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ABSTRACT
In this paper, we propose a data augmentation method for action
recognition using instance segmentation. Although many data
augmentation methods have been proposed for image recogni-
tion, few of them are tailored for action recognition. Our proposed
method, ObjectMix, extracts each object region from two videos
using instance segmentation and combines them to create new
videos. Experiments on two action recognition datasets, UCF101 and
HMDB51, demonstrate the effectiveness of the proposed method
and show its superiority over VideoMix, a prior work.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
action recognition, data augmentation, instance segmentation

ACM Reference Format:
Jun Kimata, Tomoya Nitta, and Toru Tamaki. 2022. ObjectMix: Data Aug-
mentation by Copy-Pasting Objects in Videos for Action Recognition. In
ACM Multimedia Asia (MMAsia ’22), December 13–16, 2022, Tokyo, Japan.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3551626.3564941

1 INTRODUCTION
In recent years, there has been a lot of research on video recogni-
tion, which are used in various applications. One of the problems
in developing action recognition models is the cost of constructing
datasets [19, 27, 35]. In actual application scenarios, practitioners
often need to prepare a new dataset for their tasks, but the anno-
tation cost of labeling a large number of videos is inherently high,
and for some applications it may not be possible to collect many
videos in the first place. In which cases, training on a small dataset
is inevitable.

There are three approaches to the small dataset issue. The first
is to synthesize various images with 3D models, for example, pose
estimation [31] and flow estimation [2, 4, 22]. This approach has
the advantage of being able to generate as many images as possible,
while it can only be applied to tasks where images can be easily
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synthesized. For action recognition, it is necessary to consider vari-
ous objects in scenes, motions and actions of people, but currently
no methods are available to generate such realistic action videos.

The second is to use GAN [11, 23] to generate images. Once
a GAN model has been trained, it can generate any number of
realistic images. This approach has been used as data generation in
medical image processing where it is not possible to collect data
at a large scale [6, 18]. GANs are good at generating images with
specific structures such as faces, human bodies, animals, and indoor
images. But it is still difficult to generate videos of various scenes
[28, 30] such as those appear in videos for action recognition.

The third is data augmentation [20, 25, 37], which is widely used
because of its simplicity. Data augmentation refers to applying var-
ious image processing to images such as flipping, rotation, contrast
change, and adding various noises [1, 17]. This means that even
the dataset size is small, the generalization performance of the
model is expected to be as good as when trained on a large dataset.
Recently, mix-type methods [3, 39, 41] have been proposed that
apply operations such as cropping a portion of an image, pasting
the portion onto another image, and blending these two images and
their corresponding labels. In addition, task-specific methods have
also been proposed, such as for monocular depth estimation [16],
super-resolution [38], object detection [5], and instance segmen-
tation [10]. However, few are specific to action recognition [15].
Commonly used data augmentation for action recognition is simply
applying the same geometric and photometric augmentation to all
frames at once, except vertical flipping because usually videos are
not recorded upside down. Also, for some datasets horizontal flip-
ping is also not used since some actions distinguish left and right;
for example, in something-something v2 (SSv2) [12], “move from
right to left” and “move from left to right” are different categories.
An exception is VideoMix [40], a recently proposed mix-type data
augmentation method specialized for action recognition. However,
this is a simple application of CutMix [39] to the spatio-temporal 3D
volume of video frames, and does not take into any consideration
the temporal and spatial continuity of the video contents.

In this study, we propose a method that extends Copy-Paste
[10] to action recognition. Copy-Paste is a mix-type method that
generates new images by extracting object regions from two images
by semantic segmentation, and then pasting the objects onto each
other using the other image as a background. The proposed method
performs it to videos, in other words, object regions from each of
the two video frames and paste them into each other’s video frames
to create new ones. The contributions of this paper are as follows.

• We propose a new mix-type method of data augmentation
for action recognition. It is an extension of Copy-Paste, and
unlike VideoMix, it is possible to generate video frames that
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Figure 1: Example of video generation with VideoMix. (a)(b)
Two original videos and (c)(d) two generated Videos.

(a)
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(c)

(d)

Figure 2: Example of video generation with ObjectMix. (a)(b)
Two original videos and (c)(d) two generated Videos.

take into consideration the temporal and spatial continuity
of objects in the videos.

• The proposed method is applicable to any existing action
recognitionmodels. This allows the recognition performance
of existingmodels to be improved using the proposedmethod.

• In experiments using two action recognition datasets, we
show that the performance of the proposed method is better
than that of VideoMix.

2 RELATEDWORKS
Data augmentation has been widely used to improve the per-
formance by augmenting training samples with various transfor-
mations [20, 25, 37]. In addition to simple image processing such
as rotation, translation, noise [1, 17], there are also a number of

mix-type methods (Mixup [41], Cutout [3], CutMix [39]), and task-
specific methods (CutDepth [16], CutBlur [38], Cut-Paste-Learn
[5]). Copy-Paste [10] is a simple method for the task of instance
segmentation: for two images, it cuts out only the instance region
of in one image, and randomly pastes it onto the other image. Ad-
vantages of this method include the fact that spatial continuity is
guaranteed since the whole instances are always pasted, and that
further augmentation, such as scaling, can be performed on the
pasted instances.
Action recognition is the task of identifying human actions in a
video [15]. Unlike image recognition, action recognition requires to
model temporal information. For example, Two-Stream types [26]
use optical flow as input as the temporal information, and 3D CNN
methods such as 3D ResNet [13], X3D [7], and SlowFast [8] perform
3D convolution in spatio-temporal volumes. Usually, models pre-
trained on large datasets (Kinetics [19]) are transferred to small
datasets (UCF101 [27] and HMDB51 [35]). However, even when
fine-tuning on small datasets, the training set should be diverse,
and in such cases, data augmentation would also be important to
ensure better generalization performance.
VideoMix. The above data augmentation methods were proposed
for image recognition tasks. Few methods exist for action recogni-
tion, with the sole exception of VideoMix [40], whose example is
shown in Figure 1. This method is a direct extension of CutMix [39]
to 3D video volumes, whereby a cube is cut from one video volume
and pasted to another. The problem here is the discontinuity of
objects in the video. Since the location of the cube is randomly se-
lected, the entire regions of objects and humans may not be shown
in the pasted video, or even worse, no objects might appear in the
cube. Furthermore, the objects that appear in the beginning may
disappear in the middle of the video. In contrast, as shown in Figure
2, the proposed method does not break the continuity of the objects
and humans to be pasted, and keeps the objects shown for all the
frames.

3 METHOD
This section describes an overview of the proposed method that
consists of the following processes.

(1) Preparing two source videos 𝑣1 and 𝑣2. Let𝑦1, 𝑦2 be the labels
of each.

(2) Extracting object regions from each video and generating
object masks𝑀1 and𝑀2.

(3) Pasting the masked region of one video onto the other video
to create new videos 𝑣12 and 𝑣21.

(4) Using the mask information to generate labels 𝑦12 and 𝑦21.

Examples of videos generated by the proposed method are shown
in Figures 2 (c) and (d).

3.1 Video preparation
The source videos 𝑣1, 𝑣2 ∈ R𝑇×𝐶×𝐻×𝑊 are video clips consisting
of 𝑇 frames 𝑣1 (𝑡), 𝑣2 (𝑡) ∈ R𝐶×𝐻×𝑊 for 𝑡 = 1, . . . ,𝑇 , where 𝐻,𝑊

are height and width of the frames. Let 𝑦1, 𝑦2 ∈ {0, 1}𝐿𝑎 be the
corresponding one-hot encoded labels, where 𝐿𝑎 is the number of
categories.
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Figure 3: Example of extracted object masks. (a) Original
video. (b) Mask 𝑀 ′

1 and (c) corresponding objects. (d) Mask
𝑀 ′′
1 and (e) corresponding objects.

3.2 Extracting object masks
For each frame 𝑣𝑘 (𝑡) for 𝑘 = 1, 2, we apply instance segmentation
to generate masks𝑀𝑘 (𝑡) ∈ {0, 1}𝑁𝑘 (𝑡 )×𝐻×𝑊 for 𝑡 = 1, . . . ,𝑇 where
𝑁𝑘 (𝑡) is the number of instances detected in 𝑣𝑘 (𝑡).

If multiple instances are extracted (i.e., 𝑁𝑘 (𝑡) > 1), they are
aggregated into a single-channel mask 𝑀 ′

𝑘
(𝑡) ∈ {0, 1}1×𝐻×𝑊 by

logical OR as follows;

𝑀 ′
𝑘
(𝑡) =

𝑁𝑘 (𝑡 )⋃
𝑛=1

𝑀𝑘,𝑛 (𝑡), (1)

where𝑀𝑘,𝑛 (𝑡) is the 𝑛-th channel of𝑀𝑘 (𝑡). Examples of this mask
and extracted objects are shown in Figure 3(b). We used Detectron2
[36] that are pre-trained on the COCO [21] dataset with 80 classes
(therefore 0 ≤ 𝑁 (𝑡) ≤ 80). In this study, all extracted instances
are used for mask generation, regardless of the relevance of the
extracted instance categories to the action categories.

3.3 Temporal aggregation of masks
Masks are extracted from each frame, however, the temporal conti-
nuity of the masks would be lost if the instance segmentation fails
to detect objects in a certain frame as shown in fifth column of
Figure 3(b). Therefore, we propose to aggregate the masks of each
extracted frame by logical OR in the temporal direction as well.

𝑀 ′′
𝑘
(𝑡) =

𝑇⋃
𝑡=1

𝑁𝑘 (𝑡 )⋃
𝑛=1

𝑀𝑘,𝑛 (𝑡) . (2)

The masks𝑀 ′′
𝑘
are the same for all frames, however, even in frames

where detection fails, the mask of the object can still be extracted.

An example of this mask𝑀 ′′
𝑘

is shown in Figure 3(d). In our exper-
iments, we refer to the proposed method with 𝑀 ′

𝑘
as ObjectMix,

and the version with𝑀 ′′
𝑘
as ObjectMix+or.

3.4 Video and Label Composition
Next, we generate new videos using the generated masks𝑀 ′

1, 𝑀
′
2

(or𝑀 ′′
1 , 𝑀

′′
2 ). In this case, two videos can be generated, that is, the

object extracted with mask𝑀 ′
1 from one video 𝑣1 is pasted onto the

other video 𝑣 ′2, and vice versa.

𝑣12 (𝑡) = 𝑣 ′1 (𝑡) ⊙ 𝑀 ′
1 (𝑡) + 𝑣 ′2 (𝑡) ⊙ (1 −𝑀 ′

1 (𝑡)) (3)
𝑣21 (𝑡) = 𝑣 ′1 (𝑡) ⊙ (1 −𝑀 ′

2 (𝑡)) + 𝑣 ′2 (𝑡) ⊙ 𝑀 ′
2 (𝑡), (4)

where ⊙ is the element-wise product.
To define weights for label composition, we use the fraction of

pixels with non-zero values in the generated object masks. First, we
define weights as 𝜆𝑘 =

|𝑀′
𝑘
|

𝑇𝐻𝑊
, where |𝑀 ′

𝑘
| is the sum of non-zero

values in the binary mask 𝑀 ′
𝑘
. Then, we composite the labels as

follows;

𝑦12 = 𝜆1𝑦1 + (1 − 𝜆1)𝑦2 (5)
𝑦21 = (1 − 𝜆2)𝑦1 + 𝜆2𝑦2 . (6)

This is similar to CutMix [39], however the weights of CutMix
are fixed in advance, and the rectangle whose ratio of the rectangle’s
area to the entire image matches the weight is randomly selected.
In contrast, the weights of the proposed method are dynamically
adjusted according to the area of objects in the mask.

3.5 Loss
To train a model, we compute the cross-entropy (CE) loss. Let model
predictions be 𝑦𝑖 𝑗 , 𝑦 𝑗𝑖 for videos 𝑣𝑖 𝑗 , 𝑣 𝑗𝑖 generated from source
videos 𝑣𝑖 , 𝑣 𝑗 . The CE losses 𝐿CE (𝑦𝑖 𝑗 , 𝑦𝑖 𝑗 ) or 𝐿CE (𝑦 𝑗𝑖 , 𝑦 𝑗𝑖 ) need to be
computed with an appropriate weight.

A typical implementation of mix-type augmentation computes
the loss on a batch basis. Assuming that videos 𝑣𝑖 , 𝑣 𝑗 are in the
batch of size 𝐵, the loss for the batch is calculated as follows;

𝜆

𝐵∑︁
𝑖=1

𝐿CE (𝑦𝑖 𝑗𝑖 , 𝑦𝑖 ) + (1 − 𝜆)
𝐵∑︁
𝑖=1

𝐿CE (𝑦𝑖 𝑗𝑖 , 𝑦 𝑗𝑖 ), (7)

where 𝑗1, . . . , 𝑗𝐵 is a certain permutation of 1, . . . , 𝐵.
However, in the case of the proposed method, and the weights

are the relative area of the masks and different for each sample in
the batch. Therefore, we compute the following loss;

𝐵∑︁
𝑖=1

𝜆𝑖𝐿CE (𝑦𝑖 𝑗𝑖 , 𝑦𝑖 ) + (1 − 𝜆𝑖 )𝐿CE (𝑦𝑖 𝑗𝑖 , 𝑦 𝑗𝑖 ) . (8)

4 EXPERIMENTAL RESULTS
In this section we report experimental results with two action
recognition datasets to evaluate the performance of the proposed
method and compare it with VideoMix.

4.1 Datasets
The following two datasets were used.

UCF101 [27] has 101 classes of human actions, consisting of a
training set of about 9500 videos and a validation set of about 3500
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Table 1: The top-1 performance of ObjectMix (OM) onUCF101
and HMDB51 validation set. The 𝑝 = 0.0 is the baseline with-
out applying the proposed method.

UCF101 HMDB51
method (p) top-1 top-5 top-1 top-5
OM (0.0) 93.58 ± 0.03 99.23 ± 0.01 69.86 ± 0.39 91.89 ± 0.26
OM (0.2) 94.68 ± 0.23 99.65 ± 0.05 70.59 ± 0.37 93.18 ± 0.54
OM (0.4) 93.63 ± 0.24 99.40 ± 0.08 71.47 ± 0.30 92.77 ± 0.31
OM (0.6) 95.12 ± 0.15 99.46 ± 0.07 71.44 ± 0.59 93.66 ± 0.28
OM (0.8) 93.94 ± 0.23 99.22 ± 0.05 70.74 ± 0.29 92.38 ± 0.26
OM (1.0) 93.45 ± 0.21 98.96 ± 0.07 69.43 ± 0.46 92.49 ± 0.28

videos. Each video was collected from Youtube, with an average
length of 7.21 seconds. There are three splits for training and valida-
tion, and we report the performance of the first split as it is usually
used.

HMDB51 [35] has 51 classes of human actions, consisting of
a training set of 3570 videos and a validation set of 1530 videos.
Each video is collected from movies, Web, Youtube, etc., and the
average length is 3.15 seconds. There are three splits for training
and validation, and we used the first split.

4.2 Experimental Settings
We used X3D-M [7], a 3D CNN-based action recognition model, pre-
trained on Kinetics400 [19]. In training, we randomly sampled 16
frames per clip from the video, and randomly determined the short
side of the frame in the range of [224, 320] pixels and resized it while
maintaining the aspect ratio, and randomly cropped a 224 × 224
pixel patch, then flipped horizontally with a probability of 50%. No
photometric augmentation were used. The optimizer was Adam
with the learning rate of 0.0001 and the batch size of 16. Training
epochs were set to 10 for UCF101 and 20 for HMDB51, so that the
top-1 performance for the training set would roughly converge.

We used a single view test for validation (i.e., one clip was ran-
domly sampled from a single video) instead of the multi-view test
[34]. Frames were resized so that the short side of the frame is 256
pixels while maintaining the aspect ratio, and the central 224 × 224
pixels of the frame were cropped. To take into account the ran-
domness of the clip sampling, we report the mean and standard
deviation of 10 results.

Augmentation was randomly applied to each batch with the
probability 0 ≤ 𝑝 ≤ 1. Note that 𝑝 = 0 is equivalent to the case
where no augmentation is applied. In the following experiments,
performances are reported for 𝑝 = 0, 0.2, . . . , 1. 0.2.

4.3 Results of ObjectMix
First, we show the comparison of ObjectMix (𝑝 > 0) with no aug-
mentation (𝑝 = 0) in Table 1. As 𝑝 increases, the performance tends
to have a peak at 𝑝 = 0.6 or 0.4, then deteriorates for larger values.
This is probably due to the fact that the original videos are used
less for training for large values of 𝑝 . In other words, the original
and generated videos should be balanced.

The performances over training epochs are shown in Figure 4.
The validation results show that the performance is worse than the
case with 𝑝 = 0 in the early stages of training, whereas it becomes
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Figure 4: Performance of ObjectMix for different 𝑝. The top
row shows the top-1 performance on the validation set and
the bottom row shows that on the training set.

Table 2: The top-1 performance of ObjectMix+or (OM+or) on
UCF101 and HMDB51 validation set.

UCF101 HMDB51
method (p) top-1 top-5 top-1 top-5
OM+or (0.0) 93.58 ± 0.03 99.23 ± 0.01 69.86 ± 0.39 91.89 ± 0.26
OM+or (0.2) 94.08 ± 0.18 99.54 ± 0.07 70.86 ± 0.53 92.49 ± 0.28
OM+or (0.4) 94.19 ± 0.09 99.49 ± 0.06 71.70 ± 0.62 92.56 ± 0.22
OM+or (0.6) 94.28 ± 0.22 99.31 ± 0.06 70.88 ± 0.54 93.20 ± 0.29
OM+or (0.8) 93.67 ± 0.25 99.22 ± 0.05 68.93 ± 0.43 91.75 ± 0.25
OM+or (1.0) 93.25 ± 0.23 99.00 ± 0.07 69.88 ± 0.45 92.08 ± 0.33

equal or better as the training progresses, regardless of the value of
𝑝 . On the other hand, for 𝑝 = 0, the validation performance begins
to deteriorate in the middle stage of the training even though the
performance of the training set is consistently high and continues
to increase, indicating that overfitting occurs due to the lack of data
augmentation. On the other hand, the proposed method suppresses
overfitting even with a small amount of augmentation with 𝑝 = 0.2.
The training performance degrades as 𝑝 increases, but this does not
have much impact on the validation performance.

4.4 Results of ObjectMix+or
Next, we show results of ObjectMix+or in Table 2, and the per-
formances over training epochs in Figure 5. This result shows a
similar trend of ObjectMix for both data sets; the performance have
a peak as 𝑝 increases. Compared to ObjectMix, the performance on
the training set is significantly lower, indicating that ObjectMix+or
plays a greater role in regularization as a data augmentation. The
validation performances are however similar (or slightly inferior)
to those of ObjectMix, which may shows that frame-wise segmenta-
tion masks of ObjectMix might be enough even with failure makes
in some frames.
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Figure 5: Performance of ObjectMix+or for different 𝑝.

4.5 Comparison with VideoMix
Here we report the effect of using the proposed method in com-
bination with VideoMix. The settings followed the original paper
[40], and a patch with center coordinates (𝑤𝑐 , ℎ𝑐 ) was sampled as
follows;

𝜆 ∼ Beta(𝛼, 𝛼), 𝛼 = 1 (9)
𝑤𝑐 ∼ Unif (0,𝑊 ), 𝑊 = 224 (10)
ℎ𝑐 ∼ Unif (0, 𝐻 ), 𝐻 = 224 (11)

𝑤1 = max

(
0,𝑤𝑐 −

𝑊
√
𝜆

2

)
, 𝑤2 = 𝑤𝑐 +

𝑊
√
𝜆

2
(12)

ℎ1 = ℎ𝑐 −
𝐻
√
𝜆

2
, ℎ2 = ℎ𝑐 +

𝐻
√
𝜆

2
. (13)

We used S-VideoMix, which uses the same spatial patch across all
frames, and set the probability to 𝑝 = 1 according to the original
paper. The results are shown in Table 3 and Figure 6.

The combination of ObjectMix and VideoMix shows a significant
performance degradation compared to using ObjectMix alone. One
reason might be the fact that the size of the extracted mask region
can bee too large by merging two regions from both ObjectMix
and VideoMix. A possible improvement is to search reasonable
parameters of VideoMix, taking into account the mask size issue
when used combined with ObjectMix.

The performance of ObjectMix alone outperforms that of VideoMix
alone shown here for any 𝑝 value, indicating that the proposed
method is more effective.

5 CONCLUSION
In this paper, we proposed ObjectMix, a data augmentation for
action recognition, which uses object masks extracted from in-
put video frames. The proposed method differs from mix-based
VideoMix; ObjectMix creates new videos by extracting objects
rather than cutting and pasting random rectangles. Experiments
using UCF101 and HMDB51 have confirmed that the proposed
method is effective to suppress overfitting. The reasonable value of
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Figure 6: Performance comparisons of ObjectMix for differ-
ent 𝑝 and VideoMix.

Table 3: The top-1 performance of the combination of Object-
Mix+or (OM+or) andVideoMix (VM) onUCF101 andHMDB51
validation set.

UCF101 HMDB51
method (p) top-1 top-5 top-1 top-5

OM+or (0.0) 93.58 ± 0.03 99.23 ± 0.01 69.86 ± 0.39 91.89 ± 0.26
VM 93.34 ± 0.07 99.38 ± 0.00 70.90 ± 0.34 92.84 ± 0.24

OM+or (0.2) +VM 93.15 ± 0.20 99.26 ± 0.06 69.83 ± 0.47 92.10 ± 0.35
OM+or (0.4) +VM 93.77 ± 0.16 99.41 ± 0.09 70.49 ± 0.54 92.09 ± 0.25
OM+or (0.6) +VM 92.32 ± 0.26 99.07 ± 0.06 70.74 ± 0.56 92.68 ± 0.32
OM+or (0.8) +VM 92.92 ± 0.25 99.19 ± 0.09 71.35 ± 0.29 92.54 ± 0.17
OM+or (1.0) +VM 92.72 ± 0.19 99.04 ± 0.08 70.15 ± 0.46 92.52 ± 0.24

Table 4: Summary of the proposed method (fixed to 𝑝 = 0.6)
and comparisons of data augmentation (upper rows) with
self-supervised methods (lower rows).

UCF101 HMDB51
method top-1 top-1

no augmentation 93.58 ± 0.03 69.86 ± 0.39
OM (0.6) 95.12 ± 0.15 71.44 ± 0.59

OM+or (0.6) 94.28 ± 0.22 70.88 ± 0.54
VideoMix [40] 93.4 66.9
CMD [14] 85.7 54.0

MoCo+BE [33] 87.1 56.2
CVRL [24] 94.4 70.6

VideoMAE [29] 96.1 73.3
𝜌BYOL [9] 96.3 75.0

𝑝 was about 0.5 for both datasets, which might be a good balance of
the original and generated video samples, and we will verify the re-
sults by using other datasets. An obvious limitation of the proposed
method is its computational cost. While random rectangle cropping
is nearly zero-cost, applying instance segmentation is computation-
ally expensive in both space and time, hindering an efficient model
training. A less accurate but lighter model could be used to speed up
mask extraction because the accuracy of segmentation might have a
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small impact on the classification performance. Therefore, a future
work includes verification of the trade-off between performance
and cost with such an efficient model.

Another topic of the future work is the comparison with self-
supervised learning for video representation. Table 4 summarizes
our results and compares the performance with the recent self-
supervised methods. This result shows that self-supervised learning
is becoming more effective than supervised learning with data
augmentation. Future work includes further investigation of how
to combine the proposed segmentation-based augmentationmethod
with self-supervised learning [32].
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