
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CROSS-MODAL MITIGATION OF SPURIOUS CORRELA-
TION FOR PROMPT-TUNING IN VLMS WITH CAUSALLY
MOTIVATED LOGIC ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have shown that pre-trained vision-language models can effectively
adapt to diverse downstream tasks through parameter-efficient prompt tuning. Un-
fortunately, the tuned models can exploit spurious correlations during prediction,
resulting in a failure to generalize to out-of-distribution test data, especially when
the tuning dataset exhibits bias. How to achieve cross-modal mitigation of spu-
rious correlations during prompt tuning of vision-language models remains an
open question. In this paper, the challenging problem is tackled by leveraging the
stable relationship between necessary and sufficient causal features and the corre-
sponding label. On the one hand, we constrain the learning process of prompt by
reinforcing the necessary and sufficient connection between the textual labels and
textual features. On the other hand, the probability of necessity and sufficiency
between the textual features and the filtered visual features is measured and max-
imized to enhance cross-modal feature alignment. By iteratively optimizing these
two objectives, we can achieve cross-modal mitigation of spurious correlations
because the logic equivalence between textual labels and visual features is bol-
stered. The theoretical analysis on generalization error indicates that our method
can achieve a tighter generalization error bound than existing approaches. We
evaluate the proposed method on several commonly adopted out-of-distribution
datasets, and the empirical results demonstrate the superiority of our method over
the state-of-the-art competitors.

1 INTRODUCTION

Vision-language models (VLMs), which integrate visual and textual data processing for complex
real-world tasks (Zhou et al., 2020; Radford et al., 2021; Zhao et al., 2024; Zhang et al., 2024c), have
become a cornerstone of multi-modal learning. Recent advancements have demonstrated the pow-
erful zero-shot generalization capabilities of pre-trained vision-language models (VLMs), enabling
them highly adaptable to a wide range of downstream tasks, especially image classification (Radford
et al., 2021). To harness the flexible adaptability of pre-trained VLMs, prompt tuning emerges as
a parameter-efficient tuning technique and has achieved significant success (Zhou et al., 2022b;a;
Chen et al., 2023). Rather than fine-tuning all model parameters, prompt tuning focuses on modi-
fying the text prompts while keeping the model’s pre-trained parameters largely intact. Optimizing
the learnable prompts can enhance the alignment between textual and visual representations, thereby
improving the performance of vision-language models.

It has been found that modern machine learning and data-driven models can easily rely on spurious
correlations to make prediction (Geirhos et al., 2020; Ye et al., 2024). Referring to statistical asso-
ciations between variables, spurious correlations arise from statistical bias and confounding factors
rather than representing a true causal relationship. Consequently, spurious correlations are unstable
and can vary across different data distributions. Thus, the performance of models utilizing spurious
correlations can degrade dramatically on test data when a distribution shift occurs between the train-
ing/tuning data and test data, even though they demonstrate perfect performance on training/tuning
data. In other words, models that employ spurious correlations exhibit poor out-of-distribution
(OOD) generalization performance. A further complication is that this issue is especially preva-
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lent in complex datasets where high-dimensional inputs, including image data and text data, may
contain hidden biases.

Although considerable efforts have been made to mitigate spurious correlations in both visual modal-
ity (Arjovsky et al., 2019; Creager et al., 2021; Yang et al., 2023b; Qiu et al., 2024) and textual
modality (Peyrard et al., 2022; Zhou et al., 2023), these methods are primarily designed for single-
modal learning and are not applicable to multi-modal learning. In contrast to single-modal learning,
the critical challenge of cross-modal mitigation of spurious correlations lies in how to organically
integrate mitigation in visual modality, mitigation in textual modality and cross-modal alignment
of representations.

Among recent studies, the cross-modal contrastive learning framework presented in (Yang et al.,
2023c) addresses the mitigation of spurious correlations in both textual and visual modalities while
requiring access to text descriptions of spurious features/objects. In general scenarios, spurious fea-
tures are typically latent and unobservable. Moreover, the method proposed in (Yang et al., 2023c),
which is designed for fine-tuning of VLMs and alters all model parameters, cannot be applied to
prompt tuning of VLMs. Besides, CoOPood (Zhang et al., 2024b) focuses on mitigating spurious
correlations in visual modality during prompt-tuning of VLMs. It overlooks the spurious corre-
lations in the textual modality. Furthermore, CoOPood relies on the assumption that the spurious
correlations between spurious features and the target label are approximately subject to uniform
probability distributions. Therefore, how to organically integrate mitigation in visual modality, miti-
gation in textual modality and cross-modal alignment of representations, without invoking unnatural
assumptions, remains an open problem.

Inspired by the causal intervention-based calculation of the probability of necessity and sufficiency
(PNS) between two variables (Tian & Pearl, 2000; Wang & Jordan, 2021; Yang et al., 2023b), we
introduce the concept logic alignment (i.e., alignment with necessity and sufficiency) to integrate
mitigation of spurious correlations and cross-modal alignment of representations organically for
prompt tuning of VLMs. The key insight is that logic equivalence (i.e., necessary and sufficient) not
only facilitates mitigation of spurious correlations (Wang & Jordan, 2021; Yang et al., 2023b), but
also enhances dimensionality-agnostic alignment between two variables. In the context of vision-
language models, the overall objective is to achieve the logic equivalence between visual causal rep-
resentations (denoted by Φv) and textual label (denoted by Y ), i.e., Y ⇔ Φv . Considering spurious
correlations can exist in both visual and textual modalities, the equivalence Y ⇔ Φv alone cannot
guarantee that the aligned textual representations exclude spurious features. Therefore, establishing
a stricter equivalence chain Y ⇔ Φt ⇔ Φv (where Φt represents textual causal representations) is
our final objective. Specifically, our framework can be divided into two components: 1) Y ⇔ Φt

eliminates the spurious correlations in textual modality; 2) Φt ⇔ Φv integrates mitigation of spuri-
ous correlations in visual modality and cross-modal alignment of representations organically when
Y ⇔ Φt excludes spurious features in Φt. In practical implementation, the logic equivalence be-
tween two variables is achieved by maximizing the probability of necessity and sufficiency (PNS)
between them. The main contributions of this work are summarized as follows:

• We introduce the concept logic alignment to address cross-modal mitigation of spurious
correlations for prompt-tuning in vision-language models. Capable of integrating miti-
gation of spurious correlations and cross-modal alignment of representations organically,
Logic alignment can serves as a promising technique for handling spurious correlations in
various multi-modal learning scenarios.

• We design a practical framework to calculate the PNS between the textual label and textual
representations, as well as the PNS between textual representations and visual representa-
tions. By maximizing these two PNS terms, the proposed objective can effectively achieve
cross-modal mitigation of spurious correlations for prompt-tuning in VLMs.

• The theoretical analysis proves that our method can yield a tighter generalization error
bound compared to existing approaches. Moreover, the detailed components of the derived
generalization error bound verify the importance of maximizing the two proposed PNS
terms from a theoretical perspective.

• The experimental results across diverse datasets demonstrate the superiority of the proposed
framework in out-of-distribution generalization performance, compared with the state-of-
the-art competitors.
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2 RELATED WORK

Causal Representation Learning Attaining causally invariant predictors over varied data distri-
butions is proposed in the field of causal inference Peters et al. (2016), and introduced into machine
learning to tackle the OOD generalization problem by IRM Arjovsky et al. (2019). Then, many ef-
forts are dedicated to facilitating the application of invariant representation learning to more general
scenarios. Some works focus on achieving invariant learning when the environment label is unavail-
able, e.g., EIIL Creager et al. (2021), HRM Liu et al. (2021a), KerHRM Liu et al. (2021b), ED-
NIL Huang et al. (2022) and ZIN Lin et al. (2022). IFM Chen et al. (2022b) lowers the requirement
on the number of available environments. Another branch Ahuja et al. (2021); Chen et al. (2022a);
Huh & Baidya (2022) completes the constraints that IRM misses. Besides, iCaRL Lu et al. (2022)
extends causal representation learning to non-linear causal representations while ACTIR Jiang &
Veitch (2022) extends causal representation learning to anti-causal scenarios. Causal representation
learning is also applied to graph representation learning Li et al. (2022); Chen et al. (2022c) and
natural language modeling Peyrard et al. (2022). These methods are devised for handling spurious
correlations in single-modal learning scenarios.

Prompt Tuning of Vision-Language Models The typical vision-language model, CLIP (Radford
et al., 2021) is trained using a contrastive learning framework where textual and visual representa-
tions are aligned by maximizing the cosine similarity between the image and text embeddings of cor-
rect pairs. To fully exploit the powerful adaptation capability, prompt tuning is proposed to improve
the performance of pre-trained vision-language models (e.g., CLIP) on downstream task (Zhou et al.,
2022b;a). Among these attempts, CoOp (Zhou et al., 2022b) designs learnable prompts to adjust the
mapping from textual label to textual representations and greatly improves the performance of pre-
trained CLIP on downstream visual tasks. Furthermore, CoCoOp (Zhou et al., 2022a) introduce a
image-conditional context generator to improve the zero-shot generalization performance of CoOp.
Subsequently, MaPLe (Khattak et al., 2023a) adopts both textual and visual learnable prompts to
enhance the alignment of textual and visual representations in downstream tasks. Another prevalent
line of works utilize fine-grained learnable textual prompt to tackle the imbalance between textual
and visual modalities (Chen et al., 2023; Shen et al., 2024; Li et al., 2024). All above prompt tun-
ing methods do not consider the mitigation of spurious correlations in vision-language models. In
particular, CoOPood (Zhang et al., 2024b) is proposed as a pioneering work focusing on mitigating
spurious correlations in visual modality during prompt-tuning of VLMs. However, it overlooks the
spurious correlations in the textual modality. Moreover, CoOPood relies on the assumption that the
spurious correlations between spurious features and the target label are approximately subject to
uniform probability distributions, which limits the applicability of CoOPood to general scenarios.

3 PRELIMINARY

We introduce the background knowledge about prompt tuning of VLMs and causally motivated
calculation for probability of necessity and sufficiency (i.e., PNS) in this section.

3.1 PROMPT TUNING OF CLIP

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) maintains two separate en-
coder: text encoder extracting textual representations from the text input and image encoder drawing
visual representations from the image input. Textual and visual representations are aligned by con-
ducting contrastive learning based on the language-image data pairs. For the sake of simplicity,
we denote the text encoder as f and image encoder as g in CLIP. With a handcrafted prompt (e.g.,
a photo of a [CLASS]) input into the frozen text encoder, the pre-trained CLIP can be deployed
to downstream image classification tasks. Specifically, input images are fed to the image encoder,
while the text prompt is input into the text encoder. Suppose “[CLASS]” has K categories in current
downstream task, the pre-trained CLIP can make a probability prediction for input image x by

p(k | x) = exp(sim(zkt , g(x))/τ)∑K
j=1 exp(sim(zjt , g(x))/τ)

(1)

where zjt , j ∈ 1, 2, ...,K denotes text feature generated for class j by the text encoder f . sim(a, b)
denotes the cosine similarity between two vector a and b while τ is the temperature parameter.
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In order to improve the performance of pre-trained CLIP in downstream tasks, CoOp (Zhou et al.,
2022b) introduces learnable text prompt to amend the mapping from text labels to textual represen-
tations. Suppose the learnable context is denoted as Q = [q1, q2, ..., qN ], the complete text input
can be written as QC = [q1, q2, ..., qN ,CLASS]. When the text input QC = [Q,CLASS] is fed
to the frozen text encoder, the corresponding textual feature vector for class k can be written by
zkt = f([Q, k]). For each instance (xi, yj) in the tuning dataset DS := {(xi, yi)}mi=1, the model can
provide a prediction by p(yi | xi) = exp(sim(f([Q,yi]),g(xi))/τ)∑K

j=1 exp(sim(f([Q,j]),g(xi))/τ)
. The learnable text prompt is

optimized by solving the following objective:

min
Q

LCE−logit := −
∑

(xi,yi)∈DS

yi log p(yi | xi). (2)

Since only text prompt is learnable while both text and image encoder are frozen during the tuning
stage, prompt tuning is a parameter-efficient tuning scheme and has gained great success.

3.2 PROBABILITY OF NECESSITY AND SUFFICIENCY (PNS)

Probability of Necessity and Sufficiency (PNS) describe the probability with which a variable is the
necessary and sufficient cause of another variable. The formal definition of PNS is given as follows.
Definition 3.1 (Probability of Necessity and Sufficiency (Pearl, 2009)). Let the specific implemen-
tations of causal variable Φ as ϕ and ϕ̄, where ϕ ̸= ϕ̄. The probability with which variable Φ is the
necessary and sufficient cause of variable Y on test data distribution PT is given by:

PNS(Y,Φ) := PT (Ydo(Φ=ϕ) = y | Φ = ϕ̄, Y ̸= y)︸ ︷︷ ︸
sufficiency

PT (Φ = ϕ̄, Y ̸= y)

+ PT (Ydo(Φ=ϕ̄) ̸= y | Φ = ϕ, Y = y)︸ ︷︷ ︸
necessity

PT (Φ = ϕ, Y = y),
(3)

where do(Φ = ϕ) (do-operator) means the manipulable variable Φ is forced to be a fixed value ϕ.

Since the probability of necessity and sufficiency is defined based on counterfactual distributions,
it is usually intractable to estimate the PNS of two variables. However, with two assumptions (Ex-
ogeneity and Monotonicity) proposed and utilized in (Pearl, 2009; Yang et al., 2023b), we can
obtain a useful lemma as follows. Considering the limited length of main text, we put more detailed
explanations about Exogeneity and Monotonicity assumption in Appendix C.
Lemma 3.2 (Pearl (2009); Yang et al. (2023b)). If variable Φ is exogenous relative to variable Y ,
and Y is monotonic relative to Φ, we can get

PNS(Y,Φ) = PT (Y = y | Φ = ϕ)︸ ︷︷ ︸
sufficiency

−PT (Y = y | Φ = ϕ̄)︸ ︷︷ ︸
necessity

. (4)

3.3 PNS RISK MODELING

According to definition 3.1, PNS risk is based on the measure of ϕ and ϕ̄. As ϕ̄ represents the
intervention value, it is not necessary for it to be a sample from the same distribution as the causal
variable Φ. Thus, we need an auxiliary variable Φ̄ ∈ Z (within the same space as variable Φ). The
intervention value ϕ̄ is sampled from the distribution PT (Φ̄ | X = x). To calculate the probability
of necessity and sufficiency between the representations and the target in neutral networks, we need
to construct three networks parameterized by θ and ξ to estimate the distributions PT (Φ | X = x) =

and PT (Φ̄ | X = x) by P θ
T (Φ | X = x) = and P ξ

T (Φ̄ | X = x), respectively. Additionally, we
need to build a linear classifier ω to parameterize the mapping from causal representations to target.
That is, the target can be obtained by y = sign(ω⊺ϕ) (Yang et al., 2023b).

Let I(A) be an indicator function, where I(A) = 1 if A is true; otherwise, I(A) = 0. PNS risk
based on Definition 3.1 and Lemma 3.2 can be calculated by

RS(ω, θ, ξ) := E(x,y)∼DS

[
Eϕ∼PS(Φ|X=x)I[sign(ω⊺ϕ) ̸= y] + Eϕ̄∼PS(Φ̄|X=x)I[sign(ω⊺ϕ̄) = y]

]
(5)

For practical modeling convenience, a recent study (Yang et al., 2023b) proposed an effective ap-
proximation scheme for PNS risk by deriving an upper bound of Equation 5.
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Proposition 3.3 (Proposition 3.1 in (Yang et al., 2023b)). Given a source domain S, we define the
sufficient and necessary risks as:

SFS(ω, θ) := E(x,y)∼DSEϕ∼P θ
S(Φ|X=x)I[sign(ω⊺ϕ) ̸= y],

NCS(ω, ξ) := E(x,y)∼DSEϕ̄∼P ξ
S(Φ̄|X=x)I[sign(ω

⊺ϕ̄) = y],

and let the Monotonicity measurement be defined as
Mω

S (θ, ξ) := E(x,y)∼DSEϕ∼P θ
S(Φ|X=x)Eϕ̄∼P ξ

S(Φ̄|X=x)I[sign(ω
⊺ϕ) = sign(ω⊺ϕ̄)],

then we have
RS(ω, θ, ξ) = Mω

S (θ, ξ) + 2SFS(ω, θ)NCS(ω, ξ) ≤ Mω
S (θ, ξ) + 2SFS(ω, θ). (6)

Based on the upper bound derived in Proposition 3.3, CaSN (Yang et al., 2023b) maximizes the PNS
between variable Φ and variable Y by solving the following optimization problem:

min
ω,θ

max
ξ

LPNS(ω, θ, ξ) := Mω
S (θ, ξ) + SFS(ω, θ) + λRKL, subject to ∥ϕ− ϕ̄∥ ≥ δ, (7)

where RKL := EDSKL(P θ
S(Φ | X = x)∥πΦ) + EDSKL(P ξ

S(Φ̄ | X = x)∥πΦ̄). KL(·, ·) denotes
the KL-divergence between two probability distributions. πΦ := PS(Φ) and πΦ̄ := PS(Φ̄) describe
the prior distributions of Φ and Φ̄, respectively.

4 METHODOLOGY

In this section, we first discuss the detailed design of the proposed framework LogicAl-PT in Sec-
tion 4.1 and then provide theoretical analysis on generalization error bound to demonstrate the ef-
fectiveness of the proposed method from the theoretical perspective in chapter 4.2.

Image Encoder

Text Encoder

PNS Calculator

	𝓛𝑷𝑵𝑺$𝒕𝒆𝒙𝒕

	𝓛𝑷𝑵𝑺$()*++

	𝓛𝑪𝑬$𝒍𝒐𝒈𝒊𝒕

[CLASS] 	"		[𝐶]!	⋯ [𝐶]"

Learnable context

Cosine similarity

Intervention

PNS CalculatorFilter 𝒉"

[CLASS] 	"		[𝐶]!	⋯ [𝐶]"

Intervention

NSC features

Intervention

NSC features

𝑸"

𝑸

𝒇

𝒈

Filter 𝒉

Figure 1: Overall framework of LogicAl-PT. “NSC” represents “necessary and sufficient cause”.
Two filters behind the image encoder are implemented using two linear layer, respectively. The
NSC features in textual and visual modalities are given by f([Q,CLASS]) and h(g(X)), respec-
tively. The interventions in textual and visual modalities are given by f([Q̄,CLASS]) and h̄(g(X)),
respectively. Only f([Q,CLASS]) and h(g(X)) are utilized for predicting at inference phase.

4.1 OVERVIEW OF LOGICAL-PT

In order to achieve effective cross-modal mitigation of spurious correlations for prompt-tuning in
vision-language models, we design a practical framework which can be divided into two compo-
nents: 1) Y ⇔ Φt eliminates the spurious correlations and enhances logic alignment in textual
modality; 2) Φt ⇔ Φv integrates mitigation of spurious correlations in visual modality and cross-
modal alignment of representations organically when Y ⇔ Φt excludes spurious features in Φt.
The overall framework of the proposed method LogicAl-PT is displayed in Figure 1.
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Cross-modal logic alignment. As shown in objective (7), constructing the parameterized map-
ping ω, θ and ξ is necessary for calculating the PNS risk. When we aim at achieving cross-modal
logic alignment, we need to maximize the probability of necessity and sufficiency between visual
representations and textual representations. In the design framework, two filters h and h̄ serve as the
parameterized mapping θ and ξ, respectively. Moreover, f([Q,CLASS]) can work as the classifier
ω. Therefore, the PNS risk corresponding to cross-modal logic alignment is given by

LPNS−cross = LPNS(f([Q,CLASS]), h, h̄). (8)

Textual logic alignment. When we calculate textual PNS risk to achieve textual logic alignment,
f([Q,CLASS]) and f([Q̄,CLASS]) serve as the parameterized mapping θ and ξ, respectively. To
construct the classifier ω for textual representations, we draw the prototype of each class from the
visual representation space h(g(X)). These prototypes can serve as a classifier for the textual rep-
resentations by calculating cosine similarity-based logit. In this way, the PNS risk corresponding to
textual logic alignment is given by

LPNS−text = LPNS(h(g(X)), f([Q,CLASS]), f([Q̄,CLASS])). (9)

Overall objective. As shown in Figure 1, the cross-modal cross-entropy loss LCE−logit is com-
puted utilizing the cosine similarity between textual representations f([Q,CLASS]) and visual rep-
resentations h(g(X)). Therefore, the overall train objective can be written as:

min
Q,h

max
Q̄,h̄

LCE−logit + αLPNS(f([Q,CLASS]), h, h̄) + βLPNS(h(g(X)), f([Q,CLASS]), f([Q̄,CLASS])). (10)

During the inference phase, the probability prediction for an input image is calculated by using the
cosine similarity between textual and visual ”NSC” features, i.e., f([Q,CLASS]) and h(g(X)).

4.2 THEORETICAL ANALYSIS

Along the information flow from visual representations Φv to text label Y in a vision-language
model, we can evaluate the effectiveness of the visual feature extractor Φv in predicting the target Y
using the mutual information I(Y ; Φv(X)). In practice, we can acquire the empirical estimation of
I(Y ; Φv(X)) on the source dataset DS , represented as ÎS(Y ; Φv(X)). When the learning model is
ready for deployment, we prioritize the performance of Φv on some unknown target data distribu-
tion, denoted by IT (Y ; Φv(X)). Since IT (Y ; Φv(X)) is inaccessible, bounding the generalization
error IT (Y ; Φv(X))− ÎS(Y ; Φv(X)) is critical for analysing the generalization performance of the
proposed method in learning theory.

Before starting to the theoretical analysis on generalization error bound, we first introduce a useful
assumption for the following theoretical analysis.
Assumption 4.1. In the textual modal, the textual representations Φt are fully informative for de-
termining the target Y . That is, we have Y ⊥⊥ Φv | Φt.
Theorem 4.2. Suppose the source and target data distributions are denoted by PS(X,Y ) and
PT (X,Y ), respectively, and the size of the source dataset D is m. Then, there exists a finite constant
C such that the following inequality holds with a probability at least 1− δ:

∣∣IT (Y ; Φv(X))− ÎS(Y ; Φv(X))
∣∣ ≤

√
C log(|Y|/δ)

(
|X | log(m) + |Y| log(|Z|)

)
+ 2

e |X |
√
m︸ ︷︷ ︸

Empirical error term

+ J (Y |Φt) +
√

C|Y|J (Y |Φt)︸ ︷︷ ︸
Textual error term

+J (Φt|Φv) +
√

C|Y|J (Φt|Φv)︸ ︷︷ ︸
Alignment error term

,

where m ≥ C
4 log(|Y|/δ)|X |e2. The term ‘Textual error term’ is caused by distribution shift in

textual modality while ‘Alignment error term’ stems from the misalignment between textual and
visual modalities. J (Y |Φt) denotes the Jeffrey’s divergence defined by

J (Y |Φt) ≜ KL
(
PT (Y | Φt)∥PS(Y | Φt)

)
+KL

(
PS(Y | Φt)∥PT (Y | Φt)

)
where KL(·∥·) denotes the Kullback–Leibler divergence between two probability distributions. Sim-
ilarly, the term J (Φt|Φv) is given be

J (Φt|Φv) ≜ KL
(
PT (Φt | Φv(X))∥PS(Φt | Φv(X))

)
+KL

(
PS(Φt | Φv(X))∥PT (Φt | Φv(X))

)
.
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Remark 4.3. The first term ‘Empirical error term’ stems from limited number of data samples
and will approach 0 as the size of source dataset grows towards infinity. As regard to the second
term ‘Textual error term’ caused by spurious correlations in textual modality, it can be unbounded
and equals to 0 if and only if PT (Y |Φt) = PS(Y |Φt). When the textual representations encode
spurious correlations, the second term is always strictly larger than 0. As comparison, the third
term ‘Alignment error term’ is caused by the misalignment between textual and visual represen-
tations. Similarly, the ‘Alignment error term’ is always non-negative and equals 0 if and only if
PT (Φt|Φv) = PS(Φt|Φv). According to the results in Theorem 4.3 in (Yang et al., 2023b), we know
that optimizing the PNS risk in equation 8 can guarantee Y ⊥⊥ Q | Φt and optimizing the PNS risk
in equation 9 can enable Φt ⊥⊥ X | Φv . Therefore, the proposed method can render both ‘Textual
error term’ and ‘Alignment error term’ approach 0. In other words, our method can guarantee a
tighter generalization error bound compared with the state-of-the-art prompt-tuning schemes for
vision-language models. Detailed proof of Theorem 4.2 is provided in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets To evaluate the performance of the proposed LogicAl-PT, we conduct experiments on
four commonly used datasets: Waterbird (Sagawa et al., 2019), CelebA (Liu et al., 2015), ImageNet-
1K (Russakovsky et al., 2015), and PACS Li et al. (2017). Detailed setup is explained as follows.

Waterbirds is a commonly used benchmark dataset for studying spurious correlations. The task is to
classify whether an image shows a landbird or a waterbird. The background (land and water) serve as
a spurious attribute for classification of bird images. Images in Waterbird dataset can be divided into
four groups: landbirds on land background (G1), landbirds on water background (G2), waterbirds
on land background (G3) and waterbirds on water background (G4). The number of pictures within
these four groups account for 73.0%, 3.8%, 1.2%, and 22.0% of the data, respectively. Group G3
is the minority group. In the training set, landbirds appeared more often on land backgrounds,
while waterbirds appeared more often on water backgrounds, so models fine-tuned on this dataset
tended to rely on backgrounds rather than birds to make prediction. However, in the testing set, both
landbirds and waterbirds have the same probability of appearing on a land background as on a water
background, which leads to a degradation of the model’s performance.

Similar to Watebirds, CelebA is a hair color prediction dataset, which also has 4 groups: non-blond
females (G1), non-blond males (G2), blond females (G3) and blond males (G4) with proportions
3.9%, 73.9%, 21.1%, and 1.1% of the data, respectively. Group G4 is the minority group.

In ImageNet-1K, there are features spuriously correlated with some categories (Singla et al., 2021).
For example, for Baby pacifier class, the spurious attribute is baby face. Samples without babies in
the image are susceptible to being classified as water bottles rather than baby pacifier. CLIP using
ResNet-50 has a 98.2% classification accuracy for samples with babies in the image, but only 36.1%
for samples without babies. We use the water bottle class and the baby pacifier class in ImageNet-
1K as the training set, which has three groups: water bottles (G1), baby pacifier without baby (G2),
baby pacifier with baby (G3), accounting for 73.9%, 5.2%, and 20.9% of the data, respectively; the
group G2 is the minority group. Note that since the validation set for ImageNet contains only 50
images per class, we transferred a portion of the data from the original training set to the test set.

PACS is a larger real-world dataset commonly used for evaluating out-of-distribution (OOD) gener-
alization. It consists of 7 classes distributed across 4 domains. We adopt the “leave-one-domain-out”
strategy to evaluate OOD generalization performance. For example, when evaluating performance
on ‘Art Painting’ domain, the remaining three domains are used as train domains.

Baseline Methods. We compare the performance of our LogicAl-PT with the state-of-the-art com-
petitors, including the zero-shot CLIP (Radford et al., 2021); CoOp (Zhou et al., 2022b), a widely
adopted prompt tuning method, which only minimize the contrastive loss LCE−logit; Empirical
Risk Mimimization (ERM), the standard technique for minimizing classification loss which also
only minimize the cross-entropy loss; and CoOPood (Zhang et al., 2024b) which aligns the textual
representations with the decoupled invariant representations. It is noted that, different from CoOp,
under our model framework, the ERM method will use the causal projection layer (i.e., h in Fig-
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ure 1). Besides, we also introduce two state-of-the-art prompt tuning methods as competitors: 1)
PromptSRC (Khattak et al., 2023b) which designs a self-regulating framework for prompt learning
and DePT (Zhang et al., 2024a) which decouples the base-specific knowledge from feature channels
into an isolated feature space during prompt tuning of VLMs.

5.2 OVERALL PERFORMANCE

Table 1: Overall performance comparison among LogicAl-PT and the state-of-the-art competitors.
Backbones ResNet-50 ViT-B/32

Datasets Waterbird CelebA ImageNet PACS Waterbird CelebA ImageNet PACS

Test Acc (%) Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

CLIP 43.6 70.7 67.8 84.1 36.6 68.2 80.2 91.5 41.4 65.3 69.7 85.2 51.4 75.8 81.7 93.8
CoOp 49.3 79.1 28.9 80.6 77.3 87.7 81.3 92.4 43.5 77.4 26.2 77.0 87.1 92.8 82.4 94.5
ERM 54.7 84.1 26.7 78.2 80.5 88.5 80.0 92.6 49.6 78.3 25.9 76.8 86.7 93.3 82.9 94.1
CoOPood 60.3 86.3 31.6 78.6 85.8 92.9 81.5 92.8 52.5 79.2 27.1 76.5 89.9 94.6 82.7 94.4
PromptSRC 57.2 85.5 68.2 85.3 81.6 89.4 81.7 93.6 50.8 79.5 69.3 85.9 87.8 94.1 83.4 94.8
DePT+PromptSRC 57.9 86.0 68.3 85.7 82.0 90.1 81.6 93.9 51.7 80.0 70.2 86.3 87.4 94.3 83.5 95.1

LogicAl-PT 67.5 86.2 69.9 87.3 90.2 95.1 82.4 93.7 61.2 80.3 73.1 86.9 91.8 95.4 84.3 95.2

To assess OOD generalization performance, we evaluate the test accuracy of the obtained models
across a range of diverse test data distributions (4 test domains in Waterbird, CelebA, 3 test domains
in ImageNet-1K dataset, and 4 test distributions in PACS). Among them, the worst-case (Worst)
accuracy and average (Avg) accuracy are summarized in Table 1. Since the test data distribution is
unknown in practical scenarios, both the worst-case and average accuracy are significant for reflect-
ing the OOD generalization performance of a model. As shown in Table 1, our method LogicAl-PT
outperforms the competitors on both worst-case and average test accuracy in four commonly used
datasets. In particular, LogicAl-PT achieves around 7% / 9%, 2% / 3%, 4% / 2% and 1% / 1% higher
worst-case accuracy than the second best algorithm on Waterbird, CelebA, ImageNet-1K and PACS
when ResNet-50 / ViT-B/32 is used as backbone model, respectively.

5.3 VISUALIZATION

For the purpose of verifying that the tuned models developed by our method LogicAl-PT exploit
the necessary and sufficient features rather than spurious features, we sample some data instances to
generate visual explanations for the selected model using Grad-CAM (Selvaraju et al., 2017). The
commonly used Grad-CAM can produce a localization map which highlights the important regions
in the input image that a deep learning model depends on for predicting the label. As shown in
Figure 2, the pivotal features employed by various prompt tuning methods and zero-shaot CLIP for
predicting WaterBird (Figure 2(a)) and BabyPacifier (Figure 2(b)) are highlighted in red.

The visualization results reveal that the proposed LogicAl-PT demonstrates three notable advantages
over existing prompt-tuning methods: 1) LogicAl-PT can effectively eliminate the non-causal
spurious features that are associated with the label (i.e., ‘background’ in WaterBird dataset and
‘baby’ in ImageNet-1K dataset). 2) LogicAl-PT can mitigate the ‘sufficient but not necessary’
features that demonstrate inconsistent presence across different data instances. For example, the
shape of feet is a ‘sufficient but not necessary’ feature for classifying the picture of a bird as ‘wa-
terbird’ or ‘landbird’ because its feet can retract or remain hidden when the bird is lying down or
in flight. 3) As shown in Figure 2(a), LogicAl-PT can mitigate the ‘necessary but not sufficient’
features which can impact the classification performance when the distribution of these ‘necessary
but not sufficient’ features varies. For example, the wings of birds are ‘necessary but not sufficient’
features for distinguishing ‘waterbird’ from ‘landbird’. From the visualization results in Figure 2(a),
we can find that LogicAl-PT avoids utilizing the wings to categorize the pictures of birds.

In summary, visualization results demonstrate the proposed LogicAl-PT can effectively exploit the
‘sufficient and necessary’ features and mitigate the unstable features, including non-causal spurious
features, ‘sufficient but not necessary’ features and ‘necessary but not sufficient’ features. This ex-
plains why LogicAl-PT achieves superior out-of-distribution generalization performance, delivering
more consistent results across diverse data distributions compared to its competitors.
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Figure 2: Visualization results of various prompt tuning approaches and zero-shot CLIP when pre-
dicting in WaterBird and ImageNet-1K datasets are generated by using Grad-CAM.

5.4 ABLATION STUDY

Table 2: The effect of the two separate regularization terms in the overall objective.
Datasets Waterbird CelebA ImageNet-1K PACS

Test Acc (%) Worst Avg Worst Avg Worst Avg Worst Avg

LogicAl-PT (α = 0) 51.56 78.24 30.17 79.32 78.59 87.23 80.66 92.18
LogicAl-PT (β = 0) 65.45 85.72 67.51 85.74 88.64 94.31 80.75 93.27

LogicAl-PT 67.52 86.23 69.85 87.31 90.24 95.12 82.41 93.65

Effect of Logic Alignments As discussed in Section 4.1, there are two significant regularization
terms corresponding to the cross-modal logic alignment and textual logic alignment in the proposed
optimization objective 10. We evaluate the isolated effects of them by independently setting α = 0
and β = 0 in the objective 10, respectively. As displayed in Table 2, the results indicate that the
cross-modal logic alignment is more important for cross-modal mitigation of spurious correlations
than textual logic alignment. However, combining textual logic alignment with cross-modal logic
alignment can further improve the out-of-distribution generalization performance. In this case, a
natural question arises: ‘Is textual alignment necessary, and what role does it serve during prompt
tuning?’ We assess the necessity of textual logic alignment in the following paragraph.

Necessity of Textual Logic Alignment Before studying the role textual logic alignment serves
through the lens of visualization, we start from a qualitative analysis. Since the textual representa-
tions (corresponding to variable Φt) are the class-wise mapping from the text labels, the sufficiency
of variable Y for variable Φt (i.e., Y ⇒ Φt) is naturally guaranteed while the reverse Y ⇐ Φt is not

9
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ensured. In other words, textual representations (Φt) must be necessary causes for variable Y , but
they don’t have to be sufficient causes for variable Y . Therefore, textual logic alignment is proposed
to enhance the sufficiency of text representations (Φt) for label Y . Accordingly, when cross-modal
logic alignment (i.e., Φt ⇔ Φv) is achieved, combining textual logic alignment can mitigate the
visual features that are not sufficient for variable Y .
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Figure 3: Visualization results for assessing the necessity of textual logic alignment.

To investigate the actual role that textual logic alignment serves, we visualize the features which is
utilized by the model tuned without textual logic alignment (w/o TLA), i.e., β = 0. In particular,
when we set β = 0, α is tuned to its optimal value, i.e., the cross-modal logic alignment (Φt ⇔ Φv)
is enhanced. The visualization results are displayed in Figure 3. Comparing the results, we can
find that adding textual logic alignment can mitigate the visual features which are not sufficient for
predicting Y . For example, adopting textual logic alignment mitigates the ‘background’ feature
(on 3rd picture in Figure 3(a)) and ‘wing’ feature (on 2nd picture in Figure 3(a)) which are not
sufficient features for making classification in WaterBird dataset, and mitigate the ‘bottle’ feature
(on 2nd picture in Figure 3(b)) and ‘baby face’ feature (on 4th picture in Figure 3(b)) that are not
sufficient features for predicting ‘babypacifier’ in ImageNet dataset. Therefore, we can conclude
that the visualization results support the qualitative analysis.

Table 3: Performance of LogicAl-PT with different values of α and β on ImageNet-1K.
α 0.0 1.0 10.0 20.0 30.0 50.0

worst-case (%) 78.6 80.9 86.1 90.2 88.7 79.5
average (%) 87.2 89.4 93.5 95.1 94.0 87.9

β 0.0 0.10 1.00 10.0 20.0 30.0

worst-case (%) 88.6 89.7 90.2 89.3 87.2 85.5
average (%) 94.3 94.8 95.1 94.5 93.2 91.9

Sensitivity of Hyper-parameters We evaluate the effects of two significant hyper-parameters in
the proposed objective (i.e., α and β) on model performance here. Since the results on other datasets
present the similar tendency as on ImageNet, we herein focus on ImageNet. When evaluating the
effect of α, we fix β = 1.0 . When evaluating the effect of α, we fix α = 20.0. The results are
shown in Table 3. We can find the performance of LogicAl-PT is more sensitive to the selection
of α than the selection of β. To effectively mitigate spurious correlations in VLMs, careful tuning
of α is essential. Regarding β, a small value is safer in practice, as a large β may compromise the
discriminative capability of the extracted features.

6 CONCLUSION

This paper investigates the cross-modal mitigation of spurious correlations in prompt tuning of
vision-language models. We exploit causally motivated logic alignment (i.e., alignment with ne-
cessity and sufficiency) to integrate mitigation of spurious correlations and cross-modal alignment
of representations organically. Theoretical analysis is provided to prove that our method can yield a
tighter generalization error bound than existing approaches. Experimental results across diverse
datasets demonstrate the superiority of the proposed framework, termed LogicAl-PT, in out-of-
distribution generalization performance, compared with the state-of-the-art competitors.
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A MOTIVATION FOR UTILIZING PNS
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(b) SF\NC Relation from Φv to Y
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(c) NC\SF Relation from Φv to Y
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(d) SF and NC Relation from Φv to Y

Figure 4: Illustration for three possible relations that are unstable across diverse data distributions
(non-causal spurious correlation, SF\NC relation, and NC\SF relation) in vision-language models,
where ‘SF\NC’ denotes ‘sufficient but not necessary’ and ‘NC\SF’ indicates ‘necessary but not
sufficient’. Besides, ‘SF and NC’ means ‘sufficient and necessary’ in Figure 4(d). ‘IID’ indicates
‘in-distribution’ while ‘OOD’ means ‘out-of-distribution’. Φv represents the visual representation
while Y indicates text label.

In these examples, the task is a binary classification problem aimed at distinguishing ‘cat’ class from
‘fox’ class. The learned prompt together with the frozen text encoder works as a projector which
projects the two text labels onto a specific feature subspace. When the text labels are projected into
the ‘Background’ feature subspace (as shown in Figure 4(a)), the ‘background’ feature component in
visual representation space determines the prediction result because prediction is made using cosine
similarity between visual features and text features. In this way, a spurious correlation between
visual representation and text label is built by this learned prompt. Similarly, the learned prompt in
Figure 4(b) builds a SF\NC relation from Φv to Y , since ‘cat feet’ is a sufficient but not necessary
feature for predicting ‘cat’; the learned prompt in Figure 4(c) builds a NC\SF relation from Φv to
Y , since ‘pointy ear’ is a necessary but not sufficient feature for predicting ‘cat’; the learned prompt
in Figure 4(d) builds a SF and NC relation (i.e., logic alignment) from Φv to Y , since ‘short mouth’
is a sufficient and necessary feature for predicting ‘cat’.

As illustrated in Figure 4(a), 4(b) and 4(c), all these three relations (non-causal spurious correla-
tion, SF\NC causal relation, and NC\SF causal relation) are unstable when data distribution varies.
Therefore, apart from mitigation of cross-modal spurious correlations, cross-modal logic alignment
(i.e., sufficiency and necessary) is also essential for enhancing the out-of-distribution generalization
performance in vision-language models. This is why we utilize PNS risk in the prompt tuning of
VLMs to achieve better out-of-distribution generalization performance.

B THEORETICAL PROOF: GENERALIZATION ERROR BOUND

In this paper, we denote the true data distribution of source and target datasets as pS and pT , respec-
tively. In practical scenarios, the number of available data instances in a specific dataset is limited.
We describe the empirical data distributions estimated from the source dataset and target dataset by
p̂S and p̂T , respectively. Without loss of generality, we use notations with subscripts S and T to
represent metrics on the source and target data, respectively, while notations with the overscriptˆ
denote empirical estimates (e.g., the empirical distribution p̂ and the true distribution p).
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Proposition B.1 (Lemma 11 Shamir et al. (2010)). Let p be a distribution vector of arbitrary (pos-
sible countably infinite) cardinality, and p̂ be an empirical estimation of p based on a dataset of size
m. Then with a probability of at least 1− δ over the samples, the following inequality holds:

∥p− p̂∥ ≤
2 +

√
2 log(1/δ)√
m

(11)

Theorem 4.7. Suppose the source and target data distributions are denoted by PS(X,Y ) and
PT (X,Y ), respectively, and the size of the source dataset D is m. Then, there exists a finite constant
C such that the following inequality holds with a probability at least 1− δ:

∣∣IT (Y ; Φv(X))− ÎS(Y ; Φv(X))
∣∣ ≤

√
C log(|Y|/δ)

(
|X | log(m) + |Y| log(|Z|)

)
+ 2

e |X |
√
m︸ ︷︷ ︸

Empirical error term

+ J (Y |Φt) +
√

C|Y|J (Y |Φt)︸ ︷︷ ︸
Textual error term

+J (Φt|Φv) +
√

C|Y|J (Φt|Φv)︸ ︷︷ ︸
Alignment error term

,

where m ≥ C
4 log(|Y|/δ)|X |e2. The term ‘Textual error term’ is caused by distribution shift in

textual modality while ‘Alignment error term’ stems from the misalignment between textual and
visual modalities. J (Y |Φt) denotes the Jeffrey’s divergence defined by

J (Y |Φt) ≜ KL
(
PT (Y | Φt)∥PS(Y | Φt)

)
+KL

(
PS(Y | Φt)∥PT (Y | Φt)

)
where KL(·∥·) denotes the Kullback–Leibler divergence between two probability distributions.
Similarly, J (Φt|Φv) is given be

J (Φt|Φv) ≜ KL
(
PT (Φt | Φv(X))∥PS(Φt | Φv(X))

)
+KL

(
PS(Φt | Φv(X))∥PT (Φt | Φv(X))

)
.

Proof. At the beginning of the proof, we denote the mutual information between X and Y which is
computed on data distribution p̂S , p̂T , pS and pT by ÎS(Y ;X), ÎT (Y ;X), IS(Y ;X) and IT (Y ;X),
respectively. We will derive the generalization error bound using the similar schemes as in (Shamir
et al., 2010; Yang et al., 2023a; Tang et al., 2024).

Before starting the process of proof, we define a useful real-valued function ξ as follows:

ξ(x) =


0, x = 0

x log( 1x ), 0 < x ≤ 1
e

1
e , x > 1

e

. (12)

It is noted that ξ(x) is a continuous, monotonically increasing and concave real-valued function.

In general, we consider a deterministic Visual feature extractor denoted by Φv . To enhance con-
ciseness in written expression, we will use Φv to represent Φv(X) in this proof without further
elaboration. Thus, we can write that

|ÎS(Y ; Φv(X))− IT (Y ; Φv(X))| ≜ |ÎS(Y ; Φv)− IT (Y ; Φv)|
= |ÎS(Y ; Φv)− IS(Y ; Φv) + IS(Y ; Φv)− IT (Y ; Φv)|
≤ |ÎS(Y ; Φv)− IS(Y ; Φv)|︸ ︷︷ ︸

A1

+ |IS(Y ; Φv)− IT (Y ; Φv)|︸ ︷︷ ︸
A2

(13)

We know that the mutual information I(Y ; Φ) is defined by:

I(Y ; Φ) ≜ H(Φ)−H(Φ | Y ) (14)

where H(·) represents the Shannon information entropy. We firstly deal with the first term in the
above inequality:

A1 =
∣∣ĤS(Φv)−HS(Φv) +HS(Φv | Y )− ĤS(Φv | Y )

∣∣
≤
∣∣HS(Φv | Y )− ĤS(Φv | Y )

∣∣+ ∣∣ĤS(Φv)−HS(Φv)
∣∣ (15)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For the first term on the right side of Eq. 15, we can write that

|HS(Φv | Y )− ĤS(Φv | Y )|

=
∣∣∣∑

y

(
pS(y)HS(Φv | y)− p̂S(y)ĤS(Φv | y)

)∣∣∣
=
∣∣∣∑

y

(
pS(y)HS(Φv | y)− pS(y)ĤS(Φv | y) + pS(y)ĤS(Φv | y)− p̂S(y)ĤS(Φv | y)

)∣∣∣
≤
∣∣∣∑

y

pS(y)
(
HS(Φv | y)− ĤS(Φv | y)

)∣∣∣+ ∣∣∣∑
y

(
pS(y)− p̂S(y))ĤS(Φv | y)

∣∣∣
The first term on the right side of the above inequality can be bounded by

∣∣∣∑
y

pS(y)
(
HS(Φv | y)− ĤS(Φv | y)

)∣∣∣
≤
∣∣∣∑

y

pS(y)
∑
ϕv

(
pS(ϕv|y) log(pS(ϕv|y))− p̂S(ϕv|y) log(p̂S(ϕv|y))

)∣∣∣
≤
∑
y

pS(y)
∑
ϕv

ξ
(∣∣pS(ϕv|y)− p̂S(ϕv|y)

∣∣)
=
∑
y

pS(y)
∑
ϕv

ξ
(∣∣∣∑

x

pS(ϕv|x)
(
pS(x|y)− p̂S(x|y)

)∣∣∣)
=
∑
y

pS(y)
∑
ϕv

ξ
(∣∣∣∑

x

(
pS(ϕv|x)−A

)(
pS(x|y)− p̂S(x|y)

)∣∣∣)
≤
∑
y

pS(y)
∑
ϕv

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥∥∥pS(ϕv|X)−A
∥∥)

where A can be any constant. When we set A ≜ 1
|X|
∑

x pS(ϕv|x), we can get

∣∣∣∑
y

pS(y)
(
HS(Φv | y)− ĤS(Φv | y)

)∣∣∣ ≤∑
y

pS(y)
∑
ϕv

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥ ·√V (pS(ϕv|X))
)

(16)
where 1

|X|V (pS(ϕv|X)) describes the variance of the vector pS(ϕv|X). It is known that ĤS(Φv) ≥
ĤS(Φv | y) for any y, since conditioning cannot increase entropy Shamir et al. (2010). Therefore,

∣∣∣∑
y

(
pS(y)− p̂S(y))ĤS(Φv | y)

∣∣∣ ≤ ∥∥pS(Y )− p̂S(Y )
∥∥∣∣∣∑

y

ĤS(Φv)
∣∣∣

=
∥∥pS(Y )− p̂S(Y )

∥∥(|Y |ĤS(Φv)
) (17)

Because Φv(X) ∈ Z , we ca get that ĤS(Φv) ≤ log(|Z|) according to the definition of Shannon
Information Entropy. Combining Eq. (16) and Eq. (17), we can get

HS(Φv | Y )− ĤS(Φv | Y )| ≤
∑
y

pS(y)
∑
ϕv

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥ ·√V (pS(ϕv|X))
)

+
(
|Y | · log(|Z|)

)
·
∥∥pS(Y )− p̂S(Y )

∥∥
(18)
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On the other hand, we have∣∣HS(Φv)− ĤS(Φv)
∣∣ = ∣∣∣∑

ϕv

(
pS(ϕv) log(pS(ϕv))− p̂S(ϕv) log(p̂S(ϕv))

)∣∣∣
≤
∑
ϕv

ξ
(∣∣pS(ϕv)− p̂S(ϕv)

∣∣)
=
∑
ϕv

ξ
(∣∣∣∑

x

pS(ϕv|x)
(
pS(x)− p̂S(x)

)∣∣∣)
=
∑
ϕv

ξ
(∣∣∣∑

x

(
pS(ϕv|x)−A

)(
pS(x)− p̂S(x)

)∣∣∣)
≤
∑
ϕv

ξ
(∥∥pS(X)− p̂S(X)

∥∥ ·√V (pS(ϕv|X))
)

(19)

where the constant A is chosen as A ≜ 1
|X|
∑

x pS(ϕv|x). Plugging Eq. (18) and Eq. (19) into
Eq. (15), we can get

A1 ≤
∑
y

pS(y)
∑
ϕv

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥ ·√V (pS(ϕv|X))
)

+
(
|Y | log(|Z|)

)
·
∥∥pS(Y )− p̂S(Y )

∥∥+∑
ϕv

ξ
(∥∥pS(X)− p̂S(X)

∥∥ ·√V (pS(ϕv|X))
)
(20)

Subsequently, we can apply the concentration bound given in Proposition B.1 to
∥∥pS(X|y) −

ŷS(X|y)
∥∥,
∥∥pS(X) − p̂S(X)

∥∥ and
∥∥pS(Y ) − p̂S(Y )

∥∥ for any y in Eq. (20). To make sure the
bounds hold simultaneously over these |Y ∥+ 2 quantities, we replace δ in Eq. (11) by δ/(|Y |+ 2)
as in the proof of Theorem 3 in Shamir et al. (2010). Hence, with a probability at least 1−δ we have

A1 ≤ 2
∑
ϕv

ξ

((
2 +

√
2 log((|Y |+ 2)/δ)

)√V
(
pS(ϕv|X)

)
m

)

+
2 +

√
2 log

(
(|Y |+ 2)/δ

)
√
m

·
(
|Y | log(|Z|)

) (21)

There exists a small constant C that makes the following inequality hold:

2 +
√
2 log((|Y |+ 2)/δ) ≤

√
C log(|Y |/δ)

In addition, we know that the variance of any random variable that takes value in the range [0, 1]
is at most 1

4 . Since 1
|X|
∑

x V
(
pS(ϕv|X)

)
is the variance of the distribution vector pS(ϕv|X), we

have that V
(
pS(ϕv|X)

)
≤ |X |/4, ∀ϕv .

Suppose that the size of training dataset (i.e., m = |Du|) satisfying that

m ≥ C

4
log(|Y |/δ)|X|e2 (22)

Then, we can get√
C log(|Y |/δ)V (pS(ϕv|X))

m
≤
√

C log(|Y |/δ)|X|
4m

≤ 1

e
,∀ϕv.

We define that V(ϕv) ≜ C log(|Y |/δ)V (pS(ϕv|X)), then we have that∑
ϕv

ξ
(√V(ϕv)

m

)
=
∑
ϕv

√
V(ϕv)

m
log
(√V(ϕv)

m

)
=
∑
ϕv

√
V(ϕv)

m
log(

√
m) +

√
1

m

√
V(ϕv) log

( 1√
V(ϕv)

)

≤
∑
ϕv

(√
V(ϕv)

m
log(

√
m) +

1√
me

)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Using the results proved in the proof of Theorem 3 in Shamir et al. (2010), we can have that∑
ϕv

√
V(ϕv) ≤

√
|X ||Φv|. Therefore, we can write that

∑
ϕv

ξ

(√
C log(|Y |/δ)V (pS(ϕv|X))

m

)
≤
√
C log(|Y |/δ)|X||Φv| log(m) + 2

e |Φv|
2
√
m

(23)

where |Φv| denote the size of the feature space from which Φv takes value. Recalling that Φv is
used to represent Φv(X) where Φv itself is a deterministic feature extractor, we can conclude that
|Φv| ≤ |X|. Thus, we can get

A1 ≤
√
C log(|Y |/δ)|X| log(m) + 2

e |X|
√
m

+

√
C log(|Y |/δ)|Y | log(|Z|)√

m

=

√
C log(|Y |/δ)

(
|X| log(m) + |Y | log(|Z|)

)
+ 2

e |X|
√
m

(24)

As regard to the second term in Eq. (13), we can write that

A2 = |IT (Y ; Φv)− IS(Y ; Φv)|

=
∣∣∣∑

y

∑
ϕv

pT (y, ϕv) log
( pT (y, ϕv)

pT (y)pT (ϕv)

)
− pS(y, ϕv) log

( pS(y, ϕv)

pS(y)pS(ϕv)

)∣∣∣
=
∣∣∣∑

y

∑
ϕv

(
pT (y, ϕv) log

(
pT (y|ϕv)

)
− pS(y, ϕv) log

(
pS(y|ϕv)

))
+HT (Y )−HS(Y )

∣∣∣
(25)

As is commonly stated in the machine learning literature, the target variable Y is an exogenous
variable, which indicates that pS(Y ) = pT (Y ). Therefore, we have that

∣∣HS(Y ) −HT (Y )
∣∣ = 0.

In this way, we can write that

A2 ≤
∣∣∣∑

y

∑
ϕv

(
pT (y, ϕv) log

(
pT (y|ϕv)

)
− pS(y, ϕv) log

(
pS(y|ϕv)

))∣∣∣
=
∣∣∣∑

y

∑
ϕv

(
pT (y, ϕv) log

(
pT (y|ϕv)

)
− pT (y, ϕv) log

(
pS(y|ϕv)

)
+ pT (y, ϕv) log

(
pS(y|ϕv)

)
− pS(y, ϕv) log

(
pS(y|ϕv)

))∣∣∣
≤
∣∣∣∑

y

∑
ϕv

pT (y, ϕv) log
(pT (y|ϕv)

pS(y|ϕv)

)∣∣∣+ ∣∣∣∑
y

∑
ϕv

(
pT (y, ϕv)− pS(y, ϕv)

)
log
(
pS(y|ϕv)

)∣∣∣
= KL

(
pT (Y | Φv)

∥∥pS(Y | Φv)
)
+
∣∣∣∑

y

∑
ϕv

(
pT (y, ϕv)− pS(y, ϕv)

)
log
(
pS(y|ϕv)

)∣∣∣︸ ︷︷ ︸
B

According to the above equation, we have that

B2 =
∥∥∥∑

y

∑
ϕv

(
pT (y, ϕv)− pS(y, ϕv)

)
log
(
pS(y|ϕv)

)∥∥∥2
Using the Jensen’s inequality, we can get

B2 ≤ |Y |
∑
y

∥∥∥∑
ϕv

(
pT (y, ϕv)− pS(y, ϕv)

)
log
(
pS(y|ϕv)

)∥∥∥2
≤ |Y |

∑
y

∑
ϕv

p(ϕv)
∥∥∥(pT (y|ϕv)− pS(y|ϕv)

)
log
(
pS(y|ϕv)

)∥∥∥2
≤ |Y |C2

S

∑
y

∑
ϕv

p(ϕv)
∥∥pT (y|ϕv)− pS(y|ϕv)

∥∥2
,
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where CS denotes a constant satisfying that CS = max(ϕv,y)∈(Φv,Y )

∣∣ log (pS(y|ϕv)
)∣∣. We know

that log(·) is a concave function, therefore we can get

B2 ≤ |Y |C2
S

∑
y

∑
ϕv

p(ϕv)
∥∥pT (y|ϕv)− pS(y|ϕv)

∥∥∥∥ log (pT (y|ϕv)
)
− log

(
pS(y|ϕv)

)∥∥
= |Y |C2

S

∑
y

∑
ϕv

p(ϕv)
(
pT (y|ϕv)− pS(y|ϕv)

)(
log
(
pT (y|ϕv)

)
− log

(
pS(y|ϕv)

))

= |Y |C2
S

∑
y

∑
ϕv

p(ϕv)

(
pT (y|ϕv) log

(pT (y|ϕv)

pS(y|ϕv)

)
− pS(y|ϕv) log

(pT (y|ϕv)

pS(y|ϕv)

))

= |Y |C2
S

(
KL
(
pT (Y | Φv)∥pS(Y | Φv)

)
+KL

(
pS(Y | Φv)∥pT (Y | Φv)

))
.

Consequently, we can get that

A2 ≤ KL
(
pT (Y | Φv)

∥∥pS(Y | Φv)
)

+

√
|Y |C2

S

(
KL
(
pT (Y | Φv)∥pS(Y | Φv)

)
+KL

(
pS(Y | Φv)∥pT (Y | Φv)

))
≤ J

(
pT (Y | Φv), pS(Y | Φv)

)
+
√
|Y |C2

SJ
(
pT (Y | Φv), pS(Y | Φv)

) (26)

where J (p, q) denotes the Jeffrey’s divergence between probability p and q which is defined by

J
(
pT (Y | Φv), pS(Y | Φv)

)
≜ KL

(
pT (Y | Φv)∥pS(Y | Φv)

)
+KL

(
pS(Y | Φv)∥pT (Y | Φv)

)
With Equation (24) and Equation (26), we can conclude that

|ÎS(Y ; Φv(X))− IT (Y ; Φv(X))| ≤

√
C log(|Y |/δ)

(
|X| log(m) + |Y | log(|Z|)

)
+ 2

e |X|
√
m

+ J
(
pT (Y | Φv), pS(Y | Φv)

)
+
√
|Y |C2

SJ
(
pT (Y | Φv), pS(Y | Φv)

)
(27)

When Assumption 4.1 is satisfied, we have that Y ⊥⊥ Φv | Φt. Thus, we can get that pS(Y |
Φv,Φt) = pS(Y | Φt), ∀Φt,Φv and pT (Y | Φv,Φt) = pT (Y | Φt), ∀Φt,Φv . In other words, we
can derive that

pS(Y,Φv) =
∑
ϕt

pS(Y, ϕt,Φv) =
∑
ϕt

pS(Y | ϕt,Φv)pS(ϕt,Φv) =
∑
ϕt

pS(Y | ϕt)pS(ϕt,Φv).

That is, pS(Y | Φv) =
∑

ϕt
pS(Y | ϕt)pS(ϕt | Φv). Similarly, the probability distribution pT (Y |

Φv) can be rewrite as pT (Y | Φv) =
∑

ϕt
pT (Y | ϕt)pT (ϕt | Φv). Plugging these two equations

into KL
(
pS(Y | Φv)∥pT (Y | Φv)

)
, we can obtain that

KL
(
pS(Y | Φv)∥pT (Y | Φv)

)
=
∑
y

∑
ϕv

pS(y, ϕv) log
( pS(y | ϕv)

pT (y | ϕv)

)

=
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pS(y | ϕt)pS(ϕt | ϕv) log

(∑
ϕt

pS(y | ϕt)pS(ϕt | ϕv)∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)

).

Here we consider a real-valued function ζ(x) = x log(x) which is a convex function. Then, we can
write that

KL
(
pS(Y | Φv)∥pT (Y | Φv)

)
=
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)ζ

(∑
ϕt

pS(y | ϕt)pS(ϕt | ϕv)∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)

)

=
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)ζ

(∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)
· pS(y | ϕt)pS(ϕt | ϕv)

pT (y | ϕt)pT (ϕt | ϕv)

)

≤
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)
∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)
ζ

(
pS(y | ϕt)pS(ϕt | ϕv)

pT (y | ϕt)pT (ϕt | ϕv)

)

=
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pT (y | ϕt)pT (ϕt | ϕv)ζ

(
pS(y | ϕt)pS(ϕt | ϕv)

pT (y | ϕt)pT (ϕt | ϕv)

)
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According to the definition of ζ(x) = x log(x), we can get that

KL
(
pS(Y | Φv)∥pT (Y | Φv)

)
≤
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pS(y | ϕt)pS(ϕt | ϕv) log

(
pS(y | ϕt)pS(ϕt | ϕv)

pT (y | ϕt)pT (ϕt | ϕv)

)

=
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pS(y | ϕt)pS(ϕt | ϕv) log

(
pS(y | ϕt)

pT (y | ϕt)

)

+
∑
y

∑
ϕv

p(ϕv)
∑
ϕt

pS(y | ϕt)pS(ϕt | ϕv) log

(
pS(ϕt | ϕv)

pT (ϕt | ϕv)

)

=
∑
y

∑
ϕv

∑
ϕt

pS(y, ϕt, ϕv) log

(
pS(y | ϕt)

pT (y | ϕt)

)

+
∑
y

∑
ϕv

∑
ϕt

pS(y, ϕt, ϕv) log

(
pS(ϕt | ϕv)

pT (ϕt | ϕv)

)

=
∑
y

∑
ϕt

pS(y, ϕt) log

(
pS(y | ϕt)

pT (y | ϕt)

)
+
∑
ϕt

∑
ϕv

pS(ϕt, ϕv) log

(
pS(ϕt | ϕv)

pT (ϕt | ϕv)

)
= KL

(
pS(Y | Φt)∥pT (Y | Φt)

)
+KL

(
pS(Φt | Φv)∥pT (Φt | Φv)

)
Similarly, we can also derive that

KL
(
pT (Y | Φv)∥pS(Y | Φv)

)
≤ KL

(
pT (Y | Φt)∥pS(Y | Φt)

)
+KL

(
pT (Φt | Φv)∥pS(Φt | Φv)

)
Therefore, we conclude that

J
(
pT (Y | Φv)∥pS(Y | Φv)

)
≤ J

(
pT (Y | Φt)∥pS(Y | Φt)

)
+ J

(
pT (Φt | Φv)∥pS(Φt | Φv)

)
.

Plugging this inequality into inequality 27, we can finally get

∣∣IT (Y ; Φv(X))− ÎS(Y ; Φv(X))
∣∣ ≤

√
C log(|Y|/δ)

(
|X | log(m) + |Y| log(|Z|)

)
+ 2

e |X |
√
m

+ J (Y |Φt) +
√

C|Y|J (Y |Φt) + J (Φt|Φv) +
√

C|Y|J (Φt|Φv),

Thus, we complete the proof of Theorem 4.2.

C MORE DETAILS ABOUT PNS AND PNS MODELING

Probability of Necessity and Sufficiency (PNS) describe the probability with which a variable is the
necessary and sufficient cause of another variable. The formal definition of PNS is given as follows.
Definition C.1 (Probability of Necessity and Sufficiency (Pearl, 2009)). Let the specific implemen-
tations of causal variable Φ as ϕ and ϕ̄, where ϕ ̸= ϕ̄. The probability with which variable Φ is the
necessary and sufficient cause of variable Y on test data distribution PT is given by:

PNS(Y,Φ) := PT (Ydo(Φ=ϕ) = y | Φ = ϕ̄, Y ̸= y)︸ ︷︷ ︸
sufficiency

PT (Φ = ϕ̄, Y ̸= y)

+ PT (Ydo(Φ=ϕ̄) ̸= y | Φ = ϕ, Y = y)︸ ︷︷ ︸
necessity

PT (Φ = ϕ, Y = y),
(28)

where do(Φ = ϕ) (do-operator) indicates that the manipulable variable Φ is forced to be a fixed
value Φ = ϕ.

Since the probability of necessity and sufficiency is defined based on counterfactual distributions, it
is usually intractable to estimate the PNS of two variables. Therefore, we need some assumptions to
facilitate the practical calculation of PNS.
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Assumption C.2 (Exogeneity (Pearl, 2009; Yang et al., 2023b)). Variable Φ is exogenous relative to
variable Y with respect to the source domain S and target domain T , if the intervention probability
is identified by conditional probability, i.e., PS(Ydo(Φ=ϕ) = y) = PS(Y = y | Φ = ϕ) and
PT (Ydo(Φ=ϕ) = y) = PT (Y = y | Φ = ϕ).
Assumption C.3 (Monotonicity (Pearl, 2009; Yang et al., 2023b)). Variable Y is monotonic rel-
ative to variable Φ if and only if either P (Ydo(Φ=ϕ) = y, Ydo(Φ=ϕ̄) ̸= y) = 0 or P (Ydo(Φ=ϕ) ̸=
y, Ydo(Φ=ϕ̄) = y) = 0 holds.

Exogeneity defined in Assumption C.2 bridges the gap between the intractable intervention prob-
ability and the computable conditional probability, while monotonicity defined in Assumption C.3
guarantees that the causal variable Φ has monotonic effect on variable Y . With these two assump-
tions, we can obtain a useful lemma as follows.
Lemma C.4 (Pearl (2009); Yang et al. (2023b)). If variable Φ is exogenous relative to variable Y ,
and Y is monotonic relative to Φ, we can get

PNS(Y,Φ) = PT (Y = y | Φ = ϕ)︸ ︷︷ ︸
sufficiency

−PT (Y = y | Φ = ϕ̄)︸ ︷︷ ︸
necessity

. (29)

D MORE EXPERIMENTAL RESULTS

Implementation Details In all experiments, we use the publicly available CLIP model with the
ResNet-50 (He et al., 2016) and ViT-B/32 (Dosovitskiy, 2020) as the backbone models. The prompt
used in all methods has 8 learnable tokens and initialized as the default one “a photo of”. When com-
paring the performance with baselines, we optimize the prompts for 50 epochs with SGD optimizer
and a cosine decay learning rate scheduler, the initial learning rate is 0.002. The batch size of images
is 32 on all datasets. For LogicAl-PT, unless otherwise specified, the value of hyper-parameters α
and β are 10.0 and 1.0 for CelebA; 20.0, 1.0 for ImageNet-1K; 3.0 and 2.0 for WaterBird.

Computational Efficiency We analyze and compare the computational overhead of our method
with several existing methods to verify the computational efficiency of the proposed LogicAl-PT.
The results are presented in the following table.

Table 4: Evaluation results on computational overhead of our method LogicAl-PT and the state-of-
the-art competitors. ‘Params’ denotes the number of learnable parameters while ‘FLOPS’ represents
‘Floating Point Operations’.

Method Params Params + %CLIP FLOPS FLOPS + %CoOp

CoOp 2048 0.004% 354.50G -
ERM 0.514M 1.05% 354.53G 0.01%
CoOPood 1.026M 2.10% 354.56G 0.02%

LogicAl-PT 1.028M 2.10% 354.57G 0.02%

We can see the the overall parameters and Floating Point Operations (FLOPS) of our LogicAl-PT
are only 2.1% and 0.02% higher than those of CLIP and CoOp, respectively. Compared with the
improvement in out-of-distribution generalization performance, our method LogicAl-PT impressive
computational efficiency in terms of the number of parameters and FLOPS.

Adaptation from Causal Representation Learning To enhance the motivation for utilizing PNS
modeling to improve out-of-distribution generalization during prompt tuning of VLMs, we adapt
two representative causal representation learning methods from invariant learning: IRM (Arjovsky
et al., 2019) and IB-IRM (Ahuja et al., 2021). They mitigate spurious correlations by ensuring the
invariance of the conditional probability of the label Y given the causal representation across varied
training environments. The evaluation is conducted using ResNet-50 as the backbone model. The
experimental results on four datasets are list as follows:

We can find that LogicAl-PT outperforms the typical causally invariant representation learning meth-
ods. The underlying reason stems from the advantage of ’sufficient and neccesary’ causal representa-
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Table 5: Performance comparison among our method LogicAl-PT and the prevalent schemes
adapted from two single-modal causal presentation learning methods.

Datasets Waterbird CelebA ImageNet-1K PACS

Test Acc (%) Worst Avg Worst Avg Worst Avg Worst Avg

ERM 54.7 84.1 26.7 78.2 80.5 88.5 80.0 92.6
IRM 64.7 83.9 67.1 86.2 87.9 93.6 80.7 93.8
IB-IRM 65.3 84.3 67.9 85.8 88.3 93.9 81.2 93.4

LogicAl-PT 67.5 86.2 69.9 87.3 90.2 95.1 82.4 93.7

tion over traditional causal representation, which also forms the motivation for proposing LogicAl-
PT for prompt tuning of VLMs. Prevalent causal representation learning methods primarily aim
to mitigate non-causal spurious correlations. In contrast, the concept of ’sufficiency and necessity’
goes further by excluding not only non-causal spurious correlations but also causal relationships that
are ’sufficient but not necessary’ or ’necessary but not sufficient’. We provide specific examples to
clarify these types of relationships and explain why only ’sufficient and necessary’ relations remain
stable across diverse data distributions in Figure 4.
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