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Abstract

Neural abstractive summarization models are001
susceptible to generating factually inconsistent002
content, a phenomenon known as hallucina-003
tion. This limits the usability and adoption of004
these systems in real-world applications. To re-005
duce the presence of hallucination, we propose006
the Mixture of Factual Experts (MoFE) model,007
which combines multiple summarization ex-008
perts that each target a specific type of factual009
error. We construct MoFE by combining the010
experts using weights and logits ensembling011
strategies and find that the MoFE provides a012
modular approach to control different factual013
errors while maintaining performance on stan-014
dard ROUGE metrics1.015

1 Introduction016

Neural abstractive summarization systems trained017

by maximizing the likelihood of a reference sum-018

mary (MLE) given its source document have been019

shown to generate plausible summaries with high020

lexical overlap with the references. However, hu-021

man analyses (Fabbri et al., 2021; Pagnoni et al.,022

2021; Tejaswin et al., 2021) and automatic evalu-023

ations (Falke et al., 2019; Kryscinski et al., 2020;024

Maynez et al., 2020; Durmus et al., 2020) show that025

state-of-the-art neural models, trained on widely026

used XSUM (Narayan et al., 2018) and CNN/DM027

(Hermann et al., 2015) datasets, tend to hallucinate028

information with high frequency.029

The hallucinations are broadly classified as ex-030

trinsic, when a model adds information that is not031

present in the source document, and intrinsic, when032

the model distorts information present in the source033

document into a factually incorrect representation.034

The type and degree of a model’s hallucinations035

correlate with the quality of training data. As noted036

by Pagnoni et al. (2021), models trained on the037

XSum data, which include extrinsic hallucinations038

1Code will be released at https://github.com/
anonymous/MoFE

in reference summaries, tend to generate a higher 039

proportion of extrinsic hallucination as compared 040

to models trained on the cleaner CNN/DM dataset. 041

In this paper, we propose the Mixture of Factual 042

Experts (MoFE), a simple and modular framework 043

that applies an ensemble of factual experts to con- 044

trol hallucinations in summarization systems. We 045

define factual expert as a model that generates sum- 046

maries with certain desirable factual qualities (e.g. 047

fewer extrinsic hallucinations). Each constituent 048

factual expert in MoFE is trained to target a unique 049

type of factual quality. The training of the experts 050

is motivated by two broad observations. First, the 051

data on which the model is trained may influence 052

the factual consistency of the model (Pagnoni et al., 053

2021). Therefore, we employ a data pre-processing 054

step that filters training samples such that the ref- 055

erences exhibit the desirable factual qualities. Sec- 056

ond, the maximum-likelihood loss function may 057

overlook factual consistency. Therefore we employ 058

reinforcement learning (RL) to train a model using 059

explicit signals of factual consistency. 060

We use entity overlap and dependency arc entail- 061

ment (DAE) accuracy (Goyal and Durrett, 2020) 062

metrics as measures of extrinsic and intrinsic hal- 063

lucinations, respectively, and accordingly use both 064

metrics to define rewards for training experts tar- 065

geting both types of hallucination. Entity overlap 066

evaluates the number of entities in summary that 067

are absent from the source document and is a direct 068

measure of extrinsic hallucination. Intrinsic hallu- 069

cination, on the other hand, is broader and includes 070

errors such as incorrect predicates or their argu- 071

ments, coreference errors, discourse link errors, etc. 072

(Pagnoni et al., 2021). Since DAE accuracy mea- 073

sures the fine-grained entailment relations at the 074

dependency arc level, we consider it a reasonable 075

proxy for measuring intrinsic hallucinations (Goyal 076

and Durrett, 2020, 2021). Additionally, given that 077

experts trained on both entity overlap and DAE 078

metrics try to improve precision and are prone to 079
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Figure 1: Schematic view of steps for building the MoFE model. First, it uses automated factual consistency metrics
to filter out training samples with the desirable factual quality. Then, it trains a factual expert model on the filtered
or whole training set and combines them through weights or logits ensembling.

reducing factual recall, MoFE also includes an en-080

tity recall-based expert. Subsequently, we combine081

the above three experts through logits and weights082

ensembling. We show the schematic view of MoFE083

in Figure 1.084

We evaluate MoFE on two benchmark abstrac-085

tive summarization datasets in English, XSUM and086

CNN/DM. We use a diverse set of metrics, includ-087

ing entailment, entity overlap, and question answer-088

ing (QA)-based metrics to measure factual errors.089

We find that MoFE models strongly outperform the090

state-of-the-art models on factual consistency met-091

rics used to train experts, with marginal variations092

in ROUGE scores. Our empirical results suggest093

that we can steer the text summarization system094

to generate faithful content by carefully training095

expert models. Further, it shows that the benefit096

of combining multiple experts to control text gen-097

eration extends beyond broader textual properties098

such as sentiment and toxicity (as shown by Liu099

et al. (2021a)), and it can handle constrained text100

generation with more fine-grained factual qualities.101

2 Automated Metrics for Measuring102

Factual Consistency103

There are three popular paradigms for evaluating104

the factual consistency of summaries generated by105

a model. 1) The simplest method includes measur-106

ing token-level overlap between the information of107

interest (e.g. named entities) in the summary and108

source document (Nan et al., 2021). This metric109

can be used as a proxy to measure simpler cases of110

hallucinations, such as extrinsic entity errors. We111

use entity overlap precision to both train and eval-112

uate factual experts. 2) The second type of evalua-113

tion builds on NLI and evaluates if the facts claimed 114

in a summary is entailed by the source document 115

(Kryscinski et al., 2020; Goyal and Durrett, 2020; 116

Maynez et al., 2020). Two popular entailment- 117

based metrics include FactCC (Kryscinski et al., 118

2020) which measures entailment at the summary- 119

level and DAE (Goyal and Durrett, 2020) which 120

measures fine-level entailment by breaking sum- 121

mary into smaller claims defined by dependency 122

arcs2. Pagnoni et al. (2021) finds that DAE corre- 123

lates with the human judgment of factuality, and 124

has the highest correlation with complex discourse 125

errors, such as entity coreference. Therefore, we 126

use DAE accuracy3 to identify cases of intrinsic 127

hallucinations, both during training and evaluation. 128

3) The most complex methods for evaluating fac- 129

tuality rely on question generation (QG) and ques- 130

tion answering (QA) (Durmus et al., 2020; Scialom 131

et al., 2021). They first use a QG module to gen- 132

erate questions based on summaries and then use 133

another QA module to find answers in the source 134

document. They are computationally expensive to 135

use to train experts. Therefore, we use them exclu- 136

sively to evaluate the generalizability of MoFE to 137

new factual evaluation metrics. 138

3 MoFE Model 139

We propose Mixture of Factual Experts (MoFE) 140

to improve the factual consistency of text summa- 141

2Dependency arcs define grammatical structures in a sen-
tence and often describe semantic connections between words,
such as predicate-argument relations. It provides a fast mech-
anism to identify intrinsic errors involving relationships be-
tween entities.

3DAE accuracy measures the number of dependency arcs
in summary that are also entailed by the source document.
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rization systems. As illustrated in Figure 1, MoFE142

consists of three main steps. First, we filter the143

training dataset to obtain samples that are factu-144

ally consistent, using automated metrics between145

source document and reference summary (§3.1).146

Then, we use reinforcement learning to train expert147

models for each factual consistency metric (§3.2).148

Finally, for controlling summary generation, we149

either directly modify the base model’s parameters150

through weights exsembling (Izmailov et al., 2018)151

or modify next token probabilities from base model152

through logits ensembling (§3.3).153

3.1 Training Data Filtering154

Recent studies show that reference summaries in155

common text summarization datasets often con-156

tain factual errors (Tejaswin et al., 2021; Nan157

et al., 2021), which accounts for one of the known158

sources of hallucination in summarization models.159

Therefore, in the first step, we apply automatic fac-160

tual consistency evaluation metrics to filter factu-161

ally consistent training samples. We apply metrics162

that target extrinsic and intrinsic hallucinations, and163

create a filtered training subset for each. To identify164

extrinsic hallucinations, we measure entity overlap165

between the source document and the reference166

summary, using SpaCy (Honnibal et al., 2020) to167

identify named entities. We filter training samples168

in which all the entity tokens in reference sum-169

mary are also mentioned in the source document.170

To identify intrinsic hallucinations, we measure171

the dependency arc entailment (DAE) (Goyal and172

Durrett, 2021) accuracy between the source docu-173

ment and reference summary. We filter all training174

samples where all of the dependency arcs in the175

summary are entailed by the source documents.176

3.2 Training Factual Expert Models177

In addition to factual errors in training data, the178

MLE training objective is another known source179

of hallucination. A model trained by maximiz-180

ing the log-likelihood of reference summaries can181

efficiently learn to generate summaries with high n-182

gram overlap but may fail to learn to enforce factual183

consistency. Therefore, we train our factual experts184

by directly optimizing for the factual consistency185

using the self-critic algorithm (Rennie et al., 2017),186

a frequently use reinforcement learning technique187

for training NLP models.188

We consider parameters of an expert (θ) as the189

policy model and define action as predicting the190

next token in a summary sequence. Given a fac-191

tual consistency metric M , we define the action 192

reward R(y,ŷ) as the score of the generated sum- 193

mary (y) according to M . Here, ŷ is the source 194

document for precision-based factual consistency 195

metrics (e.g. DAE accuracy, entity precision), and 196

the reference summary for fact recall-based met- 197

rics (e.g. Entity recall). Further, in accordance with 198

the self-critic training, we use the test-time greedy 199

decoding strategy (i.e. argmax) to obtain a sum- 200

mary and calculate the baseline reward Ra
(y,ŷ). We 201

subtract the baseline reward from the action-based 202

reward (R(y,ŷ)) and use the resulting reward signal 203

to train our experts. This minimizes the variance 204

of the gradient estimate and importantly adjust the 205

reward scale to provide both positive and negative 206

values. Overall, we train our expert policy to min- 207

imize the negative of expected reward difference 208

which, after Monte Carlo approximation (Williams, 209

1992), is defined as: 210

Lfc
θ = −Ex[(R(y,ŷ) −Ra

(y,ŷ)) log pθ(y|x)] (1) 211

Following standard reinforcement learning-based 212

sequence training formulations, we initialize the 213

policy model with a text summarization model ϕ 214

trained on human-annotated datasets. Further to 215

prevent the policy from collapsing to single mode4 216

or significantly deviating away from ϕ, we add an 217

additional KL divergence loss (eq. 2) between the 218

next token probabilities of the policy θ and baseline 219

ϕ5. We train experts using the weighted sum of the 220

two losses λLfc
θ + (1− λ)Lkl

θ . 221

Lkl
θ = Ex[pϕ(y

∗|x) log(pϕ(y∗|x) / pθ(y∗|x))]
(2) 222

Equations 1 and 2 describe the general framework 223

for training our experts. In Eq. 2, we choose y∗ 224

depending on the number of factual errors in train- 225

ing samples. We hypothesize that human-written 226

reference summaries are generally more natural 227

and preferable than the summaries generated by a 228

summarization model. So, on training samples that 229

do not contain factual errors (filtered training sam- 230

4Policy learns to assign entire probability mass to a single
token, setting both R(y,ŷ) and R̂(y,ŷ) to zero and thereby
reducing gradients to zero.

5Note that the KL divergence loss reduces the policy explo-
ration. However, we believe this to be a reasonable trade-off
for a high-entropy task, such as abstractive summarization,
where factually consistent summaries are very few among all
possible summary sequences. Further, as noted by (Pang and
He, 2021), the benefit of exploration in training text generation
systems is limited in the absence of perfect reward functions.
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ples from §3.1), we propose to use reference as y∗6.231

On the contrary, when dataset contains frequent232

factual errors, minimizing KL divergence with re-233

spect to reference summary encourages the model234

to continue to uniformly increase probability mass235

on factually inconsistent references. This is prob-236

lematic and may lower the gain from reward based237

loss. Therefore, when factual quality of training238

data is indeterminable, we propose to use summary239

sampled following probabilities from then expert240

(policy) model as y∗.241

Intuitively, using reference summary on factu-242

ally consistent training data is suitable for training243

experts that aim to improve factual consistency.244

However, data filtering reduces the number of sam-245

ples. Given this training data size vs factual quality246

trade-off, we experiment with both paradigm for247

training experts. However, with limited compute248

resources, we recommend performing data filter-249

ing followed by RL training to build experts that250

target content-precision metrics. For recall-related251

experts, data filtering and mode of RL training is252

not intuitive and should be empirically determined.253

3.3 Mixing Factual Experts254

Following the data filtering and RL training steps255

described in §3.1 and §3.2, we train experts for256

intrinsic and extrinsic hallucination using DAE257

accuracy and entity overlap precision metrics258

as rewards, respectively. Also, because experts259

for both intrinsic and extrinsic hallucinations are260

trained to improve precision with respect to the261

source document, they may negatively impact the262

content recall. So, we train entity-recall expert to263

maximize recall of salient entities between the gen-264

erated summary and the reference summary. Note265

that entity overlap precision is defined with respect266

to the source document and entity-recall is defined267

with respect to the reference summary.268

Next, we combine the three experts through269

weights or logits ensembling. We use the element-270

wise weighted average of all the parameters of pre-271

trained summarization model and expert models for272

weights ensembling. For logits ensembling, we use273

the weighted average of logits from all the experts274

and the pre-trained model during decoding. The275

mixing coefficients for all experts and pre-trained276

models are used to control the factual quality of277

summaries generated by the ensemble model.278

6Alternatively, we can replace the KL divergence loss in
eq. 2 with the standard cross-entropy loss.

4 Results 279

4.1 Experimental Setup 280

We evaluate MoFE on XSUM (Narayan et al., 281

2018) and CNN/DM (Hermann et al., 2015) 282

datasets. The XSUM data is highly abstractive 283

and noisy while CNN/DM is more extractive but 284

contains fewer factual errors (Tejaswin et al., 2021). 285

We use standard ROUGE-1/2/L (R1/R2/RL), DAE- 286

arc accuracy (DAE-A), and DAE-summary accu- 287

racy7 (DAE-S), entity precision with respect to 288

source (NER-PS) and entity recall with respect 289

to the reference (NER-RT) as primary evaluation 290

metrics for individual experts and the MoFE model. 291

Among these seven metrics, DAE-A/S and NER- 292

PS evaluate the factual consistency of a summary 293

with respect to the source document. Separately, 294

we also evaluate the MoFE on BERTScore (Zhang 295

et al., 2019b) precision (BS-P) and recall (BS-R) 296

with respect to source and two question answer- 297

based evaluation metrics, FEQA and QuestEval. 298

4.2 Models 299

We use the BART (Lewis et al., 2020) and PE- 300

GASUS (Zhang et al., 2019a) released with Hug- 301

gingface’s transformer (Wolf et al., 2020) (bart- 302

xsum-large, pegasus-xsum, bart-cnn-large) as base 303

summarization models. From the human-based 304

analyses, Pagnoni et al. (2021) finds that BART 305

generated summaries have the least number of fac- 306

tual errors. We adopt the standard hyperparameters 307

for all models during the inference. We train three 308

experts corresponding to three metrics: DAE accu- 309

racy (DAE), entity overlap precision with source 310

(NER-P), and entity recall with reference (NER- 311

R). We construct two variants of MoFE, MoFEW 312

and MoFEL using weights and logits ensembling 313

respectively. Note that experts training targeting 314

specific factual quality may reduce performance 315

on other metrics (e.g. precision-based expert may 316

reduce recall). Therefore, we include an expert in 317

MoFE only if it does not under-perform the base 318

model by more than 5% on any of the DAE-A/S, 319

NER-PS/RT, and ROUGE metrics. An alternative 320

approach could be to stop training when expert’s 321

performance falls below a pre-defined threshold. 322

4.3 Automatic Evaluation 323

Table 1 summarizes the results on XSUM and 324

CNN/DM datasets. Both MoFEW and MoFEL out- 325

7We consider a summary accurate if all dependency arcs
in summary are entailed by the source document.
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Model DAE-A DAE-S NER-PS NER-RT BS-P BS-R R1 R2 RL
BART XSUM

Base 76.16 34.75 63.82 53.66 88.93 79.86 45.34 22.21 37.13
MoFEW 80.36 41.08 66.74 53.20 89.21 79.89 45.00 21.92 36.80
MoFEL 80.70 41.06 66.81 53.40 89.24 79.94 45.18 22.03 36.94

PEGASUS XSUM
Base 73.83 33.22 60.39 56.39 88.72 79.68 47.08 24.54 39.29
MoFEW 75.84 35.36 61.64 56.38 88.81 79.74 47.07 24.31 39.11
MoFEL 75.97 35.50 61.73 56.23 88.82 79.74 47.12 24.35 39.16

BART CNN/DM
Base 96.26 75.0 98.44 58.92 93.26 82.62 44.05 21.07 40.86
MoFEW 96.98 77.08 98.16 60.86 93.30 82.94 44.02 21.02 40.69
MoFEL 96.88 76.01 98.07 61.79 93.35 83.12 43.74 20.86 40.33

Table 1: DAE accuracy, entity precision, entity recall and ROUGE scores for the base and MoFE models on XSUM
and CNN/DM datasets.

perform BART and PEGASUS across all factual326

consistency metrics on the XSUM dataset. Simi-327

larly, both models outperform BART on CNN/DM328

dataset with marginal degradation on entity preci-329

sion (NER-P). This is unsurprising given BART330

is consistent against extrinsic entity hallucination331

on CNN/DM (NER-PS of 98.44) and has a very332

small room for improvement. This aligns with the333

findings from the human evaluation that the BART334

model has very few extrinsic entity errors (Pagnoni335

et al., 2021). Next, neither of the MoFE models336

lowers ROUGE scores substantially on either of the337

XSUM or CNN/DM datasets, the worst being 0.53338

drop on ROUGE-L for MoFEL on CNN/DM. We339

also find that MoFE models improve BERTScore340

precision (BS-P) and recall (BS-R) with respect to341

the source article on both XSUM and CNN/DM342

datasets. This is particularly interesting given re-343

cent work on benchmarking different evaluation344

metrics suggests that BERTScore precision with re-345

spect to the source document correlates with the hu-346

man judgment of factuality (Pagnoni et al., 2021).347

Between logits and weights ensembling, we find348

both performing comparably on factual consistency349

metrics. However, by calculating logits for all ex-350

perts and the pre-trained model at each decoding351

step, logit ensembling increases the decoding time352

linearly in the number of experts. Weights ensem-353

bling, on the other hand, does not increase the in-354

ference time and provides a lightweight method for355

combining experts. Accordingly, for fair compar-356

ison with the base model, we use MoFEW for all357

our analyses.358

QA-based Evaluations: In table 2, we report re-359

sults for BART and corresponding MoFE models360

on QA-based metrics. MoFE models improve on361

the QA-based QuestEval metric on both XSUM362

Model XSUM CNN/DM
FEQA QEval FEQA QEval

Base 25.77 36.54 38.22 59.24
MoFEW 27.87 37.32 35.85 59.79
MoFEL 27.74 37.43 34.64 59.90

Table 2: QA metrics-based evaluations of BART and
corresponding MoFE models.

and CNN/DM datasets. However, both MoFEW 363

and MoFEL perform much worse than the BART 364

model on the FEQA metric for CNN/DM data. 365

The contrasting observations between FEQA and 366

QuestEval may be explained by the variation in 367

question-generation (QG) modules used in both 368

metrics. We observe that the QG model used in 369

FEQA tends to copy the entire summary into the 370

questions (e.g. “when is the sigma alpha epsilon 371

fraternity fighting back against claims that racism 372

is stitched into the fabric of the fraternity ? one of 373

the university of oklahoma students who took part 374

in the infamous racist chant wrote that ‘ the song 375

was taught to us ’ ”). This behavior does not pose 376

serious problems for shorter summaries, like those 377

in the XSUM. However, for longer summaries, 378

questions become abruptly complicated for the QA 379

model to find the correct answer in the source doc- 380

ument (e.g. QA model answers this question by 381

selecting the bolded phrase “...racism is stitched 382

into the fabric of the fraternity - by mandating that 383

all members of the organization undergo diversity 384

training”.). On the other hand, the QG model in 385

the QuestEval generates straightforward questions 386

(e.g. “When did the executive director announce 387

changes to the Sigma Alpha Epsilon fraternity?”). 388

4.4 Human Evaluation 389

Following Cao and Wang (2021), we perform pair- 390

wise comparison of summaries, where a human 391
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Model DAE-A DAE-S NER-PS NER-RT R1 R2 RL
BART XSUM

Base 76.16 34.75 63.82 53.66 45.34 22.21 37.13
Unfiltered-MLE 75.22 33.48 62.63 54.23 45.27 22.28 37.09
Filtered-MLE 78.86 39.04 66.14 52.20 44.96 21.93 36.91
MoFEW 80.36 41.08 66.74 53.20 45.00 21.92 36.80

BART CNN/DM
Base 96.26 75.0 98.44 58.92 44.05 21.07 40.86
Unfiltered-MLE 95.19 67.44 97.72 61.93 44.28 21.23 40.88
Filtered-MLE 96.96 77.20 98.21 60.91 44.05 21.11 40.71
MoFEW 96.98 77.08 98.16 60.86 44.02 21.02 40.69

Table 3: Ablation: DAE accuracy, entity precision, entity recall and ROUGE scores for different weight-ensembled
models on XSUM and CNN/DM datasets.

annotator rate each MoFEW generated summary392

against the BART summary for factual consis-393

tency. We use randomly sampled 100 articles from394

each of the XSUM and CNN/DM datasets. First,395

two annotators independently annotated 20 articles-396

summaries pairs from XSUM to calculate inter-397

annotator agreement8. We found that two annota-398

tions achieve high Krippendoeff’s alpha coefficient399

(Krippendorff, 2011) of 0.83847. Then, one anno-400

tator rated remaining 80 XSUM and 100 CNN/DM401

articles. Annotators found MoFEW improves (de-402

grades) factual consistency on 30% (11%) sum-403

maries on XSUM data, and improves (degrades)404

factual consistency on 5% (1%) summaries on405

CNN/DM data. Factual consistency remained un-406

changed for remaining 59% and 94% summaries407

from XSUM and CNN/DM datasets respectively.408

Given higher percentage of factual errors as well409

as higher empirical gain on XSUM data, we fur-410

ther analyze 30 XSUM summaries from MoFE and411

BART models using SummVis (Vig et al., 2021)412

tool. We discuss our findings in appendix, §B.413

5 Analysis414

5.1 Effects of Data Filtering and RL Training415

In Table 3, we evaluate how training data filtering416

and RL-based training contribute to the improved417

performance of MoFE. Unfiltered-MLE is an en-418

semble of four BART models, including the best419

performing base, and Filtered-MLE is an ensemble420

of experts, trained exclusively with the MLE loss421

on corresponding filtered data, and the base model.422

First, we find that ensembling multiple BART mod-423

els improves ROUGE scores and NER recall, but424

8We also crowd-sourced annotations using Amazon Me-
chanical Turk, but we found inter-annotator agreement to
be extremely low (Krippendoeff’s alpha coefficient < 0.10).
Based on crowd-sourced annotations, MoFEW improves fac-
tual consistency on 22% (31%), and degrades factual consis-
tency on 10% (21%) of CNN/DM (XSUM) summaries.

All Filtered
DAE-A DAE-S DAE-A DAE-S

BART 76.67 35.79 76.67 35.79
Reference 75.55 31.33 82.53 44.09
Model 84.1 46.92 80.27 41.70

Table 4: Performance of DAE experts trained with ref-
erence and sampled summary (Model)-based KL loss
on all training data and filtered subset of training data.

not factual consistency metrics defined by DAE 425

accuracy and NER precision. On the other hand, 426

Filtered-MLE ensemble consistently outperforms 427

both Base and Unfiltered-MLE models on factual 428

consistency metrics, underlining the importance 429

of using factually correct samples during training. 430

MoFEW model, that is based on RL training to 431

directly optimize factual consistency, further im- 432

proves the performance on XSUM data. However, 433

on CNN/DM data, MoFEW and Filtered-MLE per- 434

form comparably. To further understand the rea- 435

sons for different behavior, we analyze summaries 436

sampled using the probabilities from BART mod- 437

els trained on XSUM and CNN/DM datasets. As 438

shown in Table 12 and 13 in appendix, we find that 439

XSUM-BART model-sampled summaries exhibit 440

varied factual behavior, generating both factually 441

consistent and inconsitent summaries. On the other 442

hand, CNN-BART model sampled summaries are 443

overly extractive and mainly differ on the sentences 444

sampled from source article but not on factual con- 445

sistency. Evidently, benefit from RL training can be 446

pre-inferred by analyzing summaries sampled from 447

the baseline models used to initialize the policy. 448

KL divergence loss vs training data quality: In 449

Table 4, we report the validation performance of 450

DAE expert trained using reference summary and 451

model-sampled summary on filtered XSUM train- 452

ing subset and whole XSUM training data. We 453

observe that both variants of experts improve per- 454

formance on DAE-A/S metrics when trained on the 455

6



filtered subset. However, the margin of improve-456

ment is higher for reference-based experts, imply-457

ing the advantage of minimizing KL divergence458

on reference summary when training samples are459

free from factual errors. On the whole training460

data that includes factually inconsistent samples,461

we find that reference-based experts degrade the462

performance on DAE-A/S metrics. On contrary, we463

find experts minimizing KL divergence on sampled464

summary effective, outperforming reference-based465

DAE expert trained on filtered subset by 1.57%466

and 2.83% on DAE-A and DAE-S metrics respec-467

tively. Overall, empirical results reiterate that fac-468

tual quality of training data affects the performance469

of experts. On factually consistent samples, we can470

use either of the reference or sampled summary to471

define KL divergence loss. However, when sam-472

ples contain factual errors, reference summary may473

not be effective.474

5.2 Mixture of experts vs joint RL training475

Model DAE-A DAE-S NER-PS NER-RT
BART 76.16 34.75 63.82 53.66
DAE 83.83 46.83 69.09 51.82
NER-P 76.81 36.02 67.37 53.69
NER-R 75.48 33.56 63.50 55.04
Joint 80.74 41.33 68.71 51.78
MoFEW 80.36 41.08 66.74 53.20

Table 5: DAE accuracy, entity precision and entity recall
of individual experts on XSUM data.

In Table 5, we compare performance of indi-476

vidual experts and an RL model trained to jointly477

optimize all rewards. First, all three experts out-478

perform the BART model, on their respective fac-479

tual consistency metric. Importantly, DAE expert480

performs better than (or comparable to) NER-P481

expert on NER-PS metric. Dependency arc error482

subsumes extrinsic entity error as dependency arcs483

corresponding to extrinsic entities can not be en-484

tailed by the source document. We consider this485

a desirable behavior given we do not need to train486

multiple experts if we can choose the right set of487

reward function/ metric.488

The Joint model that uses average of DAE, NER-489

P and NER-R rewards and trains on data filtered490

according to all three metrics, perform slightly bet-491

ter than MoFEW on DAE-A/S and NER-PS metric.492

However, it obtains 1.42 points lower entity recall493

as well as performs consistently worse than the494

DAE expert across all metrics. Notably, MoFEW495

has the flexibility to include multiple experts and496

adjust for degradation in performance on any met- 497

ric by including an appropriate expert during the 498

decoding time, as discussed in the next section. 499

Therefore, joint model can also be used as a new 500

expert in MoFE and resulting degradation in NER 501

recall can be adjusted by the NER-R expert. 502

5.3 Effects of Mixing Coefficients on 503

Ensemble of an Expert and BART 504

We combine each expert and the BART model with 505

different mixing coefficients (α) and plot their per- 506

formance on XSUM validation data in Figure 2. We 507

use weights ensembling for our analyses and evalu- 508

ate models on DAE-A/S and NER-PS/RT metrics. 509

First, we find that the performance of the ensem- 510

ble of expert and BART model on the respective 511

metric roughly lies on the linear line connecting 512

the performance of the individual expert and BART 513

models. On the metrics that are not part of expert 514

training, we find that the performance of the ensem- 515

ble model either remains approximately unchanged 516

(e.g. DAE-A, NER-PS metrics for the NER-R ex- 517

pert) or lies on the linear line (e.g. NER-PS/RT 518

metrics for the DAE expert). Given the linear de- 519

pendence, we can decide the mixing coefficient for 520

an expert depending on the tolerance value for the 521

ensemble model on all metrics. Further, we can 522

compensate for the reduction in performance of the 523

ensemble model on any metric by training an ex- 524

pert targeting that specific metric. For instance, to 525

compensate for the reduction in performance of the 526

ensemble of DAE and BART on the NER-RT met- 527

ric, we can add an NER-R expert that obtains higher 528

NER recall than the base BART model. Note that, 529

the modular characteristics of MoFE also allows 530

us to choose different values of mixing coefficients 531

for each of the experts and BART model depending 532

on the significance of different factual errors in the 533

target application. 534

6 Related Work 535

Factual consistency metrics and analysis Ab- 536

stractive text summarization metrics such as 537

ROUGE (Lin, 2004) and BERTScore (Zhang et al., 538

2019b) evaluate lexical and semantic overlap re- 539

spectively but fail to sufficiently evaluate factual- 540

ity and faithfulness (Tejaswin et al., 2021). This 541

has led to a line of research dedicated to evaluat- 542

ing factual consistency and hallucination in text 543

summarization using new metrics such as entail- 544

ment, question answering-based evaluation (Falke 545

7



Figure 2: Variations in the performance of weight-ensembled expert and BART models with different values of
mixing coefficient α (α=0.0 corresponds to only BART model, and α = 1.0 corresponds to only expert model.).

et al., 2019; Kryscinski et al., 2020; Maynez et al.,546

2020; Zhou et al., 2021; Eyal et al., 2019; Scialom547

et al., 2019; Wang et al., 2020; Durmus et al., 2020;548

Scialom et al., 2021), etc. The slew of work on549

factual evaluation metrics has also given rise to550

research focused on comparing different metrics551

(Gabriel et al., 2021; Fabbri et al., 2021; Pagnoni552

et al., 2021; Goyal and Durrett, 2021; Tejaswin553

et al., 2021). These evaluation studies have contra-554

dicting observations. For instance, Durmus et al.555

(2020) found that entailment-based automated met-556

rics have lower correlation with faithfulness while557

Pagnoni et al. (2021) concluded that entailment-558

based FactCC exhibits the highest correlations with559

the human judgment of factuality. Given the vari-560

ations in findings from different human analyses561

of popular factual consistency evaluation metrics,562

we select a few metrics from each of the entail-563

ment, entity overlap, and QA-based evaluations, as564

well as use ROUGE and BERTScore metrics for565

evaluating MoFE.566

Along with the growing body of work on anal-567

ysis and evaluation of factual consistency, there568

has been some recent work on developing methods569

to enforce factual consistency in pre-trained lan-570

guage models. These include sampling techniques571

such as constrained decoding (Mao et al., 2020)572

and neurologic decoding (Lu et al., 2020). Another573

strategy is to control generation either by using lan-574

guage models to guide a base language model as575

in GeDi (Krause et al., 2020) and DExperts (Liu576

et al., 2021a) or via a hallucination knob (Filippova,577

2020). Although these methods claim to be generic,578

they haven’t been successfully applied to constrain 579

summary generation on the source document. 580

Comparatively, there are fewer papers that pro- 581

pose methods for factual consistency in text sum- 582

marization. Most of these focus on posthoc correc- 583

tion such as SpanFact (Dong et al., 2020), contrast 584

entity generation and selection (Chen et al., 2021), 585

loss truncation (Kang and Hashimoto, 2020), and 586

encoding SRL structure (Cao et al., 2020). Ara- 587

likatte et al. (2021) use focus attention and sam- 588

pling to improve diversity and faithfulness of sum- 589

maries while Liu et al. (2021b) use data augmenta- 590

tion with the contrastive loss for factual consistency 591

of abstractive summarization applied to customer 592

feedback. 593

7 Conclusion 594

We present MoFE to reduce content hallucinations 595

in abstractive summarization models. We first train 596

different experts to exclusively minimize extrin- 597

sic and intrinsic hallucinations that are defined us- 598

ing automated factual consistency evaluation met- 599

rics. Then, we combine them with the MLE-trained 600

model through weights or logits ensembling to con- 601

trol the hallucinated content. We evaluate MoFE 602

on XSUM and CNN/DM datasets using a diverse 603

set of metrics, finding that MoFE effectively re- 604

duces hallucinations without a significant drop on 605

ROUGE scores. Further, our results and analy- 606

ses highlight that text generation can be controlled 607

for fine-grained factual qualities at decoding time 608

through appropriately trained experts. 609

8
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A Extractiveness vs Faithfulness865

XSUM CNN/DM
AL UO AL UO

Reference 21.10 11.87 55.01 46.25
BART 18.84 12.25 64.32 61.80
MoFEW 18.54 12.30 70.04 67.34
MoFEL 18.92 12.62 73.29 70.62

Table 6: Average length (AL) and average number of
common unigrams (AO) between summary and source
document for reference summaries and BART and
MoFE models.

(a)

(b)

Figure 3: Percentage of overlapped n-grams in XSUM
and CNN/DM summaries.

We analyze the extractiveness-faithfulness trade-866

off for the BART and MoFE models. We com-867

pare the ratio of n-grams in summaries that appear868

in the source document in Figure 3, and average869

length of summaries and average number of com-870

mon unigrams between summaries and source doc-871

uments in Table 6. All BART and MoFE models872

are highly extractive on CNN/DM datasets and they873

tend to generate summaries longer than the refer-874

ences. Also, the difference in n-grams overlap per-875

centage between reference and model-based sum-876

maries is much higher on the CNN/DM data. On877

the contrary, models generate shorter summaries878

than the references on XSUM data, but they still 879

generate summaries with higher n-grams overlap 880

percentages. It is generally observed that neural 881

models, including BART, tend to increase the ex- 882

tractiveness (Durmus et al., 2020). 883

Both MoFEW and MoFEL increase the average 884

number of overlapped unigrams on both XSUM 885

and CNN/DM datasets. Further, MoFE models in- 886

crease the average summary length on CNN/DM. 887

This is expected given we train our experts using 888

RL that maximizes or minimizes probability mass 889

on summaries generated by them (not the refer- 890

ence summary as in MLE training). This is likely 891

to exacerbate the difference between the length of 892

model-generated and reference summaries. It is 893

worth noting that logits ensembling increases the 894

length of generated summary more than the weights 895

ensembling on both XSUM and CNN/DM datasets, 896

another disadvantage of the former besides an in- 897

crease in decoding time. Overall, we consider the 898

minor increase in overlapped n-grams tolerable for 899

improved factual consistency. Our findings are 900

similar to (Aralikatte et al., 2021), suggesting a 901

diversity-faithfulness trade-off, where increasing 902

faithfulness decreases the novel n-grams. 903

B SummVis Analysis 904

We analyze 30 samples from each of the MoFEL 905

and BART models on XSUM data using SummVis 906

(Vig et al., 2021) tool. We show 8 interesting sam- 907

ples from the analyzed 30. Looking at the examples 908

where MoFE and BART differ in factual consis- 909

tency, we find cases where MoFE: I) removes some 910

of the factual errors but the new summary remains 911

factually inconsistent, Fig. 4 and 5; II) removes 912

all factual errors, Fig. 6; III) replaces one factual 913

error with another, Fig. 7; IV) adds factual error, 914

Fig. 8; and V) adds or removes world knowledge, 915

Fig. 9 and 10. Ignoring world knowledge hallu- 916

cination, in total, we find 3, 4, 4, and 2 examples 917

for cases I, II, III, and IV respectively. The re- 918

maining summaries were both factually consistent 919

(12 examples)/ inconsistent (5 examples) for both 920

BART and MoFE. It is also worth noting that in 921

all 4 examples of case II, BART summaries have 922

exactly one factual error. From our analyses, we 923

conclude that generally MoFE helps reduce factual 924

errors, but it is most effective in cases where BART 925

summaries contain a few factual errors. In more 926

complex cases of hallucinations, MoFE can only 927

partially remove factual errors. 928
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(a) In this example, BART hallucinates 2016 Olympic and Rio which get corrected by MoFE. But both
BART and MoFE incorrectly generate the first name (Ryan vs Damian), as well as “granted British
nationality”.

(b) In this example, BART hallucinates the age of children which gets corrected by MoFE. But both
BART and MoFE hallucinate Corfu. In addition, both BART (parents will donate shares) and MoFE
(parents will receive shares) summaries possess intrinsic hallucinations.

Figure 4: Examples where MoFE generates fewer novel entities (highlighted in red) that are absent from the source
article.

C Experimental Details929

C.1 Models930

We use the BART (Lewis et al., 2020) and PE-931

GASUS (Zhang et al., 2019a) released with Hug-932

gingface’s transformer (Wolf et al., 2020) (bart-933

xsum-large, pegasus-xsum, bart-cnn-large) as base934

summarization models. From the human-based935

analyses, Pagnoni et al. (2021) finds that BART936

generated summaries have the least number of fac-937

tual errors. We adopt the standard hyperparameters938

for all models during the inference, e.g. beam size939

of 6 (4), minimum and maximum sequence length940

of 11 (56) and 62 (142), etc. for the XSUM (CNN-941

DM) model.942

Training Experts: We use Huggingface Trans- 943

formers library (Wolf et al., 2020) (PyTorch 944

(Paszke et al., 2017)) to implement our experts. We 945

initialize each expert with the pre-trained models 946

and fine-tune the decoder module on the weighted 947

sum of RL and KL divergence losses (eq. 1 and 2). 948

We keep encoder parameters fixed during the train- 949

ing. All experts are trained for 1 epoch with batch 950

size of 32 using default training hyperpaperameters 951

(optimizer: Adam, learning rate: 5e-5, β1: 0.9, β2: 952

0.999, ϵ: 1e-8). We experiment with 3 values of λ: 953

0.9, 0.5, and 0.1. 954

We train three experts corresponding to three 955

metrics: DAE accuracy (DAE), entity overlap pre- 956

cision with source (NER-P), and entity recall with 957

13



Figure 5: In this example, BART hallucinates percentage amount (50%). MoFE replaces percentage amount to a
generic word sharply. Both BART and MoFE hallucinates DIY.

Figure 6: In this example, BART hallucinates rush hour. In contrast, MoFE generates factually correct summary.

reference (NER-R). We construct two variants of958

MoFE, MoFEW and MoFEL using weights and log-959

its ensembling respectively. Note that we include960

an expert in MoFE only if it does not under-perform961

the BART model by more than 5% on any of the962

DAE-A/S, NER-PS/RT, and ROUGE metrics. We963

find experts’/BART’s mixing coefficients (αi) for964

weight ensembling using grid search, assigning a965

minimum value of 0.1 to each model and increment-966

ing weights by the step size of 0.2 for XSUM data.967

On CNN data, we exclude NER-P and NER-R ex-968

perts from the MoFE given they degraded DAE-S969

accuracy by greater than 5%. Similar to XSUM,970

we use grid search to find mixing coefficients for971

CNN data, but we assigned a minimum weight of972

0.2 to the DAE expert and the BART model. In973

our analyses, however, we found that mixing co-974

efficients can be intuitively guessed based on the 975

performance of individual experts and the desired 976

performance of MoFE on different evaluation met- 977

rics. In Table 7, we report the constituents experts 978

for each of the MoFE models and datasets. 979

DAE NER-P NER-R
XSUM
BART

Model
sampled,
All data

Model
sampled,
All data

Model
sampled,
All data

XSUM PE-
GASUS

Reference,
Filtered
data

Reference,
Filtered
data

Model
sampled,
All data

CNN/DM
BART

Reference,
Filtered
data

NA NA

Table 7: Constituents Models in MoFE.

In Tables 8, 9, 10 and 11, we report all our re- 980
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Figure 7: Both BART and MoFE generate different factual errors, BART hallucinates more than a week and MoFE
hallucinates Aberdeenshire.

Figure 8: In this example, BART incorporates world knowledge “end of apartheid” and is factually consistent
otherwise. MoFE adds factual error “two years”.

sults.981

15



Figure 9: Both BART and MoFE are factually correct, though BART generates US rocket company which can not
be inferred from the source document (hallucinations vs world knowledge).

Figure 10: Both BART and MoFE are factually correct, though MoFE replaces EU with European Union (world
knowledge).

Model DAE-A DAE-S NER-PS NER-RT R1 R2 RL
BART 76.16 34.75 63.82 53.66 45.34 22.21 37.13
Unfiltered-MLEW 75.22 33.48 62.63 54.23 45.27 22.28 37.09
Unfiltered-MLEL 75.02 35.53 63.01 52.57 45.14 22.41 37.38

RL Models
DAE 83.83 46.83 69.09 51.82 44.32 21.20 36.11
NER-P 76.81 36.02 67.37 53.69 44.51 21.58 36.48
NER-R 75.48 33.56 63.50 55.04 45.19 22.04 36.98
MoFEW 80.36 41.08 66.74 53.20 45.00 21.92 36.80
MoFEL 80.70 41.06 66.81 53.40 45.18 22.03 36.94

MLE Trained Models
DAE-MLE 80.52 38.83 68.43 51.96 44.84 21.41 36.38
NER-MLE 78.79 36.11 66.42 53.32 44.78 21.33 36.24
Filtered-MLEW 78.86 39.04 66.14 52.20 44.96 21.93 36.91
Filtered-MLEL 78.65 41.61 66.45 51.07 44.86 22.13 37.17

Table 8: DAE accuracy, entity precision, entity recall and ROUGE scores of BART-based models on XSUM test set.
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Model DAE-A DAE-S NER-PS NER-RT R1 R2 RL
BART 96.26 75.0 98.44 58.92 44.05 21.07 40.86
Unfiltered-MLEW 95.11 66.99 97.46 63.16 43.86 20.98 40.37
Unfiltered-MLEL 95.11 67.0 97.46 63.16 43.86 20.98 40.38

RL Models
DAE 97.17 77.92 98.19 60.15 44.13 21.13 40.91
NER-P 95.38 68.18 98.31 61.11 44.46 21.36 41.24
NER-R 95.11 67.45 98.23 61.06 44.43 21.36 41.25
MoFEW 96.98 77.08 98.16 60.86 44.02 21.02 40.69
MoFEL 96.88 76.01 98.07 61.79 43.74 20.86 40.33

MLE Trained Models
DAE-MLE 97.12 78.18 98.27 60.13 44.11 21.15 40.90
NER-MLE 95.36 67.29 98.23 60.74 44.44 21.31 41.23
Filtered-MLEW 96.96 77.20 98.21 60.91 44.05 21.11 40.71
Filtered-MLEL 96.94 77.11 98.07 61.71 43.73 20.88 40.31

Table 9: DAE accuracy, entity precision, entity recall and ROUGE scores of BART-based models on CNN/DM test
set.

Model DAE-A DAE-S NER-PS NER-RT R1 R2 RL
BART 73.83 33.22 60.39 56.39 47.08 24.54 39.29
DAE 76.71 36.47 62.03 56.10 47.03 24.19 39.01
NER-P 75.20 34.03 61.83 55.41 46.76 24.01 38.84
NER-R 73.21 33.62 60.59 56.84 46.76 24.55 39.27
MoFEW 75.84 35.36 61.64 56.38 47.07 24.31 39.11
MoFEL 75.97 35.50 61.73 56.23 47.12 24.35 39.16

Table 10: DAE accuracy, entity precision, entity recall and ROUGE scores of PEGASUS-based models on XSUM
test set.

DAE NER-P NER-R
All Filtered All Filtered All Filtered

DAE-A DAE-S DAE-A DAE-S NER-PS NER-PS NER-RT(-PS) NER-RT(-PS)
BART 76.67 35.79 76.67 35.79 64.30 64.30 53.55 (64.30) 53.55 (64.30)
Reference 75.55 31.33 82.53 44.09 60.87 69.06 44.47(60.88) 51.27(68.33)
Model 84.1 46.92 80.27 41.70 67.84 66.88 54.57(63.95) 53.79(65.60)

Table 11: Validation performance of DAE and NER-P experts trained with reference and sampled summary-based
KL loss on all training data and filtered subset of training data. NER-R expert trained with reference-based KL
divergence loss perform worse than the one trained with sampled summary-based KL divergence loss on NER-RT
metric. But note that NER-R is not a metric to measure the factual consistency and performance of NER-R expert
on NER-PS (a factual consistency metric) is as expected.
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Source "Prosecutors say managers at Peanut Corporation of America shipped peanuts and
products they knew were tainted. More than 575 people in more than 40 states were
sickened in the outbreak, including hundreds of children. A lawyer for former owner
Stewart Parnell said inspectors had been aware of the company’s testing practices.
The charges carry maximum penalties of 20 years in prison, prosecutors say. Mr
Parnell, his brother, former Vice-President Michael Parnell, as well as former plant
managers Samuel Lightsey and Daniel Kilgore, have been charged with fraud, selling
""adulterated and misbranded food"", and conspiracy. In addition, former plant worker
Mary Wilkerson was charged with obstruction of justice. Kilgore has already pleaded
guilty in the case. Prosecutors say the Parnells, Mr Lightsey and Kilgore conspired to
manufacture and sell peanuts and peanut products that lab tests had shown were tainted
with salmonella. They created fake certificates saying the foods were safe, when in
fact they had either not been tested or had been found to have been contaminated,
prosecutors said. Stewart Parnell, Mr Lightsey and Ms Wilkerson lied to visiting
government inspectors, they said. "When those responsible for producing or supplying
our food lie and cut corners, as alleged in the indictment, they put all of us at risk,"
said Stuart Delery, head of the justice department’s civil division. "The Department
of Justice will not hesitate to pursue any person whose criminal conduct risks the
safety of Americans who have done nothing more than eat a peanut butter and jelly
sandwich.

Sample 1 (In-
consistent)

Four former executives of a US peanut company have been charged in connection
with an outbreak of salmonella that killed more than 500 people.

Sample 2 (In-
consistent)

Three former executives of a US peanut company have been charged in connection
with an outbreak of salmonella that killed more than 500 people.

Sample 3
(Consistent)

Former executives of a US peanut company have been charged in connection with an
outbreak of salmonella that left hundreds of people sick.

Table 12: Summaries sampled following probabilities from the XSUM-BART model. The model is abstractive, and
sampled summaries differ in factual qualities.
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Source (CNN)The only thing crazier than a guy in snowbound Massachusetts boxing up the
powdery white stuff and offering it for sale online? People are actually buying it. For
$89, self-styled entrepreneur Kyle Waring will ship you 6 pounds of Boston-area
snow in an insulated Styrofoam box – enough for 10 to 15 snowballs, he says. But
not if you live in New England or surrounding states. "We will not ship snow to any
states in the northeast!" says Waring’s website, ShipSnowYo.com. "We’re in the
business of expunging snow!" His website and social media accounts claim to have
filled more than 133 orders for snow – more than 30 on Tuesday alone, his busiest
day yet. With more than 45 total inches, Boston has set a record this winter for
the snowiest month in its history. Most residents see the huge piles of snow choking
their yards and sidewalks as a nuisance, but Waring saw an opportunity. According to
Boston.com, it all started a few weeks ago, when Waring and his wife were shoveling
deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston.
He joked about shipping the stuff to friends and family in warmer states, and an idea
was born. His business slogan: "Our nightmare is your dream!" At first, ShipSnowYo
sold snow packed into empty 16.9-ounce water bottles for $19.99, but the snow usually
melted before it reached its destination. So this week, Waring began shipping larger
amounts in the Styrofoam cubes, which he promises will arrive anywhere in the U.S.
in less than 20 hours. He also has begun selling a 10-pound box of snow for $119.
Many of his customers appear to be companies in warm-weather states who are buying
the snow as a gag, he said. Whether Waring can sustain his gimmicky venture into
the spring remains to be seen. But he has no shortage of product. "At this rate, it’s
going to be July until the snow melts," he told Boston.com. "But I’ve thought about
taking this idea and running with it for other seasonal items. Maybe I’ll ship some fall
foliage."

Sample 1 Kyle Waring sells 6 pounds of Boston-area snow in an insulated Styrofoam box for
$89. His website and social media accounts claim to have filled more than 133 orders
for snow. With more than 45 total inches, Boston has set a record this winter for the
snowiest month in its history.

Sample 2 Self-styled entrepreneur Kyle Waring will ship 6 pounds of Boston-area snow in
an insulated Styrofoam box for $89. "We will not ship snow to any states in the
northeast!" says Waring’s website, ShipSnowYo.com. With more than 45 total inches,
Boston has set a record this winter for the snowiest month in its history.

Sample 3 Self-styled entrepreneur Kyle Waring is shipping 6 pounds of Boston-area snow in an
insulated Styrofoam box for $89. His website and social media accounts claim to have
filled more than 133 orders for snow – more than 30 on Tuesday alone. With more
than 45 total inches, Boston has set a record this winter for the snowiest month in its
history.

Table 13: Summaries sampled following probabilities from the CNN/DM-BART model. The model is extremely
extractive, and sampled summaries differ mainly on the sentences selected from source article.
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