
Published as a conference paper at ICLR 2024

LEARNING ENERGY-BASED MODELS BY COOPERATIVE
DIFFUSION RECOVERY LIKELIHOOD

Yaxuan Zhu
UCLA
yaxuanzhu@g.ucla.edu

Jianwen Xie
Akool Research
jianwen@ucla.edu

Ying Nian Wu
UCLA
ywu@stat.ucla.edu

Ruiqi Gao
Google DeepMind
ruiqig@google.com

ABSTRACT

Training energy-based models (EBMs) on high-dimensional data can be both
challenging and time-consuming, and there exists a noticeable gap in sample quality
between EBMs and other generative frameworks like GANs and diffusion models.
To close this gap, inspired by the recent efforts of learning EBMs by maximimizing
diffusion recovery likelihood (DRL), we propose cooperative diffusion recovery
likelihood (CDRL), an effective approach to tractably learn and sample from a
series of EBMs defined on increasingly noisy versions of a dataset, paired with an
initializer model for each EBM. At each noise level, the two models are jointly
estimated within a cooperative training framework: Samples from the initializer
serve as starting points that are refined by a few MCMC sampling steps from the
EBM. The EBM is then optimized by maximizing recovery likelihood, while the
initializer model is optimized by learning from the difference between the refined
samples and the initial samples. In addition, we made several practical designs for
EBM training to further improve the sample quality. Combining these advances,
we significantly boost the generation performance compared to existing EBM
methods on CIFAR-10 and ImageNet 32x32. And we have shown that CDRL
has great potential to largely reduce the sampling time. We also demonstrate the
effectiveness of our models for several downstream tasks, including classifier-
free guided generation, compositional generation, image inpainting and out-of-
distribution detection.

1 INTRODUCTION

Energy-based models (EBMs), as a class of probabilistic generative models, have exhibited their
flexibility and practicality in a variety of application scenarios, such as realistic image synthesis
(Xie et al., 2016; 2018a; Nijkamp et al., 2019; Du & Mordatch, 2019; Arbel et al., 2021; Hill et al.,
2022; Xiao et al., 2021; Lee et al., 2023; Grathwohl et al., 2021; Cui & Han, 2023), graph generation
(Liu et al., 2021), compositional generation (Du et al., 2020; 2023), video generation (Xie et al.,
2021d), 3D generation (Xie et al., 2021a; 2018b), simulation-based inference (Glaser et al., 2022),
stochastic optimization (Kong et al., 2022), out-of-distribution detection (Grathwohl et al., 2020; Liu
et al., 2020), continue learning (Wang et al., 2023), internal learning (Zheng et al., 2021), learning set
funtion (Ou et al., 2022), image-to-image translation (Zhao et al., 2021; Xie et al., 2021b; 2022a;
Song et al., 2023), continuous inverse optimal control (Xu et al., 2022), and latent space modeling
(Pang et al., 2020; Zhu et al., 2023; Zhang et al., 2023; Yu et al., 2023). Despite these successes of
EBMs, training and sampling from EBMs remains challenging, mainly because of the intractability
of the partition function in the distribution.

Recently, Diffusion Recovery Likelihood (DRL) (Gao et al., 2021) has emerged as a powerful
framework for estimating EBMs. Inspired by diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019), DRL assumes a sequence of EBMs for the marginal distributions of a
diffusion process, where each EBM is trained with recovery likelihood that maximizes the conditional
probability of the data at the current noise level given their noisy versions at a higher noise level.
Maximizing recovery likelihood is more tractable, as sampling from the conditional distribution is
much easier than sampling from the marginal distribution. DRL achieves exceptional generation
performance among EBM-based generative models. However, a noticeable performance gap still
exists between the sample quality of EBMs and other generative frameworks like GANs or diffusion
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models. Moreover, DRL requires around 30 MCMC sampling steps at each noise level to generate
valid samples, which can be time-consuming during both training and sampling processes.

To further close the performance gap and expedite EBM training and sampling with fewer MCMC
sampling steps, we introduce Cooperative Diffusion Recovery Likelihood (CDRL), that jointly
estimates a sequence of EBMs and MCMC initializers defined on data perturbed by a diffusion
process. At each noise level, the initializer and EBM are updated by a cooperative training scheme
(Xie et al., 2018a): The initializer model proposes initial samples by predicting the samples at the
current noise level given their noisy versions at a higher noise level. The initial samples are then
refined by a few MCMC sampling steps from the conditional distribution defined by the EBM. Given
the refined samples, the EBM is updated by maximizing recovery likelihood, and the initializer is
updated to absorb the difference between the initial samples and the refined samples. The introduced
initializer models learn to accumulate the MCMC transitions of the EBMs, and reproduce them by
direct ancestral sampling. Combining with a new noise schedule and a variance reduction technique,
we achieve significantly better performance than the existing methods of estimating EBMs. We further
incorporate the classifier-free guidance (CFG) (Ho & Salimans, 2022) to enhance the performance
of conditional generation, and we observe similar trade-offs between sample quality and sample
diversity as CFG for diffusion models when adjusting the guidance strength. In addition, we showcase
that our approach can be applied to perform several useful downstream tasks, including compositional
generation, image inpainting and out-of-distribution detection.

Our main contributions are as follows: (1) We propose cooperative diffusion recovery likelihood
(CDRL) that tractably and efficiently learns and samples from a sequence of EBMs and MCMC
initializers; (2) We make several practical design choices related to noise scheduling, MCMC
sampling, noise variance reduction for EBM training; (3) Empirically we demonstrate that CDRL
achieves significant improvements on sample quality compared to existing EBM approaches, on
CIFAR-10 and ImageNet 32 × 32 datasets; (4) We show that CDRL has great potential to enable
more efficient sampling with sampling adjustment techniques; (5) We demonstrate CDRL’s ability in
compositional generation, image inpainting and out-of-distribution (OOD) detection, as well as its
compatibility with classifier-free guidance for conditional generation.

2 PRELIMINARIES ON ENERGY-BASED MODELS

Let x ∼ pdata(x) be a training example from an underlying data distribution. An energy-based model
defines the density of x by

pθ(x) =
1

Zθ
exp(fθ(x)), (1)

where fθ is the unnormalized log density, or negative energy, parametrized by a neural network
with a scalar output. Zθ is the normalizing constant or partition function. The derivative of the
log-likelihood function of an EBM can be approximately written as

L′(θ) = Epdata

[
∂

∂θ
fθ(x)

]
− Epθ

[
∂

∂θ
fθ(x)

]
, (2)

where the second term is analytically intractable and has to be estimated by Monte Carlo samples
from the current model pθ. Therefore, applying gradient-based optimization for an EBM usually
involves an inner loop of MCMC sampling, which can be time-consuming for high-dimensional data.

3 COOPERATIVE DIFFUSION RECOVERY LIKELIHOOD

3.1 DIFFUSION RECOVERY LIKELIHOOD

Given the difficulty of sampling from the marginal distribution p(x) defined by an EBM, we could
instead estimate a sequence of EBMs defined on increasingly noisy versions of the data and jointly
estimate them by maximizing recovery likelihood. Specifically, assume a sequence of noisy training
examples perturbed by a Gaussian diffusion process: x0,x1, ...,xT such that x0 ∼ pdata; xt+1 =
αt+1xt + σt+1ϵ. Denote yt = αt+1xt for notation simplicity. The marginal distributions of
{yt; t = 1, ..., T} are modeled by a sequence of EBMs: pθ(yt) = 1

Zθ,t
exp(fθ(yt; t)). Then the
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conditional EBM of yt given the sample xt+1 at a higher noise level can be derived as

pθ(yt|xt+1) =
1

Z̃θ,t(xt+1)
exp

(
fθ(yt; t)−

1

2σ2
t+1

∥yt − xt+1∥2
)
, (3)

where Z̃θ,t(xt+1) is the partition function of the conditional EBM dependent on xt+1. Compared with
the marginal EBM pθ(yt), when σt+1 is small, the extra quadratic term in pθ(yt|xt+1) constrains
the conditional energy landscape to be localized around xt+1, making the latter less multi-modal and
easier to sample from with MCMC. In the extreme case when σt+1 is infinitesimal, pθ(yt|xt+1) is
approximately a Gaussian distribution that can be tractably sampled from and has a close connection
to diffusion models (Gao et al., 2021). In the other extreme case when σt+1 → ∞, the conditional
distribution falls back to the marginal distribution, and we lose the advantage of being more MCMC
friendly for the conditional distribution. Therefore, we need to maintain a small σt+1 between
adjacent time steps, and to equip the model with the ability of generating new samples from white
noises, we end up with estimating a sequence of EBMs defined on the diffusion process. We use the
variance-preserving noise schedule (Song et al., 2021b), under which case we have xt = ᾱtx0 + σ̄tϵ,
where ᾱt =

∏T
t=1 αt and σ̄t =

√
1− ᾱ2

t .

We estimate each EBM by maximizing the following recovery log-likelihood function at each noise
level (Bengio et al., 2013):

Jt(θ) =
1

n

n∑
i=1

log pθ(yt,i|xt+1,i), (4)

where {yt,i, xt+1,i} are pair of samples at time steps t and t+ 1. Sampling from pθ(yt|xt+1) can be
achieved by running K steps of Langevin dynamics from the initialization point ỹ0

t = xt+1,i and
iterating

ỹτ+1
t = ỹτ

t +
s2t
2

(
∇yfθ(ỹ

τ
t ; t)−

1

σ2
t+1

(ỹτ
t − xt+1)

)
+ stϵ

τ , (5)

where st is the step size and τ is the index of the current sampling step. With the samples, the updating
of EBMs then follows the same learning gradients as MLE (Equation 2), as the extra quadratic term
− 1

2σ2
t+1

∥yt − xt+1∥2 in pθ(yt|xt+1) does not involve learnable parameters. It is worth noting that
maximizing recovery likelihood still guarantees an unbiased estimator of the true parameters of the
marginal distribution of the data.

3.2 AMORTIZING MCMC SAMPLING BY INITIALIZER MODEL

Although pθ(yt|xt+1) is easier to sample from than pθ(yt), when σt+1 is not infinitesimal, the ini-
tialization of MCMC sampling, xt+1, may still be far from the data manifold of yt. This necessitates
a certain amount of MCMC sampling steps at each noise level (e.g., 30 steps of Langevin dynamics in
Gao et al. (2021)). Naively reducing the number of sampling steps would lead to training divergence
or performance degradation.

To address this issue, we propose to learn an initializer model jointly with the EBM at each noise
level, which maps xt+1 closer to the manifold of yt. Our work is inspired by the CoopNets work
Xie et al. (2018a; 2021c; 2022b), which shows that jointly training a top-down generator via MCMC
teaching will help the training of a single EBM model. We take this idea and generalize it to the
recovery-likelihood model. More discussions are included in Appendix C. Specifically, the initializer
model at noise level t is defined as

qϕ(yt|xt+1) ∼ N (gϕ(xt+1; t), σ̃
2
t I). (6)

It serves as a coarse approximation to pθ(yt|xt+1), as the former is a single-mode Gaussian
distribution while the latter can be multi-modal. A more general formulation would be to in-
volve latent variables zt following a certain simple prior p(zt) into gϕ. Then qϕ(yt, t|xt+1) =
Ep(zt) [qϕ(yt, zt, t|xt+1)] can be non-Gaussian (Xiao et al., 2022). However, we empirically find
that the simple initializer in Equation 6 works well. Compared with the more general formulation,
the simple initializer avoids the inference of zt which may again require MCMC sampling, and leads
to more stable training. Different from (Xiao et al., 2022), samples from the initializer just serves as
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the starting points and are refined by sampling from the EBM, instead of being treated as the final

samples. We follow (Ho et al., 2020) to set σ̃t =

√
1−ᾱ2

t

1−ᾱ2
t+1

σt. If we treat the sequence of initializers

as the reverse process, such choice of σ̃t corresponds to the lower bound of the standard deviation
given by pdata being a delta function (Sohl-Dickstein et al., 2015).

3.3 COOPERATIVE TRAINING

We jointly train the sequence of EBMs and intializers in a cooperative fashion. Specifically, at each
iteration, for a randomly sampled noise level t, we obtain an initial sample ŷt from the intializer
model. Then a synthesized sample ỹt from p(yt|xt+1) is generated by initializing from ŷt and
running a few steps of Langevin dynamics (Equation 5). The parameters of EBM are then updated by
maximizing the recovery log-likelihood function (Equation 4). The learning gradient of EBM is

∇θJt(θ) = ∇θ

[
1

n

n∑
i=1

fθ(yt,i; t)−
1

n

n∑
i=1

fθ(ỹt,i; t)

]
. (7)

To train the intializer model that amortizes the MCMC sampling process, we treat the revised sample
ỹt by the EBM as the observed data of the initializer model, and estimate the parameters of the
initializer by maximizing log-likelihood:

Lt(ϕ) =
1

n

n∑
i=1

[
− 1

2σ̃2
t

∥ỹt,i − gϕ(xt+1,i; t)∥2
]
. (8)

That is, the initializer model learns to absorb the difference between ŷt and ỹt at each iteration so
that ŷt is getting closer to the samples from pθ(yt|xt+1). In practice, we re-weight Lt(ϕ) across
different noise levels by removing the coefficient 1

2σ̃2
t

, similar to the “simple loss" in diffusion models.
The training algorithm is summarized in Algorithm 1.

After training, we generate new samples by starting from Gaussian white noise and progressively
samples pθ(yt|xt+1) at decreasingly lower noise levels. For each noise level, an initial proposal is
generated from the intializer model, followed by a few steps of Langevin dynamics from the EBM.
See Algorithm 2 for a summary.

3.4 NOISE VARIANCE REDUCTION

We further propose a simple way to reduce the variance of training gradients. In principle, the
pair of xt (or yt) and xt+1 is generated by xt ∼ N (ᾱtx0, σ̄

2
t I) and xt+1 ∼ N (αt+1xt, σ

2
t+1I).

Alternatively, we can fix the Gaussian white noise e ∼ N (0, I), and sample pair (x′
t,x

′
t+1) by

x′
t = ᾱtx0 + σ̄te

x′
t+1 = ᾱt+1x

′
t + σ̄t+1e. (9)

In other words, both x′
t and x′

t+1 are linear interpolation between the clean sample x0 and a sampled
white noise image e. x′

t and x′
t+1 have the same marginal distributions as xt and xt+1. But x′

t is
deterministic given x0 and x′

t+1, while there’s still variance for xt given x0 and xt+1. This schedule
is related to the ODE forward process used in flow matching (Lipman et al., 2022) and rectified
flow (Liu et al., 2022b).

3.5 CONDITIONAL GENERATION AND CLASSIFIER-FREE GUIDANCE

(Ho & Salimans, 2022) proposed classifier-free guidance that greatly improves the sample quality of
conditional diffusion models, and trades-off between sample quality and sample diversity by adjusting
the guidance strength. Given the close connection between EBMs and diffusion models, we show
that it is possible to apply classifier-free guidance in CDRL as well. Specifically, suppose c is the
context (e.g., a label or a text description). At each noise level we jointly estimate an unconditional
EBM pθ(yt) ∝ exp(fθ(yt; t)) and a conditional EBM pθ(yt|c) ∝ exp(fθ(yt; c, t)). By Bayes rule:

pθ(c|yt) =
pθ(c,yt)

pθ(yt)
=

pθ(yt|c)p(c)
pθ(yt)

. (10)
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Algorithm 1 CDRL Training
Input: (1) observed data x0 ∼ pdata(x); (2) Number of noise levels T ; (3) Number of Langevin sampling steps
K per noise level; (4) Langevin step size at each noise level st; (5) Learning rate ηθ for EBM fθ; (6) Learning
rate ηϕ for initializer gϕ;
Output: Parameters θ, ϕ

Randomly initialize θ and ϕ.
repeat

Sample noise level t from {0, 1, ..., T − 1}.
Sample ϵ ∼ N (0, I). Let xt+1 = ᾱt+1x0 + σ̄t+1ϵ, yt = αt+1(ᾱtx0 + σ̄tϵ).
Generate the initial sample ŷt following Equation 6.
Generate the refined sample yt by running K steps of Langevin dynamics starting from ŷt following

Equation 5.
Update EBM parameter θ following the gradients in Equation 7.
Update initializer parameter ϕ by maximizing Equation 8.

until converged

Algorithm 2 CDRL Sampling
Input: (1) Number of noise levels T ; (2) Number of Langevin sampling steps K at each noise level; (3) Langevin
step size at each noise level δt; (4) Trained EBM fθ; (5) Trained initializer gϕ;
Output: Samples x̃0

Randomly initialize xT ∼ N (0, I).
for t = T − 1 to 0 do

Generate initial proposal ŷt following Equation 6.
Update ŷt to ỹt by K iterations of Equation 5.
Let x̃t = ỹt/αt+1.

end for

With classifier-free guidance, we assume that the log-density of yt is scaled to
log p̃θ(yt|c) = log [pθ(yt|c)pθ(c|yt)

w] + const. = (w + 1)fθ(yt; c, t)− wfθ(yt; t) + const.,
(11)

where w controls the guidance strength. Similarly, for the initializer model, we jointly estimate an
unconditional model qϕ(yt|xt+1) ∼ N (gϕ(xt+1; t), σ̃

2
t I) and a conditional model qϕ(yt|c,xt+1) ∼

N (gϕ(xt+1; c, t), σ̃
2
t I). Since both models follow Gaussian distributions, the scaled conditional

distribution with classifier-free guidance is still a Gaussian (Dhariwal & Nichol, 2021):
q̃ϕ(yt|c,xt+1) ∝ qϕ(yt|c,xt+1)qϕ(c|yt,xt+1)

w ∼ N
(
(w + 1)gϕ(xt+1; c, t)− wgϕ(xt+1; t), σ̃

2
t I

)
.

(12)

3.6 COMPOSITIONALITY IN ENERGY-BASED MODEL

One attractive property of EBMs is compositionality: one can combine multiple EBMs conditioned
on individual concepts, and re-normalize it to create a new distribution conditioned on the intersection
of those concepts. Specifically, given two EBMs pθ(x|c1) ∝ exp(fθ(x; c1)) and pθ(x|c2) ∝
exp(fθ(x; c2)) that are conditional on two seperate concepts, (Du et al., 2020; Lee et al., 2023)
constructs a new EBM conditional on both concepts as pθ(x|c1, c2) ∝ exp(fθ(x; c1) + fθ(x; c2))
based on the production of expert (Hinton, 2002). Here we show that a negative energy term is
missing in that formulation, which can be easily added back with classifier-free guidance and leads to
better compositional generation empirically. Specifically, suppose the two concepts c1 and c2 are
conditionally independent given the observed data x. Then we have

log pθ(x|c1, c2) = log pθ(c1, c2|x) + log pθ(x) + const.

= log pθ(c1|x) + log pθ(c2|x) + log pθ(x) + const.

= log pθ(x|c1) + log pθ(x|c2)− log pθ(x) + const.

The composition can be generalized to include arbitrary number of concepts. Suppose we have M
conditionally independent concepts ci, i = 1, ...,M , then

log pθ(x|ci, i = 1, ...,M) =

M∑
i=1

log pθ(x|ci)− (M − 1) log pθ(x) + const. (13)
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We can combine the compositional log-density (Equation 13) with classifier-free guidance (Equa-
tion 11) to further improve the alignment of generated samples with given concepts. The scaled
log-density function is given by

log [p(x|ci, i = 1, ...,M)p(ci, i = 1, ...,M |x)w]

= (w + 1)

M∑
i=1

log pθ(x|ci)− (Mw +M − 1) log p(x) + const. (14)

(a) CIFAR-10 (b) ImageNet (32× 32)

Figure 1: Unconditional generated examples on CIFAR-10 and ImageNet (32× 32) datasets.

Figure 2: Conditional generation on ImageNet (32 × 32) dataset with a classifier-free guidance.
(a) Random image samples generated with different guided weights w = 0.0, 0.5, 1.0 and 3.0; (b)
Samples generated with a fixed noise under different guided weights. The class label is set to be the
category of Siamese Cat. Sub-images presented at the same position depict samples with identical
random noise and class label, differing only in their guided weights; (c) A curve of FID scores across
different guided weights; (d) A curve of Inception scores across different guided weights.

4 EXPERIMENTS

We evaluate the performance of our model across various scenarios. Specifically, Section 4.1
demonstrates the capacity of unconditional generation. Section 4.2 highlights the potential of our
model to further optimize sampling efficiency. The focus shifts to conditional generation and
classifier-free guidance in Section 4.3. Section 4.4 elucidates the power of our model in performing
likelihood estimation and OOD detection, and Section 4.5 showcases compositional generation.
Please refer to Appendix A for implementation details, Appendix D for image inpainting with our
trained models, Appendix F for comparing the sampling time between our approach and other EBM
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Table 1: Comparison of FID scores for unconditional generation on CIFAR-10.

Models FID ↓
EBM based method

NT-EBM (Nijkamp et al., 2022) 78.12
LP-EBM (Pang et al., 2020) 70.15
Adaptive CE (Xiao & Han, 2022) 65.01
EBM-SR (Nijkamp et al., 2019) 44.50
JEM (Grathwohl et al., 2020) 38.40
EBM-IG (Du & Mordatch, 2019) 38.20
EBM-FCE (Gao et al., 2020) 37.30
CoopVAEBM (Xie et al., 2021c) 36.20
CoopNets (Xie et al., 2018a) 33.61
Divergence Triangle (Han et al., 2020) 30.10
VARA (Grathwohl et al., 2021) 27.50
EBM-CD (Du et al., 2021) 25.10
GEBM (Arbel et al., 2021) 19.31
HAT-EBM (Hill et al., 2022) 19.30
CF-EBM (Zhao et al., 2021) 16.71
CoopFlow (Xie et al., 2022b) 15.80
CLEL-base (Lee et al., 2023) 15.27
VAEBM (Xiao et al., 2021) 12.16
DRL (Gao et al., 2021) 9.58
CLEL-large (Lee et al., 2023) 8.61
EGC (Unsupervised) (Guo et al., 2023) 5.36

CDRL (Ours) 4.31
CDRL-large (Ours) 3.68

Models FID ↓
Other likelihood based method

VAE (Kingma & Welling, 2014) 78.41
PixelCNN (Salimans et al., 2017) 65.93
PixelIQN (Ostrovski et al., 2018) 49.46
Residual Flow (Chen et al., 2019) 47.37
Glow (Kingma & Dhariwal, 2018) 45.99
DC-VAE (Parmar et al., 2021) 17.90

GAN based method

WGAN-GP(Gulrajani et al., 2017) 36.40
SN-GAN (Miyato et al., 2018) 21.70
BigGAN (Brock et al., 2019) 14.80
StyleGAN2-DiffAugment (Zhao et al., 2020) 5.79
Diffusion-GAN (Xiao et al., 2022) 3.75
StyleGAN2-ADA (Karras et al., 2020) 2.92

Score based and Diffusion method

NCSN (Song & Ermon, 2019) 25.32
NCSN-v2 (Song & Ermon, 2020) 10.87
NCSN++ (Song et al., 2021b) 2.20
DDPM Distillation (Luhman & Luhman, 2021) 9.36
DDPM++(VP, NLL) (Kim et al., 2021) 3.45
DDPM (Ho et al., 2020) 3.17
DDPM++(VP, FID) (Kim et al., 2021) 2.47

models, Appendix G for understanding the role of EBM and initializer in the generation process and
Appendix H for the ablation study. We designate our approach as “CDRL” in the following sections.

Our experiments primarily involve three datasets: (i) CIFAR-10 (Krizhevsky & Hinton, 2009)
comprises images from 10 categories, with 50k training samples and 10k test samples at a resolution
of 32 × 32 pixels. We use its training set for evaluating our model in the task of unconditional
generation. (ii) ImageNet (Deng et al., 2009) contains approximately 1.28M images from 1000
categories. We use its training set for both conditional and unconditional generation, focusing on a
downsampled version (32× 32) of the dataset. (iii) CelebA (Liu et al., 2015) consists of around 200k
human face images, each annotated with attributes. We downsample each image of the dataset to the
size of 64× 64 pixels and utilize the resized dataset for compositionality and image inpainting tasks.

4.1 UNCONDITIONAL IMAGE GENERATION

We first showcase our model’s capabilities in unconditional image generation on CIFAR-10 and
ImageNet datasets. The resolution of each image is 32× 32 pixels. FID scores (Heusel et al., 2017)
on these two datasets are reported in Tables 1 and 3, respectively, with generated examples displayed
in Figure 1. We adopt the EBM architecture proposed in Gao et al. (2021). Additionally, we utilize
a larger version called “CDRL-large”, which incorporates twice as many channels in each layer.
For the initializer network, we follow the structure of (Nichol & Dhariwal, 2021), utilizing a U-Net
(Ronneberger et al., 2015) but halving the number of channels. Compared to Gao et al. (2021), CDRL
achieves significant improvements in FID scores. Furthermore, CDRL uses the same number of
noise levels (6 in total) as DRL but requires only half the MCMC steps at each noise level, reducing
it from 30 to 15. This substantial reduction in computational costs is noteworthy. With the large
architecture, CDRL achieves a FID score of 3.68 on CIFAR-10 and 9.35 on ImageNet (32 × 32).
These results, to the best of our knowledge, are the state-of-the-art among existing EBM frameworks
and are competitive with other strong generative model classes such as GANs and diffusion models.

4.2 SAMPLING EFFICIENCY

Similar to the sampling acceleration techniques employed in the diffusion model (Song et al., 2021a;
Liu et al., 2022a; Lu et al., 2022), we foresee the development of post-training techniques to further
accelerate CDRL sampling. Although designing an advanced MCMC sampling algorithm could
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be a standalone project, we present a straightforward yet effective sampling adjustment technique
to demonstrate CDRL’s potential in further reducing sampling time. Specifically, we propose to
decrease the number of sampling steps while simultaneously adjusting the MCMC sampling step size
to be inversely proportional to the square root of the number of sampling steps. As shown in Table 2,
while we train CDRL with 15 MCMC steps at each noise level, we can reduce the number of MCMC
steps to 8, 5, and 3 during the inference stage, without sacrificing much perceptual quality.

4.3 CONDITIONAL SYNTHESIS WITH CLASSIFIER-FREE GUIDANCE

We evaluate our model for conditional generation on the ImageNet32 dataset, employing classifier-free
guidance as outlined in Section 3.5. Generation results for varying guided weights w are displayed in
Figure 2. As the value of w increases, the quality of samples improves, and the conditioned class
features become more prominent, although diversity may decrease. This trend is also evident from
the FID and Inception Score (Salimans et al., 2016) curves shown in Figures 2(c) and 2(d). While the
Inception Score consistently increases (improving quality), the FID metric first drops (improving
quality) and then increases (worsening quality), obtaining the optimal value of 6.18 (lowest value) at
a guidance weight of 0.7. Additional image generation results can be found in Appendix E.1.

Table 2: FID for CIFAR-10 with sampling adjust-
ment.

Models
Number of noise
level × Number
of MCMC steps

FID ↓

DRL (Gao et al., 2021) 6× 30 = 180 9.58
CDRL 6× 15 = 90 4.31
CDRL (step 8) 6× 8 = 48 4.58
CDRL (step 5) 6× 5 = 30 5.37
CDRL (step 3) 6× 3 = 18 9.67

Table 3: FID for ImageNet (32× 32) uncondi-
tional generation.

Models FID ↓
EBM-IG (Du & Mordatch, 2019) 60.23
PixelCNN (Salimans et al., 2017) 40.51
EBM-CD (Du et al., 2021) 32.48
CF-EBM (Zhao et al., 2021) 26.31
CLEL-base (Lee et al., 2023) 22.16
DRL (Gao et al., 2021) - (not converge)
DDPM++(VP, NLL) (Kim et al., 2021) 8.42

CDRL (Ours) 9.35

4.4 LIKELIHOOD ESTIMATION AND OUT-OF-DISTRIBUTION DETECTION

A distinctive feature of the EBM is its ability to model the unnormalized log-likelihood directly
using the energy function. This capability enables it to perform tasks beyond generation. In this
section, we first showcase the capability of the CDRL in estimating the density of a 2D checkerboard
distribution. Experimental results are presented in Figure 3, where we illustrate observed samples,
the fitted density, and the generated samples at each noise level, respectively. These results confirm
CDRL’s ability to accurately estimate log-likelihood while simultaneously generating valid samples.

Moreover, we demonstrate CDRL’s utility in out-of-distribution (OOD) detection tasks. For this
endeavor, we employ the model trained on CIFAR-10 as a detector and use the energy at the lowest

Figure 3: The results of density estimation using CDRL for a 2D checkerboard distribution. The
number of noise levels in the CDRL is set to be 5. Top: observed samples at each noise level. Middle:
density fitted by CDRL at each noise level. Bottom: generated samples at each noise level.
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noise level to serve as the OOD prediction score. The AUROC score of our CDRL model, with
CIFAR-10 interpolation, CIFAR-100, and CelebA data as OOD samples, is provided in Table 4.
CDRL achieves strong results in OOD detection comparing with the baseline approaches. More
results can be found in Table 8 in the appendix.

4.5 COMPOSITIONALITY

Table 4: AUROC scores in OOD detection using CDRL and
other explicit density models on CIFAR-10

Cifar-10
interpolation Cifar-100 CelebA

PixelCNN (Salimans et al., 2017) 0.71 0.63 -
GLOW (Kingma & Dhariwal, 2018) 0.51 0.55 0.57
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68
EBM-IG (Du & Mordatch, 2019) 0.70 0.50 0.70
VAEBM (Xiao et al., 2021) 0.70 0.62 0.77
EBM-CD (Du et al., 2021) 0.65 0.83 -
CLEL-Base (Lee et al., 2023) 0.72 0.72 0.77

CDRL (ours) 0.75 0.78 0.84

To evaluate the compositionality of
EBMs, we conduct experiments on
CelebA (64 × 64) datasets with
Male, Smile, and Young as the three
conditional concepts. We estimate
EBMs conditional on each single
concept separately, and assume sim-
ple unconditional initializer models.
Classifier-free guidance is adopted
when conducting compositional gener-
ation (Equation 14). Specifically, we
treat images with a certain attribute
value as individual classes. We ran-
domly assign each image in a training
batch to a class based on the controlled attribute value. For example, an image with Male=True and
Smile=True may be assigned to class 0 if the Male attribute is picked or class 2 if the Smile attribute
is picked. For the conditional network structure, we make EBM fθ conditional on attributes ci and
use an unconditional initializer model gϕ to propose the initial distribution. We focus on showcasing
the compositionality ability of EBM itself, although it is also possible to use a conditional initializer
model similar to Section 3.5. Our results are displayed in Figure 4, with images generated at a guided
weight of w = 3.0. More generation results with different guidance weights can be found in the
Appendix E.1. Images generated with composed attributes following Equation 14 contain features of
both attributes, and increasing the guided weight makes the corresponding attribute more prominent.
This demonstrates CDRL’s ability and the effectiveness of Equation 14.

Figure 4: Results of attribute-compositional generation on CelebA (64 × 64) with guided weight
w = 3. Left: generated samples under different attribute compositions. Right: control attributes
(“
√

”, “×” and “-” indicate “true”, “false” and “no control” respectively).

5 CONCLUSION AND FUTURE WORK

We propose CDRL, a novel energy-based generative learning framework employing cooperative
diffusion recovery likelihood, which significantly enhances the generation performance of EBMs. We
demonstrate that the CDRL excels in compositional generation, out-of-distribution detection, image
inpainting, and compatibility with classifier-free guidance for conditional generation. One limitation
is that a certain number of MCMC steps are still needed during generation. Additionally, we aim
to scale our model for high-resolution image generation in the future. Our work aims to stimulate
further research on developing EBMs as generative models. However, the prevalence of powerful
generative models may give rise to negative social consequences, such as deepfakes, misinformation,
privacy breaches, and erosion of public trust, highlighting the need for effective preventive measures.
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A TRAINING DETAILS

A.1 NETWORK ARCHITECTURES

We adopt the EBM architecture from (Gao et al., 2021), starting with a 3 × 3 convolution layer
with 128 channels (The number of channels is doubled to 256 in the CDRL-large configuration).
We use several downsample blocks for resolution adjustments, each containing multiple residual
blocks. All downsampling blocks, except the last one, include a 2× 2 average pooling layer. Spectral
normalization is applied to all convolution layers for stability, while ReLU activation is applied to the
final feature map. The energy output is obtained by summing the values over spatial and channel
dimensions. The architectures of EBM building blocks are shown in Table 5, and the hyperparameters
of network architecture are displayed in Table 6.

For the initializer network, we follow (Nichol & Dhariwal, 2021) to utilize a U-Net (Ronneberger
et al., 2015) while halving the number of channels. This reduction effectively decreases the size of the
initializer model. For an image with a resolution of 32× 32 pixels, we have feature map resolutions
of 32× 32, 16× 16, and 4× 4. When dealing with 64× 64 images, we include an additional feature
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map resolution of 64× 64. All feature map channel numbers are set to 64, with attention applied to
resolutions of 16× 16 and 8× 8. Our initializer directly predicts the noised image ỹt at each noise
level t, while the DDPM in (Ho et al., 2020) predicts the total injected noise ϵ.

For the class-conditioned generation task, we map class labels to one-hot vectors and use a fully-
connected layer to map these vectors to class embedding vectors with the same dimensions as time
embedding vectors. The class embedding is then added to the time embedding. We set the time
embedding dimension to 512 for EBM and 256 for the initializer in the CDRL setting. In the
CDRL-large setting, the time embedding dimension increases to 1024 for EBM, while the one in the
initializer remains unchanged.

Table 5: Building blocks of the EBM in CDRL.

(a) ResBlock

leakyReLU, 3 × 3 Conv2D

+ Dense(leakyReLU(temb))

leakyReLU, 3 × 3 Conv2D

+ Input

(b) Downsample Block

N ResBlocks

Downsample 2× 2

(c) Time Embedding

Sinusoidal Embedding

Dense, leakyReLU

Dense

Table 6: Hyperparameters for EBM architectures in different settings.

Model # of Downsample
Blocks

N (# of Resblocks in
Downsample Block)

# of channels
in each resolution

CDRL (32× 32) 4 8 (128, 256, 256, 256)
CDRL-large (32× 32) 4 8 (256, 512, 512, 512)

Compositionality Experiment 5 2 (128, 256, 256, 256, 256)
Inpainting Experiment 5 8 (128, 256, 256, 256, 256)

A.2 HYPERPARAMETERS

We set the learning rate of EBM to be ηθ = 1e−4 and the learning rate of initializer to be ηϕ = 1e−5.
We use linear warm up for both EBM and initializer and let the initializer to start earlier than EBM.
More specifically, given training iteration iter, we have:

ηθ = min(1.0,
iter

10000
)× 1e− 4

ηϕ = min(1.0,
iter + 500

10000
)× 1e− 5

(15)

We use the Adam optimizer Kingma & Ba (2015); Loshchilov & Hutter (2019) to train both the EBM
and the initializer, with β = (0.9, 0.999) and a weight decay equal to 0.0. We also apply exponential
moving average with a decay rate equal to 0.9999 to both the EBM and the initializer. Training is
conducted across 8 Nvidia A100 GPUs, typically requiring approximately 400k iterations, which
spans approximately 6 days.

Following (Gao et al., 2021), we use a re-parameterization trick to calculate the energy term. Our EBM
is constructed across noise levels t = 0, 1, 2, 3, 4, 5 and we assume the distribution at noise level t = 6
is a simple Normal distribution during sampling. Given yt under noise level t, suppose we denote the
output of the EBM network as f̂θ(yt, t), then the true energy term is given by fθ(yt, t) =

f̂θ(yt,t)
s2t

,
where st is the Langevin step size at noise level t. In other words, we parameterize the energy as the
product of the EBM network output and a noise-level dependent coefficient, setting this coefficient
equal to the square of the Langevin step size. We use 15 steps of Langevin updates at each noise
level, with the Langevin step size at noise level t given by

s2t = 0.054× σ̄t × σ2
t+1, (16)
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where σ2
t+1 is the variance of the added noise at noise level t+1 and σ̄t is the standard deviation of the

accumulative noise at noise level t. During the generation process, we begin by randomly sampling
x6 ∼ N (0, I) and perform denoising using both the initializer and the Langevin Dynamics of the
EBM, which follows Algorithm 2. After obtaining samples x0 at the lowest noise level t = 0, we
perform an additional denoising step, where we disable the noise term in the Langevin step, to further
enhance its quality. More specifically, we follow Tweedie’s formula (Efron, 2011; Robbins, 1992),
which states that given x ∼ pdata(x) and a noisy version image x′ with conditional distribution
p(x′|x) = N (x, σ2I), the marginal distribution can be defined as p(x′) =

∫
pdata(x)p(x

′|x)dx.
Consequently, we have

E(x|x′) = x′ + σ2∇x′ log p(x′). (17)
In our case, we have p(xt|ᾱtx0) = N (ᾱtx0, σ̄

2
t I) and we use EBM to model the marginal distribu-

tion of xt as pθ,t(xt), thus

E(ᾱtx0|xt) = xt + σ̄2
t∇xt

log pθ,t(xt),

E(x0|xt) =
xt + σ̄2

t∇xt
log pθ,t(xt)

ᾱt
. (18)

Suppose the samples we obtain at t = 0 are denoted as x0. These samples actually contains a small
amount of noise corresponding to ᾱ0, thus, we may use Equation 18 to further denoise them. In
practice, we find that enlarging the denoising step by multiplying the gradient term ∇xt

log pθ,t(xt)
by a coefficient larger than 1.0 yields better results. We set this coefficient to be 2.0 in our experiments.

A.3 NOISE SCHEDULE AND CONDITIONING INPUT

We improve upon the noise schedule and the conditioning input of DRL (Gao et al.,
2021). Let λt = log

ᾱ2
t

σ̄2
t

represent the logarithm of signal-to-noise ratio at noise
level t. Inspired by (Kingma et al., 2021), we utilize λt as the conditioning input
of the noise level and feed it to the networks fθ and gϕ instead of directly using t.

Figure 5: Noise level schedule. The
green line is the noise levels used
by DRL (Gao et al., 2021) while the
red line is the noise levels used by
our CDRL.

For the noise schedule, we keep the design of using 6 noise
levels as in DRL. Inspired by (Nichol & Dhariwal, 2021), we
construct a cosine schedule such that λt is defined as λt =
−2 log(tan(at + b)), where a and b are calculated from the
maximum log SNR (denoted as λmax) and minimum log SNR
(denoted as λmin) using:

b = arctan(exp(−0.5λmax)), (19)
a = arctan(exp(−0.5λmin))− b. (20)

We set λmax = 9.8 and λmin = −5.1 to match the accumu-
lative noise level ᾱt of the original Recovery Likelihood model
T6 at the highest and lowest noise levels. Figure 5 illustrates the
noise schedule of DRL and our proposed schedule. Compared
to DRL’s original schedule, our new schedule focuses more on
regions with lower signal-to-noise ratios, crucial for generating low-frequency, high-level concepts in
samples.

B OVERALL ILLUSTRATION OF CDRL

In figure 6, we give an overview illustration of the training and sampling process of CDRL.

C RELATED WORK

Energy-Based Learning Energy-based models (EBMs) (Zhu et al., 1998; LeCun et al., 2006;
Ngiam et al., 2011; Hinton, 2012) define unnormalized probabilistic distributions and are typically
trained through maximum likelihood estimation. Methods such as contrastive divergence (Hinton,
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(a) An overview of the CDRL training process: In the training phase, we commence by selecting a pair of
images at noise levels t and t − 1. The image at noise level t is then input into the initializer to produce an
initial proposal. Subsequently, this initial proposal undergoes refinement through MCMC process guided by the
underlying energy function. The enhanced sample derived from this process is utilized to update both the energy
function and the initializer.

(b) An Overview of the CDRL Sampling process: The sampling phase starts from Gaussian noise. Beginning
at the highest noise level, an initial proposal is generated by the initializer specific to that noise level. This
is followed by refinement of the samples through MCMC sampling. This procedure is iteratively repeated,
descending through progressively lower noise levels, until the lowest noise level is reached

Figure 6: Overview of CDRL

2002; Du et al., 2021), persistent chain (Xie et al., 2016), replay buffer (Du & Mordatch, 2019) or
short-run MCMC sampling (Nijkamp et al., 2019) approximate the analytically intractable learning
gradient. To scale up and stabilize EBM training for high-fidelity data generation, strategies like
multi-grid sampling (Gao et al., 2018), progressive training (Zhao et al., 2021), and diffusion (Gao
et al., 2021) have been adopted. EBMs have also been connected to other models, such as adversarial
training (Arbel et al., 2021; Che et al., 2020), variational autoencoders (Xiao et al., 2021), contrastive
guidance (Lee et al., 2023), and noise contrastive estimation (Gao et al., 2020). To alleviate MCMC
burden, various methods have been proposed, including amortizing MCMC sampling with learned
networks (Kim & Bengio, 2016; Xie et al., 2018a; Kumar et al., 2019; Xiao et al., 2021; Han
et al., 2019; Grathwohl et al., 2021). Among them, cooperative networks (CoopNets) (Xie et al.,
2018a) jointly train a top-down generator and an EBM via MCMC teaching, using the generator
as a fast initializer for Langevin sampling. CoopNets variants have also been studied (Xie et al.,
2021c; 2022b). Our work improves the recovery likelihood learning algorithm of EBMs (Gao et al.,
2021) by learning a fast MCMC initializer for EBM sampling, leveraging the cooperative learning
scheme. Compared to (Xie et al., 2020) that applied cooperative training to an initializer and an
EBM for the marginal distribution of the clean data, our approach only requires learning conditional
initializers and sampling from conditional EBMs, which are much more tractable than their marginal
counterparts.

Diffusion Model Diffusion models, originating from Sohl-Dickstein et al. (2015) and further devel-
oped in works such as Song & Ermon (2020); Ho et al. (2020), generate samples by progressively
denoising them from a high noise level to clean data. These models have achieved remarkable success
in generating high-quality samples from complex distributions, thanks to various architectural and
framework innovations Ho et al. (2020); Song et al. (2021a); Kim et al. (2021); Song et al. (2021b);
Dhariwal & Nichol (2021); Karras et al. (2022); Ho & Salimans (2022). Notably, Dhariwal &
Nichol (2021) emphasizes that the generative performance of diffusion models can be enhanced with
the aid of a classifier, while Ho & Salimans (2022) further demonstrates that this guided scoring
can be estimated by the differential scores of a conditional model versus an unconditional model.
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Enhancements in sampling speed have been realized through distillation techniques Salimans & Ho
(2022) and the development of fast SDE/ODE samplers Song et al. (2021a); Karras et al. (2022);
Lu et al. (2022). Recent advancements Rombach et al. (2022); Saharia et al. (2022); Ramesh et al.
(2022) have successfully applied conditional diffusion models to the task of text-to-image generation,
achieving significant breakthroughs.

Figure 7: Image inpainting results on
CelebA (64×64). The first two rows use
square masks and the last two rows uses
irregular masks. Columns one displays
original images. Column two shows
masked images. Columns three to six
exhibit inpainted images using different
initialization seeds.

EBM shares a close relationship with diffusion models,
as both frameworks can provide a score to guide the gen-
eration process, whether through Langevin dynamics or
SDE/ODE solvers. As Salimans & Ho (2021) discusses,
the distinction between the two lies in their implementa-
tion approach: EBMs model the log-likelihood directly,
while diffusion models concentrate on the gradient of the
log-likelihood. This distinction enables EBM to be used
in some potential applications. These include utilizing ad-
vanced sampling techniques Du et al. (2023), transformed
into classifiers Guo et al. (2023), or employed in the de-
tection of abnormal samples through estimated likelihood
Grathwohl et al. (2020); Liu et al. (2020).

The focus of this work is to push the development of
EBM. And our work connects to diffusion models (Ho
et al., 2020; Xiao et al., 2022) by learning a sequence
of EBMs and MCMC initializers to reverse the diffusion
process. Contrasting (Ho et al., 2020), our framework
employs more expressive conditional EBMs instead of
normal distributions. (Xiao et al., 2022) also suggests multimodal distributions, trained by generative
adversarial networks (Goodfellow et al., 2020), for the reverse process.

D IMAGE INPAINTING

We demonstrate our learned model’s inpainting ability on the 64 × 64 CelebA dataset. For each
image, we mask a portion and let the model fill in the masked area. We add noise to the masked image
up to the final noise level and allow the model to gradually denoise the image, similar to the standard
generation process. During inpainting, we only update the masked area, retaining the unmasked
area’s values. This is achieved by resetting the unmasked area values to the current noisy version
after each Langevin update step of the EBM or initializer proposal step. Our results are shown in
Figure 7. We test two masking types: a regular square mask and an irregularly shaped mask. CDRL
successfully inpaints valid and diverse values in the masked area, with inpainted results differing
from the observations. This indicates that our model does not merely memorize data points but fills
in meaningful unobserved areas based on the dataset’s statistical features.

E MORE EXPERIMENTAL RESULTS

E.1 MORE GENERATION RESULTS

In this section we show more generation results. Figure 10 shows more compositionality results with
different guidance weight on CelebA 64× 64 dataset. Here, w = 0.0 equals to the original setting in
Equation 13 in the main paper without guidance. In Figure 11, 12, 13, 14 and 15 provide more results
for conditional generation on ImageNet32 (32× 32) with different guidance weight. Figure 11 gives
random samples while each figure in Figure 12, 13, 14 and 15 contains samples from a certain class
under different guidance weight w.

E.2 GENERATE HIGH RESOLUTION IMAGE

The recent trend in generative modeling involves either utilizing the latent space of a VAE, as in latent
Diffusion Rombach et al. (2022), or initially generating a low-resolution image and then scaling
up, as demonstrated by techniques like Imagen Saharia et al. (2022). This process might reduce the
modeled space to dimensions such as 32× 32 or 64× 64, aligning with the resolution on which we
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conducted our experiments in the main paper. Here, we undertook additional experiments by learning
CDRL following Rombach et al. (2022). We conduct experiments on the CelebA-HQ dataset. The
samples are shown in Figure 9. We report the FID score in Table 7.

Table 7: FID score for CelebA-HQ (256 x 256) dataset

Model FID score
GLOW (Kingma & Dhariwal, 2018) 68.93
VAEBM (Xiao et al., 2021) 20.38
ATEBM (Yin et al., 2022) 17.31
VQGAN+Transformer (Esser et al., 2021) 10.2
LDM Rombach et al. (2022) 5.11
CDRL(ours) 10.74

E.3 MORE OOD RESULTS

Here we include the results for OOD task on more datasets. We also include more recent baselines.
The results are included in Table 8.

Table 8: AUROC scores in OOD detection using CDRL and other explicit density models on CIFAR-
10. The score for DRL Gao et al. (2021) is reported by Yoon et al. (2023). Also for EBM-CD Du
et al. (2021), we find different numbers from different sources, one from the Du et al. (2021) and the
other from a recent work Yoon et al. (2023), we include both scores here and put the scores from
Yoon et al. (2023) into brackets.

Cifar-10
interpolation Cifar-100 CelebA SVHN Texture

PixelCNN(Salimans et al., 2017) 0.71 0.63 - 0.32 0.33
GLOW (Kingma & Dhariwal, 2018) 0.51 0.55 0.57 0.24 0.27
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68 0.42 -
EBM-IG (Du & Mordatch, 2019) 0.70 0.50 0.70 0.63 0.48
VAEBM (Xiao et al., 2021) 0.70 0.62 0.77 0.83 -
EBM-CD (Du et al., 2021) 0.65 (-) 0.83 (0.53) - (0.54) 0.91 (0.78) 0.88 (0.73)
CLEL (Lee et al., 2023) 0.72 0.72 0.77 0.98 0.94
DRL (Gao et al., 2021) - 0.44 0.64 0.88 0.45
MPDR-S(Yoon et al., 2023) - 0.56 0.73 0.99 0.66
MPDR_R(Yoon et al., 2023) - 0.64 0.83 0.98 0.80
CDRL 0.75 0.78 0.84 0.82 0.65

F SAMPLING TIME

In this section, we measure the sampling time of CDRL and compare it with the following models: 1)
CoopFlow (Xie et al., 2022b), which composes a EBM and a Normalizing Flow model; 2) VAEBM
(Xiao et al., 2021), which composes a VAE with an EBM and achieves strong generation performance;
3) The original DRL (Gao et al., 2021) model with 30 step MCMC steps at each noise level. We
run the sampling process of each model individually on a single A6000 GPU to generate a batch of
100 samples on the Cifar10 dataset. Our CDRL model generates samples with better quality with
relatively less time. And after applying the sampling adjustment techniques, the sampling time can
be further reduced without hurting much sampling quality.

G UNDERSTAND THE ROLE OF INITIALIZER AND EBM

To further understand the roles of our initializer and EBM in image generation, we conduct two
additional experiments using a pretrained CDRL model on the ImageNet Dataset (32 × 32). We
evaluate two generation options: (a) images generated using only the initializer’s proposal, without
the EBM’s Langevin Dynamics at each noise level, and (b) images generated with the full CDRL
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Table 9: Comparison of different EBMs in terms of sampling time and number of MCMC steps. The
sampling time are measured in second.

Method Number of MCMC steps Sampling Time FID ↓
CoopFlow (Xie et al., 2022b) 30 2.5 15.80
VAEBM (Xiao et al., 2021) 16 21.3 12.16
DRL (Gao et al., 2021) 6 × 30 = 180 23.9 9.58

CDRL 6 × 15 = 90 12.2 4.31
CDRL (8 steps) 6 × 8 = 48 6.5 4.58
CDRL (5 steps) 6 × 5 = 30 4.2 5.37
CDRL (3 steps) 6 × 3 = 18 2.6 9.67

model, which includes the initializer’s proposal and 15-step Langevin updates at each time interval.
As shown in Figure 8a and 8b, the initializer captures the object’s rough outline, while the Langevin
updates on EBM fill in meaningful details. Furthermore, in Figure 8c, we display samples generated
by fixing the initial noise image and sample noise of each initializer proposal step. The results reveal
that images generated with the same initialization noises share basic elements while differing in
details, highlighting the impact of both the initializer and Langevin sampling. The initializer provides
a starting point, and the Langevin sampling process adds details.

(a) Initializer only. (b) Full CDRL model. (c) Fixing the initialization noise.

Figure 8: Illustration of the effect of initializer and EBM in the image generation process with a
CDRL model pretrained on ImageNet Dataset (32 × 32). (a) Samples generated using only the
proposal of the initializer; (b) Samples generated by the full CDRL model; (c) Samples generated by
fixing the initial noise image and the sample noise of each initialization proposal step. Each row of
images shared the same initial noise image and the sample noise of each initialization proposal step,
but differed in the noises of Langevin sampling process at each noise level.

H ABLATION STUDY

In this section, we carry out ablation studies to justify the choice of each component of our CDRL
model. We use several experiments to answer the questions listed below.

H.1 WHAT ARE THE CONTRIBUTIONS OF EACH INDIVIDUAL DESIGN COMPONENT?

In our main paper, we have described the three main techniques that contribute most to our CDRL
model. They are the new noise schedule design, cooperative training algorithm and noise variance
reduction. Here, we demonstrate the effect of each of the three techniques by comparing our CDRL
with the following models (1) The original DRL model used in (Gao et al., 2021); (2) Model trained
without cooperatively training framework: This corresponds to the original recovery-likelihood EBM
using the same noise schedule and conditioning input as CDRL; (3) CDRL without noise reduction;
(4) While CDRL use initializer to directly output ŷt, here similar to (Xiao et al., 2022), we use the
initializer to output the prediction of clean image x̂0 and then transformed it to ŷt. (5) Similarly, we
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Table 10: Ablation study on CIFAR-10 dataset.

Models FID ↓
DRL (Gao et al., 2021) 9.58

No cooperative training 6.47
No noise reduction 5.51
Initializer predicts x̂0 5.17
Initializer predicts ϵ̂ 4.95

CDRL 4.31

can also use initializer to directly output the prediction of total added noise ϵ̂ similar to (Ho et al.,
2020) and then transformed it to ŷt.

We let all the models to share the same network structure and training setting on CIFAR-10 dataset
and differ only in the way mentioned above. Shown in Table 10, our full model works the best among
these settings, which justifies our design choice.

H.2 SHOULD THE INITIALIZER BE LEARNED USING THE COOPERATIVE TRAINING
ALGORITHM OR SHOULD IT DIRECTLY REGRESS ON THE DATA?

Shown in equation 8 in the main paper, in our cooperative training algorithm, the initializer learns
from the revised sample ỹt at each step. A natural question to be asked here is whether we should
instead regress it directly on data yt. To answer this, we try the option that the initializer directly
learns from yt at each step. We denote this option as CDRL(data) to distinguish it from the original
CDRL model. The results shown in Table 11 suggest that CDRL works better than CDRL(data),
which supports our choice of the cooperative training algorithm.

Table 11: Comparison be-
tween the model whose
initializer learns from the
samples given by EBM and
the one whose initializer
learns directly from the
data. Scores are reported on
Cifar-10 dataset.

Model FID ↓
CDRL(data) 5.95
CDRL 4.31

To understand this, we may first dive into a deeper understanding
of the learning behavior of the cooperative learning algorithm. We
follow the analysis framework of (Nijkamp et al., 2019; Xie et al.,
2022b). Let Kθ(yt|yt

′,xt+1) be the transition kernel of the K-step
Langevin sampling that refines the initial output yt

′ to the refined out-
put yt. Let (Kθqϕ)(yt|xt+1) =

∫
Kθ(yt|y′

t,xt+1)qϕ(y
′
t|xt+1)dy

′
t

be the conditional disribution of yt, which is obtained by K steps
of Langevin sampling starting from the output of the initialier
qϕ(yt|xt+1). Let π(yt|xt+1) be the true conditional distribution
for denoising xt+1 to retrieve yt. The maximum recovery likeli-
hood for the EBM in equation 4 in the main paper is equivalent
to minimizing the KL divergence KL(π(xt|yt+1)||pθ(xt|yt+1)).
Let us use j to index the learning iteration for model parameters.
Given the current initializer model qϕ(yt|xt+1), the EBM updates
its parameters θ by minimizing

θj+1 = argmin
θ

KL(π(yt|xt+1)||pθ(yt|xt+1))−KL((Kθjqϕ)(yt|xt+1)||pθ(yt|xt+1)) (21)

which is modified contrastive divergence. It is worth noting that, in the original contrastive divergence,
the above (Kθjqϕ)(yt|xt+1) is replaced by (Kθjπ)(yt|xt+1). That is, the MCMC chains are
initialized by the true data. The learning shifts pθ(yt|xt+1) toward the true distribution π(yt|xt+1).

On the other hand, given the current EBM, the initializer model learns from the output distribution
of the EBM’s MCMC. (That is, we train the initializer with ỹ in equation 8 of the main paper.)
The update of the parameters of the initializer at learning iteration j + 1 approximately follows the
gradient of

ϕj+1 = argmin
ϕ

KL(Kθqϕj (yt|xt+1)||qϕ(yt|xt+1)) (22)

The initializer qϕ(yt|xt+1) learns to be the stationary distribution of the MCMC transition
Kθ(xt|yt+1) by shifting its mapping to the low energy regions of pθ(xt|yt+1). In a limit, the
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initializer qϕ(yt|xt+1) minimizes KL(Kθqϕj
(yt|xt+1)||qϕ(yt|xt+1)) and gets close to the EBM

pθ(xt|yt+1). The whole learning algorithm is a chasing game. That is, the initialzier model
qϕ(yt|xt+1) chases the EBM pθ(yt|xt+1) toward the true distribution π(yt|xt+1).

Then we can begin the discussion of the benefits of the cooperative learning. Comparing with training
the initializer directly with observed y, the proposed training with ỹ has the following benefits.

Firstly. in our algorithm, Equation 22 above shows that the MCMC of the EBM drives the evolution
of the initializer that seeks to amortize the MCMC. At each learning iteration, in order to provide
good initial examples for the current EBM’s MCMC, the initialzer needs to be close enough to the
EBM. Therefore, at each learning algorithm, training the initialzer with the MCMC outputs ỹ is a
good strategy to maintain a proper distance between EBM and initialzer model. If the initializer
directly learns from the true distribution, even though it can move toward the true distribution quickly,
it might not provide a good starting point for the MCMC. A good initializer should be helpful for
finding the modes of the EBM. Let us imagine a situation in which the initizlier model has shifted
toward the true distribution by firstly learning directly with y, but the EBM is still far from that. Due
to a large divergence between EBM and initialzier, the initializer is not helpful for EBM to draw
fair samples, especially with a finit-step Lanegevin dynamics. A far-away initializer might lead to
unstable training of the EBM.

Table 12: Comparison be-
tween our CDRL model with
the model using DRL noise
level schedule but adding 2
more noise levels to the high
noise region. Scores are re-
ported on Cifar-10 dataset.

Model FID ↓
CDRL(DRL-T8) 4.94
CDRL 4.31

Secondly, to consider a more generic case, in which we model our
initializer via a non-Gaussian generator yt = gϕ(xt+1, z, t), z ∼
N (0, I). The randomness comes from the latent vector z. In
this case qϕ(yt|xt+1) =

∫
p(yt|xt+1, z)p(z)dz is analytically in-

tractable. Learning qϕ(yt|xt+1) directly from y independently re-
quires MCMC inference for the posterior distribution qϕ(z|xt+1,yt).
However, the cooperative learning can get around the difficulty of
inference of the latent variables z. That is, at each learning itera-
tion, we generate examples ŷ from qϕ(yt|xt+1) by first sampling
ẑ ∼ p(z) and then mapping it to ŷt = gϕ(xt+1, ẑ, t). The ŷ is
used to initialze the EBM’s MCMC that produces ỹ. The learning
equation of ϕ is 1

n

∑n
i=1 −

1
2σ̃t

2 ||ỹt,i−gϕ(xt+1,i, ẑ, t)||2, where the
latent variables ẑ is used. That is, we shift the mapping from ẑ → ŷ
to ẑ → ỹ for acculumate the MCMC transition. Even though in our
paper, we currently use a Gaussian initializer, if we use a non-Gaussian initilizer in the future, the
current cooperative learning (i.e., training qϕ with ỹ) can be much more beneficial and feasible.

H.3 WHETHER ADDING MORE DIFFUSION LEVELS TO THE ORIGIN DRL SCHEDULE TO COVER
THE HIGH-NOISE REGION WORKS BETTER THAN THE NEW SCHDULE USED IN CDRL?

In section A.3, we introduce the new noise schedule we used for CDRL. Comparing with the one used
in the original DRL(Gao et al., 2021) paper, the noise schedule used in CDRL puts more attention on
the high-noise area where ᾱ is close to 0. We carry out a comparison that trains the CDRL model
using the original DRL schedule but with 2 more extra noise levels in the high-noise region. We
refer to this setting as CDRL(DRL-T8). As shown in Table 12, CDRL(DRL-T8) performs slightly
worse than CDRL. Also, in terms of sampling time, CDRL(DRL-T8) required 30% more steps
during sampling. That is, increasing the number of noise levels might not necessarily improve the
performace, but it must increse the computational cost. Our new schedule is very important because
it keeps the algorithm efficient.

H.4 CAN WE FURTHER REDUCE THE NUMBER OF NOISE LEVELS?

We test whether the noise level can be further reduced. The results in Table 13a show that further
reducing noise level to 4 can make model more unstable even if we increase the number of the
Langevin sample steps K. On the other hand reducing T to 5 gives reasonable but slightly worse
results.
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H.5 WHAT IS THE EFFECT OF USING DIFFERENT NUMBER OF LANGEVIN STEPS?

In Table 13b, we show the effect of changing the number of Langevin steps K. The results show
that, on one hand, decreasing K to 10 gives us comparable but slightly worse results. On the other
hand, increasing K to 30 doesn’t give better results. This agrees with the observations by DRL(Gao
et al., 2021). The observation of changing K implies that simply increasing the number of Langevin
steps doesn’t bring significant increase in the sample quality, which verifies the effectiveness of the
initializer in our model.

Table 13: CDRL with different number of noise levels T and number of Langevin steps K. Scores are
reported on Cifar-10 dataset.

(a) Results for reducing T

Model FID ↓
T=4 (K=15,20,30) - (not converge)
T=5 (K=15) 5.08
T=6 (K=15) 4.31

(b) Results for changing K

Model FID ↓
T=6 (K=10) 4.50
T=6 (K=15) 4.31
T=6 (K=30) 5.08

Figure 9: Samples on CelebAHQ (256× 256)

25



Published as a conference paper at ICLR 2024

(a) w = 0.0

(b) w = 0.5

(c) w = 1.0

Figure 10: Attribute compositional samples on CelebA (64 × 64). Here we use guided weight
w = 0.0, 0.5, 1.0. We let images at different guidance share the same random noise. Results can also
be compared with Figure 4 which use w = 3.0
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 11: Conditional generated examples with different classifier free guidance weight on Ima-
geNet32 (32× 32). Samples are generated with randomly chosen class label.

27



Published as a conference paper at ICLR 2024

(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 12: Conditional generated examples with different classifier free guidance weight on Ima-
geNet32 (32× 32) with class label Tench.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 13: Conditional generated examples with different classifier free guidance weight on Ima-
geNet32 (32× 32) with class label Siberian Husky.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 14: Conditional generated examples with different classifier free guidance weight on Ima-
geNet32 (32× 32) with class label Tow Truck.
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(a) w = 0.0 (b) w = 0.5

(c) w = 1.0 (d) w = 1.5

(e) w = 2.0 (f) w = 3.0

Figure 15: Conditional generated examples with different classifier free guidance weight on Ima-
geNet32 (32× 32) with class label Volcano.
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