
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DATASCIBENCH: AN LLM AGENT BENCHMARK FOR
DATA SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents DataSciBench, a comprehensive benchmark for evaluating
Large Language Model (LLM) capabilities in data science. Recent related bench-
marks have primarily focused on single tasks, easily obtainable ground truth, and
straightforward evaluation metrics, which limits the scope of tasks that can be
evaluated. In contrast, DataSciBench is constructed based on a more com-
prehensive and curated collection of natural and challenging prompts. We de-
velop a semi-automated pipeline for generating ground truth (GT) and validating
evaluation metrics. This pipeline utilizes and implements an LLM-based self-
consistency strategy to produce accurate GT by leveraging collected prompts,
predefined task types, and aggregate metrics. Furthermore, it employs a care-
ful approach to filter a high-quality Task - Function - Code (TFC) list and assess
each code execution outcome within TFC based on precisely defined metrics and
programmatic rules. Our experimental framework involves testing 6 API-based
models, 8 open-source general models, and 9 open-source code generation models
using the diverse set of prompts we have gathered. Through this approach, we aim
to provide a more comprehensive and rigorous evaluation of LLMs in the domain
of data science, shedding light on their strengths and weaknesses. Experimental
results demonstrate that API-based models greatly outperform open-sourced mod-
els on all metrics except for VLM-as-a-judge and Deepseek-Coder-33B-Instruct
achieves the highest score among open-sourced models. We release all code and
data at code.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Team et al., 2023; GLM et al., 2024) are
increasingly used in data science and scientific domains, e.g., data analysis (Hong et al., 2024),
protein generation (Jumper et al., 2021; Chen et al., 2024), and scientific reasoning (Zhang et al.,
2024a;b). For data science tasks, LLMs offer the potential to (semi-)autonomously conduct data
analysis (Huang et al., 2023) and data visualization (Hong et al., 2024) by calling code interpreters
with corresponding Python libraries given the public known problems. These works are bench-
marked on relatively straightforward tasks where ground truth labels can be precisely obtained.
However, much of real-world data analysis requires reasoning over more complex scenarios, such
as evaluating the quality of the images generated by the data visualization task. The proper evalua-
tion of these more complex data science tasks remains an open research direction.

While there are some existing benchmarks used to evaluate LLMs for related challenges (see Ta-
ble 1), those benchmarks typically focus on evaluating narrower tasks with easy-to-obtain ground
truth and straightforward evaluation metrics. For example, MLAgentBench (Huang et al., 2023)
presents a machine learning research benchmark by building an LLM Agent pipeline. SWE-
Bench (Jimenez et al., 2023) benchmarks the abilities of LLM to solve real-world software issues
from GitHub. InfiAgent-DABench (Hu et al., 2024) completes data analysis tasks by generating la-
bels with GPT-4 and calculating accuracy. The frontier of LLM evaluation is towards more complex
real-world tasks that consist of multiple subtasks. For these challenging prompts, how to generate
ground truth and define specific evaluation metrics for each subtask in a comprehensive perspective
is a question worth exploring.

1

https://github.com/THUDM/DataSciBench/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison with related work. LC denotes LeetCode.
Benchmark Prompt Source Evaluation Metrics

DS-1000 (Lai et al., 2023) StackOverflow Test Cases + Surface-Form Constraints
MLAgentBench (Huang et al., 2023) Kaggle Acc. + Success Rate, Human

LiveCodeBench (Jain et al., 2024) LC & AtCoder & CodeForces Test Cases + Pass Rate
NaturalCodeBench (Zhang et al., 2024c) CodeGeeX Test Cases + Pass Rate

BigCodeBench (Zhuo et al., 2024) StackOverflow Test Cases + Pass Rate

Text2Analysis (He et al., 2023) Human & LLM Executable code ratio, Acc., Regression scores
InfiAgent-DABench (Hu et al., 2024) LLM Acc.

DataSciBench (Ours) Human & CodeGeeX & BCB Aggregate Metrics and Programmatic Rules

In this paper, we introduce a new benchmark, called DataSciBench, which evaluates the data
science abilities of LLMs and helps LLMs improve their data analysis and data visualization abili-
ties. Regarding collected prompts, their corresponding responses, and evaluation metrics, we hope
that they meet the following characteristics: (1) Require more natural, challenging, and high-quality
prompts to promote the development of LLMs’ improvement. (2) Strong correlations are neces-
sary for sequential tasks so that models can be distinguished well. (3) Multiple types of results are
required to perform comprehensive evaluations.

To bridge the gap between task definition, evaluation criteria, and automated assessment in data
science contexts, we propose a novel semi-automated framework, called Task - Function - Code
(TFC) generation and evaluation. Specifically, from coarse-grained perspectives, we first aggregate
the range of task types, functions, and corresponding codes, then, from fine-grained perspectives,
we define programmatic rules for the outputs of each function depending on the specific tasks and
compare results with ground truth to ensure fair and consistent assessment. To validate the effec-
tiveness of LLMs and our proposed TFC pipeline on our collected comprehensive prompts, we
experiment with 6 API-based models, 8 open-sourced general models, and 9 open-sourced code
generation models. We observe that API-based models greatly outperform open-sourced models
on average. Specifically, GPT-4o surpasses all other models on all metrics except for VLM-as-a-
judge and Deepseek-Coder-33B-Instruct achieves the highest score among open-sourced models.
However, all models have significant room for improvement in following fine-grained instructions,
calling the appropriate tools, executing accurate plans, and exporting the required execution outputs.

Overall, our key contributions are as follows:

• We introduce DataSciBench, a comprehensive benchmark designed to assess the performance
of LLMs in data science tasks. We develop a semi-automated pipeline to generate ground truth
and evaluate aggregated metrics using carefully crafted complex questions.

• We propose a Task-Function-Code (TFC) list based on predefined aggregated metrics and pro-
grammatic rules. We then assess 23 large language models from both coarse-grained and fine-
grained perspectives, presenting the results in Table 2.

• Our study includes various analyses such as comparisons and correlations with existing bench-
marks, presented in Figure 5 and Table 3. Furthermore, we offer research insights derived from
experimental outcomes of the evaluated LLMs that point to interesting directions for future work.

2 BACKGROUND ON USING LLMS FOR DATA SCIENCE

This section discusses the key aspects that underlie our benchmarking approach.

Ground Truth Generation. Ground truth serves as the cornerstone for evaluating the performance
of LLMs in data science tasks. For diverse and challenging data science prompts, we aim to propose
a semi-automated pipeline that leverages a robust LLM to generate ground truth and employs a
self-consistency strategy to ensure the accuracy and reliability of the generated ground truth.

Evaluation Metrics Definition. Defining appropriate and meaningful evaluation metrics is essential
for effectively comparing and analyzing the effectiveness of different LLMs in data science tasks.
In our study, we meticulously define evaluation metrics tailored to the specific tasks and challenges

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1. Prompt Definition and Collection

l Online platform:
CodeGeeX

l Synthesized from
LLMs

2. Question Filtering

l Human-Written

l Select task type

l Filter irrelevant

l Rewrite

3. Expert Review

l Verify correctness

l Format instructions

l Collect datasets

2. Response Integration and Validation

[(T, F, C), ···]

Prompt

Large Language Models

Task Type Function Code

Data Interpreter

Directed Acyclic Graph

Test Case with Ground Truth

Task Type

(1) Data cleaning
& preprocessing

(2) Data
exploration &
statistics
understand

(3) Data
visualization

(4) Predictive
modeling

(5) Data mining &
Pattern recognition

(6) Interpretability
& Report generation

1. Prompt Collection

3. LLM Evaluation
DataSciBench

Large
Language

Models

Data
Science

Prompts: ***
TFC-list: ***
Data: ***
Ground Truth: ***

Aggregate Function
ü Data cleaning

Completeness
ü Data Integrity
ü Visualization

Completeness
ü Predictive

modeling
ü Clustering

Validity
ü Pattern Detection

Precision
ü Report Quality

Programmatic Rules

Ø Return:
Boolean Type

Ø Decimal:
Threshold Check

Ø Output Ground
Truth

Figure 1: The overall framework of DataSciBench includes prompt definition and collection,
response integration and validation, and LLM evaluation.

posed by the collected prompts. These metrics are designed to capture the diverse nuances of data
analysis and visualization tasks, enabling a comprehensive assessment of LLMs’ capabilities.

Limitation of Previous Studies. Prior research in benchmarking LLMs for data science has often
been limited by focusing on single tasks, simplistic evaluation metrics, and readily available ground
truth. These shortcomings hinder the thorough evaluation of LLMs and may not fully capture their
strengths and weaknesses. By addressing these limitations, our study seeks to provide a more com-
prehensive and nuanced evaluation of LLMs in data science applications. Through the development
of DataSciBench and the implementation of a rigorous evaluation framework, we aim to push
the boundaries of benchmarking practices in the field of data science and LLM research.

3 DATASCIBENCH

DataSciBench consists of three important components as outlined in Figure 1.

• Prompt Definition and Collection which defines 6 task types and collects 222 real, challenging,
and high-quality prompts through question filtering and expert review.

• Response Integration and Validation which proposes novel Task - Function - Code (TFC) to
assess the key tasks for each prompt and defines the aggregate functions and programmatic rules
to effectively evaluate the specific task description and compare prediction with ground truth.

• LLM Evaluation which assesses 6 API-based models, 8 open-sourced general models, and 9
open-sourced code generation models from coarse-grained (e.g., success rate, completion rate)
and fine-grained (e.g., VLM-as-a-judge, aggregate functions) perspectives.

3.1 PROMPT DEFINITION FOR DATA SCIENCE

Task Type. We define six typical data science tasks as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1. Data cleaning and preprocessing. This task detects and processes missing values, outliers, and
duplicate data; and standardizes data formats, such as a uniform format for dates and times.

2. Data exploration and statistics understand. This task calculates basic statistical indicators of
data (mean, median, standard deviation, etc.), generates data distribution charts (histograms, box
plots, etc.), calculates correlations between variables, and draws correlation matrices or maps.

3. Data visualization. The goal of this task is to visualize and analyze data and create interactive
charts so users can freely explore the data.

4. Predictive modeling. The task aims to select the appropriate machine learning algorithm, such as
linear regression, decision tree, random forest, etc.; carry out feature engineering, such as feature
selection, feature transformation, feature combination, etc.; the data set is divided into the training
set and test set, and the model is trained and evaluated; and select the corresponding evaluation
indicators for different prediction problems, such as classification, regression or clustering.

5. Data mining and Pattern recognition. This task uses association rule mining, frequent item
set mining, and other methods to find interesting patterns in the data; Text mining technology is
used to extract keywords, topics, and other information from text data; and apply cluster analysis,
classification algorithms, etc. to identify underlying patterns and structures. Pattern recognition
tasks can conduct these functions: image recognition, text clustering, and time series detection.

6. Interpretability and Report generation. This task aims to provide explanations of model re-
sults, such as feature importance, model parameters, etc., and automatically generate reports and
summaries that present the results of the analysis in a way that is easy to understand and share.

Task Integration. To increase the difficulty of assessing the prompt, we chose more complex
prompts that included multiple tasks. These sequential tasks can be any combination of tasks.

3.2 DATASET COLLECTION

Question Collection. We collect questions from four sources:

• Coarse-grained collection from a real-world online platform. We collect natural prompts from one
online code-generation platform, CodeGeeX (Zheng et al., 2023).

• Extracted and rewritten from a public code benchmark. We select data science-related and high-
quality prompts from BigCodeBench and then rewrite them to unified instructions.

• Hand-Written by humans. We also write elaborated prompts to increase the difficulty and robust-
ness of the evaluated benchmark by referring to relative websites1.

• Synthesized from LLMs. We use a few-shot examples drawn from human-written prompts to ask
LLM to generate similar prompts.

Question Filtering. We filter low-quality questions via the following three principles: (1) Choose
questions that keywords include, but are not limited to, “machine learning”, “deep learning”, “data
preprocessing”, and “data visualization”. (2) Filter questions that require updating code, finding
errors, and explaining concepts. (3) Rewrite questions that align with human preferences and LLMs,
which refers to questions solvable by both humans and large language models, avoiding overly
specialized or ambiguous queries.

Expert Review. To ensure the quality of the collected prompts, we review them by experts who are
professionals in computer science and data analysis. The review process includes three stages: (1)
In stage 1, experts verify the correctness and adjust the suitability of prompts. In addition, experts
ensure the answers to the prompts are easy to evaluate. For example, handing missing values for
a data frame. (2) In stage 2, experts format all prompts into unified instructions and the format
encompasses input data, input file, prompt, and expected output file. (3) In stage 3, experts ensure
the availability of datasets of input prompts, including generating random datasets and collecting the
public datasets.

1https://ds100.org/course-notes/eda/eda.html

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

DataSciBench

Figure 2: Statistics of task types and aggregate functions.

3.3 RESPONSE INTEGRATION AND VALIDATION

Ground Truth Generation and Validation. To obtain the response to collected prompts, we
propose the following strategy to generate a test case of each prompt. We first obtain the outputs
of each prompt by sampling LLMs several times and the final output by executing the generated
code. We use two different validation methods to ensure the rationality and reliability of the answer
generated by LLMs. With regard to prompts originating from BigCodeBench where reliable test
cases are provided, we validate the generated answer by performing all test cases. Answers that pass
all test cases are rechecked by humans and finally considered as ground truth. As for other prompts,
we initially adopt a self-consistency strategy (Wang et al., 2022) to obtain generated codes, and then
manually validate these results manually through cross-verification by multiple authors to ensure
accuracy and reliability.

Evaluation Selection. We introduce a structured approach to identify and evaluate key tasks
across six established types. We first use GPT-4o-mini to select several valuable task types, return
corresponding evaluation functions, and generate the evaluation codes for each prompt to effectively
evaluate the capabilities of LLMs and reduce the evaluation cost. Each group data is simplified as a
tuple (T, F, C) in generated R as follows:

R = {(Ti,Fi,Ci)|Ni }, (1)

where N is the number of valuable task types per prompt, and this value is different for each ques-
tion. Then we conduct a data interpreter (DI) (Hong et al., 2024) to generate a directed acyclic graph
(DAG) in a hierarchical structure for each prompt, in which each task type is defined as a node at
one level in a DAG. Based on the generated graphs, we take a powerful LLM as a backbone and run
all evaluation functions to obtain the ground truth of each task type. To some extent, this way of
verification can avoid the commonly used LLM-as-a-Judge black-box assessment.

Function Aggregation. To unify the key functions and improve the scalability of the evaluation,
we select top-K functions for each task type and aggregate all generated functions to the top-K
function category, as shown in Figure 2. Generally, the K is set as 5. For instance, the function
category for data cleaning and preprocessing includes Data Cleaning Completeness, DataFrame
Shape Validation, Data Completeness, Normalization Range Check, and Data Quality Score.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Programmatic Rules. Regarding aggregate functions with corresponding codes, we define uni-
fied rules to validate generated code. Specifically, we unify all outputs as boolean or decimal types
ranging between 0 and 1. Then, we obtain the final value by comparing ground truth with prediction
output depending on the specific task description of aggregate functions. For example, regarding
Data Cleaning Completeness, which calculates the final number of rows/columns after preprocess-
ing, the final output is 1 if the number is the same as the number of ground truths otherwise 0. For
some specific tasks whose output type is decimal, we also set a corresponding threshold to transform
the output to boolean for simplicity, such as, the threshold being set to 0.5 if the aggregate function
is silhouette score for data mining and pattern recognition.

Summary. Based on the abovementioned processes, we obtain 222 effective prompts and corre-
sponding test cases, which help the following evaluations of API-based and open-sourced models.

4 EXPERIMENTS

4.1 SETTINGS

To assess the performance of different models (e.g., API-based models and open-sourced gen-
eral/code generation models), we construct a comprehensive benchmark on our collected prompts.

• Six API-based models include o1-mini/GPT-4o-mini/GPT-4o-2024-05-13/GPT-4-
Turbo (Achiam et al., 2023), Claude-3.5-Sonnet2, and GLM-4-Flash (GLM et al., 2024).

• Eight open-sourced general models include Llama3.1-8B-Instruct, Llama3-8B-Instruct,
Qwen2.5-7B-Instruct, Qwen2-1.5/7B-Instruct (Yang et al., 2024), Gemma2-9B-it (Team et al.,
2024), GLM-4-9B-chat (GLM et al., 2024), Yi-1.5-9B-chat-16k (Young et al., 2024).

• Nine open-sourced code generation models include Deepseek-Coder-1.3/6.7/33B-Instruct (Guo
et al., 2024), CodeLlama-7/13/34B-Instruct (Roziere et al., 2023), Qwen2.5-Coder-1.5/7B-
Instruct (Hui et al., 2024), and StarCoder2-15B (Lozhkov et al., 2024).

4.2 EVALUATION METRICS

Coarse-grained Metrics. We define the coarse-grained metrics (CR and SR) for evaluating LLMs.

• Completion Rate (CR). Following Data Interpreter (Hong et al., 2024), we calculate the Com-
pletion Rate given our TFC. For each TFC in the TFC list, we give it a completion score, with a
minimum score of 0 and a maximum score of 2. The step completion scores were given as follows:
missing (score of 0), fail (score of 0), success-non-compliant (score of 1), and success-compliant
(score of 2). The final completion rate is then calculated as follows:

Completion Rate (CR) =
∑T

t=1 st
T × smax

, (2)

where the numerator was the sum of the completion scores for each step, and the denominator was
the sum of the maximum possible scores for all steps (2 × T and T is the number of TFCs).

• Success Rate (SR). Similar to Codex (Chen et al., 2021), our success rate is defined as the rate
of complete success on a single prompt estimated under 10 runs. Specifically, if all the TFCs have
passed within a run of a single prompt, it will count as a success. Otherwise, it will count as a failure.
Note that for prompts acquired from BigCodeBench, we compare the completion function’s outputs
with the ground truth completion function’s outputs to determine whether a single run passes, since
TFCs are derived based on demanded function outputs in this case. The formula for calculating SR
is as follows:

Success Rate (SR) := E
Prompts

[
1−

(
n−c
k

)(
n
k

)]
, (3)

where n = 10 and k = 1 in our case, c refers to the number of runs that have passed all the TFCs.

2https://www.anthropic.com/news/claude-3-5-sonnet

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Overall evaluation results for DataSciBench on all our curated prompts.

Models Size Coarse-grained Metrics Fine-grained Metrics Score
SR (%) CR (%) VLM F1 F2 F3 F4 F5

o1-mini N/A 29.77 45.26 1.75 44.63 19.27 36.01 30.94 23.81 38.73
GPT-4o-2024-05-13 N/A 66.31 68.44 2.10 75.93 56.14 69.33 71.35 57.67 64.43

GPT-4o-mini N/A 50.63 57.78 1.65 60.30 48.02 57.84 59.24 53.54 54.12
GPT-4-Turbo N/A 51.93 58.87 1.85 62.30 41.62 57.75 60.25 50.75 54.59

Claude-3-5-Sonnet-20240620 N/A 47.48 58.11 1.44 49.07 36.94 55.84 52.87 46.04 52.26
GLM-4-Flash N/A 30.32 34.04 1.51 36.53 29.42 32.57 27.64 14.44 30.75

Meta-Llama-3.1-8B-Instruct 8B 24.73 33.89 1.55 38.24 18.25 21.98 22.89 25.85 29.70
Meta-Llama-3-8B-Instruct 8B 2.88 3.92 1.93 4.18 1.26 2.70 2.67 1.47 3.40

Gemma-2-9B-it 9B 7.07 11.00 1.63 26.16 16.90 23.81 18.11 17.15 12.69
GLM-4-9B-Chat 9B 25.72 30.38 1.56 31.51 23.15 28.07 27.19 19.14 27.57

Qwen2.5-7B-Instruct 7B 43.83 50.74 1.44 51.18 36.41 47.25 45.24 34.77 45.99
Qwen2-7B-Instruct 7B 22.84 25.58 1.68 30.93 20.78 28.73 25.87 7.52 23.54

Qwen2-1.5B-Instruct 1.5B 3.96 5.46 1.54 4.54 1.98 3.26 5.76 4.71 4.84
Yi-1.5-9B-Chat-16K 9B 38.20 42.35 1.82 38.14 36.36 35.64 37.08 27.79 38.28

CodeLlama-34B-Instruct 34B 0.90 1.47 0.00 1.02 0.84 1.98 1.54 1.19 1.33
CodeLlama-13B-Instruct 13B 10.49 14.64 4.00 11.67 11.34 9.43 14.43 5.15 12.84
CodeLlama-7B-Instruct 7B 2.88 3.97 0.00 3.53 2.37 2.57 1.74 1.59 3.32

StarCoder2-15B 15B 2.07 2.61 2.33 2.57 1.81 1.59 3.43 1.19 2.45
Deepseek-Coder-33B-instruct 33B 55.86 61.23 1.73 65.66 47.11 58.17 61.65 48.60 56.74
Deepseek-Coder-6.7B-instruct 6.7B 37.03 41.62 1.30 43.49 34.57 46.36 46.49 18.09 38.42
Deepseek-Coder-1.3B-instruct 1.3B 15.50 19.00 3.33 13.04 14.62 13.26 16.32 7.92 16.55
Qwen2.5-Coder-7B-Instruct 7B 45.18 53.11 1.35 51.58 43.21 43.87 42.50 35.23 47.67

Qwen2.5-Coder-1.5B-Instruct 1.5B 22.74 28.64 1.11 29.82 21.79 23.96 29.58 16.39 25.89

Fine-grained Aggregate Metrics. We also define the fine-grained aggregate metrics for detail
evaluating all LLMs.

• Vision-language model (VLM)-as-a-judge assesses the overall score of two inputs based on pre-
defined criteria (Appendix A.5), providing a step-by-step rationale for its evaluation.

• Data Quality Score (F1) in Data cleaning and preprocessing aims to assess the cleanliness of data
post-preprocessing. It yields a boolean output of 1 if it matches the ground truth, or 0 otherwise.

• Plot Validity (F2) in Data visualization pertains to the accuracy of visual representations, such
as checking whether the shape of the association matrix is consistent with the ground truth. If
consistent, then the final value is 1, otherwise 0.

• Data Accuracy (F3) in Data Exploration and Statistics Understand focuses on understanding data
quality and can be quantified using Mean Squared Error (MSE). The final value is derived by
comparing it against the ground truth with a predefined threshold.

• Visualization Completeness (F4) in Data visualization evaluates the comprehensiveness of gener-
ated images (e.g., PNG, jpeg, PDF) by checking their existence compared to the ground truth. A
score of 1 is assigned if the files exist, and 0 otherwise.

• Model Accuracy (F5) in Predictive modeling is utilized to gauge the predictive performance of
models, providing a boolean accuracy value or decimal ranging between 0 and 1.

5 RESULTS AND ANALYSIS

5.1 OVERALL PERFORMANCE

We demonstrate overall experiment results in Table 2 and Figure 3. (1) Concerning average perfor-
mance, API-based models greatly outperform open-sourced models. Among API-based models,
GPT-4o achieves the highest total score of 64.43%, attaining a significant 9.84% advantage over
GPT-4-Turbo, which achieves 54.59% total score. Remarkably, GPT-4o also surpasses all other
models on all metrics except VLM, indicating its comprehensive capacity over various aspects. (2)
As for open-sourced models, the performance gap between general models and code generation
models is insignificant. Among those, Deepseek-Coder-33B-Instruct achieves the highest score of
56.74%, even outperforming various close-sourced models like o1-mini and GPT-4-Turbo. Other
models like Qwen2.5-Coder-7B-Instruct and Qwen2.5-7B-Instruct also show fair good capability,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60
Pass@1

CodeLlama-34b-I
StarCoder2-15b
CodeLlama-7b-I

Llama-3-8B-I
Qwen2-1.5B-I

gemma-2-9b-it
CodeLlama-13b-I

Deepseek-Coder-1.3b-I
Qwen2-7B-I

Qwen2.5-Coder-1.5B-I
GLM-4-9b-chat
Llama-3.1-8B-I

Yi-1.5-9B-Chat-16K
Deepseek-Coder-6.7b-I

Qwen2.5-7B-I
Qwen2.5-Coder-7B-I

Deepseek-Coder-33b-I
GLM-4-flash

o1-mini
claude-3-5-s
gpt-4o-mini
gpt-4-turbo

gpt-4o

 1.33
 2.45

 3.32
 3.40

 4.84
 12.69
 12.84

 16.55
 23.54

 25.89
 27.57

 29.70
 38.28
 38.42

 45.99
 47.67

 56.74
 30.75

 38.73
 52.26

 54.12
 54.59

 64.43
API Access

Open Access

Avg: 23.01

Avg: 49.15
DataSciBench

Figure 3: Overall score results of all tested LLMs.

o1
-m

ini

GPT-
4o

GPT-
4o

-m
ini

GPT-
4-T

urb
o

Clau
de

-3-
5-S

GLM
-4-

Fla
sh

Lla
ma-3

.1-
8B

-I

Lla
ma-3

-8B
-I

ge
mma-2

-9b
-it

GLM
-4-

9b
-Cha

t

Qwen
2.5

-7B
-I

Qwen
2-7

B-I

Qwen
2-1

.5B
-I

Yi-
1.5

-9B
-Cha

t-1
6K

Cod
eLl

am
a-3

4b
-I

Cod
eLl

am
a-1

3b
-I

Cod
eLl

am
a-7

b-I

Sta
rCod

er2
-15

b

Dee
pse

ek-
Cod

er-
33

b-I

Dee
pse

ek-
Cod

er-
6.7

b-I

Dee
pse

ek-
Cod

er-
1.3

b-I

Qwen
2.5

-Cod
er-

7B
-I

Qwen
2.5

-Cod
er-

1.5
B-I

Model Name

0

10

20

30

40

50

60

70

80

Av
e.

 C
R

Avg: 37.76

Avg: 6.56
Avg: 3.83

Different Difficulty Level for Data Science
easy medium hard

Figure 4: Average Completion Rate results regarding different difficulty levels.

attaining total scores of 47.67% and 45.99%, respectively. In contrast, there are also a few models
that only pass very few tasks, achieving total scores even lower than 5.0%. Of these, CodeLlama-
34B-Instruct unexpectedly achieves a score of 1.33%, even lagging behind its small-scale version
CodeLlama-7B-Instruct. We present an analysis of the anomaly in Section 5.4. (3) Furthermore,
we display ranked overall scores and average scores in Figure 3. It can be concluded that API-
access models basically outperform open-sourced models on average, reaching an average score
of 49.15% to 23.01% for open-access models. In comparison, the performance variance between
API-based models is smaller than that of open-sourced models.

5.2 ABLATION STUDY ON DIFFERENT DIFFICULTY LEVELS

To evaluate multiple LLMs on their ability to complete prompts of varying difficulty, we categorized
tasks using BCB and data formatted in CSV, human handwritten prompts, and data science-related
DL tasks as easy - 167, medium - 30, and hard levels - 25, respectively. We assessed multiple
LLMs by combining different difficulty levels, overall average CR, and the average CR for each
difficulty level. From the Figure 4, it can be observed that: (1) Consistency Across Difficulties:
Some LLMs, like GPT-4o, GPT-4o-mini, GPT-4-Turbo, and Deepseek-Coder-33B-Instruct, exhibit
consistent performance across all difficulty levels, indicating robustness. (2) Top Performers on
Hard Level: Models such as GPT-4 series and Deepseek-Coder-Instruct series are among the top
performers, scoring high average CRs, particularly excelling in complex, data-driven tasks defined
as hard. (3) Performance Gaps: There are noticeable gaps in the average CRs among general
models and small-scale models, with some achieving lower scores overall, suggesting that general
models are less efficient or accurate in data science tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Pass@1 comparison of all tested LLMs between DataSciBench and HumanEval. Cir-
cle markers denote the API-based models while other markers denote various open-sourced LLMs.
The green dashed areas indicate the LLMs perform well on the two benchmarks and the orange solid
areas indicate performances of the two datasets are relatively mismatched.

5.3 CONTAMINATION WITH OTHER BENCHMARKS

Comparison with HumanEval in Figure 5. We compare our proposed DataSciBench with
HumanEval. As shown in Figure 5, we observe that most LLMs are located in the upper triangular
region of the graph and all tested models are divided into two groups, in which the green-dashed-
line areas where LLMs perform well on the two benchmarks and the orange-solid-line area where
performances on the two datasets with the same model indicates significant discrepancies.

Correlation analysis with other benchmarks in Table 3. We perform correlation analysis to
evaluate the alignment between our benchmark and coding evaluations like BigCodeBench and
LiveCodeBench. To achieve this, we calculate both Pearson’s r and Spearman’s p correlation coeffi-
cients, which provide insights into the strength and direction of relationships between our benchmark
and these established metrics.

This analysis not only validates our results but also ensures robustness
across different evaluation dimensions. Our findings indicate strong
positive correlations, suggesting that our benchmark aligns well with
these established coding evaluation metrics.

Table 3: Correlation
DataSciBench

r p

LiveCodeBench 0.853 0.673
BigCodeBench 0.823 0.808

5.4 INSIGHTS

With curated metrics, we are able to obtain deeper insights into LLMs’ ability to plan and execute
complex data science tasks. The experiment results also raise questions that are worth exploring
since some results do not conform with conventional perceptions.

Models excel at reasoning but do not necessarily perform better on complex data science tasks.
Although it’s true that data science coding tasks often involve scheduling and step-by-step execu-
tion similar to reasoning scenarios, results show that even the LLMs proficient in reasoning tasks
can still fail to complete complex data science tasks. For instance, the OpenAI’s o1-mini model,
which is commonly regarded as one of the best reasoning models, unexpectedly failed on many
of DataSciBench’s tasks. The model only achieves a 29.77% overall success rate, significantly

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

lagging behind the company’s previously introduced models like GPT-4o and GPT-4-Turbo. Af-
ter examining the completions generated by o1-mini, we discovered that the failures are primarily
caused by non-compliance with instructions, incorrect calls, and forgetfulness. While successfully
splitting the task into multiple subtasks, the model often forgets to export required execution out-
comes or just outputs undesired data. In other cases, the model may falsely call a library function or
method that sometimes does not even exist. These facts remind us that real-life data science coding
tasks often comprehensively challenge the model’s ability to follow fine-grained instructions, utilize
existing tools (libraries, APIs...), and do planning. To perform and align well on these tasks, a model
has to be competitive on all related aspects.

Large scale models sometimes may fail to follow simple instructions more frequently.
StarCoder2-15B performs worse than some smaller models, and CodeLlama-34B-Instruct even per-
forms worse than its 13b and 7b versions. The main reason is that the larger-scale version lacks some
other ability like generating formatted text according to prompts. Perhaps a large amount of data
in a certain format is being used to train a larger version that fails to follow the prompt to generate
another format different from that. Some examples can be seen in the Appendix A.15. Indeed, the
larger scale model of CodeLlama also fails to outperform the smaller scale version in LCB.

6 RELATED WORKS

6.1 LLMS FOR DATA SCIENCE

With the popularity of large-scale language models, researchers have developed a series of LLM-
based agents for data science. Specifically, SheetCopilot (Li et al., 2024) designs a tabular agent,
which directly processes natural language-described tasks, and generates and executes a series of
operation plans on datasheets to produce the desired results. Data Copilot (Zhang et al., 2024d) is an
intelligent agent that serves as a bridge between users and data, which automatically executes data
processing, prediction, and visualization tasks based on users’ data needs. InsightPilot (Ma et al.,
2023) focuses on exploratory data analysis and can automatically discover data insights related to
fuzzy questions raised by users. Data interpreter (Hong et al., 2024) augments problem-solving in
data science with dynamic planning with hierarchical graph structures, tool integration, and logical
inconsistency identification in feedback. The correctness of data analysis in data science has a
significant impact on decision-making. Therefore, with the continuous increase of data science
agents, it is urgent to conduct a comprehensive and in-depth evaluation of data science agents.

6.2 LLM AGENT EVALUATION BENCHMARKS FOR DATA SCIENCE

Assessing the effectiveness of LLMs in handling diverse and challenging data science prompts
is essential to push the boundaries of benchmarking practices in the field of data science and
LLM research. Data science agents often solve problems by generating code, so the capabili-
ties of data science agents are closely related to the code generation capabilities of large models.
There are already many benchmarks for evaluating the code capability of large models. MLAgent-
Bench (Huang et al., 2023) benchmarks the LLMs’ abilities on traditional machine learning tasks.
NaturalCodeBench (Zhang et al., 2024c) evaluates the capabilities of code generation models on the
real prompts from the CodeGeeX (Zheng et al., 2023) platform. However, the general code evalu-
ation benchmark ignores the characteristics of data science tasks and cannot comprehensively and
effectively evaluate the capabilities of large models in data science.

7 CONCLUSION

This paper introduces DataSciBench, a novel framework tailored to assess the capabilities of
Large Language Models (LLMs) in data science tasks. By meticulously curating challenging
prompts and leveraging robust LLMs alongside a self-consistency strategy, we generate ground truth
for each prompt. To comprehensively evaluate LLM performance, we aggregate evaluation metrics
and synthesize the Task-Function-Code (TFC) list programmatically. Subsequently, we evaluate 23
API-based and open-source models, offer valuable research and engineering insights, and present
error analyses of the assessed LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan, Boyan
Wang, Xin Zeng, et al. xtrimopglm: unified 100b-scale pre-trained transformer for deciphering
the language of protein. arXiv preprint arXiv:2401.06199, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
Shi Han, Zejian Yuan, and Dongmei Zhang. Text2analysis: A benchmark of table question an-
swering with advanced data analysis and unclear queries, 2023. URL https://arxiv.org/
abs/2312.13671.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. In
Forty-first International Conference on Machine Learning, 2024.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as
ai research agents. arXiv preprint arXiv:2310.03302, 2023.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. Advances in Neural
Information Processing Systems, 36, 2024.

11

https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. Insightpilot: An llm-
empowered automated data exploration system. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations, pp. 346–352, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue,
Yuxiao Dong, and Jie Tang. Sciglm: Training scientific language models with self-reflective
instruction annotation and tuning. arXiv preprint arXiv:2401.07950, 2024a.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-
training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024b.

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Xiaohan Zhang,
Yuxiao Dong, and Jie Tang. Naturalcodebench: Examining coding performance mismatch on
humaneval and natural user prompts. arXiv preprint arXiv:2405.04520, 2024c.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents, 2024d.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATIONS

In certain visualization tasks, our initial metrics and evaluation methods (e.g., VLM-as-a-judge)
may lack precision. Further refinement of metrics is required to evaluate data visualization tasks
effectively. One potential approach could involve employing Vision Language Models (VLMs) to
train critic models, enhancing the capability for fine-grained evaluations of visualizations.

A.2 COMPARISON WITH EXISTING BENCHMARKS

While DataSciBench does show a correlation with LCB or BCB in Section 5.3, our benchmark
offers several unique and important contributions:

• Domain-Specific Focus: DataSciBench specifically targets data science and analytics tasks.
However, existing benchmarks primarily focus on general programming problems. This special-
ization helps evaluate models’ capabilities in handling real-world data analysis scenarios.

• Task Diversity: Our benchmark includes unique task types like data preprocessing, visualization,
and statistical analysis. These tasks are underrepresented in current benchmarks. This provides
deeper insights into models’ data science-specific capabilities.

• Complementary Insights: While overall correlations exist, we observe meaningful differences
in model rankings. For example, models like Meta-Llama-3-8B-Instruct and CodeLlama-34B-
Instruct show distinct performance patterns. These differences highlight capabilities specific to
data science tasks that other benchmarks may not capture.

The correlation with existing benchmarks validates our evaluation methodology, while our domain-
specific focus provides valuable new insights for assessing AI models in data science applications.

A.3 MOTIVETION AND EXAMPLE OF TASK-FUNCTION-CODE (TFC)

The TFC framework was developed to address several critical challenges in automated evaluation of
data science tasks:

• Systematic Task Selection: TFC provides a structured approach to identify and categorize key
tasks across six established types. This systematic organization ensures comprehensive coverage
of essential data science operations and helps maintain evaluation consistency and completeness.

• Standardized Evaluation Metrics: Data science tasks often lack standardized evaluation criteria.
TFC addresses this by explicitly defining appropriate evaluation functions for each task. For
example, data preprocessing tasks require specific metrics that differ from visualization tasks.
This standardization ensures fair and consistent assessment.

• Automated Execution Framework: TFC includes executable code components for both tasks
and evaluation metrics. This automation significantly improves evaluation efficiency, result repro-
ducibility, and testing scalability.

• Ground Truth Generation: TFC serves as a crucial foundation for establishing ground truth,
particularly valuable for complex tasks where ground truth is not readily available, and enables
systematic verification and validation of model outputs.

Overall, the TFC structure represents a novel contribution by providing a comprehensive framework
that bridges the gap between task definition, evaluation criteria, and automated assessment in data
science contexts.

A.4 CAVEATS WHEN USING LLMS FOR DATA SCIENCE

Here we list the issues that occurred during testcase generation, most of which have been addressed
by modifying the prompts. We notice that some of the issues may be disruptive to the system and
some may be subtle but important.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Prompt: Complete the code writing task in Python: Create a stacked bar chart of the Types attribute versus other
attributes based on the data.csv dataset. The dataset is the result of a chemical analysis of wines from the same region in
Italy. Store the results in processed_data.csv. Each sample in the dataset contains 14 attributes, which are: Alcohol,
Malic_Acid, Ash, Ash_Alcanity, Magnesium, Total_Phenols, Flavanoids, Nonflavanoid_Phenols, Proanthocyanins,
Color_Intensity, Hue, OD280, Proline, and Types. Save the stacked bar chart as `stacked_bar_chart.png`.

T1

Data cleaning and
preprocessing Data Completeness

F1

def data_completeness(ground_truth):
import pandas as pd
output = pd.read_csv(ground_truth)
prediction = pd.read_csv(“processed_data.csv”)
total_cells = output.size
non_null_cells = output.count().sum()
pre_total_cells = prediction.size
pre_non_null_cells = prediction.count().sum()
return bool(non_null_cells / total_cells ==

pre_non_null_cells / pre_total_cells)

C1

Figure 6: An example of TFC tuples.

1. Be careful when using LLMs on well-known open source datasets, especially with cus-
tomized tasks and data split. LLMs may memorize some open-source datasets. For exam-
ple, if we want to use part of the penguin dataset that does not contain certain columns, the
model (GPT-4o) will still explicitly process those columns in the code.

2. Hallucination during data pre-processing. For example, when the model is required to
merge two CSV, it may hallucinate on a common column and not go through all the columns
in the files to find the actual ones.

3. On multilingual tasks. LLMs may not be able to select the correct encoding. For instance,
when they are required to open a CSV file that has content in Chinese, they will struggle
to choose the correct encoding to open the file. Even if they are hinted that the file is in
Chinese, they may choose encodings other than “gbk”, e.g., “latin”.

A.5 VLM-AS-A-JUDGE PROMPT AND EXAMPLES

In this section, we define the criteria to measure quality of LLM-generated figures/charts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Prompt for VLM-as-a-judge

Above are two figures, which are A and B. The first figure is the ground truth image and
the second figure is the predicted image. The total score is 5. Please score B following the
criteria below:
- add 1 point for Data Representation Consistency: Ensure that the underlying data
represented by the two charts is identical. This includes the values for all data points and
the range of the data. Any variation in the dataset used would make the charts different.
- add 1 point for Axis Labels and Scales: Verify that both charts have identical axis labels,
units, and scales. Any difference in how the axes are labeled or scaled, such as using
logarithmic vs. linear scales, can affect the interpretation of the data.
- add 1 point for Graphical Elements: Check if the visual elements (such as lines, bars,
markers, etc.) are represented the same way in both charts. Line thickness, marker styles,
and colors should match across charts for them to be considered visually equal.
- add 1 point for Legend and Annotations: Confirm that any legends, titles, or annotations
(e.g., text labels, arrows, or highlights) are the same in both charts. These elements often
provide crucial context for interpreting the chart.
- add 1 point for Chart Dimensions and Layout: Ensure that the dimensions (height
and width), aspect ratios, and layout of the charts are identical. Even if the content and
representation are similar, a different aspect ratio or spacing between elements can change
the chart’s overall appearance and interpretation.

Please write down the total score for B based on the criteria above, and provide a
brief explanation of your reasoning. If you believe that the two figures are not identical,
please explain the differences you observed.

Explanation:
your explanation here

Total Score:
x/5

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Example #1 of VLM-as-a-judge (Model: claude-3-5-sonnet-20240620)

Image A:

Image B:

[Prompt for VLM-as-a-judge]
Explanation:
1. **Data Representation Consistency**: Both charts represent the same underlying data
for the years 2022 and 2023, with sales figures of $4,800 for 2022 and $7,800 for 2023.
+1 point.

2. **Axis Labels and Scales**: Both charts have identical X-axis labels (years) and
Y-axis labels (total sales). They both use the same scale on the Y-axis, ranging from 0 to
8000. **+1 point**.

3. **Graphical Elements**: The bars in both charts are red with the same thickness.
Thus, the visual representation matches. **+1 point**.

4. **Legend and Annotations**: The second chart includes dollar amounts on each
bar, which isn’t present in the first chart. This difference impacts the context provided for
interpreting the chart, reducing consistency. **0 points**.

5. **Chart Dimensions and Layout**: Both charts appear similar in terms of layout
and dimensions, with no significant visual differences observed. **+1 point**.

Given the above evaluations, the total score for B is calculated as follows:

Total Score:
4/5

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example #2 of VLM-as-a-judge (Model: CodeLlama-13B-Instruct)

Image A:

Image B:

[Prompt for VLM-as-a-judge]
Explanation:
1. **Data Representation Consistency**: Both figures (A and B) represent the same
underlying data with identical values for categories A, B, C, and D. Therefore, 1 point is
awarded.
2. **Axis Labels and Scales**: The axis labels (”Category” for the x-axis and ”Values”
for the y-axis) appear to be identical in both images, and the scale for the y-axis seems
consistent. Thus, 1 point is awarded.
3. **Graphical Elements**: Both charts use blue bars to represent the data, and the
thickness and style of the bars are similar. Therefore, 1 point is awarded.
4. **Legend and Annotations**: There are no legends or additional annotations in either
image, and the titles are the same (”Bar Chart”). Thus, 1 point is awarded.
5. **Chart Dimensions and Layout**: The dimensions and overall layout of the two charts
differ. Image A has a different aspect ratio compared to Image B, which affects the total
layout. Hence, 0 points are awarded.

Total Score:
4/5

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Example #3 of VLM-as-a-judge (Model: o1-mini)

Image A:

Image B:

[Prompt for VLM-as-a-judge]
Explanation:
1. **Data Representation Consistency**: The two figures represent different sets of data.
Image A shows the true values compared to the predictions over a broader date range, while
Image B only displays the predicted values for a specific date range (from 2023-06-01 to
2023-07-19). This difference in data sets indicates that the underlying data represented is
not identical. **(Score: 0)**

2. **Axis Labels and Scales**: Both images have similar axis labels (”Date” for the
x-axis and ”Value1” for the y-axis), but Image B lacks clarity on the exact date range it
represents, while Image A has a wider range and different intervals. Thus, while the labels
seem consistent, the scale differs due to the limited timeframe in Image B. **(Score: 0)**

3. **Graphical Elements**: Image A uses a dashed red line for the predicted values,
while Image B uses a solid blue line for predictions. This difference in line style and color
affects visual representation. **(Score: 0)**

4. **Legend and Annotations**: Image A includes a legend identifying its two lines
distinctly, while Image B only has a legend for the predicted values. The titles are also
different. This inconsistency affects how the charts convey context and interpretability.
(Score: 0)

5. **Chart Dimensions and Layout**: The overall dimensions and aspect ratios of
the charts are visually different. Image A has a wider aspect ratio, accommodating a broader
date range, while Image B has a more condensed look. **(Score: 0)**

Total Score:
0/5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 RESULTS

We present the detailed results for our collected prompt and BigCodeBench source in Table 4 and
Table 5.

Table 4: Evaluation results for DataSciBench (our collected prompts).

Models Size Coarse-grained Metrics Fine-grained Metrics Score
Success (%) CR (%) VLM F1 F2 F3 F4 F5

o1-mini N/A 13.45 15.43 1.75 53.75 0.00 45.50 46.25 25.79 19.35
GPT-4o-2024-05-13 N/A 19.82 17.89 2.10 71.79 0.00 54.50 70.00 33.95 24.24

GPT-4o-mini N/A 12.73 17.35 1.65 62.86 15.00 50.50 69.38 43.68 24.07
GPT-4-Turbo N/A 17.27 17.36 1.85 65.18 10.00 44.50 78.12 41.05 24.18

Claude-3-5-Sonnet-20240620 N/A 8.00 11.12 1.44 32.32 0.00 36.00 63.12 17.63 15.15
GLM-4-Flash N/A 9.82 7.43 1.51 47.14 0.00 22.00 24.38 3.95 10.27

Meta-Llama-3.1-8B-Instruct 8B 10.00 7.72 1.55 45.18 0.00 16.00 23.12 8.95 10.26
Meta-Llama-3-8B-Instruct 8B 1.64 1.43 1.93 7.86 0.00 4.50 6.88 0.00 2.07

Gemma-2-9B-it 9B 5.64 5.51 1.63 26.79 0.00 13.00 22.50 2.89 7.20
GLM-4-9B-Chat 9B 10.55 9.96 1.56 55.36 0.00 31.00 28.75 21.32 13.90

Qwen2.5-7B-Instruct 7B 11.64 10.11 1.44 55.36 0.00 36.50 33.12 18.42 14.40
Qwen2-7B-Instruct 7B 6.91 5.90 1.68 32.50 0.00 18.00 21.88 2.37 8.00

Qwen2-1.5B-Instruct 1.5B 1.82 1.60 1.54 3.57 0.00 2.00 13.12 0.79 2.18
Yi-1.5-9B-Chat-16K 9B 6.18 4.25 1.82 30.36 0.00 16.00 8.75 3.95 6.12

CodeLlama-34B-Instruct 34B 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02
CodeLlama-13B-Instruct 13B 0.73 0.50 4.00 4.46 0.00 0.00 3.75 0.00 0.97
CodeLlama-7B-Instruct 7B 0.55 0.27 0.00 1.96 0.00 0.00 0.00 0.00 0.30

StarCoder2-15B 15B 0.18 0.20 2.33 0.54 0.00 0.00 0.62 0.00 0.31
Deepseek-Coder-33B-instruct 33B 12.55 13.53 1.73 62.86 0.00 43.00 51.88 21.32 18.46
Deepseek-Coder-6.7B-instruct 6.7B 12.55 13.56 1.30 63.21 0.00 39.00 53.75 21.05 18.36
Deepseek-Coder-1.3B-instruct 1.3B 0.73 0.61 3.33 3.39 0.00 0.00 1.25 0.00 0.83
Qwen2.5-Coder-7B-Instruct 7B 6.18 7.87 1.35 40.18 0.00 27.50 33.75 4.47 10.79

Qwen2.5-Coder-1.5B-Instruct 1.5B 6.18 7.52 1.11 38.57 0.00 15.50 40.00 10.53 10.48

Table 5: Evaluation results for DataSciBench (BigCodeBench source).

Models Size Coarse-grained Metrics Fine-grained Metrics Score
Success (%) CR (%) F1 F2 F3 F4 F5

o1-mini N/A 35.15 55.08 41.62 25.62 32.89 25.90 23.16 47.77
GPT-4o-2024-05-13 N/A 81.62 85.09 77.30 74.63 74.21 71.79 65.48 81.81

GPT-4o-mini N/A 63.11 71.10 59.46 58.89 60.26 55.90 56.79 67.49
GPT-4-Turbo N/A 63.35 72.54 61.35 52.04 62.11 54.36 53.95 68.14

Claude-3-5-Sonnet-20240620 N/A 60.48 73.59 54.59 49.11 62.37 49.49 55.39 68.08
GLM-4-Flash N/A 37.07 42.8 33.04 39.11 36.05 28.72 17.89 39.55

Meta-Llama-3.1-8B-Instruct 8B 29.58 42.51 35.95 24.26 23.95 22.82 31.41 38.16
Meta-Llama-3-8B-Instruct 8B 3.29 4.74 2.97 1.67 2.11 1.28 1.96 3.98

Gemma-2-9B-it 9B 7.54 12.81 25.95 22.46 27.37 16.67 21.84 15.06
GLM-4-9B-Chat 9B 30.72 37.11 23.65 30.78 27.11 26.67 18.42 33.84

Qwen2.5-7B-Instruct 7B 54.43 64.12 49.80 48.40 50.79 49.23 40.15 59.52
Qwen2-7B-Instruct 7B 28.08 32.06 30.41 27.63 32.26 27.18 9.21 30.18

Qwen2-1.5B-Instruct 1.5B 4.67 6.73 4.86 2.63 3.68 3.33 6.00 5.97
Yi-1.5-9B-Chat-16K 9B 48.74 54.9 40.70 48.34 42.11 46.41 35.64 51.53

CodeLlama-34B-Instruct 34B 1.20 1.94 1.35 1.11 2.63 2.05 1.58 1.85
CodeLlama-13B-Instruct 13B 13.71 19.3 14.05 15.07 12.53 17.95 6.84 17.52
CodeLlama-7B-Instruct 7B 3.65 5.19 4.05 3.15 3.42 2.31 2.11 4.57

StarCoder2-15B 15B 2.69 3.41 3.24 2.41 2.11 4.36 1.58 3.21
Deepseek-Coder-33B-instruct 33B 70.12 76.94 66.58 62.63 63.16 64.87 57.59 73.11
Deepseek-Coder-6.7B-instruct 6.7B 45.09 50.86 37.00 45.96 48.79 44.10 17.11 47.50
Deepseek-Coder-1.3B-instruct 1.3B 20.36 25.05 16.22 19.44 17.63 21.28 10.53 22.81
Qwen2.5-Coder-7B-Instruct 7B 58.02 68.01 55.34 57.44 49.26 45.38 45.36 63.15

Qwen2.5-Coder-1.5B-Instruct 1.5B 28.20 35.60 26.94 28.96 26.74 26.15 18.32 32.69

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.7 PROGRAMMATIC RULES

Table 6: Details of programmatic rules.
Aggregate Function Task Type Rule Comparison GT Threshold

Mean Squared Error Calculate MSE Decimal Bool It ≤ to GT is 1, it > GT is 0 Yes -
Data Cleaning Completeness row/column number Integer Bool If it == GT, it is 1; if it != GT, it is 0 Yes -

Silhouette Score Calculate Decimal Bool If it ≥ to GT, it is 1, if it ≤ 0 Yes 0.5
Model Accuracy Calculate F1 Decimal Bool If it ≥ to GT, it is 1, if it ≤ 0 Yes 0.9
Model Accuracy Calculate Accuracy Decimal Bool If it ≥ to GT, it is 1, if it ≤ 0 Yes 0.9
R-squared Value Calculate Decimal Bool If it ≥ to GT, it is 1, if it ≤ 0 Yes 0.9

Data Cleaning Completeness number of nulls Integer Bool If it == 0, it returns 1; if it > 0, it returns 0 Yes -
Data Quality Score number of outlier Integer Bool If it == GT, it is 1; if it != GT, it is 0 Yes -

Data Accuracy MSE Decimal Bool Threshold judgment Yes 0.05
Data Completeness Null number ratio Decimal Bool If it == GT, it is 1; if it != GT, it is 0 Yes -
Data Quality Score Calculateloss Decimal Bool It ≤ to GT is 1, it > GT is 0 Yes -

Association Rule Confidence Association rule accuracy Decimal Bool Threshold judgment Yes 0.9

A.8 RELATED WORK IN DATA SCIENCE

Recently, some evaluation benchmarks for large language models in data science have been pro-
posed. Text2Analysis (He et al., 2023) constructs the evaluation benchmark to evaluate the model’s
ability to handle data analysis functions and fuzzy questions on tabular data. Their prompts are
obtained through manual annotation and large model generation. Furthermore, DAEval (Hu et al.,
2024) is developed as another evaluation benchmark and it contains 257 data analysis questions on
CSV data and questions, which are generated by LLMs. However, the prompts in these two works
often only involve one task, and these prompts involve relatively simple data analysis operations.
In practical data science analysis tasks, user questions often involve multiple tasks and involve per-
forming complex data analysis operations. Therefore, we aim to provide a data science evaluation
benchmark that is more in line with practical scenarios, especially for problems involving multiple
subtasks and complex data analysis operations.

A.9 QUALIFIED PROMPTS

• Original Prompt 1:
There is a dataset with missing values in a CSV file, which records the region, height,
weight, age, and salary of 36 individuals. Please address the following issues:
(a) Calculate the proportion of missing values in each column and select the rows with at
least two non-missing values in the last three columns.
(b) Please fill in the weight column reasonably by combining the data from the height and
region columns.

• Qualified Prompt 1:

Qualified Prompt 1:

Given a dataset with missing values in a file named ’data.csv’which records
the region, height, weight, age, and salary of 36 individuals, please address the fol-
lowing issues:
(a) Calculate the proportion of missing values in each column and select the rows
with at least two non-missing values in the last three columns. Save your output in
a CSV file named ’missing values proportion.csv’.
(b) Fill in the weight column reasonably by combining the data from the
height and region columns. Save this updated dataset in a CSV file named
’updated data.csv’.

• Original Prompt 2: You are required to analyze and visualize the ”Global Terrorism
Database” from Kaggle. Please load the dataset and perform data cleaning by handling
missing values, removing duplicates, and correcting any anomalies. Conduct an ex-
ploratory data analysis (EDA) to understand the distribution and relationships within the
dataset. Calculate basic statistical indicators such as mean, median, standard deviation,
and provide summary statistics for key features like attack type, target type, and region.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Generate visualizations to uncover patterns and insights. Create histograms and box plots
to display the distribution of numerical features, and bar plots to show the frequency of
categorical variables. Use scatter plots and heatmaps to visualize relationships and cor-
relations between features. Identify patterns in the data related to terrorist activities. For
instance, determine trends over time, geographical hotspots, and common attack methods.
Use clustering techniques (K-means clustering) to identify patterns and group similar in-
cidents together.

• Qualified Prompt 2:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Qualified Prompt 2:

You are required to analyze and visualize the Global Terrorism Database from
Kaggle. Please follow the steps below:

1. Load the dataset
Input: gtd.csv
Output: loaded data.csv (This should contain the original data
loaded without any modifications.)

2. Data Cleaning
– Handle missing values
– Remove duplicates
– Correct anomalies

Input: loaded data.csv
Output: cleaned data.csv (This should reflect the cleaned dataset,
ready for analysis.)

3. Exploratory Data Analysis (EDA)
– Calculate basic statistical indicators such as mean, median, and stan-

dard deviation
– Provide summary statistics for key features (attack type, target type,

region)
Input: cleaned data.csv
Output: eda summary statistics.csv (This should include all
calculated statistics for key features.)

4. Generate Visualizations
– Create histograms and box plots for numerical features
– Generate bar plots for categorical variables
– Use scatter plots and heatmaps to visualize relationships and correla-

tions
Input: cleaned data.csv
Output: visualizations.pdf (This should include all visualizations
generated in a single PDF file.)

5. Identify Patterns in Data Related to Terrorist Activities
– Determine trends over time
– Identify geographical hotspots
– Analyze common attack methods

Input: cleaned data.csv
Output: patterns analysis.csv (This should summarize the iden-
tified patterns, trends, and hotspots.)

6. Clustering Techniques
– Use K-means clustering to identify patterns and group similar inci-

dents
Input: cleaned data.csv
Output: clustering results.csv (This should include the results
of the clustering analysis, showing which group each incident belongs to.)

Ensure that each output file reflects the quality of the completion of the respective
subtask for further evaluation.

A.10 MODIFIED PROMPTS

• Original Prompt 1:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Searches a directory for CSV files matching a given regular expression pattern, reads sales
data from these files, and plots the sales data with month on the x-axis and sales on the
y-axis.
Note that: Each CSV file contains two columns: Month and Sales.
The function should output with:
A list of matplotlib.axes. axes.Axes objects, each representing a plot of sales
data from a matched CSV file.
You should write self-contained code starting with:

import os
import pandas as pd
import re
import matplotlib.pyplot as plt
def task_func(directory: str, pattern: str) -> list:

• Modified Prompt 1:

Modified Prompt 1:

Search a directory for CSV files matching a given regular expression pattern, read
sales data from these files, and plot the sales data with month on the x-axis and
sales on the y-axis.

Input Requirements:
– Input Directory: data.
– Input Pattern: "csv \d+\.csv".

Output Requirements:
1. A list of matplotlib.axes. axes.Axes objects representing the

plot of sales data from each matched CSV file.
2. Save each plot as a separate image file:

– File format: PNG
– Output filenames: "sales plot <filename>.png" where
<filename> is the name of the CSV file without the extension.

Input File Specification:
– Each CSV file should contain two columns: ’Month’ and ’Sales’.

The input files will be located in the specified directory.
You should write self-contained code starting with:
import os
import pandas as pd
import re
import matplotlib.pyplot as plt

def task_func(directory: str, pattern: str) -> list:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• Original Prompt 2:

Plot a scatter graph of tuples and highlight the tuple with the maximum value at index 1.
The function should output with:
matplotlib.axes.Axes: The Axes object of the plot for further manipulation and
testing, with the title ’Max Tuple Highlighted’, x-axis labeled ’x’, y-axis labeled ’y’, and a
legend.
You should write self-contained code starting with:

import numpy as np
from operator import itemgetter
import matplotlib.pyplot as plt
def task_func(data):

• Modified Prompt 2:

Modified Prompt 2:

Plot a scatter graph of tuples and highlight the tuple with the maximum value at
index 1 using the input data from "data.csv". The function should output the
following:

A scatter plot saved as "scatter plot.png" with the title ’Max Tuple
Highlighted’, x-axis labeled ’x’, y-axis labeled ’y’, and a legend. The
highlighted point should signify the tuple with the maximum value at index 1.

Please write self-contained code starting with:
import numpy as np
from operator import itemgetter
import matplotlib.pyplot as plt
def task_func(data):

A.11 PROMPT EXAMPLES OF DIFFERENT DIFFICULTY LEVELS

Easy-level Prompt 1:

{
"prompt":
"Read the dataset (input file: "Fish.csv"). Encode the dataset to divide it into training and
test sets. From the dataset’s four categories of Bream, Roach, Parkki, and Perch, randomly
select 2 samples from each category for the test set. The remaining samples will be used
as the training set. Output the number of samples in the training and test sets in a CSV file
named "sample counts.csv".

Next, implement the KNN algorithm with K values of 1, 5, 15, and 100 to classify
all samples in the test set. Output the classification results of the test samples to a CSV file
named "classification results.csv".",

"data source type": "2=open source data"
}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.12 PROMPT EXAMPLES OF DIFFERENT DIFFICULTY LEVELS

Easy-level Prompt 2:

{
"prompt":
"Using the dataset of house prices and economic indicators provided below, please complete
the following subtasks. Each subtask should generate an output file for evaluation, with
specific input files where applicable.

Dataset: "data.csv"

Subtasks:

1. Gaussian Naive Bayes Training: Train a Gaussian Naive Bayes model on the
cleaned dataset and evaluate its accuracy.
Input: "data.csv"
Output: "gaussian model accuracy.csv" (contains accuracy metrics)

2. Multinomial Naive Bayes Training: Train a Multinomial Naive Bayes model on
the cleaned dataset and evaluate its accuracy.
Input: "data.csv"
Output: ‘multinomial model accuracy.csv‘ (contains accuracy metrics)

3. Comparison of Models: Generate a comparative analysis of the accuracy of both
models in a visual format.
Input: "gaussian model accuracy.csv", "multinomial model accuracy.csv"
Output: "model comparison.png"

Please ensure that the outputs contain necessary details for further evaluation.",

"data source type": "3=human written data"
}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.13 PROMPT EXAMPLES OF DIFFERENT DIFFICULTY LEVELS

Medium-level Prompt:

{
"prompt":
"Given a DataFrame ’df’ with sales data containing columns: TransactionID, ProductID,
Quantity, SaleDate, StoreID, Revenue:

1. Handle missing Revenue values: Impute any missing Revenue values with the
median of the Revenue column.
Input file: ’data.csv’
Output: ’step1 imputed revenue.csv’ (contains the DataFrame after handling
missing values)

2. Detect and replace outliers: Detect and replace outliers in Quantity and Revenue.
Outliers are defined as values below the 1st percentile or above the 99th percentile. Replace
them with the corresponding 1st or 99th percentile value instead of removing them.
Input file: ’step1 imputed revenue.csv’
Output: ’step2 replaced outliers.csv’ (contains the DataFrame after outlier
replacement)

3. Normalize Quantity and Revenue: Normalize Quantity and Revenue using Z-score
normalization.
Input file: ’step2 replaced outliers.csv’
Output: ’step3 normalized data.csv’ (contains the DataFrame after normaliza-
tion)

4. Ensure SaleDate format: Ensure SaleDate is in datetime format.
Input file: ’step3 normalized data.csv’
Output: ’step4 formatted dates.csv’ (contains the DataFrame after ensuring
datetime format)

5. Encode ProductID and StoreID: Encode the ProductID and StoreID columns us-
ing separate label encoders to avoid any potential overlap in numerical values between
categories from different columns.
Input file: ’step4 formatted dates.csv’
Output: ’final cleaned data.csv’ (contains the final cleaned DataFrame)

Perform the specified data cleaning and preprocessing tasks and output the cleaned
DataFrame as the final result.",

"data source type": "3=human written data"
}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.14 PROMPT EXAMPLES OF DIFFERENT DIFFICULTY LEVELS

Hard-level Prompt:

{ "prompt":
"Write a Graph Recurrent Neural Network (GRNN) model based on attention mechanisms
using Python for processing and analyzing time series data. Ensure to meet the following
requirements:

1. "Graph network design": Create a graph network where each graph represents an
aerial formation, and the number of nodes corresponds to the number of vehicles in the
formation.
- "Output": Graph structure representation file.
- "Output filename": "graph structure.json"

2. "Data format": The time series data of aerial target formations is stored in Excel
files located in the ".data/" directory, where each Excel file contains multiple sheets, with
each sheet representing the time series data of a vehicle.
- "Input": Excel files from "..data/" directory.
- "Input filename": from "data 1.xlsx" to "data 5.xlsx"

3. "Data reading": Read all Excel files from the "..data/" directory and extract the
sheets for processing.
- "Output": Combined time series data in a structured format.
- "Output filename": "combined data.csv"

4. "Data segmentation": Segment the time series data of each vehicle using a slid-
ing window with length "l" and step size "s".
- "Output": Segmented time series data.
- "Output filename": "segmented data.csv"

5. "Training and testing set division": Divide the segmented data into training and
testing sets with a 7:3 ratio.
- "Output": Training and testing datasets.
- "Output filenames": "train data.csv", "test data.csv"

6. "Labels": The last column of each Excel file contains label data, which should
be preserved during the reading and segmentation process.

7. "Model training": Train the GRNN model using the training set to identify the
action intentions of aerial target formations.
- "Output": Trained model file.
- "Output filename": "trained model.h5"

8. "Training parameters": Set the number of training epochs to 60, and record the
loss value, accuracy, recall, and F1-Score for each epoch.
- "Output": Training metrics log file.
- "Output filename": "training metrics.csv"

9. "Model evaluation": Evaluate the trained model with the test set and generate a
classification report and confusion matrix.
- "Output": Classification report and confusion matrix visualization.
- "Output filenames": "classification report.txt", "confusion matrix.png"

Please provide a complete code implementation and ensure that the code structure is
clear and well-commented for understanding and evaluation.",
"data source type": "3=human written data"
}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.15 EXAMPLES OF WORSE PERFORMANCE OF LARGER MODEL

• Generated by CodeLlama-34B-Instruct in one task:

[PYTHON]
Define the context and task
context = {

"data": "https://s3.amazonaws.com/benbensaid-public-data/data.csv",
"target": "y"

}

task = {
"task_type": "data exploration",
"instruction": "Explore the data and identify any patterns or trends."

}

Generate the plan
plan = generate_plan(context, task)

Print the plan
print(plan)
[/PYTHON]

• Generated by StarCoder2-15B in one task:

Sure, here’s a plan for your context:
1. Find the videos with titles containing "how" or "what"
2. Calculate the like ratios
3. Visualize the like ratios

• The expected format should at least begin and end with three backticks and must
comply with JSON format. Here’s an example:

"
[

{
"task_id": "1",
"dependent_task_ids": [],
"instruction": "Preprocess and clean the data.",
"task_type": "preprocessing and cleaning"

},
{

"task_id": "2",
"dependent_task_ids": ["1"],
"instruction": "Explore the data to find patterns and insights.",
"task_type": "data exploration"

},
{

"task_id": "3",
"dependent_task_ids": ["2"],
"instruction": "Visualize the data to communicate insights.",
"task_type": "data visualization"

},
{

"task_id": "4",
"dependent_task_ids": ["3"],
"instruction": "Generate an interpretability report.",
"task_type": "interpretability report"

}
]
"

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B ERROR ANALYSIS AND CASE STUDY

We have analyzed the common errors during problem solving, summarize them here, and then study
several cases, including a successful case and a failure case. The common errors includes:

1. Coding errors when solving data science problems using codes. And based on our obser-
vation, the main kind of these is execution error. It may be due to different reasons. For
example, hallucination on the column name of a csv file.

2. Json format errors. These errors come from the agent framework side, where they use json
format to wrap up actions, e.g. WriteAnalysis.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

B.1 A SUCCESSFUL CASE

A successful case from claude-3-5-sonnet-20240620

Prompt: You are given a list of tickers and their daily closing prices for a given period
stored in an input file named ”data.csv”. Implement the most corr function that, when
given the daily closing prices, returns the pair of tickers that are the most highly (linearly)
correlated by daily percentage change. The function should follow these specifications:

1. **Input File**: ”../data.csv” - A CSV file containing a dataframe with columns
representing each ticker’s daily closing prices.

2. **Output Requirements**: The function should generate the following output:
- **Output Format**: A CSV file.
- **Output Filename**: ”most corr output.csv” - This file should contain two columns
labeled ”Ticker 1” and ”Ticker 2”, representing the pair of tickers that are most correlated
by daily percentage change.

Here’s the starter code for your implementation:

‘‘‘python
import pandas as pd
import numpy as np

def most_corr(prices):
"""
:param prices: (pandas.DataFrame) A dataframe containing
each ticker’s daily closing prices.
:returns: (container of strings) A container, containing
the two tickers that are the most highly (linearly)
correlated by daily percentage change.
"""
return None

For example, the code below should print: (’FB’, ’MSFT’)
print(most_corr(pd.DataFrame.from_dict({

’GOOG’ : [
742.66, 738.40, 738.22, 741.16,
739.98, 747.28, 746.22, 741.80,
745.33, 741.29, 742.83, 750.50

],
’FB’ : [

108.40, 107.92, 109.64, 112.22,
109.57, 113.82, 114.03, 112.24,
114.68, 112.92, 113.28, 115.40

],
’MSFT’ : [

55.40, 54.63, 54.98, 55.88,
54.12, 59.16, 58.14, 55.97,
61.20, 57.14, 56.62, 59.25

],
’AAPL’ : [

106.00, 104.66, 104.87, 105.69,
104.22, 110.16, 109.84, 108.86,
110.14, 107.66, 108.08, 109.90

]
})))
‘‘‘

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

A successful case from claude-3-5-sonnet-20240620

Output: The following example successfully fulfill the requirement of the given
prompt by completing the function provided in the prompt and write the function to
most corr output.csv.
[

{
’task_id’: ’1’,
’dependent_task_ids’: [],
’instruction’: "Load and preprocess the input data from
’data.csv’",
’task_type’: ’preprocessing and cleaning’,
’code’: ’’’
import pandas as pd
import numpy as np

Load the data from ’data.csv’
prices = pd.read_csv(’../data.csv’)

Set the first column (assuming it’s a date column) as
the index
prices.set_index(prices.columns[0], inplace=True)

Calculate daily percentage changes
pct_changes = prices.pct_change()

Drop the first row (NaN values due to pct_change
calculation)
pct_changes = pct_changes.dropna()

print("Data loaded and preprocessed. Shape of \
percentage changes:", pct_changes.shape)
print("Columns (tickers):", \
pct_changes.columns.tolist())
print("First few rows of percentage changes:")
print(pct_changes.head())
’’’,
’result’: "Data loaded and preprocessed. Shape of \
percentage changes: (29, 4)
Columns (tickers): [’Ticker2’, ’Ticker3’, ’Ticker4’,\
’Ticker5’]
First few rows of percentage changes:
Ticker2 Ticker3 Ticker4 Ticker5
Ticker1
65.60 -0.615289 0.108929 0.002184 0.841616
52.06 1.633757 -0.024740 -0.353101 -0.435643
68.34 -0.452888 -0.230862 0.308297 0.160458
111.19 -0.204800 -0.227069 -0.070287 0.208418
128.52 0.094136 0.280394 0.260849 -0.428407
",
’is_success’: True,
’is_finished’: True

},

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

A successful case from claude-3-5-sonnet-20240620

{
’task_id’: ’2’,
’dependent_task_ids’: [’1’],
’instruction’: ’Implement the most_corr function to
find the most correlated pair of tickers’,
’task_type’: ’data mining’,
’code’: ’’’
def most_corr(prices):

"""
:param prices: (pandas.DataFrame) A dataframe
containing each ticker’s

daily closing prices.
:returns: (container of strings) A container,
containing the two tickers that

are the most highly (linearly) correlated
by daily percentage change.

"""
Calculate percentage changes
pct_changes = prices.pct_change().dropna()

Calculate correlation matrix
corr_matrix = pct_changes.corr()

Set diagonal and lower triangle to NaN to avoid
self-correlation and duplicates
corr_matrix = corr_matrix.where(np.triu(\
np.ones(corr_matrix.shape), k=1).astype(bool))

Find the location of the maximum correlation
max_corr = corr_matrix.max().max()
max_corr_idx = corr_matrix.stack().idxmax()

Get the tickers with the highest correlation
ticker1, ticker2 = max_corr_idx

Create output DataFrame
output_df = pd.DataFrame({’Ticker 1’: [ticker1], \
’Ticker 2’: [ticker2]})

Save output to CSV
output_df.to_csv(’./most_corr_output.csv’, \
index=False)

return (ticker1, ticker2)

Test the function with the data we’ve already loaded
result = most_corr(prices)
print(f"The most correlated pair of tickers: {result}")

Read and display the output CSV file
output = pd.read_csv(’./most_corr_output.csv’)
print("\nContents of most_corr_output.csv:")
print(output)’’’,
’result’: "The most correlated pair of tickers: ...
[omitted]
’is_success’: True,
’is_finished’: True

},

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

A successful case from claude-3-5-sonnet-20240620

{
’task_id’: ’3’,
’dependent_task_ids’: [’2’],
’instruction’: "Generate and save the output CSV file
’most_corr_output.csv’",
’task_type’: ’other’,
’code’: ’’’
import pandas as pd

Read the output CSV file
output_df = pd.read_csv(’./most_corr_output.csv’)

Display the contents of the file
print("Contents of most_corr_output.csv:")
print(output_df)

Verify that the file contains the expected columns
expected_columns = [’Ticker 1’, ’Ticker 2’]
assert all(col in output_df.columns for col in \
expected_columns),"Output file is missing expected \
columns"

Verify that the file contains exactly one row
assert len(output_df) == 1,"Output file should \
contain exactly one row"

print("Output file verification complete. The file \
meets the expected format.")’’’,
’result’: ’Contents of most_corr_output.csv:
Ticker 1 Ticker 2
0 Ticker4 Ticker5
Output file verification complete. The file meets the
expected format.
’,
’is_success’: True,
’is_finished’: True

}
]

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

B.2 FAILURE CASE

A failure case of execution error

Prompt:
I currently have a structured dataset named date.csv with 6 columns and 5960 rows of data.
The first column is named X, the second column is named Y, both of which are structural
parameters set for simulation. The following four columns, ff, ft, tt, and tf, represent the
simulation results. Now, I need to train a model that can accurately predict the four simula-
tion results for other structural parameters. The model and related content will be saved in
the results folder. The model should be saved as ”model.pkl” and the final accuracy should
be saved in ”acc.txt”.
One of the Generated Functions:
Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.optimize import minimize

Read in the input data from the ’data.csv’ file
data = pd.read_csv(’../data.csv’)

Preprocess the data by removing any unnecessary columns and
handling missing values
data.dropna(inplace=True)
X = data.drop(’target’, axis=1)
y = data[’target’]
... (omitted)

Execution Error:
-> 6992 raise KeyError(f"{labels[mask].tolist()} not
found in axis")

6993 indexer = indexer[˜mask]
6994 return self.delete(indexer)

KeyError: "[’target’] not found in axis"

34

	Introduction
	Background on using LLMs for Data Science
	DataSciBench
	Prompt Definition for Data Science
	Dataset Collection
	Response Integration and Validation

	Experiments
	Settings
	Evaluation Metrics

	Results and Analysis
	Overall Performance
	Ablation study on different difficulty levels
	Contamination with Other Benchmarks
	Insights

	Related Works
	LLMs for Data Science
	LLM Agent Evaluation Benchmarks for Data Science

	Conclusion
	Appendix
	Limitations
	Comparison with existing benchmarks
	Motivetion and example of Task-Function-Code (TFC)
	Caveats when Using LLMs for Data Science
	VLM-as-a-judge Prompt and Examples
	Results
	Programmatic Rules
	Related Work in Data Science
	Qualified Prompts
	Modified Prompts
	Prompt examples of different difficulty levels
	Prompt examples of different difficulty levels
	Prompt examples of different difficulty levels
	Prompt examples of different difficulty levels
	Examples of Worse Performance of Larger Model

	Error Analysis and Case Study
	A Successful case
	Failure Case

