
Under review as a conference paper at ICLR 2022

MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing reinforcement learning algorithms that satisfy safety constraints is be-
coming increasingly important in real-world applications. In multi-agent rein-
forcement learning (MARL) settings, policy optimisation with safety awareness
is particularly challenging because each individual agent has to not only meet its
own safety constraints, but also consider those of others so that their joint be-
haviour can be guaranteed safe. Despite its importance, the problem of safe multi-
agent learning has not been rigorously studied; very few solutions have been pro-
posed, nor a sharable testing environment or benchmarks. To fill these gaps, in
this work, we formulate the safe MARL problem as a constrained Markov game
and solve it with policy optimisation methods. Our solutions—Multi-Agent Con-
strained Policy Optimisation (MACPO) and MAPPO-Lagrangian—leverage the
theories from both constrained policy optimisation and multi-agent trust region
learning. Crucially, our methods enjoy theoretical guarantees of both monotonic
improvement in reward and satisfaction of safety constraints at every iteration. To
examine the effectiveness of our methods, we develop the benchmark suite of Safe
Multi-Agent MuJoCo that involves a variety of MARL baselines. Experimental
results justify that MACPO/MAPPO-Lagrangian can consistently satisfy safety
constraints, meanwhile achieving comparable performance to strong baselines.1

1 INTRODUCTION

In recent years, reinforcement learning (RL) techniques have achieved remarkable successes on a
variety of complex tasks (Silver et al., 2016; 2017; Vinyals et al., 2019). Powered by deep neural
networks, deep RL enables learning sophisticated behaviours. On the other hand, deploying neu-
ral networks turns the optimisation procedure from policy space to parameter space; this enables
gradient-based methods to be applied (Sutton et al., 1999; Lillicrap et al., 2015; Schulman et al.,
2017). For policy gradient methods, at every iteration, the parameters of a policy network are up-
dated in the direction of the gradient that maximises return.

However, policies that are purely optimised for reward maximisation are rarely applicable to real-
world problems. In many applications, an agent is often required not to visit certain states or take
certain actions, which are thought of as “unsafe” either for itself or for other elements in the back-
ground (Moldovan & Abbeel, 2012; Achiam et al., 2017). For instance, a robot carrying materials
in a warehouse should not damage its parts while delivering an item to a shelf, nor should a self-
driving car cross on the red light while rushing towards its destination (Shalev-Shwartz et al., 2016).
To tackle these issues, Safe RL (Moldovan & Abbeel, 2012; Garcıa & Fernández, 2015) is proposed,
aiming to develop algorithms that learn policies that satisfy safety constraints. Despite the additional
requirement of safety on solutions, algorithms with convergence guarantees have been proposed (Xu
et al., 2021; Wei et al., 2021).

Developing safe policies for multi-agent systems is a challenging task. Part of the difficulty comes
from solving multi-agent reinforcement learning (MARL) problems itself (Deng et al., 2021); more
importantly, tackling safety in MARL is hard because each individual agent has to not only consider
its own safety constraints, which already may conflict its reward maximisation, but also consider the
safety constraints of others so that their joint behaviour is guaranteed to be safe. As a result, there are
very few solutions that offer effective learning algorithms for safe MARL problems. In fact, many
of the existing methods focus on learning to cooperate (Foerster et al., 2018; Rashid et al., 2018;

1Paper homepage including Videos and Code: https://sites.google.com/view/macpo

1

 https://sites.google.com/view/macpo

Under review as a conference paper at ICLR 2022

Yang & Wang, 2020). However, they often require certain structures on the solution; for example,
Rashid et al. (2018) and Yang et al. (2020) adopt greedy maximisation on the local component of
a monotonic joint value function, and Foerster et al. (2018) estimates the policy gradient based on
the counterfactual value from a joint critic. Therefore, it is unclear how to directly incorporate
safety constraints into these solution frameworks. Consequently, developing agents’ collaborations
towards reward maximisation under safety constraints remains an unsolved problem.

The goal of this paper is to increase practicality of MARL algorithms through endowing them with
safety awareness. For this purpose, we introduce a general framework to formulate safe MARL
problems, and solve them through multi-agent policy optimisation methods. Our solutions leverage
techniques from both constrained policy optimisation (Achiam et al., 2017) and multi-agent trust
region learning (Kuba et al., 2021a). The resulting algorithm attains properties of both monotonic
improvement guarantee and constraints satisfaction guarantee at every iteration during training. To
execute the optimisation objectives, we introduce two practical deep MARL algorithms: MACPO
and MAPPO-Lagrangian. As a side contribution, we also develop the first safe MARL bench-
mark within the MuJoCo environment, which include a variety of MARL baseline algorithms. We
evaluate MACPO and MAPPO-Lagrangian on a series of tasks, and results clearly confirm the ef-
fectiveness of our solutions both in terms of constraints satisfaction and reward maximisation. To
our best knowledge, MACPO and MAPPO-Lagrangian are the first safety-aware model-free MARL
algorithms that work effectively in the challenging MuJoCo tasks with safety constraints.

2 RELATED WORK

Considering safety in the development of AI is a long-standing topic (Amodei et al., 2016). When
it comes to safe reinforcement learning (Garcıa & Fernández, 2015), a commonly used framework
is Constrained Markov Decision Processes (CMDPs) (Altman, 1999). In a CMDP, at every step,
in addition to the reward, the environment emits costs associated with certain constraints. As a
result, the learning agent must try to satisfy those constraints while maximising the total reward.
In general, the cost from the environment can be thought of as a measure of safety. Under the
framework of CMDP, a safe policy is the one that explores the environment safely by keeping the
total costs under certain thresholds. To tackle the learning problem in CMDPs, Achiam et al. (2017)
introduced Constrained Policy Optimisation (CPO), which updates agent’s policy under the trust
region constraint (Schulman et al., 2015) to maximise surrogate return while obeying surrogate
cost constraints. However, solving a constrained optimisation at every iteration of CPO can be
cumbersome for implementation. An alternative solution is to apply primal-dual methods, giving
rise to methods like TRPO-Lagrangian and PPO-Lagrangian (Ray et al., 2019). Although these
methods achieve impressive performance in terms of safety, the performance in terms of reward is
poor (Ray et al., 2019). Another class of algorithms that solves CMDPs is by Chow et al. (2018;
2019); these algorithms leverage the theoretical property of the Lyapunov functions and propose
safe value iteration and policy gradient procedures. In contrast to CPO, Chow et al. (2018; 2019)
can work with off-policy methods; they also can be trained end-to-end with no need for line search.

Safe multi-agent learning is an emerging research domain. Despite its importance (Shalev-Shwartz
et al., 2016), there are few solutions that work with MARL in a model-free setting. The majority
of methods are designed for robotics learning. For example, the technique of barrier certificates
(Borrmann et al., 2015; Ames et al., 2016; Qin et al., 2020) or model predictive shielding (Zhang
et al., 2019) from control theory is used to model safety. These methods, however, are specifically
derived for robotics applications; they either are supervised learning based approaches, or require
specific assumptions on the state space and environment dynamics. Moreover, due to the lack of a
benchmark suite for safe MARL algorithms, the generalisation ability of those methods is unclear.
The most related work to ours is Safe Dec-PG (Lu et al., 2021) where they used the primal-dual
framework to find the saddle point between maximising reward and minimising cost. In particular,
they proposed a decentralised policy descent-ascent method through a consensus network. How-
ever, reaching a consensus equivalently imposes an extra constraint of parameter sharing among
neighbouring agents, which could yield suboptimal solutions (Kuba et al., 2021a). Furthermore,
multi-agent policy gradient methods can suffer from high variance (Kuba et al., 2021b). In contrast,
our methods employ trust region optimisation and do not assume any parameter sharing.

HATRPO (Kuba et al., 2021a) introduced the first multi-agent trust region method that enjoys
theoretically-justified monotonic improvement guarantee. Its key idea is to make agents follow a

2

Under review as a conference paper at ICLR 2022

sequential policy update scheme so that the expected joint advantage will always be positive, thus
increasing reward. In this work, we show how to further develop this theory and derive a protocol
which, in addition to the monotonic improvement, also guarantees to satisfy the safety constraint at
every iteration during learning. The resulting algorithm (Algorithm 1) successfully attains theoreti-
cal guarantees of both monotonic improvement in reward and satisfaction of safety constraints.

3 PROBLEM FORMULATION: CONSTRAINED MARKOV GAME

We formulate the safe MARL problem as a constrained Markov game 〈N ,S,A, p, d0, W, ',C, c〉.
Here, N = {1, . . . , =} is the set of agents, S is the state space, A =

∏=
8=1A8 is the product of

the agents’ action spaces, known as the joint action space, p : S ×A × S → ℝ is the probabilistic
transition function, d0 is the initial state distribution, W ∈ [0, 1) is the discount factor, ' : S×A → ℝ

is the joint reward function, C = {�8
9
}8∈N1≤ 9≤<8 is the set of sets of cost functions (every agent 8 has <8

cost functions) of the form �8
9

: S ×A8 → ℝ, and finally the set of corresponding cost-constraining
values is given by c = {28

9
}8∈N1≤ 9≤<8 . At time step C, the agents are in a state sC , and every agent 8 takes

an action a8C according to its policy c8 (a8 |sC). Together with other agents’ actions, it gives a joint
action aC = (a1

C , . . . , a
=
C) and the joint policy π(a|s) = ∏=

8=1 c
8 (a8 |s). The agents receive the reward

'(sC , aC), meanwhile each agent 8 pays the costs �8
9
(sC , a8C), ∀ 9 = 1, . . . , <8 . The environment then

transits to a new state sC+1 ∼ p(·|sC , aC). In this paper, we consider a fully-cooperative setting where
all agents share the same reward function, aiming to maximise the expected total reward of

� (π) , �s0∼d0 ,a0:∞∼π,s1:∞∼p

[∞∑
C=0

WC'(sC , aC)
]
,

meanwhile trying to satisfy every agent 8’s safety constraints, written as

�89 (π) , �s0∼d0 ,a0:∞∼π,s1:∞∼p

[∞∑
C=0

WC�89 (sC , a8C)
]
≤ 289 , ∀ 9 = 1, . . . , <8 . (1)

We define the state-action value and the state-value functions in terms of reward as

&π (B,a) , �s1:∞∼p,a1:∞∼π
[∞∑
C=0

WC'(sC , aC)
��s0 = B, a0 = a

]
, and +π (B) , �a∼π

[
&π (B, a)

]
.

The joint policies π that satisfy the Inequality (1) are referred to as feasible. Notably, in the above
formulation, although the action a8C of agent 8 does not directly influence the costs {�:

9
(sC , a:C)}<

:

9=1
of other agents : ≠ 8, the action a8C will implicitly influence their total costs due to the dependence
on the next state sC+1 2. For the 9 th cost function of agent 8, we define the 9 th state-action cost value
function and the state cost value function as

&89 ,π (B, 08) , �a−8∼π−8 ,s1:∞∼p,a1:∞∼π

[∞∑
C=0

WC�89 (sC , a8C)
�� s0 = B, a80 = 0

8
]
,

and, + 89 ,π (B) , �a∼π,s1:∞∼p,a1:∞∼π
[∞∑
C=0

WC�89 (sC , a8C)
�� s0 = B

]
, respectively.

Notably, the cost value functions &8
9 ,π and + 8

9 ,π , although similar to traditional &π and +π , involve
extra indices 8 and 9 ; the superscript 8 denotes an agent, and the subscript 9 denotes its 9 th cost.

Throughout this work, we pay a close attention to the contribution to performance from different
subsets of agents, therefore, we introduce the following notations. We denote an arbitrary subset

2We believe that this formulation realistically describes multi-agent interactions in the real-world; an action
of an agent has an instantaneous effect on the system only locally, but the rest of agents may suffer from its
consequences at later stages. For example, consider a car that crosses on the red light, although other cars may
not be at risk of riding into pedestrians immediately, the induced traffic may cause hazards soon later.

3

Under review as a conference paper at ICLR 2022

{81, . . . , 8ℎ} of agents as 81:ℎ; we write −81:ℎ to refer to its complement. Given the agent subset 81:ℎ ,
we define the multi-agent state-action value function:

&81:ℎ
π (B,a81:ℎ) , �a−81:ℎ∼π−81:ℎ

[
&π (s,a81:ℎ , a−81:ℎ)

]
.

On top of it, the multi-agent advantage function 3 is defined as follows,

�81:ℎ
π

(
B,a 91:: ,a81:ℎ

)
, &

91:: ,81:ℎ
π

(
B,a 91:: ,a81:ℎ

)
−& 91::

π

(
B,a 91::

)
. (2)

An interesting fact about the above multi-agent advantage function is that any advantage �81:ℎ
π can

be written as a sum of sequentially-unfolding multi-agent advantages of individual agents, that is,
Lemma 1 (Multi-Agent Advantage Decomposition, Kuba et al. (2021b)). For any state B ∈ S,
subset of agents 81:ℎ ⊆ N , and joint action a81:ℎ , the following identity holds

�81:ℎ
π

(
B,a81:ℎ

)
=

ℎ∑
9=1

�
8 9
π

(
B,a81: 9−1 , 08 9

)
.

4 MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

In this section, we first present a theoretically-justified safe multi-agent policy iteration procedure,
which leverages multi-agent trust region learning and constrained policy optimisation to solve con-
strained Markov games. Based on this, we propose two practical deep MARL algorithms, enabling
optimising neural-network based policies that satisfy safety constraints. Throughout this work, we
refer the symbols π and π̄ to be the “current” and the “new” joint policies, respectively.

4.1 MULTI-AGENT TRUST REGION LEARNING WITH CONSTRAINTS

Kuba et al. (2021a) introduced the first multi-agent trust region method—HATRPO—that enjoys
theoretically-justified monotonic improvement guarantee. Specifically, it relies on the multi-agent
advantage decomposition in Lemma 1, and the “surrogate” return that is given as follows.
Definition 1. Let π be a joint policy, π̄81:ℎ−1 be some other joint policy of agents 81:ℎ−1, and ĉ8ℎ be
a policy of agent 8ℎ . Then we define

!81:ℎ
π

(
π̄81:ℎ−1 , ĉ8ℎ

)
, �s∼dπ ,a81:ℎ−1∼π̄81:ℎ−1 ,a8ℎ∼ ĉ8ℎ

[
�8ℎπ

(
s, a81:ℎ−1 , a8ℎ

)]
.

With the above definition, we can see that Lemma 1 allows for decomposing the joint surrogate
return !π (π̄) , �s∼dπ ,a∼π̄ [�π (s, a)] into a sum over surrogates of !81:ℎ

π (π̄81:ℎ−1 , c̄8ℎ), for ℎ =

1, . . . , =. This can be used to justify that if agents, with a joint policy π, update their policies
by following a sequential update scheme, that is, if each agent in the subset 81:ℎ sequentially solves
the following optimisation problem:

c̄8ℎ = max
ĉ8ℎ

!81:ℎ
π

(
π̄81:ℎ−1 , ĉ8ℎ

)
− a�max

KL
(
c8ℎ , ĉ8ℎ

)
,

where a =
4WmaxB,a |�π (B,a) |

(1 − W)2
, and �max

KL (c
8ℎ , ĉ8ℎ) , max

B
�KL (c8ℎ (·|B), ĉ8ℎ (·|B)),

then the resulting joint policy π̄ will surely improve the expected return, i.e., � (π̄) ≥ � (π) (see the
proof in Kuba et al. (2021a, Lemma 2)). We know that due to the penalty term �max

KL (c
8ℎ , ĉ8ℎ), the

new policy c̄8ℎ will stay close (w.r.t max-KL distance) to c8ℎ .

For the safety constraints, we can extend Definition 1 to incorporate the “surrogate” cost, thus al-
lowing us to study the cost functions in addition to the return.
Definition 2. Let π be a joint policy, and c̄8 be some other policy of agent 8. Then, for any of its
costs of index 9 ∈ {1, . . . , <8}, we define

!89 ,π
(
c̄8

)
= �s∼dπ ,a8∼ c̄8

[
�89 ,π

(
s, a8

)]
.

3We would like to highlight that these multi-agent functions of &81:ℎ
π and �81:ℎ

π , although involve agents in
superscripts, describe values w.r.t the reward rather than costs since they do not involve cost subscripts.

4

Under review as a conference paper at ICLR 2022

By generalising the result about the surrogate return in Equation (1), we can derive how the expected
costs change when the agents update their policies. Specifically, we provide the following lemma.

Lemma 2. Let π and π̄ be joint policies. Let 8 ∈ N be an agent, and 9 ∈ {1, . . . , <8} be an index
of one of its costs. The following inequality holds

�89 (π̄) ≤ �89 (π) + !89 ,π
(
c̄8

)
+ a89

=∑
ℎ=1

�max
KL

(
cℎ , c̄ℎ

)
, where a89 =

4WmaxB,08 |�89 ,π (B, 08) |
(1 − W)2

.

See proof in Appendix A. The above lemma suggests that, as long as the distances between the
policies cℎ and c̄ℎ , ∀ℎ ∈ N , are sufficiently small, then the change in the 9 th cost of agent 8, i.e.,
�8
9
(π̄) − �8

9
(π), is controlled by the surrogate !8

9 ,π (c̄8). Importantly, this surrogate is independent of
other agents’ new policies. Hence, when the changes in policies of all agents are sufficiently small,
each agent 8 can learn a better policy c̄8 by only considering its own surrogate return and surrogate
costs. To summarise, we provide the following algorithm that guarantees both safety constraints
satisfaction and monotonic performance improvement.

Algorithm 1: Safe Multi-Agent Policy Iteration with Monotonic Improvement Property

1: Initialise a safe joint policy π0 = (c1
0, . . . , c

=
0).

2: for : = 0, 1, . . . do
3: Compute the advantage functions �π: (B,a) and �8

9 ,π:
(B, 08), for all state-(joint)action pairs

(B,a), agents 8, and constraints 9 ∈ {1, . . . , <8}.

4: Compute a = 4WmaxB,a |�π: (B,a) |
(1−W)2 , and a8

9
=

4Wmax
B,08
|�8
9,π:
(B,08) |

(1−W)2 , ∀8 ∈ N , 9 = 1, . . . , <8 .
5: Draw a permutaion 81:= of agents at random.
6: for ℎ = 1 : = do
7: Compute the radius of the KL-constraint X8ℎ // see Appendix B for the setup of X8ℎ .
8: Make an update c8ℎ

:+1 = arg max
c8ℎ ∈Π8ℎ

[
!
81:ℎ
π:

(
c
81:ℎ−1
:+1 , c8ℎ

)
− a�max

KL

(
c
8ℎ
:
, c8ℎ

)]
,

where Π8ℎ is a subset of safe policies of agent 8ℎ , given by

Π
8ℎ
=

{
c8ℎ ∈ Π8ℎ

�� �max
KL (c

8ℎ
:
, c8ℎ) ≤ X8ℎ , and

�
8ℎ
9
(π:) + !8ℎ9 ,π: (c

8ℎ) + a8ℎ
9
�max

KL (c
8ℎ
:
, c8ℎ) ≤ 28ℎ

9
−
ℎ−1∑
;=1

a
8;
9
�max

KL (c
8;
:
, c8;),∀ 9 = 1, . . . , <8ℎ

}
.

9: end for
10: end for

In the above algorithm, in addition to sequentially maximising agents’ surrogate returns, the agents
must assure that their surrogate costs stay below the corresponding safety thresholds. Meanwhile,
they have to constrain their policy search to small local neighbourhoods (w.r.t max-KL distance).
As such, Algorithm 1 demonstrates two desirable properties: reward performance improvement and
satisfaction of safety constraints, which we justify in the following theorem.

Theorem 1. If a sequence of joint policies (π:)∞:=0 is obtained from Algorithm 1, then it has the
monotonic improvement property, � (π:+1) ≥ � (π:), as well as it satisfies the safety constraints,
�8
9
(π:) ≤ 289 , for all : ∈ ℕ, 8 ∈ N , and 9 ∈ {1, . . . , <8}.

See proof in Appendix B. The above theorem assures that agents that follow Algorithm 1 will only
explore safe policies; meanwhile, every new policy will be guaranteed to result in performance
improvement. These two properties hold under the conditions that only restrictive policy updates
are made; this is due to the KL-penalty term in every agent’s objective (i.e., a�max

KL (c
8ℎ
:
, c8ℎ)), as well

as the constraints on cost surrogates (i.e., the conditions in Π
8ℎ). In practice, it can be intractable to

evaluate �KL
(
c
8ℎ
:
(·|B), c8ℎ (·|B)

)
at every state in order to compute �max

KL (c
8ℎ
:
, c8ℎ). In the following

subsections, we describe how we can approximate Algorithm 1 in the case of parameterised policies,
similar to TRPO/PPO implementations (Schulman et al., 2015; 2017).

5

Under review as a conference paper at ICLR 2022

4.2 MACPO: MULTI-AGENT CONSTRAINED POLICY OPTIMISATION

Here we focus on the practical settings where large state and action spaces prevent agents from des-
ignating policies c8 (·|B) for each state separately. To handle this, we parameterise each agent’s c8

\ 8

by a neural network \8 . Correspondingly, the joint policies πθ are parametrised by θ = (\1, . . . , \=).
Let’s recall that at every iteration of Algorithm 1, every agent 8ℎ maximises its surrogate return with
a KL-penalty, subject to surrogate cost constraint. Yet, direct computation of the max-KL constraint
is intractable in practical settings, as it would require computation of KL-divergence at every single
state. Instead, one can relax it by adopting a form of expected KL-constraint �KL (c8ℎ: , c

8ℎ) ≤ X

where �KL (c8ℎ: , c
8ℎ) , �s∼dπ:

[
�KL (c8ℎ: (·|s), c

8ℎ (·|s))
]
. Such an expectation can be approximated

by stochastic sampling. As a result, the optimisation problem solved by agent 8ℎ is written as

\
8ℎ
:+1 = arg max

\ 8ℎ

�s∼dπθ: ,a
81:ℎ−1∼π81:ℎ−1

θ
81:ℎ−1
:+1

,a8ℎ∼c8ℎ
\
8ℎ

[
�8ℎπθ:

(
s, a81:ℎ−1 , a8ℎ

)]
s.t. �

8ℎ
9

(
πθ:

)
+ �s∼dπθ: ,a

8ℎ∼c8ℎ
\
8ℎ
:

[
�
8ℎ
9 ,πθ:

(
s, a8ℎ

)]
≤ 28ℎ

9
, ∀ 9 ∈ {1, . . . , <8ℎ },

and �KL
(
c
8ℎ
:
, c8ℎ

)
≤ X. (3)

We can further approximate Equation (3) by Taylor expansion of the optimisation objective and cost
constraints up to the first order, and the KL-divergence up to the second order. Consequently, the
optimisation problem can be written as

\
8ℎ
:+1 = arg max

\ 8ℎ

(
g8ℎ

)) (
\8ℎ − \8ℎ

:

)
s.t. 3

8ℎ
9
+

(
b8ℎ
9

)) (
\8ℎ − \8ℎ

:

)
≤ 0, 9 = 1, . . . , <

and
1
2

(
\8ℎ − \8ℎ

:

))
H 8ℎ

(
\8ℎ − \8ℎ

:

)
≤ X, (4)

where g8ℎ is the gradient of the objective of agent 8ℎ in Equation (3), 38
9
= �8

9
(πθ:) − 289 , and

H 8ℎ = ∇2
\ 8ℎ
�KL (c8ℎ

\
8ℎ
:

, c8ℎ)
��
\ 8ℎ=\

8ℎ
:

is the Hessian of the average KL divergence of agent 8ℎ , and b8ℎ
9

is the gradient of agent of the 9 th constraint of agent 8ℎ .

Similar to Chow et al. (2017) and Achiam et al. (2017), one can take a primal-dual optimisation
approach to solve the linear quadratic optimisation in Equation (4). Specifically, the dual form can
be written as:

max
_8ℎ ≥0,v8ℎ �0

−1
2_8ℎ

[
(g8ℎ)) (H 8ℎ)−1g8ℎ − 2(r8ℎ)) v8ℎ + (v8ℎ))S8ℎ

]
+ (v8ℎ)) c8ℎ − _

8ℎX

2
,

where r8ℎ , (g8ℎ)) (H 8ℎ)−1B8ℎ ,B8ℎ =

[
b8ℎ1 , . . . , b

8ℎ
<

]
and S8ℎ , (B8ℎ)) (H 8ℎ)−1B8ℎ . (5)

Given the solution to the dual form in Equation (5), i.e., _8ℎ∗ and v8ℎ∗ , the solution to the primal
problem in Equation (4) can thus be written by

\
8ℎ
∗ = \

8ℎ
:
+ 1
_
8ℎ
∗

(
H 8ℎ

)−1 (
g8ℎ −B8ℎv8ℎ∗

)
.

In practice, we use backtracking line search starting at 1/_8ℎ∗ to choose the step size of the above
update. Furthermore, we note that the optimisation step in Equation (4) is an approximation to the
original problem from Equation (3); therefore, it is possible that an infeasible policy c

\
8ℎ
:+1

will be

generated. Fortunately, as the policy optimisation takes place in the trust region of c8ℎ
\
8ℎ
:

, the size of

update is small, and a feasible policy can be easily recovered. In particular, for problems with one
safety constraint, i.e., <8ℎ = 1, one can recover a feasible policy by applying a TRPO step on the
cost surrogate, written as

\
8ℎ
:+1 = \

8ℎ
:
− U 9

√
2X

b8ℎ) (H 8ℎ)−1b8ℎ

(
H 8ℎ

)−1
b8ℎ (6)

6

Under review as a conference paper at ICLR 2022

where U 9 is adjusted through backtracking line search. To put it together, we refer to this algorithm
as MACPO, and provide its pseudocode in Appendix D.

4.3 MAPPO-LAGRANGIAN

In addition to MACPO, one can use Lagrangian multipliers in place of optimisation with linear
and quadratic constraints to solve Equation (3). The Lagrangian method is simple to implement,
and it does not require computations of the Hessian H 8ℎ whose size grows quadratically with the
dimension of the parameter vector \8ℎ .

Before we proceed, let us briefly recall the optimisation procedure with a Lagrangian multiplier.
Suppose that our goal is to maximise a bounded real-valued function 5 (G) under a constraint 6(G);
maxG 5 (G), s.t. 6(G) ≤ 0. We can introduce a scalar variable _ and reformulate the optimisation by

max
G

min
_≥0

5 (G) − _6(G). (7)

Suppose that G+ satisfies 6(G+) > 0. This immediately implies that −_6(G+) → −∞, as _ → +∞,
and so Equation (7) equals −∞ for G = G+. On the other hand, if G− satisfies 6(G−) ≤ 0, we have
that −_6(G−) ≥ 0, with equality only for _ = 0. In that case, the optimisation objective’s value
equals 5 (G−) > −∞. Hence, the only candidate solutions to the problem are those G that satisfy the
constraint 6(G) ≤ 0, and the objective matches with 5 (G).
We can employ the above trick to the constrained optimisation problem from Equation (3) by sub-
suming the cost constraints into the optimisation objective with Lagrangian multipliers. As such,
agent 8ℎ computes _̄8ℎ1:<8ℎ and \8ℎ

:+1 to solve the following min-max optimisation problem

min
_
8ℎ

1:<8ℎ
≥0

max
\ 8ℎ

[
�s∼dπθ: ,a

81:ℎ−1∼π81:ℎ−1
θ
81:ℎ−1
:+1

,a8ℎ∼c8ℎ
\
8ℎ

[
�8ℎπθ:

(
s, a81:ℎ−1 , a8ℎ

)]
−
<8ℎ∑
D=1

_8ℎD

(
�s∼dπθ: ,a

8ℎ∼c8ℎ
\
8ℎ

[
�8ℎD,πθ:

(
s, a8ℎ

)]
+ 38ℎD

)]
,

s.t. �KL

(
c
8ℎ

\
8ℎ
:

, c
8ℎ

\ 8ℎ

)
≤ X. (8)

Although the objective from Equation (8) is affine in the Lagrangian multipliers _8ℎD (D = 1, . . . , <8ℎ),
which enables gradient-based optimisation solutions, computing the KL-divergence constraint still
complicates the overall process. To handle this, one can further simplify it by adopting the PPO-clip
objective (Schulman et al., 2017), which enables replacing the KL-divergence constraint with the
clip operator, and update the policy parameter with first-order methods. We do so by defining

�
8ℎ , (_)
πθ:

(
B,a81:ℎ−1 , 08ℎ

)
, �8ℎπθ:

(
B,a81:ℎ−1 , 08ℎ

)
−
<8ℎ∑
D=1

_8ℎD

(
�8ℎD,πθ:

(
B, 08ℎ

)
+ 38ℎD

)
,

and rewriting the Equation (8) as

min
_
8ℎ

1:<8ℎ
≥0

max
\ 8ℎ

�s∼dπθ: ,a
81:ℎ−1∼π81:ℎ−1

θ
81:ℎ−1
:+1

,a8ℎ∼c8ℎ
\
8ℎ

[
�
8ℎ , (_)
πθ:

(
s, a81:ℎ−1 , a8ℎ

)]
,

s.t. �KL

(
c
8ℎ

\
8ℎ
:

, c
8ℎ

\ 8ℎ

)
≤ X. (9)

The objective in Equation (9) takes a form of an expectation with quadratic constraint on the policy.
Up to the error of approximation of KL-constraint with the clip operator, it can be equivalently
transformed into an optimisation of a clipping objective. Finally, the objective takes the form of

�s∼dπθ: ,a
81:ℎ−1∼π81:ℎ−1

θ
81:ℎ−1
:+1

,a8ℎ∼c8ℎ
\
8ℎ
:

[
min

(
c
8ℎ

\ 8ℎ
(a8ℎ |s)

c
8ℎ

\
8ℎ
:

(a8ℎ |s)
�
8ℎ , (_)
πθ:

(
s, a81:ℎ−1 , a8ℎ

)
,

clip
(
c
8ℎ

\ 8ℎ
(a8ℎ |s)

c
8ℎ

\
8ℎ
:

(a8ℎ |s)
, 1 ± n

)
�
8ℎ , (_)
πθ:

(
s, a81:ℎ−1 , a8ℎ

))]
. (10)

7

Under review as a conference paper at ICLR 2022

(a) (b) (c)
Figure 1: Example tasks in Safe Multi-Agent MuJoCo Environment. (a): Safe 2x4-Ant, (b): Safe
4x2-Ant, (c): Safe 2x3-HalfCheetah. Body parts of different colours are controlled by different
agents. Agents jointly learn to manipulate the robot, while avoiding crashing into unsafe red areas.

The clip operator replaces the policy ratio with 1 − n , or 1 + n , depending on whether its value is
below or above the threshold interval. As such, agent 8ℎ can learn within its trust region by updating
\8ℎ to maximise Equation (10), while the Lagrangian multipliers are updated towards the direction
opposite to their gradients of Equation (8), which can be computed analytically. We refer to this
algorithm as MAPPO-Lagrangian, and give a detailed pseudocode of it in Appendix E.

5 EXPERIMENTS

Although MARL researchers have long had a variety of environments to test different algorithms,
such as StarCraftII (Samvelyan et al., 2019) and Multi-Agent MuJoCo (Peng et al., 2020), no public
safe MARL benchmark has been proposed; this impedes researchers from evaluating and bench-
marking safety-aware multi-agent learning methods. As a key contribution of this paper, we intro-
duce Safe Multi-Agent MuJoCo Benchmark, a safety-aware extension of the MuJoCo environment
that is designed for safe MARL research. We show example tasks in Figure 1, in our environment,
safety-aware agents have to learn not only skilful manipulations of a robot, but also to avoid crashing
into unsafe obstacles and positions. For more details of the setup, please refer to Appendix F.

We use Safe MAMuJoCo to examine if the MACPO/MAPPO-Lagrangian agents can satisfy
their safety constraints and cooperatively learn to achieve high rewards, compared to existing
MARL algorithms. Notably, our proposed methods adopt two different approaches for achieving
safety. MACPO reaches safety via hard constraints and backtracking line search, while MAPPO-
Lagrangian maintains a rather soft safety awareness by performing gradient descents on the PPO-
clip objective. Figure 2 shows cost and reward performance comparisons between MACPO,
MAPPO-Lagrangian, MAPPO (Yu et al., 2021), IPPO (de Witt et al., 2020), and HAPPO (Kuba
et al., 2021a) algorithms on three challenging tasks. Figure 2 should be interpreted at three-folds;
each subfigure represents a different robot, within each subfigure, three task setups in terms of multi-
agent control are considered, for each task, we plot the cost curves (the lower the better) in the upper
row, and plot the reward curves (the higher the better) in the bottom row. Detailed hyperparameter
settings are described in Appendix H.

The experiments reveal that both MACPO and MAPPO-Lagrangian quickly learn to satisfy safety
constraints, and keep their explorations within the feasible policy space. This stands in contrast to
IPPO, MAPPO, and HAPPO which largely violate the constraints thus being unsafe. Furthermore,
our algorithms achieve comparable reward scores; both methods are often better than IPPO. In
general, the performance (in terms of reward) of MAPPO-Lagrangian is better than of MACPO;
moreover, MAPPO-Lagrangian outperforms the unconstrained MAPPO on challenging Ant tasks.
We note that on none of the tasks the reward of HAPPO was exceeded though it is unsafe.

6 CONCLUSION

In this paper, we tackled multi-agent policy optimisation problems with safety constraints. Central
to our findings is the safe multi-agent policy iteration procedure that attains theoretically-justified
monotonic improvement guarantee and constraints satisfaction guarantee at every iteration during
learning. Based on this, we proposed two practical algorithms: MACPO and MAPPO-Lagrangian.
To demonstrate their effectiveness, we introduced a new benchmark suite of Safe Multi-Agent Mu-
JoCo and compared our methods against strong MARL baselines. Results show that both of our
methods can significantly outperform existing state-of-the-art methods such as IPPO, MAPPO and
HAPPO in terms of safety, meanwhile maintaining comparable performance in terms of reward.

8

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
 C

os
t

ManyAgent Ant 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
 C

os
t

ManyAgent Ant 3x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
 C

os
t

ManyAgent Ant 6x1
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

500

0

500

1000

1500

2000

2500

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

ManyAgent Ant 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

500

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

ManyAgent Ant 3x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

1000

500

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

ManyAgent Ant 6x1
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

(a) Safe ManyAgent Ant: 2x3-Agent (left), 3x2-Agent (middle), 6x1-Agent (right)

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

50

100

150

200

250

300

350

400

Av
er

ag
e

Ep
iso

de
 C

os
t

Ant 2x4

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

Av
er

ag
e

Ep
iso

de
 C

os
t

Ant 4x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

50

100

150

200

250

300

350

Av
er

ag
e

Ep
iso

de
 C

os
t

Ant 2x4d
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

Ant 2x4

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

Ant 4x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

500

1000

1500

2000

2500

3000

3500
Av

er
ag

e
Ep

iso
de

 R
ew

ar
d

Ant 2x4d
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

(b) Safe Ant: 2x4-Agent (left), 4x2-Agent (middle), 2x4d-Agent (right)

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
 C

os
t

HalfCheetah 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
 C

os
t

HalfCheetah 3x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

500

600

700

Av
er

ag
e

Ep
iso

de
 C

os
t

HalfCheetah 6x1
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

1000

2000

3000

4000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

HalfCheetah 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

1000

2000

3000

4000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

HalfCheetah 3x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

1000

2000

3000

4000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

HalfCheetah 6x1
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

(c) Safe HalfCheetah: 2x3-Agent (left), 3x2-Agent (middle), 6x1-Agent (right)

Figure 2: Performance comparisons on tasks of Safe ManyAgent Ant, Safe Ant, and Safe HalfChee-
tah in terms of cost (the first row) and reward (the second row). The safety constraint values are: 1
for ManyAgent Ant, 0.2 for Ant, and 5 for HalfCheetah. Our methods consistently achieve almost
zero costs, thus satisfying safe constraints, on all tasks. In terms of reward, our methods outperform
IPPO and MAPPO on some tasks but underperform HAPPO, which is also an unsafe algorithm.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2016.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Control barrier certificates for safe
swarm behavior. IFAC-PapersOnLine, 48(27):68–73, 2015.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained re-
inforcement learning with percentile risk criteria. The Journal of Machine Learning Research, 18
(1):6070–6120, 2017.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. arXiv preprint arXiv:1805.07708, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Xiaotie Deng, Yuhao Li, David Henry Mguni, Jun Wang, and Yaodong Yang. On the complex-
ity of computing markov perfect equilibrium in general-sum stochastic games. arXiv preprint
arXiv:2109.01795, 2021.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and
Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv
preprint arXiv:2109.11251, 2021a.

Jakub Grudzien Kuba, Muning Wen, Yaodong Yang, Linghui Meng, Shangding Gu, Haifeng Zhang,
David Henry Mguni, and Jun Wang. Settling the variance of multi-agent policy gradients. arXiv
preprint arXiv:2108.08612, 2021b.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Basar, and Lior Horesh. Decentralized policy
gradient descent ascent for safe multi-agent reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 8767–8775, 2021.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes. In Pro-
ceedings of the 29th International Coference on International Conference on Machine Learning,
pp. 1451–1458, 2012.

10

Under review as a conference paper at ICLR 2022

Bei Peng, Tabish Rashid, Christian A Schroeder de Witt, Pierre-Alexandre Kamienny, Philip HS
Torr, Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. arXiv preprint arXiv:2003.06709, 2020.

David Pollard. Asymptopia: an exposition of statistical asymptotic theory. 2000. URL http://www.
stat. yale. edu/pollard/Books/Asymptopia, 2000.

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-agent
control with decentralized neural barrier certificates. In International Conference on Learning
Representations, 2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7, 2019.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approximation. In NIPs, volume 99, pp. 1057–
1063. Citeseer, 1999.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Honghao Wei, Xin Liu, and Lei Ying. A provably-efficient model-free algorithm for constrained
markov decision processes. arXiv preprint arXiv:2106.01577, 2021.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theo-
retical perspective. arXiv preprint arXiv:2011.00583, 2020.

Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and Weinan Zhang.
Multi-agent determinantal q-learning. In International Conference on Machine Learning, pp.
10757–10766. PMLR, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955,
2021.

11

Under review as a conference paper at ICLR 2022

Moritz A. Zanger, Karam Daaboul, and J. Marius Zöllner. Safe continuous control with constrained
model-based policy optimization, 2021.

Wenbo Zhang, Osbert Bastani, and Vijay Kumar. Mamps: Safe multi-agent reinforcement learning
via model predictive shielding. arXiv preprint arXiv:1910.12639, 2019.

12

Under review as a conference paper at ICLR 2022

Appendices

A Proofs of preliminary results 14

B Auxiliary Results for Algorithm 1 15

C Auxiliary Results for Implementation of MACPO 17

D MACPO 18

E MAPPO-Lagrangian 19

F Safe Multi-Agent MuJoCo 20

G Experiments in Safe Many-Agent Ant Environments 21

H Details of Settings for Experiments 22

13

Under review as a conference paper at ICLR 2022

A PROOFS OF PRELIMINARY RESULTS

Lemma 1 (Multi-Agent Advantage Decomposition, Kuba et al. (2021b)). For any state B ∈ S,
subset of agents 81:ℎ ⊆ N , and joint action a81:ℎ , the following identity holds

�81:ℎ
π

(
B,a81:ℎ

)
=

ℎ∑
9=1

�
8 9
π

(
B,a81: 9−1 , 08 9

)
.

Proof. We write the multi-agent advantage as in its definition, and expand it in a telescoping sum.

�81:ℎ
π

(
B,a81:ℎ

)
= &81:ℎ

π

(
B,a81:ℎ

)
−+π (B)

=

ℎ∑
9=1

[
&
81: 9
π

(
B,a81: 9

)
−&81: 9−1

π

(
B,a81: 9−1

)]
=

ℎ∑
9=1

�
8 9
π

(
B,a81: 9−1 , 08 9

)
.

�

Lemma 2. Let π and π̄ be joint policies. Let 8 ∈ N be an agent, and 9 ∈ {1, . . . , <8} be an index
of one of its costs. The following inequality holds

�89 (π̄) ≤ �89 (π) + !89 ,π
(
c̄8

)
+ a89

=∑
ℎ=1

�max
KL

(
cℎ , c̄ℎ

)
, where a89 =

4WmaxB,08 |�89 ,π (B, 08) |
(1 − W)2

.

Proof. From the proof of Theorem 1 from Schulman et al. (2015) (in particular, equations (41)-(45)),
applied to joint policies π and π̄, we conclude that

�89 (π̄) ≤ �89 (π) + �s∼dπ ,a∼π̄
[
�89 ,π (s, a8)

]
+

4U2WmaxB,08 |�89 ,π (B, 08) |
(1 − W)2

,

where U = �max
TV (π, π̄) = max

B
�TV (π(·|B), π̄(·|B)) .

Using the inequality �TV (?, @)2 ≤ �KL (?, @) (Pollard, 2000; Schulman et al., 2015), we obtain

�89 (π̄) ≤ �89 (π) + �s∼dπ ,a∼π̄
[
�89 ,π (s, a8)

]
+

4WmaxB,08 |�89 ,π (B, 08) |
(1 − W)2

�max
KL (π, π̄),

where �max
KL (π, π̄) = max

B
�KL (π(·|B), π̄(·|B)) .

Notice now that we have �s∼dπ ,a∼π̄
[
�8
9 ,π (s, a8)

]
= �s∼dπ ,a8∼ c̄8

[
�8
9 ,π (s, a8)

]
, and

�max
KL (π, π̄) = max

B
�KL (π(·|B), π̄(·|B)) = max

B

(
=∑
;=1

�KL

(
c; (·|B), c̄; (·|B)

))
≤

=∑
;=1

max
B
�KL

(
c; (·|B), c̄; (·|B)

)
=

=∑
;=1

�max
KL

(
c; , c̄;

)
. (11)

Setting a8
9
=

4Wmax
B,08
|�8
9,π
(B,08) |

(1−W)2 , we finally obtain

�89 (π̄) ≤ �89 (π) + !89 ,π
(
c̄8

)
+ a89

=∑
;=1

�max
KL

(
c; , c̄;

)
.

�

14

Under review as a conference paper at ICLR 2022

B AUXILIARY RESULTS FOR ALGORITHM 1

Remark 1. In Algorithm 1, we compute the size of KL constraint as

X8ℎ = min

{
min
;≤ℎ−1

min
1≤ 9≤<;

2
8;
9
− �8;

9
(π:) − !8;9 ,π: (c

8;
:+1) − a

8;
9

∑ℎ−1
D=1 �

max
KL (c

D
:
, cD
:+1)

a
8;
9

,

min
;≥ℎ+1

min
1≤ 9≤<;

2
8;
9
− �8;

9
(π:) − a8;9

∑ℎ−1
D=1 �

max
KL (c

D
:
, cD
:+1)

a
8;
9

}
.

Note that X81 (i.e., ℎ = 1) is guaranteed to be non-negative if π: satisfies safety constraints; that is
because then 28;

9
≥ �8;

9
(π:) for all ; and 9 , and the set {; | ;<ℎ} is empty.

This formula for X8ℎ , combined with Lemma 2, assures that the policies c8ℎ within X8ℎ max-KL
distance from c

8ℎ
:

will not violate other agents’ safety constraints, as long as the base joint policy
π: did not violate them (which assures X81 ≥ 0). To see this, notice that for every ; = 1, . . . , ℎ − 1,
and 9 = 1, . . . , <; ,

�max
KL (c

8ℎ
:
, c8ℎ) ≤ X8ℎ ≤

2
8;
9
− �8;

9
(π:) − !8;9 ,π: (c

8;
:+1) − a

8;
9

∑ℎ−1
D=1 �

max
KL (c

D
:
, cD
:+1)

a
8;
9

,

implies �
8;
9
(π:) + !8;9 ,π: (c

8;
:+1) + a

8;
9

ℎ−1∑
D=1

�max
KL (c

D
: , c

D
:+1) + a

8;
9
�max

KL (c
8ℎ
:
, c8ℎ) ≤ 28;

9
.

By Lemma 2, the left-hand side of the above inequality is an upper bound of �8;
9
(π81:ℎ−1
:+1 , c8ℎ ,π−81:ℎ

:
),

which implies that the update of agent 8ℎ doesn’t violate the constraint of �8;
9

. The fact that the

constraints of �8;
9

for ; ≥ ℎ + 1 are not violated, i.e.,

�
8;
9
(π:) + a8;9

ℎ−1∑
D=1

�max
KL (c

D
: , c

D
:+1) + a

8;
9
�max

KL (c
8ℎ
:
, c8ℎ) ≤ 28;

9
, (12)

is analogous.

Theorem 1. If a sequence of joint policies (π:)∞:=0 is obtained from Algorithm 1, then it has the
monotonic improvement property, � (π:+1) ≥ � (π:), as well as it satisfies the safety constraints,
�8
9
(π:) ≤ 289 , for all : ∈ ℕ, 8 ∈ N , and 9 ∈ {1, . . . , <8}.

Proof. Safety constraints are assured to be met by Remark 1. It suffices to show the mono-
tonic improvement property. Notice that at every iteration : of Algorithm 1, c8ℎ

:
∈ Π8ℎ . Clearly

�max
KL (c

8ℎ
:
, c
8ℎ
:
) = 0 ≤ X8ℎ . Moreover,

�
8ℎ
9
(π:) + !8ℎ9 ,π: (c

8ℎ
:
) + a8ℎ

9
�max

KL (c
8ℎ
:
, c
8ℎ
:
) = �8ℎ

9
(π:) ≤ 28ℎ9 − a

8ℎ
9

ℎ−1∑
;=1

�max
KL (c

8;
:
, c
8;
:+1),

15

Under review as a conference paper at ICLR 2022

where the inequality is guaranteed by updates of previous agents, as described in Remark 1 (Inequal-
ity 12). By Theorem 1 from Schulman et al. (2015), we have

� (π:+1) ≥ � (π:) + �s∼dπ: ,a∼π:+1
[
�π: (s, a)

]
− a�max

KL (π: ,π:+1),
which by Equation 11 is lower-bounded by

≥ � (π:) + �s∼dπ: ,a∼π:+1
[
�π: (s, a)

]
−

=∑
ℎ=1

a�max
KL (c

8ℎ
:
, c
8ℎ
:+1)

which by Lemma 1 equals

= � (π:) +
=∑
ℎ=1

�s∼dπ: ,a
81:ℎ∼π81:ℎ

:+1

[
�8ℎπ: (s, a

81:ℎ−1 , a8ℎ)
]
−

=∑
ℎ=1

a�max
KL (c

8ℎ
:
, c
8ℎ
:+1)

= � (π:) +
=∑
ℎ=1

(
!81:ℎ
π:
(π81:ℎ−1
:+1 , c

8ℎ
:+1) − a�

max
KL (c

8ℎ
:
, c
8ℎ
:+1)

)
, (13)

and as for every ℎ, c8ℎ
:+1 is the argmax, this is lower-bounded by

≥ � (π:) +
=∑
ℎ=1

(
!81:ℎ
π:
(π81:ℎ−1
:+1 , c

8ℎ
:
) − a�max

KL (c
8ℎ
:
, c
8ℎ
:
)
)
,

which, as follows from Definition 1, equals

= J (πk) +
=∑
ℎ=1

0 = � (π:), which finishes the proof.

�

16

Under review as a conference paper at ICLR 2022

C AUXILIARY RESULTS FOR IMPLEMENTATION OF MACPO

Theorem 2. The solution to the following problem

p∗ = min
G
g)x

s.t. b)x + 2 ≤ 0
x)Hx ≤ X,

where g, b,x ∈ ℝ=, 2, X ∈ ℝ, X > 0,H ∈ �=, andH � 0. When there is at least one strictly feasible
point, the optimal point x∗ satisfies:

x∗ = − 1
_∗
H−1

(
g) + E∗b

)
where _∗ and E∗ are defined by

E∗ =

(
_∗2 − A
B

)
+

_∗ = arg max
_≥0

{
50 (_) , 1

2_

(
A2

B
− @

)
+ _2

(
22

B
− X

)
− A2

B
if _2 − A > 0

51 (_) , − 1
2
(@
_
+ _X

)
otherwise

where q = g)H−1g, r = g)H−1b, and s = b)H−1b.

Furthermore, let Λ0 , {_ | _2 − A > 0, _ ≥ 0}, and Λ1 , {_ | _2 − A ≤ 0, _ ≥ 0}. The value of _∗
satisfies

_∗ ∈
_0∗ , Proj ©­«

√
@ − A2/B
X − 22/B

,Λ0
ª®¬ , _1∗ , Proj

(√
@

X
,Λ1

) (14)

where _∗ = _0∗ if 50
(
_0∗

)
> 51

(
_1∗

)
and _∗ = _∗ otherwise, and Proj(0,S) is the projection of a

point G on to a set S. Note the projection of a point G ∈ ℝ onto a convex segment of ℝ, [0, 1], has
value Proj(G, [0, 1]) = max(0,min(1, G)).

Proof. See Achiam et al. (2017) (Appendix 10.2). �

17

Under review as a conference paper at ICLR 2022

D MACPO

Algorithm 2: MACPO
1: Input: Stepsize U, batch size �, number of: agents =, episodes , steps per episode) , possible

steps in line search !.
2: Initialize: Actor networks {\80, ∀8 ∈ N}, Global V-value network {q0}, Individual + 8-cost

networks {q8
9 ,0}8=1:=, 9=1:<, Replay buffer B

3: for : = 0, 1, . . . , − 1 do
4: Collect a set of trajectories by running the joint policy πθ: = (c1

\1
:

, . . . , c=
\=
:

).
5: Push transitions {(>8C , 08C , >8C+1, AC),∀8 ∈ N , C ∈)} into B.
6: Sample a random minibatch of " transitions from B.
7: Compute advantage function �̂(s, a) based on global V-value network with GAE.
8: Compute cost-advantage functions �̂8

9
(s, a8) based on individual + 8-cost critics with GAE.

9: Draw a random permutation of agents 81:=.
10: Set " 81 (s, a) = �̂(s, a).
11: for agent 8ℎ = 81, . . . , 8= do
12: Estimate the gradient of the agent’s maximisation objective

ĝ8ℎ
:
= 1
�

�∑
1=1

)∑
C=1
∇
\
8ℎ
:

log c8ℎ
\
8ℎ
:

(
0
8ℎ
C | >

8ℎ
C

)
" 81:ℎ (BC ,aC).

13: for 9 = 1, . . . , <8ℎ do
14: Estimate the gradient of the agent’s 9 th cost

b̂8ℎ
9
= 1
�

�∑
1=1

)∑
C=1
∇
\
8ℎ
:

log c8ℎ
\
8ℎ
:

(
0
8ℎ
C |>

8ℎ
C

)
�̂
8ℎ
9
(BC , 08ℎC).

15: end for
16: Set B̂8ℎ =

[
b̂8ℎ1 , . . . , b̂

8ℎ
<

]
.

17: Compute Ĥ 8ℎ
:

, the Hessian of the average KL-divergence

1
�)

�∑
1=1

)∑
C=1
�KL

(
c
8ℎ

\
8ℎ
:

(·|>8ℎC), c
8ℎ

\ 8ℎ
(·|>8ℎC)

)
.

18: Solve the dual (5) for _8ℎ∗ , v8ℎ∗ .
Use the conjugate gradient algorithm to compute the update direction

x8ℎ
:
= (Ĥ 8ℎ

:
)−1

(
g8ℎ
:
− B̂8ℎv8ℎ∗

)
,

19: Update agent 8ℎ’s policy by
\
8ℎ
:+1 = \

8ℎ
:
+ U 9

_
8ℎ
∗
x̂8ℎ
:

,

where 9 ∈ {0, 1, . . . , !} is the smallest such 9 which improves the sample loss, and
satisfies the sample constraints, found by the backtracking line search.

20: if the approximate is not feasible then
21: Use equation (6) to recover policy \8ℎ

:+1 from unfeasible points.
22: end if

23: Compute " 81:ℎ+1 (s, a) =
c
8ℎ

\
8ℎ
:+1
(a8ℎ |o8ℎ)

c
8ℎ

\
8ℎ
:

(a8ℎ |o8ℎ) "
81:ℎ (sC , aC). //Unless ℎ = =.

24: end for
25: Update V-value network by following formula:

26: q:+1 = arg minq 1
N

1
)

N∑
==1

)∑
C=0

(
+q (BC) − '̂C

)2

27: end for

18

Under review as a conference paper at ICLR 2022

E MAPPO-LAGRANGIAN

Algorithm 3: MAPPO-Lagrangian
1: Input: Stepsizes U\ , U_, batch size �, number of: agents =, episodes , steps per episode) ,

discount factor W.
2: Initialize: Actor networks {\80, ∀8 ∈ N}, Global V-value network {q0},

V-cost networks {q8
9 ,0}

8∈N
1≤ 9≤<8 , Replay buffer B.

3: for : = 0, 1, . . . , − 1 do
4: Collect a set of trajectories by running the joint policy πθ: = (c1

\1
:

, . . . , c=
\=
:

).
5: Push transitions {(>8C , 08C , >8C+1, AC),∀8 ∈ N , C ∈)} into B.
6: Sample a random minibatch of � transitions from B.
7: Compute advantage function �̂(s, a) based on global V-value network with GAE.
8: Compute cost advantage functions �̂8

9
(s, a8) for all agents and costs,

based on V-cost networks with GAE.
9: Draw a random permutation of agents 81:=.

10: Set " 81 (s, a) = �̂(s, a).
11: for agent 8ℎ = 81, . . . , 8= do
12: Initialise a policy parameter \8ℎ = \8ℎ

:
,

and Lagrangian multipliers _8ℎ
9
= 0, ∀ 9 = 1, . . . , <8ℎ .

13: Make the Lagrangian modification step of objective construction

" 8ℎ , (_) (sC , aC) = " 8ℎ (sC , aC) −
=∑
9=1
_
8ℎ
9
�̂
8ℎ
9
(sC , a8ℎC).

14: for 4 = 1, . . . , 4PPO do
15: Differentiate the Lagrangian PPO-Clip objective

Δ\ 8ℎ =

∇\ 8ℎ 1
�

�∑
1=1

)∑
C=0

min ©­«
c
8ℎ

\
8ℎ

(
0
8ℎ
C |>

8ℎ
C

)
c
8ℎ

\
8ℎ
:

(
0
8ℎ
C |>

8ℎ
C

)" 8ℎ , (_) (BC ,aC), clip ©­«
c
8ℎ

\
8ℎ

(
0
8ℎ
C |>

8ℎ
C

)
c
8ℎ

\
8ℎ
:

(
0
8ℎ
C |>

8ℎ
C

) , 1 ± nª®¬" 8ℎ , (_) (BC ,aC)
ª®¬.

16: Update temprorarily the actor paramaters
\8ℎ ← \8ℎ + U\Δ\ 8ℎ .

17: for 9 = 1, . . . , <8ℎ do
18: Approximate the constraint violation

3
8ℎ
9
= 1
�)

�∑
1=1

)∑
C=1
+̂
8ℎ
9
(BC) − 28ℎ9 .

19: Differentiate the constraint

Δ_
8ℎ
9
= −1

�

�∑
1=1

©­«38ℎ9 (1 − W) +
)∑
C=0

c
8ℎ

\
8ℎ
(08ℎC |>

8ℎ
C)

c
8ℎ

\
8ℎ
:

(08ℎC |>
8ℎ
C)
�̂
8ℎ
9
(BC , 08ℎC)

ª®¬.

20: end for
21: for 9 = 1, . . . , <8ℎ do
22: Update temporarily the Lagrangian multiplier

_
8ℎ
9
← ReLU

(
_
8ℎ
9
− U_Δ_8ℎ9

)
.

23: end for
24: end for
25: Update the actor parameter \8ℎ

:+1 = \
8ℎ .

26: Compute " 8ℎ+1 (s, a) =
c
8ℎ

\
8ℎ
:+1
(a8ℎ |o8ℎ)

c
8ℎ

\
8ℎ
:

(a8ℎ |o8ℎ) "
8ℎ (s, a). //Unless ℎ = =.

27: end for
28: Update V-value network (and V-cost networks analogously) by following formula:

29: q:+1 = arg minq 1
�)

�∑
1=1

)∑
C=0

(
+q (BC) − '̂C

)2

30: end for

19

Under review as a conference paper at ICLR 2022

F SAFE MULTI-AGENT MUJOCO

Safe MAMuJoCo is an extension of MAMuJoCo (Peng et al., 2020). In particular, the background
environment, agents, physics simulator, and the reward function are preserved. However, as oppose
to its predecessor, Safe MAMuJoCo environments come with obstacles, like walls or bombs. Fur-
thermore, with the increasing risk of an agent stumbling upon an obstacle, the environment emits
cost (Brockman et al., 2016). According to the scheme from Zanger et al. (2021), we characterise
the cost functions for each task below.

MANYAGENT ANT & ANT

The width of the corridor set by two walls is 9<(ManyAgent Ant), The width of the corridor set by
three folding line walls with an angle of 30 degrees is 10<(Ant). The environment emits the cost of
1 for an agent, if the distance between the robot and the wall is less than 1.8<, or when the robot
topples over. This can be described as

cC =
{
0, for 0.2 ≤ ztorso ,C+1 ≤ 1.0 and

xtorso ,C+1 − xwall

2 ≥ 1.8
1, otherwise .

where ztorso ,C+1 is the robot’s torso’s I-coordinate, and xtorso ,C+1 is the robot’s torso’s G-coordinate,
at time C + 1; xwall is the G-coordinate of the wall.

Figure 3: ManyAgent Ant 3x2 with a corridor and Ant 4x2 with three corridors.

HALFCHEETAH & COUPLE HALFCHEETAH

In these tasks, the agents move inside a corridor (which constraints their movement, but does not
induce costs). Together with them, there are bombs moving inside the corridor. If an agent finds
itself too close to a bomb, the distance between an agent and a bomb is less than 9<, a cost of 1 will
be emitted.

cC =
{
0, for

ytorso ,C+1 − yobstacle

2 ≥ 9
1, otherwise .

where ytorso ,C+1 is the H-coordinate of the robot’s torso, and yobstacle is the H-coordinate of the
moving obstacle.

Figure 4: HalfCheetah 2x3 and Couple HalfCheetah 1P1.

20

Under review as a conference paper at ICLR 2022

G EXPERIMENTS IN SAFE MANY-AGENT ANT ENVIRONMENTS

We provide additional results on the Safe Many-Agent ant tasks.

The width of the corridor is 12<; its walls fold at the angle of 30 degrees. The environment emits
the cost of 1 for an agent, if the distance between the robot and the wall is less than 1.8<, or when
the robot topples over. This can be described as

cC =
{
0, for 0.2 ≤ ztorso ,C+1 ≤ 1.0 and

xtorso ,C+1 − xwall

2 ≥ 1.8
1, otherwise .

where ztorso ,C+1 is the robot’s torso’s I-coordinate, and xtorso ,C+1 is the robot’s torso’s G-coordinate,
at time C + 1; xwall is the G-coordinate of the wall.

Figure 5: Many-Agent Ant 3x2 with two folding line walls.

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

50

100

150

200

250

300

Av
er

ag
e

Ep
iso

de
 C

os
t

ManyAgent Ant 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

50

100

150

200

250

300

Av
er

ag
e

Ep
iso

de
 C

os
t

ManyAgent Ant 3x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

100

200

300

400

Av
er

ag
e

Ep
iso

de
 C

os
t

ManyAgent Ant 6x1
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

1000

2000

3000

4000

5000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

ManyAgent Ant 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

1000

2000

3000

4000

5000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

ManyAgent Ant 3x2

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

0

1000

2000

3000

4000

5000

Av
er

ag
e

Ep
iso

de
 R

ew
ar

d

ManyAgent Ant 6x1
HAPPO
MAPPO
MACPO (ours)
MAPPO-L (ours)
IPPO

Figure 6: Performance comparisons on tasks of Safe ManyAgent Ant in terms of cost (the first row)
and reward (the second row). The safety constraint values is set to 10. Our algorithms are the only
ones that learn the safety constraints, while achieving satisfying performance in terms of the reward.

21

Under review as a conference paper at ICLR 2022

H DETAILS OF SETTINGS FOR EXPERIMENTS

In this section, we introduce the details of settings for our experiments.
The code is available at https://github.com/Anonymous-ICLR2022/
Multi-Agent-Constrained-Policy-Optimisation

hyperparameters value hyperparameters value hyperparameters value

critic lr 5e-3 optimizer Adam num mini-batch 40
gamma 0.99 optim eps 1e-5 batch size 16000

gain 0.01 hidden layer 1 training threads 4
std y coef 0.5 actor network mlp rollout threads 16
std x coef 1 eval episodes 32 episode length 1000
activation ReLU hidden layer dim 64 max grad norm 10

Table 1: Common hyperparameters used for MAPPO-Lagrangian, MAPPO, HAPPO, IPPO, and
MACPO in the Safe Multi-Agent MuJoCo domain

Algorithms MAPPO-Lagrangian MAPPO HAPPO IPPO MACPO

actor lr 9e-5 9e-5 9e-5 9e-5 /
ppo epoch 5 5 5 5 /

kl-threshold / / / / 0.0065
ppo-clip 0.2 0.2 0.2 0.2 /

Lagrangian coef 0.78 / / / /
Lagrangian lr 1e-3 / / / /

fraction / / / / 0.5
fraction coef / / / / 0.27

Table 2: Different hyperparameters used for MAPPO-Lagrangian, MAPPO, HAPPO, IPPO, and
MACPO in the Safe Multi-Agent MuJoCo domain.

task value task value task value

Ant(2x4) 0.2 Ant(4x2) 0.2 Ant(2x4d) 0.2
HalfCheetah(2x3) 5 HalfCheetah(3x2) 5 HalfCheetah(6x1) 5

ManyAgent Ant(2x3) 1 ManyAgent Ant(3x2) 1 ManyAgent Ant(6x1) 1

Table 3: Safety bound used for MACPO in the Safe Multi-Agent MuJoCo domain

22

https://github.com/Anonymous-ICLR2022/Multi-Agent-Constrained-Policy-Optimisation
https://github.com/Anonymous-ICLR2022/Multi-Agent-Constrained-Policy-Optimisation

	Introduction
	Related Work
	Problem Formulation: Constrained Markov Game
	Multi-Agent Constrained Policy Optimisation
	Multi-agent Trust Region Learning With Constraints
	MACPO: Multi-Agent Constrained Policy Optimisation
	MAPPO-Lagrangian

	Experiments
	Conclusion
	Proofs of preliminary results
	Auxiliary Results for Algorithm 1
	Auxiliary Results for Implementation of MACPO
	MACPO
	MAPPO-Lagrangian
	Safe Multi-Agent MuJoCo
	Experiments in Safe Many-Agent Ant Environments
	Details of Settings for Experiments

