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ABSTRACT

Coreference resolution, an essential task in natural language pro-
cessing, is particularly challenging in multi-modal scenarios where
data comes in various forms and modalities. Despite advancements,
limitations due to scarce labeled data and underleveraged unla-
beled data persist. We address these issues with a self-adaptive
fine-grained multi-modal data augmentation framework for semi-
supervised MCR, focusing on enriching training data from labeled
datasets and tapping into the untapped potential of unlabeled data.
Regarding the former issue, we first leverage text coreference reso-
lution datasets and diffusion models, to perform fine-grained text-
to-image generation with aligned text entities and image bounding
boxes. We then introduce a self-adaptive selection strategy, meticu-
lously curating the augmented data to enhance the diversity and
volume of the training set without compromising its quality. For
the latter issue, we design a self-adaptive threshold strategy that
dynamically adjusts the confidence threshold based on the model’s
learning status and performance, enabling effective utilization of
valuable information from unlabeled data. Additionally, we incorpo-
rate a distance smoothing term, which smooths distances between
positive and negative samples, enhancing discriminative power of
the model’s feature representations and addressing noise and uncer-
tainty in the unlabeled data. Our experiments on the widely-used
CIN dataset show that our framework significantly outperforms
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state-of-the-art baselines by at least 9.57% on MUC F1 score and
4.92% on CoNLL F1 score. Remarkably, against weakly-supervised
baselines, our framework achieves a staggering 22.24% enhance-
ment in MUC F1 score. These results, underpinned by in-depth anal-
yses, underscore the effectiveness and potential of our approach
for advancing MCR tasks.
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1 INTRODUCTION

Coreference resolution (CR), which identifies all mentions refer-
ring to the same entity, plays a crucial role in many downstream
applications, such as relation extraction [11, 49], question answer-
ing [5, 46, 55], and sentiment analysis [15, 24, 53, 56, 57]. However,
in real-world scenarios, particularly in social media, data often
comes in various forms and modalities [16, 28, 29, 43, 44], includ-
ing text, images, rather than pure text. Therefore, some recent
advancements have transferred to multimodal coreference reso-
lution [17, 18], where coreference occurs not only between the
entities in text but also the objects in image, as shown in Figure 1
(a). Compared to the text-based coreference resolution, Multimodal
Coreference Resolution (MCR) presents even greater challenges
due to the substantial semantic gap between different modalities
and the scarcity of annotated data.

Existing works have made commendable efforts in MCR. Goel
et al. [18] proposed a multimodal pipeline and utilized weak super-
vision to identify coreference chains. In contrast, another study by
Goel et al. [17] argued that weak supervision alone is unable to
resolve the ambiguity of multiple instances of the same object class.
To address this issue, they introduced semi-supervised learning and
employed cross-modal attention to integrate image region features
with textual features. Despite these advances, current methods
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in front of the image there is a person
wearing a cap and she is sitting on the
blanket. there is a cloth on the wooden
object. there is another person holding a
wooden stick in her hand. there are a few
objects in a cover. there are some objects.
there are doors. there are windows on the
wall. in the background of the image
there is holding some object in

hand. there is a net on the tables.
there is a helmet on the bike.

Caption:  Thomas is three.
Thomas Enrique is his full name.
And then I have

just going to turn ten months. oh
really And what's

name? That's

(b) an example of fine-grained multimodal data generation

Figure 1: An example from the CIN dataset (a) [18] and the
process of fine-grained multimodal data generation (b).

in MCR still tied to model optimization and extracting informa-
tion features. Data, as a key dimension that can significantly affect
model performance, has been far less explored. Therefore, we sum-
marize the challenges facing current research from a data-centric
perspective in two aspects:

e Scarcity of labeled data. The manual annotation of large-scale
fine-grained multimodal datasets is costly, resulting in a scarcity
of extensively labeled data required for research on multimodal
coreference resolution. This scarcity poses significant challenges in
training MCR models. Currently, automatic data expansion [8, 23]
is widely used as a practical technique to alleviate the data scarcity
problem. Xiao et al. [47] applied the stable diffusion [35] to gener-
ate high-quality images with a given text input to solve the image
captioning task, but the method is limited to coarse-grained expan-
sion of text-image pairs, ignoring fine-grained objects, entities, etc.
For the coreference resolution task, existing methods [10] mainly
focus on textual coreference resolution data augmentation, while
the MCR data augmentation remains largely unexplored. Therefore,
how to adaptively expand high-quality fine-grained multimodal
labeled data is the essence of successful MCR.

e Under-exploitation of unlabeled data. On the other hand,
despite addressing the fundamental issue of scarcity of labeled data
through adaptive data augmentation, the untapped potential of un-
labeled data remains underexplored. In semi-supervised learning,
existing methods [17] set a fixed threshold to ensure the quality of
pseudo-labels for unlabeled data. Unfortunately, a fixed high thresh-
old (e.g., 0.9) poses several limitations: (1) Loss of useful information:
By using a fixed high threshold, many unlabeled data that provide
valuable insights are filtered out, potentially discarding useful sam-
ples. (2) Limitation on the quantity of training data: With a fixed
high threshold, only a limited number of unlabeled data are selected,
restricting the scale of training data. (3) Ignoring the model’s learn-
ing status: A fixed threshold ignore the dynamic nature of training
process as it cannot dynamically adjust the threshold based on the
model’s learning status. Therefore, it is crucial for the MCR task to
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effectively harness valuable information from unlabeled data based
on the learning status of the model in order to train more robust
and accurate MCR models.

Taking into consideration the two aforementioned aspects, we
propose a novel framework: Self-adaptive Labeled and Unlabeled
multimodal Data Augumentation (SLUDA), to improve semi-super
vised MCR. Firstly, as depicted in Figure 1 (b), we utilize a text CR
dataset [32] and a diffusion model [27], as well as randomly gener-
ated bounding boxes, to generate text-image pairs and object-entity
pairs for fine-grained data expansion. Subsequently, we design a
self-adaptive selection strategy to filter and select the generated
multimodal data and combine it with existing labeled data for model
training. This enables us to increase the quantity and diversity of
data while ensuring quality, achieving the first goal of data augmen-
tation for labeled data. Next, we adopt a self-adaptive threshold
strategy to fulfill the second goal of fully tapping into the unla-
beled data. By dynamically adjusting the confidence threshold based
on the model’s learning status and performance, we estimate the
threshold based on the exponential moving average (EMA) of con-
fidence scores from unlabeled data. This allows for the utilization
of a lower threshold during the early stage of training, and helps
the model to accelerate convergence. As training progresses, the
threshold gradually increases to filter out unreliable pseudo-labels
and enhance the accuracy of the model. Furthermore, considering
that pseudo-labeled data are unavoidably noisy than manually-
labeled data, we introduce a distance smoothing term. It smooths
the distances between positive and negative samples, aiding the
model in learning more discriminative feature representations and
improving the utilization of unlabeled data.

To verify the effectiveness of our model, we conduct experi-
ments on the benchmark CIN dataset [18]. The results demonstrate
that our framework significantly helps the state-of-the-art model
to further improve its performance by at least 9.57% on MUC F1
score and 4.92% on CoNLL F1 score. Most strikingly, compared to
the weakly-supervised baselines, ours outperforms their MUC F1
score by 22.24%. Further ablation experiments demonstrate that
each component of our framework is essential. Additionally, we
conduct extensive experiments to demonstrate the effectiveness
of adaptive selection and utilization of labeled and unlabeled data
in our framework. Moreover, we focus on smoothing distance dif-
ferences between positive and negative samples, promoting more
accurate and reliable feature representation learning. Our main
contributions are summarized as follows:

e We propose self-adaptive expansion and selection techniques
to enrich the training data with generated high-quality MCR
data, effectively addressing the issue of labeled data scarcity.

e We devise a self-adaptive threshold strategy to leverage unla-
beled data, achieving a balance between quality and quantity.
Moreover, we introduce a distance smoothing policy to en-
hance the discriminative ability of feature representations.

o Our extensive experimental results on the CIN dataset demon-
strate that our SLUDA framework achieves the state-of-the-
art performance and outperforms the best baseline with large
margins.
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2 RELATED WORKS

2.1 Multimodal Coreference Resolution

Within the multimodal learning community [12-14, 26, 42, 45, 54],
there has been growing interest in multimodal coreference reso-
lution. Several studies [17-19] have been conducted on this topic.
Goel et al. [18] introduced the CIN dataset, which addresses the
problem of coreference resolution in long narratives within visual
scenes. They proposed a multimodal pipeline and utilized weak
supervision to learn to identify coreference chains. Goel et al. [17]
proposed a semi-supervised training approach based on a fixed
threshold to effectively learn from unlabeled sets. However, despite
achieving partial success, these methods suffered the issue of scarce
labeled data and failed to fully leverage the potential of unlabeled
data.

2.2 Semi-supervised Learning

Semi-supervised learning is an effective paradigm that utilizes a
large amount of unlabeled data along with limited labeled data. Var-
ious methods [9] have been proposed in the field of semi-supervised
learning, such as pseudo-labeling and consistency regularization.
In pseudo-labeling, the models [34, 48] use unlabeled samples with
high confidence as training targets, thereby reducing the density
of data points at the decision boundary. In consistency regular-
ization, the models [2, 4] are self-supervised on unlabeled data,
providing additional training signals. To mitigate the confirmation
bias in pseudo-labeling, Goel et al. [17] proposed a threshold-based
technique to ensure the quality of pseudo-labels, where only unla-
beled data with confidence above the threshold are retained. While
promising results have been achieved, a fixed high threshold can
lead to the disregard of a large number of ambiguously predicted
unlabeled examples, especially in the early and mid-training stages.

2.3 Multimodal Data Augmentation

Multimodal data augmentation is the process of creating additional
training data with high quality and diversity. It has been widely
applied in various machine learning tasks [1, 20, 50, 58]. Recently,
Wang et al. [40] proposed a framework for paired cross-modal
data augmentation, which generates an infinite amount of paired
data to train cross-modal retrieval models. Xiao et al. [47] utilized
stable diffusion models for text-to-image generation, expanding the
training set with high-quality image-caption pairs. In this paper, we
employ a diffusion model [27] to augment fine-grained labeled data,
addressing the issue of scarce labeled data, enhancing the diversity
and richness of the MCR dataset, and improving the generalization
and performance of MCR models.

3 METHODOLOGY

In this paper, we propose a Self-adaptive Labeled and Unlabeled
multimodal Data Augumentation (SLUDA) framework that fully
utilizes data from two perspectives to address the MCR task. The
architecture is shown in Figure 2. First, we generate fine-grained
image-caption pairs and adaptively selects high-quality generated
MCR data for labeled data augmentation. Then, we design a self-
adaptive threshold strategy, considering factors such as data quality
and model confidence, and introduce a distance smoothing term
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to enhance the utilization of unlabeled data. Finally, with prepro-
cessed multimodal labeled and unlabeled data, we employ two
modality-specific Variational Autoencoders (VAEs) to learn latent
representations for different modalities and perform the MCR task.

3.1 Task Definition

Let (I, C) represent an image-caption pair, where C describes the
image I as shown in Figure 1 (a). We denote the set of p mentions as
M = {m1, my, .., mp}, and the image I contains q regions denoted
asI={ry,ro, ..., rq}. The objective of multimodal coreference reso-
lution is to identify text mentions that refer to the same entity and
associate each mention with a specific region in the image.

3.2 Labeled Data Augmentation

In the task of multimodal coreference resolution, a large number of
fine-grained annotated image-caption pairs are typically required.
Existing MCR datasets, such as CIN [18], demand human annotators
to label entity mentions referring to the regions in the referenced im-
age, construct coreference entity chains, and draw bounding boxes
in the image. This annotation process is not only labor-intensive
but also time-consuming. Furthermore, the collected images and
annotated mentions may suffer from incompleteness and lack diver-
sity, which limits the generalization capabilities of models trained
on such datasets. To address the challenge of scarce labeled data, we
propose a novel approach that leverages existing text-based coref-
erence resolution datasets in conjunction with a diffusion model
to generate images, and then adaptively select high-quality multi-
modal data. By doing so, we mitigate the limitations posed by data
scarcity in the MCR task.

Labeled Data Generation. The diffusion models [36, 47, 51]
have been proposed and applied for data augmentation, which is
a generative model that generates diverse samples by iteratively
diffusing noise signals. For the task of grounded text-to-image
generation, Li et al. [27] introduced GLIGEN, which builds upon
existing pre-trained text-to-image diffusion models and extends
their capabilities to incorporate grounding inputs as conditions.
We employ GLIGEN and leverage the widely-used text corefer-
ence resolution dataset English OntoNotes 5.0 [32] as the founda-
tional dataset for data augmentation. Given the text as the caption

C = {w1,wz,...,wn}, a set of mentions M = {my,my,...,mp},
and their randomly generated corresponding bounding boxes B =
{b1, by, ..., bq} as input, we aim to generate the image I:

I = GLIGEN(C, M, B) (1)

where I = {ry,r2, ..., rq} represents the image I with g regions. We
discard images that contain NSFW (Not Safe for Work) content.
Then, we pair the generated images with the corresponding caption
to form an augmented labeled dataset.

Self-adaptive Selection. Due to the uncertain quality of the
generated images, we employ a self-adaptive selection strategy to
filter the data based on the quality assessment of the image-caption
pairs, ensuring both the quality and quantity of the training set.
Specifically, since CLIPScore [21] is used to assess whether the
generated image can match and correlate with the given textual
description, we evaluate the generated image-caption pairs using
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Figure 2: The overall architecture of our model. Initially, we employ a diffusion model to expand the fine-grained MCR labeled
data and design a self-adaptive selection strategy to filter and obtain the generated labeled data D;~. Subsequently, D;~ is merged
with the original labeled data D;,, and they are combined with the unlabeled data D, as input to the MCR model. Then, a
self-adaptive threshold strategy is adopted to fully tap into the valuable information of unlabeled data.

CLIPScore and sort them according to their evaluation scores. Dur-
ing the initial stages of training, we incorporate all the generated
data as labeled data into the training set to ensure sample diver-
sity. As training progresses, we filter out a portion of low-scoring
generated data based on the model’s learning status to maintain
the quality of the labeled data. The learning status of the model
is estimated using the predicted scores, which are then smoothed
using Exponential Moving Average (EMA) [31]. EMA calculates
the current score as a weighted average of the current and previ-
ous EMA values, providing a more stable reflection of the model’s
learning status. The filtering ratio 7, is defined as follows:

EMA =oa1 %0, + (1 — 1) * Tr,_,, Tr, = exp(=f * EMA), (2)

where a1 is the smoothing factor (0 ~ 1), o,, represents the pre-
diction accuracy at time t, f§ serves as a control parameter for the
filtering intensity. When the EMA value is higher, indicating better
overall predicted scores and superior performance of the model in
handling the task, we filter out a larger proportion of generated
data to ensure the quality of labeled data. Conversely, when the
model’s learning status is poorer, we filter out a smaller amount
of generated data, allowing for the retention of a larger number
of samples for training. This approach enables a balance between
the quality and quantity of the training set throughout the train-
ing process, effectively leveraging the labeled data to enhance the
model’s performance. This generated and adaptively filtered labeled
dataset is denoted as Dy, which is merged with the labeled dataset
Dy from the multimodal dataset CIN. Therefore, the final labeled
dataset is D; = Dy + Dy

3.3 Unabeled Data Augmentation

From the perspective of unlabeled data, existing method [17] fails
to fully utilize the potential of unlabeled data, resulting in the waste
of unlabeled data and a decrease in the robustness of MCR task.
Moreover, unlabeled data often contains noise, and reducing the

impact of noise on the model while promoting more accurate and
reliable feature representation learning is crucial for MCR. Thus, we
propose self-adaptive threshold and distance smoothing techniques
to effectively leverage unlabeled data and mitigate noise within it.
Self-adaptive Threshold. Considering that the fixed high thresh-
old method results in the wastage of numerous samples, the samples
with ambiguous predictions contribute negligibly during the train-
ing phase. Hence, to harness unlabeled data effectively, we propose
a self-adaptive threshold strategy that reflects the learning status
of the model. The strategy estimates the effectiveness of learning
based on the model’s prediction confidence and subsequently cal-
culates the threshold 7; using the exponential moving average of
the confidence. The threshold 7; is defined and adjusted as follows:

r=az*0r+(1—a2) *74-1, (3

where t represents the time step of training, o; represents the pre-
diction accuracy at time t, and a3 is the smoothing factor (0 ~ 1).
By employing this strategy, we can use a lower threshold in the
early stages to leverage unlabeled data and accelerate the model
convergence. As the training progresses, we gradually increase
the threshold to filter out unreliable pseudo-labels and improve
the model’s accuracy. For unlabeled data, we focus on using cross-
entropy loss with a confidence threshold for entropy minimization-
based pseudo-labeling:

Li== Y S UpGlmr) > wlog(pyl(mr). (@)

meN rel

where p(-) is the output probability from the model and I is the
indicator function for confidence-based thresholding with 7 being
the threshold.

Distance Smoothing. To address the issue of noise in unla-
beled data, we introduce a distance smoothing term to smooth the
distances between positive and negative samples. This approach
aims to facilitate the model’s ability to learn more discriminative
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Figure 3: The details of our MCR model.

feature representations and maximize the utilization of unlabeled
data. First, we compute the cosine similarity scores between each
pair of samples to determine whether they are positive or negative
samples. For each mention m, we compare its similarity score with
another mention m’ and use a predefined threshold to determine
their labels. If the similarity score exceeds the threshold, it is labeled
as a positive sample. Otherwise, it is labeled as a negative sample.
Next, for each pair of positive samples (m;, m;), we calculate their
Euclidean distance d;; = [|m; — m;]|. Similarly, for each pair of
negative samples (m;, my), we calculate their Euclidean distance
dir = ||lmi — mg||. To smooth the distance differences between
positive and negative samples, we introduce a smoothing function
g(d;j, d;x) defined as:

9(dij, dige) = 1/ (1 + exp(=y * (dij = dix)))) - ®)

This smoothing function maps the distances between positive and
negative samples to a smooth value between 0 and 1, providing
a smoothing effect by reducing the distance disparity. Finally, we
incorporate the distance smoothing term into the loss function to
encourage the model to learn discriminative feature representations
and effectively utilize unlabeled data. The formula for the loss
function is as follows:

P
1 1
L = Z ol D i+ Wi > max(0.2~ dy)?| * g(dij. die) .
i=0 JEP keN
(6)

where P is the positive set, N is the negative set. The parameter A
controls the separation between positive and negative samples. We
design this loss function to narrow the gap between positive exam-
ples and widen the gap between positive and negative examples.
The smoothing function g(d;;, djx) has a value close to 1 when the
difference between d;; and dy is large, increasing the difference in
distance between positive and negative samples. When the differ-
ence between d;; and d;i is small, the value of g(d;j}, d;x) is close to
0, decreasing the distance difference between positive and negative
samples. By employing the distance smoothing method, we are able
to smooth the distance disparities between positive and negative
samples, reduce the impact of noise on the model, and facilitate
more accurate and reliable feature representation learning, thereby
enhancing the model’s performance.
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3.4 MCR Model

The details of our model are shown in Figure 3. For fair compar-
ison, following Goel et al. [17], we utilize BERT [7] as the text
encoder to obtain contextualized word representations and Faster
RCNN ([33] as the visual encoder to obtain region representations
of images. To effectively integrate textual and visual features, we
employ two modality-specific modality-specific Variational Autoen-
coders (VAEs) to obtain latent representations of the two modalities’
features. Then, by applying Product of Experts (PoE) [22] to the
latent representations of both modalities, we obtain the multimodal

representation.
Text Feature Extraction. We employ BERT to encode each
word in the narrative caption C = {w1, wy, . .., wp }, as mentioned in

Goel et al. [17]. We prepend a [CLS] token and append a [SEP] token
to each sentence, resulting in Cy = {[CLS], w1, wa, ..., wp, [SEP]}.
We then concatenate them together as the input to BERT to gener-
ate contextualized token representations. The mention embeddings
M = {m1,m2,...,mp} are computed by averaging the correspond-
ing word embeddings.

Image Feature Extraction. Following Goel et al. [17], we em-
ploy Faster RCNN to extract region representations of the image
I={r,ra..., rq}. Each region r; is represented by a d-dimensional
joint embedding r; € Rd, which encompasses its visual, semantic,
and spatial features.

Multimodal Feature Fusion. Previous research [17] has treated
text and image features equally, mapping the concatenated features
of both modalities to the same latent representation. However, there
exist mismatches between text and image, introducing noise into
the models used for prediction. To address this, we utilize modality-
specific VAEs to map the features of the two modalities into their
respective latent representations with internally correlated distri-
butions. This enables the model to adaptively learn its specific data
representation for each modality, better capturing the intrinsic re-
lationships and structures among the features of each modality,
helping to address the mismatch between text and image. The en-
coder of each VAE includes dense layers that map the input features
to mean vectors p and standard deviation vectors o.

For the text modality, the text feature c¢ is inputted into the
encoder of the text-VAE to parameterize the mean vector y. and
the standard deviation vector o.. We can approximate the true
posterior distribution p(z.|c) using these parameters, where the
distribution of z. can be represented as z. ~ q(zc|c) = N(ue, 02).
For the visual modality, the image feature r is also inputted into the
encoder of the image-VAE to obtain an approximation of the true
posterior distribution p(z,|r), where the distribution of z, can be
represented as z, ~ q(z|r) = N(yr, 62). Based on the assumption
of conditional independence of multimodal latent representation,
the latent distribution p(zpm|c, r) of the multimodal representation
can be simplified as the combination of two separate latent distribu-
tions p(zm/|c) and p(zm|r). Thus, we apply the product-of-experts
(PoE) to estimate the multimodal latent distribution:

p(zmle,r) o< p(zm|e)p(zmlr) = q(zcle)q(zr|r) , )

We assume that the latent representations are independent and
follow Gaussian distributions parameterized by mean and standard
deviation. Therefore, the distribution of z,;, can be represented as
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Table 1: Coreference resolution results on the CIN dataset [18] from our proposed method and other state-of-the-art multi-modal
baselines. + means zero-shot performance and others are semi-supervised performance. In the brackets are the improvements

of our model over the best-performing baseline(s).

3
Method MUC B CEAF, CoNLL
R P F1 R P F1 R P F1 F1

o Text-based Methods
Rule-Based [25]* 5.60 10.13 6.40 / / / / / / /
Neural Coref [25]* 0.11 0.17 0.13 / / / / / / /
longdoc [38]* 7.79 8.43 7.24 62.27 76.10 67.69 48.77 84.95 61.02 45.31
o Multimodal Methods
VisualBERT [37]* 18.17 6.08 8.06 69.01 36.08 41.03 21.25 57.10 28.67 25.92
UNITER [6]* 16.92 7.15 8.83 68.34 44.29 50.22 28.12 72.78 38.91 32.65
VinVL [52]* 16.76 8.60 9.75 68.49 62.32 61.30 42.88 80.81 53.69 41.58
MAF [41] 19.07 15.62 15.65 / / / / / / /
WS-MCR [18] 2487 1834  19.19 / / / / / / /
Semi-MCR [17] 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79
Ours 39.83 44.70 4143 72.42 90.27 80.32 66.51 96.63 78.38 66.71

(+8.72%) (+9.45%) (+9.57%) (+1.79%) (+2.42%) (+2.26%) (+2.52%) (+3.19%) (+2.91%) (+4.92%)

Table 2: Comparison of narrative grounding performance on
the CIN dataset. In the brackets are the improvements of our
model over the best-performing baseline(s).

Method Noun Phrases Pronouns Overall
MATF [41] 21.60 18.31 20.91
WS-MCR [18] 30.27 25.96 29.36
Semi-MCR [17] 32.58 28.45 31.71
Ours 36.84 32.14 35.72

(+4.26%) (+3.69%) (+4.01%)

2 2
Zm ~ N(tm, 02,), where i, = % and o2, = (ﬁ + ﬁ)_l.

The latent variable z,, of the multimodal representation can be
computed as z,;, = um + 0,%1 © ¢, where e ~ N(0,1).

Training. After obtaining preprocessed multimodal labeled and
unlabeled data, we feed them into our model to learn latent represen-
tations of different modalities and perform coreference resolution.
We calculate the score for the multimodal mention pair (z,z’) as
Smer = % This score measures the likelihood of coreference
between z and z’. A higher score indicates a stronger indication of
coreference, whereas a lower score suggests non-coreference. We
train the coreference scorer by utilizing the negative log marginal
likelihood (L1 1). Finally, the total loss function is the summation
of all the aforementioned losses:

L=Lyrp+mLs+n2Ly . (®)

4 EXPERIMENTS

4.1 Experimental Setting

Datasets. We evaluate our approach on the CIN dataset [18], which
consists of 1,000 test and 880 validation image-caption pairs. Fol-
lowing Goel et al. [17], we use the annotations from the validation
split of the CIN dataset as a small labeled set during training. To
augment our data, we utilize the widely used text coreference res-
olution dataset English OntoNotes 5.0 [32], which contains 3,493
documents. After carefully filtering the documents, we obtain 3,116
multimodal coreference examples as labeled data.

Evaluation Metrics. In terms of evaluation metrics, we align with
Goel et al. [17] and use CoNLL F1 for coreference resolution evalua-
tion, which is the average F1 score across three metrics: MUC [39],
B? [3], and CEAF, [30]. For narrative grounding, we consider a pre-
diction to be correct if the Intersection over Union (IoU) between
the predicted bounding box and the ground truth box is greater
than 0.5 [18].

4.2 Baseline Systems

To validate the effectiveness of our model, we compare it against
the following state-of-the-art baselines:

e VL-BERT: Su et al. [37] developed VL-BERT with rich ag-
gregation and alignment functions.

e UNITER: Chen et al. [6] introduced UNITER, which uses
Optimal Transport to align words to image regions.

e VinVL: Zhang et al. [52] developed an object detection
model to provide object-centric representations of images.

e MAF: Wang et al. [41] leveraged fine-grained visual repre-
sentations to model phrase-object correlation.

e WS-MCR: Goel et al. [18] employed weak supervision to
learn to identify coreference chains.

e Semi-MCR: Goel et al. [17] proposed a semi-supervised
approach and designed a multimodal fusion model for MCR.

4.3 Coreference Resolution Results

We comprehensively compare our ALUDA against text-based coref-
erence and multimodal coreference methods on the CIN dataset. The
results, presented in Table 1, highlight the superiority of our method
over the state-of-the-art (SoTA) baselines and reveals several key
findings. Firstly, compared to traditional text-based coreference
methods, multimodal methods consistently demonstrate superior
performance by leveraging additional visual features. But without
carefully incorporating visual information into the task, such as Vi-
sualBERT, UNITER and VinVL models, they only achieve marginal
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Table 3: Ablation results. The numbers in the brackets are
the decreased values compared with our full model.

CoNLL MUC B3 CEAF,

Ours 66.71 41.43 80.32 78.38
w/o LDA 63.59(3.12) 36.92(-451) 78.48(-1.84) 75.39(-2.99)
w/0 SAT 64.34(237) 38.21(322) 78.86(-146) 75.96(-2.42)
w/0 SDT  65.46(-1.25) 39.82(161) 79.54(-0.78) 77.04(-1.34)

improvements over text-based methods. MAF and WS-MCR are two
weakly supervised methods, and both of them exhibit significant
improvements in MUC scores compared to other single-modal and
multimodal baselines. By employing the semi-supervised learning
method and carefully tuning the model with a small amount of
labeled data and a large amount of pseudo-labeled data, Semi-MCR
achieves the current state-of-the-art (SoTA) results. Most notably,
our model significantly surpasses the state-of-the-art by a substan-
tial margin, with a CoNLL F1 improvement of 4.92%, an MUC F1
improvement of 9.57%. Moreover, compared to MAF and WS-MCR,
our method demonstrates remarkable enhancements, with MUC F1
improvements of 25.78% and 22.24%, respectively.

4.4 Narrative Grounding Results

To evaluate the alignment between image regions and phrases in
textual data, we set up a narrative grounding task and conduct a
comprehensive comparison between our proposed method exist-
ing SoTA approaches, including MAF, WS-MCR, and Semi-MCR.
The results in Table 2 demonstrate the superiority of our method.
Compared to the current state-of-the-art approach (Semi-MCR),
our method achieve a 4.26% and 3.69% improvement in noun phrase
and pronoun coreference accuracy, respectively. It is worth noting
that our proposed method outperforms the MAF, with a 15.24%
and 13.83% increase in noun phrase and pronoun coreference ac-
curacy, respectively. These results highlight the advantages of our
method and emphasize the necessity of expanding labeled data and
effectively leveraging unlabeled data in scenarios where large-scale
annotated data is lacking.

4.5 Ablation Study

We perform ablation experiments to evaluate the contribution of
each component in our model. As depicted in Table 3, no variant
matches the full model’s performance, highlighting the indispens-
ability of each component. Specifically, the absence of labeled data
augmentation (LDA) results in the most significant performance
drop. The CoNLL F1 and MUC F1 scores decreased by 3.12% and
4.51%, respectively, indicating the crucial role of expanding high-
quality labeled datasets in increasing data diversity and model
performance. To validate the necessity of self-adaptive threshold
(SAT), we remove it and set the threshold to 0.9. The sharp decrease
in performance (2.37% drop in CoNLL F1) demonstrates the non-
negligible impact of self-adaptive threshold in the semi-supervised
MCR task. Furthermore, removing the smoothing distance term
(SDT) lead to a significant performance drop, indicating the impor-
tance of it in reducing noise in unlabeled data and helping the model
learn more discriminative feature representations, thus improving
the utilization of unlabeled data.
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Figure 4: Comparative results between self-adaptive thresh-
olds and different fixed thresholds.

4.6 Deep Analyses on the Effects of Our
Proposed Technologies

To further investigate the effectiveness of our method, we conduct
in-depth analyses to answer the following questions, with the aim
to deeply mine the intuition and analyze implicit phenomena.

Q1: What are the advantages of the self-adaptive threshold?
We validate the effectiveness of our self-adaptive threshold by com-
paring it with different fixed thresholds in Figure 4. The results
indicate that the self-adaptive threshold consistently outperforms
the fixed thresholds across all four evaluation metrics. This suggests
that the self-adaptive threshold strikes a balance between data qual-
ity and quantity, enabling a more flexible selection of unlabeled data.
Additionally, we observe that when no filtering of pseudo predic-
tions is applied (i.e., setting the threshold to 0.0), the model performs
poorly. This highlights the necessity of a threshold-based training
strategy. When consistently using lower fixed threshold, such as
0.5, the model shows some improvement compared to including all
pseudo predictions, emphasizing the importance of removing noisy
samples to a certain extent. While setting higher fixed threshold,
like 0.95, the model’s performance does not improve compared to a
threshold of 0.9, in fact, it even declines. This intriguing phenom-
enon suggests that excessively filtering out unlabeled data result
in the loss of high-quality samples, thereby limiting the model’s
learning capacity.

Q2: How to evaluate the quality of generated images? We con-
duct a quality evaluation of the images generated by the diffusion
model to quantify and assess the quality of the generated images.
To find images that better match the caption and evaluate without
relying on real reference images and text, we choose two metrics,
MUSIQ and CLIPScore, to evaluate the quality of our generated im-
ages. MUSIQ is used to assess the quality of the images themselves,
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Table 4: Results of the comparison of the self-adaptive selection strategy with different fixed proportion selection strategies.

. MUC B3 CEAF, CoNLL
Training Set
R P F1 R P F1 R P F1 F1
CIN 37.78 38.65 36.92 72.11 86.62 78.48 63.19 94.92 75.39 63.59
CIN + 25% new 38.56 40.11 38.10 72.21 87.29 78.85 63.78 95.29 75.94 64.29
CIN + 50% new 39.01 40.79 38.72 72.29 87.74 79.09 64.20 95.61 76.36 64.72
CIN + 75% new 39.79 43.75 40.86 72.42 89.46 79.96 65.76 96.35 77.74 66.19
CIN + 100% new 36.42 41.22 37.83 72.71 89.86 80.25 66.60 95.44 77.99 65.36
CIN + self-adaptive 39.83 44.70 41.43 72.42 90.27 80.32 66.51 96.63 78.38 66.71
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Figure 5: Generation image quality evaluation. “Old” means
the original data, “All” means the original data and generated
data, “New” means the generated data.

while CLIPScore is used to evaluate whether the generated images
can match and correlate with the given textual descriptions. The
evaluation results, as shown in Figure 5, reveal that the generated
images (New) achieved high scores on both the MUSIQ and CLIP-
Score metrics, approaching those of original images (Old). These
results indicate that the generated images are of high quality and
align well with the given textual descriptions.

Q3: What are the advantages of the self-adaptive selection
strategy? To validate the effectiveness of the self-adaptive selection
strategy, we compare the results of it with different fixed ratio
selection strategies, as shown in Table 4. From the evaluation of
image quality, we observe that the overall image quality is high, but
there are still a few low-quality images. Thus, we sort the generated
images based on their CLIPScore scores and select a portion of them
to merge into our training set according to a certain ratio. We find
that our self-adaptive selection strategy outperforms all the fixed
ratio data selection strategies. We also observe that using all the
generated image-caption pairs for the training set does not yield
the best results. This might due to the presence of lower-quality
images among the generated samples, necessitating the need for
filtering based on certain criteria. Additionally, when using lower
ratios of generated data, such as 25% and 50%, we notice a slight
decrease in overall performance. This suggests that, apart from high-
quality samples, the quantity of samples in the training set is also
crucial. In conclusion, the above analysis highlight the importance
of quality filtering and emphasizes the need to find the optimal
balance between high-quality samples and dataset size.

Q4: What is the role of smooth distance term in performance
improvement? We visualize the sample features using t-SNE to re-
veal the effectiveness of smooth distance term. In Figure 6 (a), when
employing smooth distance term, the feature differences between
positive and negative samples are highly evident. This indicates that

(a) with smooth distance (b) without smooth distance

Figure 6: Visualization of the sample features.

the model is encouraged to learn distinct feature representations
and achieves better discrimination between positive and negative
samples. Conversely, in Figure 6 (b), when smooth distance term
is removed, the feature distinctions between positive and negative
samples are not significant. This limitation hampers the model’s
ability to learn discriminative feature representations. This empha-
sizes the importance of smooth distance term in addressing noise
issues in unlabeled data and enhancing model performance.

5 CONCLUSION

In this paper, we explore two major challenges in the semi-supervised
MCR task: scarcity of labeled data and under-exploitation of unla-
beled data, and propose a solution called SLUDA. SLUDA expands

high-quality MCR training data through a self-adaptive expansion

selection strategy, and makes full use of the unlabeled data through

a self-adaptive thresholding strategy. Through experiment evalua-
tion, we have found that all of our claimed innovative approaches

and hypotheses have been demonstrated to be effective. One of the

most interesting findings is that the performance of the model in

the semi-supervised MCR task can be significantly improved by

adaptively adjusting the threshold value or ratio according to the

learning status of the model, both for unlabeled and labeled data.

This finding provides insight into our understanding of the role

of data quality and quantity in MCR, and offers great promise for

advancing further development of this task.
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