82 -3.16
107 1.08 -3.93
1075 1.09 -4.10

performance with varying values of Np. Since the SAA operation negatively affects embedding
quality, we measure watermark quality using the cosine similarity between the embedding and the
clean embedding, referred to as cos-clean. The other parameters remain the same as those in main
experiments.

The results are summarized in Table[TT]and demonstrate that this attack cannot successfully remove
the watermark without severely damaging the embedding quality. In detail, with Nz set to 200, the
p-value based detection becomes ineffective for watermark detection, while the watermark quality
degrades to 64.78% of its original level. When N is increased further, to 300 or beyond, the
watermark embedding quality continues to degrade, with the cos-clean value reaching as low as
45.11% at Ny = 300.

Table 11: Performance under Statistical Analysis Attack (SAA) for varying Np. The watermark
quality is evaluated using cos-clean. Watermark detection performance is evaluted by p-value, Acos,
and Aly are reported.

Nr p-value] Acos(%) T Al2(%) ] cos-cleant

1 5.80x10°10 7.85 -15.69 0.9887
5 5.80x 10710 7.84 -15.69 0.9815
10 5.80x 10710 7.36 -14.71 0.9738
20 5.80 x 10710 6.00 -11.99 0.9576
30 1.13x 10710 5.67 -11.34 0.9419
100 5.80 x 10710 7.95 -15.91 0.8276
200 0.0011 7.36 -14.73 0.6478
250 0.0335 5.24 -10.48 0.5481
300 0.0123 222 -4.44 0.4511
350 0.0123 -7.27 14.54 0.3620
400 0.0040 -9.99 19.98 0.2835
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Algorithm 2 Statistical Analysis Attack (SAA)

1: Input: Training embedding set of the stealer DE, € RNVNXM “tolerance level T, number of
neighboring partitions Np

2: Output: Normalized embedding set after attack

3: for each embedding index 7 do

4: Obtain the embedding array DE,, € RY for index i

5: Partition D E,, into small intervals using 1" as the step size

6: Count the number of elements in each partition

7 Initialize an empty set SE = {}

8 Add the partition with the highest number of elements to SE

9: if a partition with a high concentration of elements is identified then
10: Add this partition and its Ny neighboring partitions to SFE
11: end if
12: Calculate the upper and lower bounds of SE
13: Set the numbers within this interval to 0
14: end for

15: Normalize the resulting embedding
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Figure 11: Visualization of the generated embedding of our ESpeW with different watermark pro-
portion (o) on MIND. It shows that we can generate watermarked embeddings indistinguishable
with non-watermark embeddings by setting a reasonable watermark proportion.

B.6 EMBEDDING VISUALIZATION OF MORE DATASET

We put more visualization results in Figure[T1] Figure[T2] and Figure[T3]

C MORE DISCUSSION

C.1 COPYRIGHT PROTECTION IN LLMS VIA WATERMARKING

Due to the threat of model extraction attacks, various copyright protection methods have been pro-
posed. The most popular one is model watermarking. Early works (Uchida et al.l 2017} [Lim et al.
[2022) introduces the concept of embedding watermarks directly into the model’s weights. In the
case of LLMs, existing literature primarily focuses on the copyright protection of pretrained models
by using trigger inputs to verify model ownership (Gu et al.} [2022; [Li et al.} 2023}, [Xu et al., 2024).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

®
» o % o
% %, } »
[ °
0.15 0.151 ’agp,. 4L na®o W o
% BNR o ° o o 0.154
E 3 .* o %. °
Xy ® % )
" oay ®
.' “
0.00 0.00 [ Y u’ f 0.00
X .s b
: 4 A
~0.15 ) - L4 ® . E ] & ’
: ®  Non-Watermarked Embedding '.' ‘ ®  Non-Watermarked Embedding | —0.15 1 ®  Non-Watermarked Embeddmg
% Watermarked Embedding —0.151 ‘ % Watermarked Embedding % Watermarked Embedding
—0.15 0.00 0.15 —0.15 0.00 0.15 —0.15 0.00 0.15
(a) a = 20% (b) a = 25% (©) a=30%
o
Dopded 0.151
i \! 3
0.15 0.15 .. .
o
r : -; .
° k. % 0.00
0.00 0.00 i
* o
%% “%
n o ‘?
e - o ~0.151
—0.15 ®  Non-Watermarked Embedding —0.151 o Non-Watermarked Embedding ®  Non-Watermarked Embedding
¢ % Watermarked Embedding . Ld % Watermarked Embedding #  Watermarked Embedding
~0.15 0.00 0.15 015 0.00 0.15 015 000 0.15
(d) o = 35% (e) a = 40% ) a = 45%

Figure 12: Visualization of the generated embedding of our ESpeW with different watermark pro-
portion (o) on AGNews. It shows that we can generate watermarked embeddings indistinguishable
with non-watermark embeddings by setting a reasonable watermark proportion.
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Figure 13: Visualization of the generated embedding of our ESpeW with different watermark pro-
portion () on Enron Spam. It shows that we can generate watermarked embeddings indistinguish-
able with non-watermark embeddings by setting a reasonable watermark proportion.

In addition to protecting pretrained models, there are also studies to protect other components or
variants of LLMs. GINSEW 2023) protects the text generation model by injecting a
sinusoidal signal into the probability vector of generated words. PromptCARE en-
sures the protection of the Prompt-as-a-Service by solving a bi-level optimization. WVPrompt
2024) can protect Visual-Prompts-as-a-Service using a poison-only backdoor attack method
to embed a watermark into the prompt.
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Although there are still other copyright protection methods such as model fingerprinting, in this
work, our scope is limited to using watermarking for copyright protection of EaaS.

C.2 DISCUSSION ABOUT PRIVATE KEY LEAKAGE SCENARIOS AND CORRESPONDING
STRATEGIES

We here discuss several potential leakage scenarios and corresponding strategies to mitigate these
risks.

Leakage Scenarios. The primary leakage risks are associated with security vulnerabilities, in-
cluding inadequate storage practices, insecure transmission channels, or insider threats. Inadequate
storage, for instance, can result in unauthorized access or accidental exposure of sensitive embed-
dings. Similarly, insecure transmission of embeddings over unprotected networks can make them
vulnerable to interception by malicious actors. Insider threats, where authorized individuals exploit
their access for malicious purposes, further exacerbate the risks associated with embedding leakage.
These vulnerabilities highlight the need for comprehensive security measures to protect the integrity
and confidentiality of target embeddings.

Defense Strategies. To address these risks, we propose several mitigation strategies. One key
approach is to regularly renew the security keys used for embedding protection, ensuring that even if
a key is compromised, the window of vulnerability is minimized. Additionally, employing multiple
keys can help limit the impact of any single breach by compartmentalizing access. It is also crucial
to audit and continuously monitor access to sensitive embeddings, enabling quick detection and
response to potential security breaches. Encrypting both storage and transmission ensures that even
if unauthorized access occurs, the data remains unreadable without the proper decryption keys.
Finally, restricting employee access to sensitive information by implementing the principle of least
privilege can prevent unnecessary exposure and limit the potential for insider threats.

C.3 DISCUSSION ABOUT FALSE POSITIVE

Here, we analyze the FPR in our method. In fact, FPR are influenced by most of the parameters dis-
cussed in our paper, making it challenging to exhaustively evaluate them under all possible config-
urations. However, through 100,000 independent tests on non-watermarked models, we can ensure
that under the parameter settings used in our paper, the FPR is guaranteed to be less than 10~%. This
represents a remarkably low FPR, which is practical and reliable for real-world applications.
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