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Abstract

The diffusion-based adversarial purification meth-
ods attempt to drown adversarial perturbations
into a part of isotropic noise through the for-
ward process, and then recover the clean images
through the reverse process. Due to the lack of
distribution information about adversarial pertur-
bations in the pixel domain, it is often unavoid-
able to damage normal semantics. We turn to the
frequency domain perspective, decomposing the
image into amplitude spectrum and phase spec-
trum. We find that for both spectra, the damage
caused by adversarial perturbations tends to in-
crease monotonically with frequency. This means
that we can extract the content and structural infor-
mation of the original clean sample from the fre-
quency components that are less damaged. Mean-
while, theoretical analysis indicates that existing
purification methods indiscriminately damage all
frequency components, leading to excessive dam-
age to the image. Therefore, we propose a pu-
rification method that can eliminate adversarial
perturbations while maximizing the preservation
of the content and structure of the original image.
Specifically, at each time step during the reverse
process, for the amplitude spectrum, we replace
the low-frequency components of the estimated
image’s amplitude spectrum with the correspond-
ing parts of the adversarial image. For the phase
spectrum, we project the phase of the estimated
image into a designated range of the adversar-
ial image’s phase spectrum, focusing on the low
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frequencies. Empirical evidence from extensive
experiments demonstrates that our method signifi-
cantly outperforms most current defense methods.
Code is available at https://github.com/
GaozhengPei/FreqPure.

1. Introduction
Adversarial purification (Nie et al., 2022; Wang et al., 2022;
Lee & Kim, 2023; Bai et al., 2024; Song et al., 2024; Zolli-
coffer et al., 2025) is a data preprocessing technique aimed
at transforming adversarial images back into their original
clean images during the testing phase. Compared to adver-
sarial training (Gosch et al., 2023; Wang et al., 2024; Singh
et al., 2024), it offers advantages such as decoupling training
and testing, and strong generalization. The main challenge
faced by adversarial purification is how to eliminate adver-
sarial perturbations while preserving the original semantic
information as much as possible. Therefore, it is essential to
explore how adversarial perturbations damage the images.

Current research (Chen et al., 2022; Wang et al., 2020; Han
et al., 2021; Maiya et al., 2021; Han et al., 2021; Maiya et al.,
2023) studies the distribution of adversarial perturbations
in the frequency domain, but they lack quantitative analysis
and typically do not distinguish between amplitude spec-
trum and phase spectrum. Due to the different distribution
characteristics of amplitude spectrum and phase spectrum,
in this paper, we further decompose images into amplitude
spectrum and phase spectrum. We statistically analyze the
variations in amplitude spectrum and phase spectrum of
original clean images and adversarial images across multi-
ple models, attack methods, and different perturbation radii
(more experimental results and details in the Appendix C).
From Figure 1 we find that for both the amplitude spectrum
and the phase spectrum, the degradation caused by adversar-
ial perturbations exhibits an approximately monotonically
increasing trend with frequency.

Existing methods of diffusion-based adversarial purifica-
tion attempt to drown adversarial perturbations as part of
isotropic noise through the forward process, and then re-
cover clean images through the reverse process. However,
we theoretically prove that this strategy will destroy all fre-
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Figure 1. We decompose the image into the amplitude spectrum
(left) and the phase spectrum (right), and calculate the differences
between the adversarial images and the original images, respec-
tively. The damage caused by adversarial perturbations tends to
increase monotonically with frequency for both spectra.

quency components in both the amplitude spectrum and
phase spectrum and this destruction becomes increasingly
severe as the time-step t increases. The empirical findings
above suggest that if we want to restore adversarial images
to their original clean images, we should minimize the dis-
ruption to the low-frequency amplitude spectrum and phase
spectrum to ensure consistency and preserve the inherent
characteristics of the original images. Therefore, we believe
that current diffusion-based adversarial purification methods
cause excessive damage to the semantic information of the
input images.

Motivated by experimental findings and theoretical analysis,
we propose a novel adversarial purification method that can
remove adversarial perturbations from adversarial images
while minimizing destruction to the image. Specifically,
at each time-step during the reverse process, we decom-
pose the predicted estimated clean image into its amplitude
spectrum and phase spectrum. For amplitude spectrum,
since low-frequency components of the adversarial image
are almost unaffected, we replace the low-frequency part
of the estimated image’s amplitude spectrum with the low-
frequency part of the adversarial image’s amplitude spec-
trum. For phase spectrum, we project the estimated image’s
low-frequency phase spectrum onto a certain range of the
adversarial image’s low-frequency phase spectrum. This is
because the low-frequency phase spectrum is less affected
by adversarial perturbations, allowing us to extract coarse-
grained structural information from the image while grad-
ually aligning it with the low-frequency phase information
of natural images. Our proposed method selectively retains
low-frequency phase and amplitude spectrum information,
which not only preserves some structural and content infor-
mation of the image but also provides prior information for
the restoration of high-frequency details.

Overall, the contribution of this paper is as follows:

1. We decompose the image into amplitude spectrum and
phase spectrum, and explore how adversarial perturba-
tion disturbs the original image from the perspective
of the frequency domain.

2. We theoretically demonstrate that current diffusion-
based purification methods excessively destroy the am-
plitude spectrum and phase spectrum of input images.

3. Our proposed method retains the original structural
information and content while eliminating adversarial
perturbations by selectively preserving the amplitude
spectrum and phase spectrum at each time-step.

4. Extensive experiments show that our method outper-
forms other methods by a promising improvement
against various adversarial attacks.

2. Related Work
Adversarial purification is a technique designed to eliminate
adversarial perturbations from input images before classi-
fication, ensuring more robust model performance. These
purification approaches can be categorized into two pri-
mary paradigms: training-based methods that necessitate
dataset preparation, and diffusion-based techniques that of-
fer a training-agnostic solution, capable of operating without
direct access to original training data.

2.1. Training-Based Adversarial Purification

(Song et al., 2018) empirically demonstrates that adversarial
examples predominantly exist in the low probability areas
of the training distribution and aims to redirect them back
towards this distribution. (Samangouei et al., 2018) initially
models the distribution of clean images and subsequently
seeks the nearest clean sample to the adversarial example
during inference. (Naseer et al., 2020) generates perturbed
images using a self-supervised perturbation attack that dis-
rupts the deep perceptual features and projects back the
perturbed images close to the perceptual space of clean
images. (Zhou et al., 2021) introduces a method to learn
generalizable invariant features across various attacks using
an encoder, engaging in a zero-sum game to reconstruct the
original image with a decoder. (Lin et al., 2024) combines
adversarial training and purification techniques via employ-
ing random transforms to disrupt adversarial perturbations
and fine-tunes a purifier model using adversarial loss. (Tang
& Zhang, 2024) leverages the phenomenon of FGSM ro-
bust overfitting to enhance the robustness of deep neural
networks against unknown adversarial attacks. Nonetheless,
these approaches necessitate training on the training dataset,
which is time-intensive and lacks generalizability.
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2.2. Diffusion-based Adversarial Purification

(Yoon et al., 2021) shows that an energy-based model trained
with denoising score-matching can quickly purify attacked
images within a few steps. (Nie et al., 2022) begins by
adding a small amount of noise to the images and then re-
covers the clean image through a reverse generative process
(Wang et al., 2022) suggests using the adversarial image as
a reference during the reverse process, which helps ensure
that the purified image aligns closely with the original clean
image. (Lee & Kim, 2023) proposed a new gradient esti-
mation method and introduced a stepwise noise scheduling
strategy to enhance the effectiveness of the current purifica-
tion methods. (Song et al., 2024) proposes a method that
reduces the negative impact of adversarial perturbations by
mimicking the generative process with clean images as in-
put. (Bai et al., 2024) designs the forward process with
the proper amount of Gaussian noise added and the reverse
process with the gradient of contrastive loss as the guidance
of diffusion models for adversarial purification. However,
our theoretical analysis demonstrates that these methods
excessively disrupt the semantic information of the images.

3. Theoretical Study
We perform discrete Fourier transform (DCT) on the input
image x0 and the noisy image xt obtained using forward
process (Ho et al., 2020) at time-step t as follows:

x0(u, v) = DCT (x0) = |x0(u, v)|eiϕx0 (u,v),

xt(u, v) = DCT (xt) = |xt(u, v)|eiϕxt (u,v),
(1)

where u and v are coordinates at frequency domain.
|x0(u, v)| and |xt(u, v)| denote the amplitude spectrum,
ϕx0(u, v) and ϕxt(u, v) denote the phase spectrum.
Definition 3.1. (Difference of amplitude) Given the am-
plitude |x0(u, v)| of the input image x0 and the amplitude
|xt(u, v)| of the noisy image xt, respectively. We definite
the difference between there two amplitude of the images at
arbitrary coordinate (u, v) are as follows:

∆At(u, v) = |xt(u, v)| − |x0(u, v)|. (2)

This value represents the degree of variation in the image
content.
Theorem 3.2. (Proof in Appendix D.1) The variance of the
difference of amplitude at time-step t between clean image
x0 and noisy image xt at arbitrary coordinates (u, v) at
frequency domain is as follows:

V ar(∆At(u, v)) ≈
1− αt

2
− (1− αt)

2

16|x0(u, v)|αt
. (3)

The RHS is monotonically increasing with respect to t, This
means that as t increases, the amplitude spectrum of the
original image at arbitrary coordinate (u, v) is increasingly
disrupted by noise.

Definition 3.3. (Difference of phase) Given the phase ϕx0

of the input image x0 and the phase ϕxt of the noisy image
xt, respectively. We definite the difference between there
two phase of the images at arbitrary coordinate (u, v) are as
follows:

∆θt(u, v) = ϕxt
(u, v)− ϕx0

(u, v). (4)

This value represents the degree of variation in the shape
and structure of the image.

Theorem 3.4. (Proof in Appendix D.2) The variance of the
first-order approximation of the difference of phase between
clean image x0 and noisy image xt at arbitrary coordinates
(u, v) at frequency domain is as follows:

V ar(∆θt(u, v)) =
1√

1− 1
SNR2

t (u,v)

− 1, (5)

where signal to noise ratio (SNR) at time-step t is defined
as follows:

SNRt(u, v) =

√
αt|x0(u, v)|√

1− αt|ϵ(u, v)|
. (6)

Obviously, SNRt(u, v) decreases monotonically with t, so
the variance of the difference of phase V ar(∆θ(u, v)) in-
creases monotonically with t. This means that as t increases,
the phase spectrum of the original image is increasingly dis-
rupted by noise.

Remark 3.5. From Theorem 3.2 and Theorem 3.4, we
can conclude that all frequency components of the image
are disrupted by the forward process, and the degree of
disruption increases monotonically with t (αt decreases
monotonically with t ). From Figure 1, we can find that as t
increases, while the adversarial perturbations are drowned
out into part of isotropic noise, the normal content and
structural information contained in the amplitude and phase
spectra of low frequencies will also be disrupted by the
forward process, which means that the existing method may
result in excessive disruption of the input images.

4. Methodology
To minimize the damage to semantic information while
eliminating adversarial perturbations, we propose a novel
adversarial purification method named FreqPure from the
perspective of the frequency domain. The core of the Fre-
qPure method lies in selectively preserving low-frequency
phase and amplitude spectrum information which are less
affected by adversarial perturbations. Our approach not
only maintains some structural features and content of the
original image during the reverse process but also provides
valuable prior constraints for the reconstruction of high-
frequency information in the image.
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Figure 2. Pipeline of our method. The core of our method is to preserve, at each time-step of the reverse process, the amplitude and phase
spectrum information of the original clean samples extracted from adversarial images as a prior. This ensures the retention of the original
image’s content and structural information while also providing guidance for the restoration of high-frequency details.

Given an adversarial example xadv at time-step t = 0, i.e.,
x0 = xadv ∈ RH×W×C . We first diffuse it according to
the forward process from t = 0 to t = t∗. Then, during
the reverse diffusion process at each time-step, we aim to
yield clean intermediate states for refinement. Following
(Wang et al., 2023), to obtain “clean” samples, we estimate
x0 from xt and the predicted noise Zθ(xt, t). We denote
the estimated image x0 at time-step t as x0|t, which can be
formulated as

x0|t =
1

√
αt

(
xt −Zθ(xt, t)

√
1− ᾱt

)
, (7)

where Zθ is a neural network used by DDPM(Ho et al.,
2020) to predict the noise ϵ for each time-step t, i.e., ϵt =
Zθ(xt, t). Then, we perform DCT on both the input image
x0 and the estimated image x0|t to decompose them into
the amplitude spectrum and phase spectrum as follows:

(Ax0(u, v), Px0(u, v)) = DCT (x0), (8)

(Ax0|t(u, v), Px0|t(u, v)) = DCT (x0|t), (9)

where Ax0(u, v), Ax0|t(u, v),Px0(u, v) and Px0|t(u, v) rep-
resent the amplitude spectrum and phase spectrum of input
image x0 and estimated image x0|t, respectively. (u, v)
denotes the coordinate at the frequency domain. The am-
plitude spectrum reflects the energy distribution of various
frequency components in the image. The phase spectrum
contains the structural and shape information of the image.

4.1. Amplitude Spectrum Exchange

Experimental reveals that low-frequency amplitude spec-
trum components demonstrate significant robustness to ad-
versarial perturbations, being almost unaffected by such

disturbances. Additionally, natural signals (such as images)
generally exhibit low-pass characteristics, meaning that the
low-frequency power spectrum components are relatively
large. Therefore, we opt to retain this portion of the am-
plitude spectrum and replace the low-frequency amplitude
spectrum components of the estimated image x0|t accord-
ingly at each time-step. We first construct a filter HA(u, v)
for amplitude spectrum as follows:

HA(u, v) =

{
1, D(u, v) < DA

0, D(u, v) > DA
, (10)

where DA is hyper-parameter, D(u, v) represents the dis-
tance from point (u, v) to the center of the H×W frequency
rectangle in the frequency domain, which is also the magni-
tude of the frequency. The formula is as follows:

D(u, v) = [(u−H/2)2 + (v −W/2)2]
1
2 , (11)

With the filter HA defined above, we can replace the low-
frequency components of the estimated image’s amplitude
spectrum with the low-frequency components of the input
sample’s amplitude spectrum for each channel (Color im-
ages are typically composed of three channels: RGB) as
follows:

Âx0|t = Ax0|t × (1−HA) +Ax0
×HA, (12)

Âx0|t represents the updated amplitude spectrum of the
estimated image x0|t.

4.2. Phase Spectrum Projection

Different from the amplitude spectrum, the phase spectrum
is affected by adversarial perturbations at all frequency com-
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ponents. Directly retaining the low-frequency phase spec-
trum, which is less disturbed, will preserve the adversarial
perturbations while also affecting the restoration of the high-
frequency phase spectrum. Therefore, we choose to project
the estimated image’s low-frequency phase spectrum into
a certain range of the input image’s low-frequency phase
spectrum. First, We construct a filter HP for phase spec-
trum which is the same as (10) but with a different hyper-
parameter DP . Then, we update the phase spectrum of the
sampled result as follows:

P̂x0|t = ΠPL+δ(Px0 ×HP︸ ︷︷ ︸
PL

) + Px0|t × (1−HP ), (13)

where Π is the projection operation. PL is the low-frequency
phase spectrum and δ denotes the range within which we
allow variations in the low-frequency phase spectrum of the
estimated image x0|t.
This strategy can benefit from two aspects: 1) We can ex-
tract coarse-grained low-frequency structural information
while allowing it to vary within a certain range, enabling it
to gradually align with the low-frequency structural informa-
tion of natural images. 2) The coarse-grained low-frequency
structural information can provide prior guidance for the
recovery of high-frequency information.
Overall, we aim to extract and retain information from the
original clean image by focusing on frequencies that are less
affected by adversarial perturbations, thereby maximizing
the preservation of the original image’s structure and con-
tent, while also providing a correct prior for the restoration
of high-frequency information.

4.3. Next State Generation

With the updated amplitude spectrum Âx0|t and phase spec-
trum P̂x0|t . We combine Âx0|t and P̂x0|t obtain their rep-
resentation in the time domain through the inverse discrete
Fourier transformation (iDCT ) as follows:

x̂0|t = iDCT (Âx0|t , P̂x0|t). (14)

As suggested in (Wang et al., 2023), the next state xt−1 can
be sampled from a joint distribution, which is formulated
as:

pθ(xt−1|xt, x̂0|t) = N (µt(xt, x̂0|t);σ
2
t I), (15)

where µt(xt, x̂0|t) =

√
αt−1βt

1−αt
x̂0|t +

√
αt(1−ᾱt−1)

1−αt
xt and

σ2
t = 1−ᾱt−1

1−αt
βt. By using the low-frequency priors of the

phase spectrum and amplitude spectrum provided by the
input image to guide the sampling process in each time-
step t, we ultimately obtain the clean image x̂0 with natural
amplitude spectrum and phase spectrum. The complete
algorithm process can refer to 4.3.

Algorithm 1 Sampling Process
Require: Sample xadv , timestep t∗.

1: xt ∼ N (0, I)
2: for t = t∗, . . . , 1 do
3: x0|t =

1√
αt

(
xt −Zθ(xt, t)

√
1− ᾱt

)
4: (Ax0|t , Px0|t) = DCT (x0|t)
5: (Axadv

, Pxadv
) = DCT (xadv)

6: // Amplitude Spectrum Exchange
7: Âx0|t = Ax0|t × (1−HA) +Ax0 ×HA

8: // Phase Spectrum Projection
9: P̂x0|t = ΠPL+δ(PL) + Px0|t × (1−HP )

10: // Next State Generation
11: x̂0|t = iDCT (Âx0|t , P̂x0|t)
12: xt−1 ∼ p(xt−1|xt, x̂0|t)
13: end for
14: Output x0

5. Experiment
5.1. Experimental Settings

Datasets and network architectures. Three datasets are
utilized for evaluation: CIFAR-10 (Krizhevsky & Hinton,
2009), SVHN and ImageNet (Deng et al., 2009). Our re-
sults are compared against several prominent defense tech-
niques listed in the standardized benchmark RobustBench
(Croce et al., 2021) for both CIFAR-10 and ImageNet, and
we also examine various adversarial purification methods.
For CIFAR-10, we employ two widely used classifier ar-
chitectures: WideResNet-28-10 and WideResNet-70-16
(Zagoruyko & Komodakis, 2016). In the case of SVHN,
WideResNet-28-10 acts as the backbone, whereas ResNet-
50 (He et al., 2016) is utilized for ImageNet.
Adversarial attack methods. We evaluate strong adaptive
attacks (Athalye et al., 2018; Tramer et al., 2020) against
our approach and other adversarial purification methods.
The well-known AutoAttack (Croce & Hein, 2020) is im-
plemented under ℓ∞ and ℓ2 threat models. Furthermore, the
projected gradient descent (PGD) attack (Madry et al., 2018)
is assessed on our method, as suggested in (Lee & Kim,
2023). To account for the randomness introduced by the
diffusion and denoising processes, Expectation Over Trans-
formation (EOT) (Athalye et al., 2018) is adapted for these
adaptive attacks. Additionally, we employ the BPDA+EOT
(Hill et al., 2021) attack to facilitate a fair comparison with
other adversarial purification methods. Lastly, following the
recommendations of (Lee & Kim, 2023), a surrogate pro-
cess is utilized to derive the gradient of the reverse process
for white-box attacks.
Pre-trained Models. We utilize the unconditional CIFAR-
10 checkpoint of EDM supplied by NVIDIA (Karras et al.,
2022) for the CIFAR-10 dataset. For the ImageNet experi-
ments, we adopt the 256x256 unconditional diffusion check-
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Figure 3. Visualization of origianl clean images , adversarial images and purified images. The images purified by our method are most
similar to the origianl clean images.

point from the guided-diffusion library. The pre-trained clas-
sifier for CIFAR-10 is obtained from RobustBench (Croce
et al., 2021), whereas the classifier weights for ImageNet
are sourced from the TorchVision library.
Evaluation metrics. To evaluate the effectiveness of de-
fense methods, we employ two metrics: standard accuracy,
which is calculated on clean images, and robust accuracy,
assessed on adversarial examples. Given the significant
computational expense associated with evaluating models
against adaptive attacks, we randomly sample a fixed subset
of 512 images from the test set for robust evaluation, con-
sistent with (Nie et al., 2022; Lee & Kim, 2023; Song et al.,
2024; Lin et al., 2024; Bai et al., 2024). In all experiments,
we report the mean and standard deviation across three runs
to evaluate both standard and robust accuracy.
Implementation details. We adhere to the configurations
outlined in (Lee & Kim, 2023). Diffusion-based purification
methods are evaluated using the PGD attack with 200 update
iterations, while BPDA and AutoAttack are assessed with
100 update iterations, except for ImageNet, which utilizes
20 iterations. The number of EOT is set to 20, and the step
size is 0.007. For randomized defenses, such as those in
(Nie et al., 2022; Lee & Kim, 2023; Song et al., 2024; Bai
et al., 2024), we employ the random version of AutoAttack,
whereas the standard version is used for static defenses.

5.2. Experimental Results

CIFAR10 We perform extensive experiments on the
CIFAR-10 dataset, comparing our method with other
approaches using two model architectures: WideResNet-28-

Table 1. Standard and robust accuracy of different Adversarial
Training (AT) and Adversarial Purification (AP) methods against
PGD and AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-10. ∗ utilizes
half number of iterations for the attack due to the high computa-
tional cost. † indicates the requirement of extra data. The result
with an underline indicates the second highest.

Type Method Standard Acc. Robust Acc.
PGD AutoAttack

WideResNet-28-10

(Gowal et al., 2021) 88.54 65.93 63.38
AT (Gowal et al., 2020)† 87.51 66.01 62.76

(Pang et al., 2022) 88.62 64.95 61.04

(Yoon et al., 2021) 85.66±0.51 33.48±0.86 59.53±0.87
(Nie et al., 2022) 90.07±0.97 56.84±0.59 63.60±0.81

(Lee & Kim, 2023) 90.16±0.64 55.82±0.59 70.47±1.53
AP (Bai et al., 2024) 91.41 49.22∗ 77.08

(Zollicoffer et al., 2025) 84.20 - 59.14
(Lin et al., 2024) 90.62 - 72.85

Ours 92.19 ±0.33 59.39±0.79 77.35±2.14

10 and WideResNet-70-16. Robust accuracy is evaluated
under three types of attacks: BPDA+EOT, PGD, and
AutoAttack. For (Gowal et al., 2021; 2020; Pang et al.,
2022), they typically construct adversarial examples based
on other attack methods for adversarial training. Focusing
on the ℓ∞ attack, as illustrated in Table 1, our method
demonstrates a significant advantage over other baselines
when using WideResNet-28-10 as the backbone. Our
method not only improves the standard accuracy metric
by 0.78% but also enhances robust accuracy under PGD
and AutoAttack attacks by 2.55% and 0.27%, respectively.
When WideResNet-70-16 is used as the backbone, from
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Table 2. Standard and robust accuracy of different Adversarial
Training (AT) and Adversarial Purification (AP) methods against
PGD and AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-10. ∗ The num-
ber of iterations for the attack is half that of the other methods for
less computational overhead. † indicates the requirement of extra
data. The result with an underline indicates the second highest.

Type Method Standard Acc. Robust Acc.
PGD AutoAttack

WideResNet-70-16

(Rebuffi et al., 2021)† 92.22 69.97 66.56
AT (Gowal et al., 2020)† 91.10 68.66 66.10

(Gowal et al., 2021) 88.75 69.03 65.87

(Yoon et al., 2021) 86.76±1.15 37.11±1.35 60.86±0.56
(Nie et al., 2022) 90.43±0.60 51.13±0.87 66.06±1.17

(Lee & Kim, 2023) 90.53±0.1 56.88±1.06 70.31±0.62
(Bai et al., 2024) 92.97 48.83∗ 79.10

AP (Zollicoffer et al., 2025) 84.60 - 66.40
(Zollicoffer et al., 2025) 86.90 - 59.20

(Lin et al., 2024) 91.99 - 76.37
Ours 92.52±0.53 62.50±2.73 78.13±1.95

table 2 we can see that though our method decreases the
standard accuracy metric by 0.45%, our method enhances
robust accuracy under PGD and AutoAttack attacks by
5.62% and 1.76%, respectively. We also assess the accuracy
of our method and other baselines against the ℓ2 attack.
From Table 3, we observe that, When WideResNet-28-10
is used as the backbone, Our method improves standard
accuracy by 0.78%, and robust accuracy increases by
1.86% and 2.68%, respectively. As shown in Table 4
when WideResNet-70-16 is the backbone, our method
outperforms other baselines, though decreasing by 0.45% in
standard accuracy and by 3.62% and 4.25% in robust accu-
racy under PGD and AutoAttack, respectively. Additionally,
we apply the BPDA+EOT attack, which approximates
differentiability. As shown in Table 5, Our method leads
by 0.82% in Standard Accuracy and 0.64% in Robust
Accuracy. To measure the degree of similarity between the
purified samples and the original clean samples, We plot the
distribution map of the purified images. As shown in Figure
4, our method yields a distribution of purified images that is
the most similar to the original images when compared to
other methods. In addition to qualitative analysis, we also
conduct some quantitative analyses. Here, We opt to utilize
measures like DINO similarity (Caron et al., 2021; Oquab
et al., 2024) and CLIP similarity (Radford et al., 2021),
which calculate the cosine similarity between embeddings
extracted from two images. From Table 7, Our method
achieves the highest similarity score, indicating that the
images purified by our method are the most akin to the
original clean images. This is attributed to our strategy of
appropriately preserving the inherent content and structural
information of the images during the purification process.
Overall, our method outperforms others, demonstrating
its effectiveness in preserving semantic information while
eliminating adversarial perturbations.

Table 3. Standard and robust accuracy against PGD and AutoAt-
tack ℓ2(ϵ = 0.5) on CIFAR-10. Adversarial Training (AT) and
Adversarial Purification (AP) methods are evaluated. ∗The number
of iterations for the attack is half that of the other methods for less
computational overhead. † indicates the requirement of extra data.
‡ adopts WideResNet-34-10 as the backbone, with the same width
but more layers than the default one. The result with an underline
indicates the second highest.

Type Method Standard Acc. Robust Acc.
PGD AutoAttack

WideResNet-28-10

(Rebuffi et al., 2021)† 91.79 85.05 78.80
AT (Augustin et al., 2020)‡ 93.96 86.14 78.79

(Pang et al., 2022)‡ 90.93 83.75 77.24

(Yoon et al., 2021) 85.66±0.51 73.32±0.76 79.57±0.38
(Nie et al., 2022) 91.41±1.00 79.45±1.16 81.7±0.84

(Lee & Kim, 2023) 90.16±0.64 83.59±0.88 86.48±0.38
(Bai et al., 2024) 91.41 86.13∗ 80.92

AP (Zollicoffer et al., 2025) 84.40 - 77.90
(Zollicoffer et al., 2025) 84.20 - 73.60

(Lin et al., 2024) 90.62 - 80.47
Ours 92.19 ±0.33 87.89±1.17 89.06±0.43

Table 4. Standard and robust accuracy against PGD and AutoAt-
tack ℓ2(ϵ = 0.5) on CIFAR-10. Adversarial Training (AT) and
Adversarial Purification (AP) methods are evaluated. (∗The num-
ber of iterations for the attack is half that of other methods for less
computational overhead. † methods need extra data.) The result
with an underline indicates the second highest.

Type Method Standard Acc. Robust Acc.
PGD AutoAttack

WideResNet-70-16

(Rebuffi et al., 2021)† 95.74 89.62 82.32
AT (Gowal et al., 2020)† 94.74 88.18 80.53

(Rebuffi et al., 2021) 92.41 86.24 80.42

(Yoon et al., 2021) 86.76±1.15 75.666±1.29 80.43±0.42
(Nie et al., 2022) 92.15±0.72 82.97±1.38 83.06±1.27

(Lee & Kim, 2023) 90.53±0.14 83.75±0.99 85.59±0.61
AP (Bai et al., 2024) 92.97 84.37∗ 83.01

(Lin et al., 2024) 91.99 - 81.35
Ours 92.52±0.53 87.89±1.17 89.84±1.56

ImageNet We evaluate ResNet50 as the backbone of
the ImageNet dataset under PGD attacks, consistent with
(Nie et al., 2022; Lee & Kim, 2023; Bai et al., 2024).
From Table 6, our method outperforms competitors by
0.53% in standard accuracy and 3.52% in robust accuracy,
significantly exceeding the baseline. Additionally, the
method from (Nie et al., 2022) achieves a standard accuracy
of 73.96% and a robust accuracy of 40.63% when t∗ = 0.2.
For t∗ = 0.3, standard accuracy decreases to 72.85%, while
robust accuracy increases to 48.24%. However, at t∗ = 0.4,
both standard accuracy and robust accuracy decline to
61.71% and 41.67%, respectively. This demonstrates
that traditional methods increasingly destroy semantic
information as t increases, which aligns with our theoretical
proof. In addition, we also visualize the purified images.
From Figure 3, we observe that compared to DiffPure and
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Table 5. Standard and robust accuracy against BPDA+EOT
ℓ∞(ϵ = 8/255) on CIFAR-10. The result with an underline
indicates the second highest.

Method Purification Accuracy
Standard Robust

WideResNet-28-10

(Song et al., 2018) Gibbs Update 95.00 9.00
(Yang et al., 2019) Mask+Recon 94.00 15.00
(Hill et al., 2021) EBM+LD 84.12 54.90

(Yoon et al., 2021) DSM+LD 85.66±0.51 66.91±1.75
(Nie et al., 2022) Diffusion 90.07±0.97 81.45±1.51
(Bai et al., 2024) Diffusion 91.37±1.21 85.51±0.81

(Wang et al., 2022) Diffusion 89.96±0.40 75.59±1.26
(Song et al., 2024) Diffusion 89.88±0.35 88.43±0.83
(Lee & Kim, 2023) Diffusion 90.16±0.64 88.40±0.88

Ours Diffusion 92.19±0.79 89.07±0.79

Table 6. Standard and robust accuracy against PGD ℓ∞(ϵ =
4/255) on ImageNet. ResNet-50 is used as the classifier. The
result with an underline indicates the second highest.

Type Method Accuracy
Standard Robust

ResNet-50

(Salman et al., 2020) 63.86 39.11
AT (Engstrom et al., 2019) 62.42 33.20

Wong et al. (Wong et al., 2020) 53.83 28.04

(t∗ = 0.2) (Nie et al., 2022) 73.96 40.63
(t∗ = 0.3) (Nie et al., 2022) 72.85 48.24
(t∗ = 0.4) (Nie et al., 2022) 61.71 41.67

(Bai et al., 2024) 70.41 41.70
AP (Lee & Kim, 2023) 71.42 46.59

(Song et al., 2024) 62.25 51.14
(Zollicoffer et al., 2025) 73.98 56.54

Ours 71.88 59.77

REAP, our method achieves the best restoration effect. This
is attributed to the prior guidance provided by extracting the
low-frequency phase spectrum and amplitude spectrum with
smaller perturbations during the image restoration process,
which allows for effective recovery of high-frequency
details. Our method decreases standard accuracy by 2.1%,
but improves robust accuracy by 3.23%, respectively. With
average accuracy improves by 0.55%. In general, these
experiments can demonstrate the effectiveness of our
approach.

Table 7. To measure the similarity between the purified image and
the clean image, we calculated the DINO similarity and CLIP
similarity between them.

DiffPure REAP CGAP Ours

DINO Standard 0.887 0.860 0.879 0.917
Robust 0.820 0.805 0.822 0.877

CLIP Standard 0.961 0.952 0.962 0.972
Robust 0.949 0.946 0.954 0.956

Figure 4. Joint distribution of the original images and purified im-
ages. The distributions of the purified images by our method and
the original images are the most similar.

5.3. Ablation Study

To demonstrate the effectiveness of our method, we conduct
comprehensive ablation experiments. We test the standard
accuracy and robust accuracy. We divide our method into
several parts: the first part is amplitude spectrum exchange
(ASE), and the other part is phase spectrum project (PSP).
The backbone we chose is WideResNet-28-10, and the at-
tack method is AutoAttack with ℓ∞ and ϵ = 8/255.
After removing ASE and PSP, the method becomes the same
as (Lee & Kim, 2023). However, due to the different number
of time-step used in our method, there are some differences
in the results compared to the original method. All ablation
studies are conducted under our predefined noise time-step
to verify the effectiveness of each module. From the table
8, we can see that removing either ASE or PSP will affect
standard accuracy and robust accuracy, proving that our
improvement is effective.

Table 8. Standard accuracy and robust accuracy under different
combinations. WideResNet28-10 servers as the backbone.

ASE PSP Standard Robust Average

% % 91.79 71.68 81.73
! % 89.07 77.35 83.21
% ! 91.41 76.17 83.79
! ! 92.19 77.35 84.77
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6. Conclusion
We analyze how adversarial perturbations disrupt the ampli-
tude spectrum and phase spectrum from the perspective of
the frequency domain. Additionally, we theoretically prove
that current diffusion-based adversarial purification methods
excessively damage images. Based on these, we propose
refining the low-frequency amplitude spectrum and phase
spectrum of the estimated image at each time-step during
the reverse process. This approach not only preserves some
structural information and image content but also guides
the restoration of high-frequency components. However,
both our approach and previous work still face challenges in
accurately and quickly calculating gradients. This poses dif-
ficulties in evaluating the effectiveness of defense methods.

Impact Statement
The work presented in this paper seeks to significantly
advance the emerging field of machine learning security,
specifically addressing vulnerabilities related to adversarial
attacks. Recognizing that adversarial images pose severe
threats to the integrity and reliability of machine learning
models, we introduce a novel purification method leverag-
ing diffusion models from a frequency domain perspective.
Our approach uniquely exploits the frequency characteris-
tics inherent to adversarial perturbations, enabling efficient
and effective mitigation of malicious modifications to input
images. This purification process enhances the robustness of
model predictions, safeguarding them against a broad spec-
trum of adversarial strategies and ultimately improving their
reliability and trustworthiness in real-world applications.
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A. More Experimental Results
A.1. Hyperparameter Sensitivity Analysis

In this section, we conduct a hyperparameter sensitivity analysis, and our method includes three hyperparameters: one for
controlling the retention of the amplitude spectrum DA, and the other two for controlling the retention of the phase spectrum
DP and the projection range δ. WideResNet28-10 serves as the classifier and we use PGD as the attack method with ℓ∞
and ϵ = 8/255. From Figure 5, we can see that the best performance is achieved when DA = 3 and DP = 2, δ = 0.2.

Figure 5. Robust and Standard Accuracy under different thresholds DA (left) and under different combinations of DP and δ (right).

A.2. Adaptive Attack and Surrogate Process

Strong adaptive attacks (Athalye et al., 2018; Tramer et al., 2020) require computing full gradients of diffusion-based
adversarial purification methods. (Nie et al., 2022) proposes to use the adjoint method to compute full gradients of the
reverse generative process. The adjoint method can compute the exact gradient in theory, but in practice, the adjoint relies
on the performance of the numerical solver, whose performance becomes problematic in some cases as reported by (Zhuang
et al., 2020). Furthermore, the experiments conducted by (Lee & Kim, 2023) reveal that this method tends to overestimate
the robustness of the defensive measures. As suggested in (Lee & Kim, 2023), they use the approximated gradient obtained
from a surrogate process. The surrogate process utilizes the fact that given the total amount of noise, we can denoise the
same amount of noise with different numbers of denoising steps. Therefore, instead of using the entire denoising steps, we
can mimic the original denoising process with fewer function calls, whose gradients can be obtained by back-propagating
the forward and denosing process directly. To investigate whether our defense method is sensitive to the varying number of
denoising steps in the surrogate process, we conducted an experimental analysis.

B. Discrete Fourier Transform
B.1. Preliminary

Given an image x ∈ RH×W , we perform a two-dimensional discrete Fourier transform (DCT) on it:

x(u, v) = DCT (x(x, y)) =

H−1∑
x=0

W−1∑
y=0

x(x, y)ej2π(
ux
H + vy

W ), (16)

where u = 0, 1, 2, ...,H − 1 and v = 0, 1, 2, ...,W − 1.
When the transform x(u, v) is known, x(x, y) can be obtained using the inverse discrete Fourier transform (IDCT):

x(x, y) = IDCT (x(u, v)) =
1

HW

H−1∑
u=0

W−1∑
v=0

X(u, v)ej2π(
ux
H + vy

W ), (17)

where x = 0, 1, 2, ...,H − 1 and y = 0, 1, 2, ...,W − 1.
Since the two-dimensional discrete Fourier transform is usually a complex function, it can be represented in polar coordinates:

x(u, v) = R(u, v) + jI(u, v) = |x(u, v)|ejϕ(u,v). (18)
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The method for calculating the amplitude is as follows:

|x(u, v)| =
√
R2(u, v) + I2(u, v). (19)

The method for calculating the phase is as follows:

ϕ(u, v) = arctan(
I(u, v)

R(u, v)
). (20)

B.2. Property

(Linearity) For any two images x and y, where a and b are constants, then:

DCT (a · x(x, y) + b · y(x, y)) = DCT (a · x(x, y)) +DCT (b · y(x, y))
= a ·DCT (x(x, y)) + b ·DCT (y(x, y))

= a · x(u, v) + b · y(u, v).
(21)

C. Distribution of Adversarial Perturbations in the Frequency Domain
C.1. Experiment Settings

We decompose the images into amplitude spectrum and phase spectrum using the discrete Fourier transform, exploring how
adversarial perturbations affect the amplitude spectrum and phase spectrum. Here, we randomly selected 512 images from
the ImageNet dataset. We tested different attack methods, including AutoAttack (Croce & Hein, 2020), Projected Gradient
Descent (PGD (Madry et al., 2018)) under ℓ∞ and ℓ2 nrom, as well as various perturbation radii, using different models
including ResNet50 (He et al., 2016), VGG19 (Simonyan & Zisserman, 2015), ViT 6 (Dosovitskiy et al., 2021), DenseNet 7
(Huang et al., 2017) and ConvNeXT 8 (Liu et al., 2022).
Given two images, one normal image x and one adversarial image xadv , we decompose them into amplitude spectrum and
phase spectrum using the discrete Fourier transform as follows:

x(u, v) = DCT (x) = |x(u, v)|eiϕx(u,v),

xadv(u, v) = DCT (xadv) = |xadv(u, v)|eiϕxadv
(u,v).

(22)

To investigate the variation of adversarial perturbations with frequency, we calculate the differences of the amplitude
spectrum and phase spectrum between the normal image and the adversarial image.
For the amplitude spectrum, the amplitude spectrum of the image exhibits low-pass characteristics with respect to frequency,
specifically:

|x(u, v)| ∝ D(u, v)−α, (23)

Typically, the parameter α is 2 or 3. Due to the power-law distribution characteristic of the amplitude spectrum, we choose
to quantify the differences between the amplitude spectra of adversarial images and normal images using rhe absolute value
of the percentage difference:

E(| |xadv(u, v)| − |x(u, v)|
|x(u, v)|

|), (24)

The distribution of the phase spectrum is typically random and closely related to the specific content of the image. Its values
range from 0 to 2π. Therefore, we choose to measure the differences between the phase spectra of adversarial images and
nromal images using the absolute value of the differences:

E(|ϕx(u, v)− ϕxadv
(u, v)|). (25)

C.2. More Experiment Results
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Figure 6. Vision Transformer serves as backbone. We decompose the image into the amplitude spectrum (left) and the phase spectrum
(right), and calculate the differences between the adversarial images and the normal images, respectively.

Figure 7. DenseNet121 serves as backbone. We decompose the image into the amplitude spectrum (left) and the phase spectrum (right),
and calculate the differences between the adversarial images and the normal images, respectively.

Figure 8. ConvNeXT serves as backbone. We decompose the image into the amplitude spectrum (left) and the phase spectrum (right),
and calculate the differences between the adversarial images and the normal images, respectively.
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D. Proof
D.1. Proof of Theorem 3.2.

Theorem D.1. (Modified Edition) The variance of the difference of amplitude at time-step t between clean image x0 and
noisy image xt at arbitrary coordinates (u, v) at frequency domain is as follows:

V ar(∆At(u, v)) ≈
1− αt

2
− (1− αt)

2

16|x0(u, v)|2αt
. (26)

The RHS is monotonically increasing with respect to t, This means that as t increases, the amplitude spectrum of the original
image at arbitrary coordinate (u, v) is increasingly disrupted by noise.

Proof. The forward process of DDPM (Ho et al., 2020) in the time domain is as follows:

xt =
√
αtx0 +

√
1− αtϵ, (27)

where t denotes the time-step. x0 denotes the input clean image. ϵ ∼ N (0, I) denotes the gaussian noise. To analyze the
impact of noise on different frequency components, we transform the (27) from time domain into the frequency domain via
discrete Fourier transform as follows:

DCT (xt) = DCT (
√
αtx0 +

√
1− αtϵ)

=
√
αtDCT (x0) +

√
1− αtDCT (ϵ),

(28)

To simplify the equation. We omit the DCT and use x0(u, v), xt(u, v) and ϵ(u, v) at coordinate (u, v) at frequency daomain:

xt(u, v) =
√
αtx0(u, v) +

√
1− αtϵ(u, v), (29)

To demonstrate the forward process will damage the amplitude spectrum, in the following we give the corresponding proof:

E(|xt(u, v)|2) = E(|
√
αtx0(u, v) +

√
1− αtϵ(u, v)|2)

= E(|
√
αtx0(u, v)|2 + |

√
1− αtϵ(u, v)|2 + 2Re{

√
αtx0(u, v) ∗

√
1− αtϵ(u, v)

∗})
= E(αt|x0(u, v)|2 + (1− αt)|ϵ(u, v)|2 + 2

√
αt

√
1− αtRe{x0(u, v) ∗ ϵ(u, v)∗}),

(30)

where, Re represents the real part and ϵ(u, v)∗ is the complex conjugate of ϵ(u, v). The power spectral density of the noise is
flat, and the noise is independent at different frequencies. Its mean is 0, and the variance is a constant (When the distribution
follows a standard normal distribution, the variance is 1.):

E(ϵ(u, v)) = 0

E(|ϵ(u, v)|2) = σ2 = 1
(31)

Therefore,

E(|xt(u, v)|2) = E(αt|x0(u, v)|2 + (1− αt)|ϵ(u, v)|2 + 2
√
αt

√
1− αtRe{x0(u, v) ∗ ϵ(u, v)∗})

= αt|x0(u, v)|2 + (1− αt)E(|ϵ(u, v)|2) + 2
√
αt

√
1− αtRe{x0(u, v) ∗ E(ϵ(u, v)∗)}

= αt|x0(u, v)|2 + (1− αt),

(32)

xt(u, v) =
√
αtx0(u, v) +

√
1− αtϵ(u, v)

= Re(
√
αtx0(u, v)) +Re(

√
1− αtϵ(u, v))︸ ︷︷ ︸

∼N (Re(
√
αtx0(u,v)),

1−αt
2 )

+i (Im(
√
αtx0(u, v)) + Im(

√
1− αtϵ(u, v)))︸ ︷︷ ︸

∼N (Im(
√
αtx0(u,v)),

1−αt
2 )

, (33)

We can see that the means of the real part and the imaginary part are different, the variances are the same, and they are
independent of each other (Richards, 2013). Therefore, the amplitude |xt(u, v)| follows a Rice distribution:

f(|xt(u, v)|) =
|xt(u, v)|

σ2
exp

(
−|xt(u, v)|2 + ν2

2σ2

)
I0

(
|xt(u, v)|ν

σ2

)
, (34)
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With the assumption of SNRt ≫ 1 , we have:

E(|xt(u, v)|) ≈ ν ≈ ν +
σ2

2ν
=

√
αt|x0(u, v)|+

1− αt

4
√
αt|x0(u, v)|

, (35)

The variance of the difference of amplitude at time-step t between clean image x0 and noisy image xt is as follows:

V ar(∆At(u, v)) = V ar(|xt(u, v)| − |x0(u, v)|)
= V ar(|xt(u, v)|)
= E(|xt(u, v)|2)− E2(|xt(u, v)|)

≈ αt|x0(u, v)|2 + (1− αt)− (
√
αt|x0(u, v)|+

1− αt

4
√
αt|x0(u, v)|

)2

=
1− αt

2
− (1− αt)

2

16|x0(u, v)|2αt
,

(36)

When SNRt is sufficiently large, it is clearly that V ar(∆At(u, v)) monotonically decreasing with t.

D.2. Proof of Theorem 3.4.

Theorem D.2. According to Theorem 3.2. in (Nie et al., 2022) that t should be sufficiently small. Therefore, we assume
SNRt > 1. the variance of difference of phase V ar(∆θ(u, v)) between input image x0 and noisy image xt at arbitrary
coordinates (u, v) at frequency domain is as follows:

V ar(∆θt(u, v)) ≈
1√

1− 1
SNR2

t

− 1, (37)

where signal to noise ratio (SNR) at time-step t is defined as follows:

SNRt(u, v) =

√
αt|x0(u, v)|√

1− αt|ϵ(u, v)|
. (38)

Proof. The forward process of DDPM (Ho et al., 2020) in the time domain is as follows:

xt =
√
αtx0 +

√
1− αtϵ. (39)

Where t denotes the time-step. x0 denotes the input clean image. ϵ ∼ N (0, I) denotes the gaussian noise. To analyze the
impact of noise on different frequency components, we transform the (27) from time domain into the frequency domain via
discrete Fourier transform as follows:

DCT (xt) = DCT (
√
αtx0 +

√
1− αtϵ)

=
√
αtDCT (x0) +

√
1− αtDCT (ϵ),

(40)

To simplify the equation. We omit the DCT and use x0(u, v), xt(u, v) and ϵ(u, v) at coordinate (u, v) at frequency daomain:

xt(u, v) =
√
αtx0(u, v) +

√
1− αtϵ(u, v), (41)

To demonstrate the forward process will damage the phase spectrum, in the following we give the corresponding proof:

xt(u, v) =
√
αtx0(u, v) +

√
1− αtϵ(u, v)

=
√
αt|x0(u, v)|eiϕx0

(u,v) +
√
1− αt|ϵ(u, v)|eiϕϵ(u,v)

= Ste
iϕx0 (u,v) +Nte

iϕϵ(u,v)

= Ste
iϕx0 (u,v)(1 +

Nt

St
ei(ϕϵ(u,v)−ϕx0 (u,v)))

= Ste
iϕx0

(u,v)(1 +Kte
iϕ).

(42)
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Here we can get the difference between the phase of the original image x0 and the noisy image xt:

∆θ = ϕxt
(u, v)− ϕx0

(u, v)

= arg(1 +Kte
iϕ)

= arg(1 +Kt(cos(ϕ) + isin(ϕ)))

= arg(1 +Kt cos(ϕ)︸ ︷︷ ︸
Real

+ iKtsin(ϕ))︸ ︷︷ ︸
Imaginary

= arctan(
Ktsin(ϕ)

1 +Kt cos(ϕ)
)

≈ Ktsin(ϕ)

1 +Kt cos(ϕ)
.

(43)

The last line of the formula is obtained through a first-order Taylor expansion
The phase spectrum of Gaussian noise ϵ is uniformly distributed in the range [0,2π]:

p(ϕϵ) =

{
1
2π if 0 ≤ ϕϵ < 2π

0 otherwise
. (44)

Due to the periodicity of phase, the range of ϕϵ(u, v)− ϕx0
(u, v) is also uniformly distributed in the range [0,2π].

The expectation of the phase difference is as follows:

E(∆θ) = E(
Ktsin(ϕ)

1 +Kt cos(ϕ)
)

=
1

2π

∫ 2π

0

Ktsin(ϕ)

1 +Kt cos(ϕ)
dϕ

= 0.

(45)

The Variance of the phase difference is as follows:

V ar(∆θ) = E((∆θ)2)− (E(∆θ))2 = E((∆θ)2)

=
1

2π

∫ 2π

0

K2
t sin

2(ϕ)

(1 +Kt cos(ϕ))2
dϕ

=
1

2π

∫ 2π

0

Kt sin(ϕ)d(
1

1 +Ktcos(ϕ)
)

=
1

2π
(

Kt sin(ϕ)

1 +Kt cos(ϕ)

∣∣2π
0︸ ︷︷ ︸

0

−
∫ 2π

0

Ktcos(ϕ)

1 +Kt cos(ϕ)
dϕ)

= − 1

2π

∫ 2π

0

1− 1

1 +Kt cos(ϕ)
dϕ

=
1

2π
(

∫ 2π

0

1

1 +Kt cos(ϕ)
dϕ− 2π)

=
1

2π
(

∫ +∞

−∞

1

1 +Kt
1−t2

1+t2

2dt

1 + t2
− 2π)

=
1

2π
(

∫ +∞

−∞

2dt

1 +Kt + (1−Kt)t2
− 2π)

=
1

2π
(

1√
1−K2

t

arctan t
∣∣+∞
−∞ − 2π)

=
1√

1−K2
t

− 1.

(46)
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E. Visualization
E.1. ImageNet

We randomly select some images for visualization and chose DiffPure (Nie et al., 2022) and REAP (Lee & Kim, 2023)
as the baselines. The attack method we use here is PGD. And to make the visualization effect more pronounced, with the
perturbation radius set to ℓ∞ = 12/255. We plot the original images, the images after adversarial attacks, and the images
purified using our method and other methods.

Figure 9. Visualization of some randomly selected images from ImageNet dataset.

E.2. CIFAR10

We randomly select 64 images for visualization, choosing PGD as the attack method and setting the attack radius to
ℓ∞ = 8/255.
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Figure 10. Visualization of some randomly selected images from ImageNet dataset.

Figure 11. Visualization of original images randomly selected from CIFAR10 dataset.
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Figure 12. Visualization of adversarial images randomly selected from CIFAR10 dataset.

Figure 13. Visualization of purified images randomly selected from CIFAR10 dataset.
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