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Abstract

Pathological brain lesions exhibit diverse appearance in brain images, making it difficult to
train supervised detection solutions due to the lack of comprehensive data and annotations.
Thus, in this work we tackle unsupervised anomaly detection, using only healthy data for
training with the aim of detecting unseen anomalies at test time. Many current approaches
employ autoencoders with restrictive architectures (i.e. containing information bottlenecks)
that tend to give poor reconstructions of not only the anomalous but also the normal parts
of the brain. Instead, we investigate classical denoising autoencoder models that do not
require bottlenecks and can employ skip connections to give high resolution fidelity. We
design a simple noise generation method of upscaling low-resolution noise that enables
high-quality reconstructions. We find that with appropriate noise generation, denoising
autoencoder reconstruction errors generalize to hyperintense lesion segmentation and reach
state of the art performance for unsupervised tumor detection in brain MRI data, beating
more complex methods such as variational autoencoders. We believe this provides a strong
and easy-to-implement baseline for further research into unsupervised anomaly detection.

Keywords: Anomaly detection, Unsupervised learning, Autoencoder, Denoising, MRI.

1. Introduction

Pathology detection is a popular task in medical imaging due to its wide range of possible
applications. Supervised machine learning methods have shown promising results, however
comprehensive supervised pathology detection methods require extensive and heterogeneous
training sets which are costly to annotate and difficult to acquire. Conversely, unsupervised
anomaly detection (UAD) methods require only identification of a healthy cohort of patients
for training (therefore these methods are sometimes regarded as semi-supervised), after
which they are applied to detect anomalous regions in test data.

Autoencoder deep learning methods have been commonly used for UAD in brain scans
(Baur et al., 2021), relying on the assumption that data similar to that seen during training
(healthy regions) will be reconstructed better than unseen (potentially anomalous) regions.
Most autoencoder approaches are trained on healthy data using reconstruction error (e.g.
mean squared error) as the main optimization objective. Anomaly scores are generated for
each pixel often also using the reconstruction residuals. Models are then tested on data that

© 2022 A. Kascenas, N. Pugeault & A.Q. O’Neil.



Kascenas Pugeault O’Neil

Figure 1: Our denoising autoencoder anomaly detection method. During training (top),
noise is added to the foreground of the healthy image, and the network is trained
to reconstruct the original image. At test time (bottom), the pixelwise post-
processed reconstruction error is used as the anomaly score.

includes anomalies unseen during training. Since anomalies constitute out-of-distribution
data, autoencoder models are expected to generalize poorly; thus, larger reconstruction
errors are expected to indicate anomalous regions. However, it has been shown that in the
main brain lesion datasets on which UADmethods are currently evaluated, a simple voxel in-
tensity thresholding baseline with careful normalization and morphological post-processing
performs better than most published autoencoder methods (Meissen et al., 2021). These
results suggest that current methods do not effectively learn to detect intensity outliers.

In this paper, we explore the classic method of denoising autoencoders (DAEs). We
find that DAEs produce better reconstructions than more popular autoencoder models
with constrained architectures e.g., variational autoencoders, and that careful design of the
injected noise allows models to be trained that are sensitive to subtle intensity changes and
generalize to tumor localization in brain MRI scans. Our contributions are as follows:

1. We propose a DAE baseline for UAD that is simple to implement and outperforms
an intensity thresholding baseline in brain tumor detection.

2. We show that DAEs with coarse noise patterns generalize significantly better than
with traditional pixel/voxel-level noise.

3. We simplify and improve the intensity thresholding baseline; this remains a practical
benchmark for methods trained on data that is not available to the evaluator.
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2. Related Work

Many modifications to the standard autoencoder pipeline have been proposed.

Variational autoencoders (VAEs) Zimmerer et al. (2019); Zhou et al. (2020) constrain
the latent bottleneck representation to follow a parameterized multivariate Gaussian distri-
bution. Zimmerer et al. (2018) further add a context-encoding task and combine reconstruc-
tion error with density-based scoring to obtain the anomaly scores, while You et al. (2019)
use an iterative gradient descent restoration process at test time in restoration-VAE,
replacing the reconstruction error with a restoration error to estimate anomaly scores.

Architectural changes have also been proposed. Atlason et al. (2019); Baur et al. (2018)
introduce convolutional autoencoders and higher capacity spatial bottlenecks instead of
fully-connected (dense) bottlenecks to achieve better reconstruction. Chen and Konukoglu
(2018) use constrained autoencoders to improve latent representation consistency in
anomalous images at test time. Bayesian skip-autoencoders Baur et al. (2020) use skip
connections with dropout to improve reconstruction and allow uncertainty to be measured
via dropout stochasticity.

The UAD autoencoder framework of encoder-decoder components and reconstruction
error for anomaly scores has featured in more complex approaches. Schlegl et al. (2019)
train a generative adversarial network called f-AnoGAN which reuses the generator and
discriminator to train an autoencoder with both reconstruction and adversarial losses for the
anomaly detection task. Pinaya et al. (2021) combine a vector quantized VAE (VQ-VAE)
to encode an image with a transformer model to resample low-likelihood latent variables in
order to produce reconstructions with fewer reproduced anomalies.

Baur et al. (2021) have performed an evaluation of some of the most common autoen-
coder methods for anomaly detection in brain MRI finding restoration-VAE (You et al.,
2019) and f-AnoGAN (Schlegl et al., 2019) to be among the best. However, more recently
Meissen et al. (2021) have shown that most autoencoder-based UAD methods can be outper-
formed by a simple baseline. By using only the FLAIR modality and performing histogram
equalization preprocessing they show that a simple thresholding-based method without any
training can detect hyperintense brain tumor and multiple sclerosis lesions better than most
UAD approaches that require healthy data to train.

The above evaluations omitted consideration of DAEs. DAEs have been applied as
pretraining in brain lesion detection with limited labels and simple novelty detection using
patch-based masking (Alex et al., 2017), and as a baseline using image-level Gaussian noise
(Zimmerer et al., 2018). However, to our knowledge no works have investigated the effects
of noise coarseness and intensity or achieved competitive results on the UAD task.

3. Method

We implement a simple denoising deep autoencoder neural network and use reconstruction
error to detect and localize anomalies at test time. The training and test pipelines are
visualized in Figure 1. Below we describe each part of the system in more detail.

Network architecture We use a U-Net (Ronneberger et al., 2015) style architecture
with skip connections which enables significantly better image reconstructions compared to
bottleneck architectures such as the VAE (see Figure 2). However, any dense prediction (e.g.
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Figure 2: Sample healthy brain reconstructions from VAE and DAE models. The DAE
gives more precise reconstructions. The VAE reconstruction quality could be
improved by increasing bottleneck dimensionality, however this would negatively
impact anomaly detection performance.

segmentation) neural network architecture can be easily repurposed for DAEs. Detailed
description of the network architecture and training procedure can be found in Section 4.3
and Appendix A.

Noise generation Randomly generated noise is added to each input image and the DAE
is tasked with removing the noise and reconstructing the original input. DAEs perform
denoising by learning to distinguish between healthy brain image patterns and random
noise patterns. Thus, noise generation is essential for successful anomaly detection at test
time. We generate coarse intensity noise by sampling random pixelwise Gaussian noise at
a low resolution and bilinearly upsampling it to the input resolution. We then randomly
translate the generated noise to avoid consistent upsampling patterns. Noise is added to
the input foreground i.e. pixels with values above 0 (background pixels outside of the scan
acquisition region are zero-valued). See Appendix B for examples of generated noise.

Inference and post-processing The DAE is used to localize anomalies by calculating
pixelwise anomaly scores A(x) using M = 4 modalities of image x, reconstruction x̂, fore-
ground mask F masking pixels with intensities above 0 and of application of median filter
fMF :

A(x) = fMF

(
F ⊙

M∑
m

|xm − x̂m|
M

)
.

No noise is used at test time.
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4. Experiment Setup

4.1. Dataset

We evaluate the anomaly detection performance on the surrogate task of brain tumor seg-
mentation using data from the BraTS 2021 challenge (Menze et al., 2014; Bakas et al.,
2017, 2018). This data comprises native (T1), post-contrast T1-weighted (T1Gd), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR) modality volumes
for each patient from a variety of institutions and scanners. The data has already been
co-registered, skull-stripped and interpolated to the same resolution. Labels are provided
for tumor sub-regions: the GD-enhancing tumor, the peritumoral edema, and the necrotic
and non-enhancing tumor.

We randomly split the dataset into 938 training, 62 validation, and 251 test patients.
We consider the union of the tumor sub-region labels to be the anomalous regions. During
training, we use only slices that do not contain any tumor pixels, under the assumption
that these non-tumor slices represent healthy tissue. For the data input to the models,
we concatenate all four modalities at the channel dimension for each patient. We nor-
malize (rescale) the pixel values in each modality of each scan by dividing by the 99th
percentile foreground voxel intensity. All slices are downsampled to a resolution of 128×128
(1.62mm/pixel).

4.2. Baselines

We compare the DAE anomaly detection performance against four baselines. Firstly, we im-
plement a standard VAE (Zimmerer et al., 2019; Zhou et al., 2020) and f-AnoGAN (Schlegl
et al., 2019) models with pixelwise reconstruction error as the anomaly scores. Secondly, we
use the same VAE model but use an iterative gradient-based restoration process (You et al.,
2019) to produce restoration images. Finally, we apply the simple thresholding approach
from Meissen et al. (2021) using both their original post-processing procedure and our pro-
posed modified procedure that includes median filtering. We use the hyperparameters from
the original works for the deep learning methods but tune manually where necessary to
improve training stability and AD performance.

4.3. Implementation details

Denoising autoencoder We use an encoder-decoder architecture with three downsam-
pling/upsampling stages. Each encoder stage consists of two weight-standardized convolu-
tions (Qiao et al., 2019) with kernel sizes of 3 and 64, 128, 256 output channels for the three
stages respectively followed by Swish activations (Ramachandran et al., 2017) and group
normalization (Wu and He, 2018). Average 2 × 2 pooling is used for downsampling. The
decoder architecture mirrors the encoder in reverse, using transposed convolutional layers
for upsampling. Architecture visualization and further details can be found in Appendix A.

Noise is generated by sampling random Gaussian pixelwise noise at the resolution of 16×
16 pixels then bilinearly upsampled to the input resolution of 128×128 pixels. The generated
noise is then randomly translated vertically and horizontally to randomize the centers of
the coarse noise clusters that may occur due to upsampling from very low resolutions. Noise
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is generated independently for each image modality. We investigate the parameters of the
noise in Section 5 (see Figure 4).

We use mean L2 reconstruction loss in the foreground as the training objective. Models
are trained for 67,200 iterations with a batch size of 16 slices using Adam (Reddi et al., 2018)
with a cosine annealed maximum learning rate of 0.0001 with a period of 200 iterations.

DAE code is available at https://github.com/AntanasKascenas/DenoisingAE.

VAE reconstruction We use a similar architecture to train VAE models. Skip connections
are removed and a bottleneck with dimensionality of 128 is added. We use the sum of mean
L2 reconstruction error and KL-divergence with a weight of β = 0.001 as the training
objective. We use the same training procedure and anomaly score formula as for the DAE.

VAE restoration Using the VAE model described above, we implement a restoration
method (You et al., 2019) to produce the anomaly scores. We perform the restoration
procedure using 100 iterations on individual slices basing our implementation on public
source code 1. Note that due to the iterative nature of the restoration procedure it takes
significantly longer (approx. ×100) to produce predictions compared to other methods.

f-AnoGAN We adapt the original public implementation 2 for the brain MR data task
as follows. We use an additional generator, discriminator and encoder block to account
for the higher resolution. Strided convolutions and transposed convolutions are used for
downsampling and upsampling respectively. We use a batch size of 32 and learning rates of
0.001, 0.001, 0.00001 for the generator, discriminator and encoder respectively. The encoder
was trained using κ = 1× 10−8.

Thresholding We follow Meissen et al. (2021) to obtain results for the thresholding base-
line. FLAIR volumes are histogram equalized in the foreground and connected component
filtered to produce anomaly scores. We also experiment with using median filtering instead
of connected component filtering to computationally simplify the baseline.

Postprocessing We experiment with applying the following postprocessing steps to our
method and the baselines. We use a median filter with a kernel size of 5. Connected com-
ponenent filtering is done by discarding connected components with volume no larger than
20 voxels after binarization following Meissen et al. (2021). The postprocessing combination
of median filtering in 3D and connected component filtering was used by Baur et al. (2021).

5. Results

We evaluate the anomaly detection performance of the methods with two metrics. Firstly,
we measure the area under the precision-recall curve (AUPRC) at the pixel level computed
for the whole test set. AUPRC evaluates anomaly scores directly without requiring to set
an operating point for each method. Secondly, we calculate ⌈Dice⌉, a Dice score which
measures the segmentation quality using the optimal threshold for binarization found by
sweeping over possible values using the test ground truth. ⌈Dice⌉ represents the upper
bound for the Dice scores that would be obtainable in a more practical scenario.

1. https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-Image-Restoration-with-
a-Normative-Prior

2. https://github.com/tSchlegl/f-AnoGAN
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Figure 3: Sample anomaly score predictions. From easier (top) to more difficult (bottom).

Table 1: Tumor detection performance as evaluated by test set wide pixel-level area under
the precision-recall curve (AUPRC) and ideal Dice score (⌈Dice⌉). MF refers to
the application of median filtering in post-processing. CC refers to connected
component filtering. ± indicates standard deviation across 3 runs.

Method AUPRC ⌈Dice⌉ ⌈Dice⌉ (+CC filtering)

Thresholding 0.684 0.667 0.679
Thresholding + MF 0.798 0.749 0.750

f-AnoGAN 0.198±0.006 0.316±0.006 0.327±0.007

f-AnoGAN + MF 0.365±0.024 0.449±0.014 0.453±0.015

VAE (reconstruction) 0.299±0.002 0.395±0.002 0.405±0.002

VAE (reconstruction) + MF 0.555±0.004 0.548±0.003 0.551±0.003

VAE (restoration) 0.740±0.007 0.685±0.005 0.686±0.005

VAE (restoration) + MF 0.750±0.006 0.689±0.005 0.690±0.005

DAE (ours) 0.816±0.005 0.758±0.004 0.763±0.004

DAE + MF (ours) 0.833±0.005 0.773±0.004 0.774±0.004
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Figure 4: Noise coarseness and magnitude ablation results on validation data. Magnitude
ablation uses noise sampled at resolution of 16×16. Coarseness ablation uses
σ = 0.2. Error bars show standard deviation across three runs.

Quantitative results as evaluated using the BraTS 2021 dataset can be seen in Table 1.
Some prediction samples are provided in Figure 3. Our simple DAE model outperforms
f-AnoGAN (Schlegl et al., 2019), VAE reconstruction (Zimmerer et al., 2019; Zhou et al.,
2020), VAE restoration (You et al., 2019) and thresholding (Meissen et al., 2021) baselines.

We also observe that adding median filtering improves the performance of all tested
methods. We find it both more effective and computationally less demanding than con-
nected component filtering at reducing false positive detections. Histogram-equalized and
median-filtered image thresholding provides a strong baseline that challenges state-of-the-
art anomaly detection methods in the brain tumor evaluation protocol.

To examine the effect of noise in DAEs we further investigate the effect of the sampled
noise resolution before upsampling and the σ of the Gaussian distribution used for sampling
noise (see Figure 4 and Appendix C). We find that a reasonably coarse noise is critical, as
DAE models trained using standard pixel-level noise (generated at 128 × 128 resolution)
or using the opposite extreme of image-level noise (generated at 1 × 1 resolution) perform
significantly worse. DAEs seems to be not so sensitive to the magnitude of the noise (σ of
the generating Gaussian distribution) however it can still have a significant effect on the
results suggesting that further investigation into noise distributions could be fruitful.

6. Conclusion

In this paper we have proposed a method based on denoising autoencoders for anomaly
detection, and presented an evaluation on brain tumor data. We found that a relatively
simple DAE implementation with appropriate design of the noise can produce state-of-
the-art results. Furthermore, we find that median filtering improves the results of both
thresholding and DAE methods, proving to be a simple and effective post-processing step.
In summary, we believe these methods provide strong baselines for future approaches in
brain anomaly detection. However, it is possible that current evaluation protocols do not
sufficiently assess anomalies with diverse intensity profiles and better evaluation datasets
might be needed for progress towards more general anomaly detection methods.
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Appendix A. Neural network architectures

GN

in|out

Denoising autoencoder

in|out

64|44|64

64|128

125|256

256|512

512|256

128|64

256|128

64|4
4|64

64|128

128|256
64|256

128|64

256|128

256|256
μ128
σ128 ~ Swish

GN

k.s. = 1
k.s. = 1

k.s. = 16

out_channels = 256
stride = 1

Variational autoencoder

ConvBlock module

Swish GN out|out Swish GN

in|out Weight standardized convolution layer: kernel size (k.s.) = 3, 

stride=1 unless otherwise noted. Numbers denote channel numbers

in|out Convolution layer without weight standardization.

Swish Swish activation function.

Group normalization.

ConvBlock module. Numbers denote channel numbers.

Average pooling, kernel size=2, stride=2

Transposed convolution layer, kernel size=2, stride=2
unless otherwise noted.

U-Net skip connection

Figure 5: Architectures of DAE and VAE models used in the experiments.

Appendix B. Noise samples

1×1 2×2 4×4 8×8

16×16 32×32 64×64 128×128

Figure 6: Samples of noise generated by bilinearly upsampling Gaussian pixelwise noise
using different initial resolutions, from 1×1 through to 128×128.
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Appendix C. Noise generation ablation results

Table 2: Noise resolution ablation on validation data. Noise is generated at the specified
resolution and then upsampled to the image resolution of 128×128. Thus, 128×128
refers to pixelwise noise and 1×1 refers to image level noise. Noise is generated
with N (0, 0.22)

.

Method AUPRC ⌈Dice⌉

DAE (1× 1 noise) 0.325±0.004 0.354±0.011

DAE (2× 2 noise) 0.633±0.014 0.589±0.009

DAE (4× 4 noise) 0.697±0.005 0.634±0.006

DAE (8× 8 noise) 0.776±0.004 0.711±0.004

DAE (16× 16 noise) 0.829±0.005 0.765±0.005

DAE (32× 32 noise) 0.817±0.003 0.755±0.004

DAE (64× 64 noise) 0.675±0.016 0.637±0.006

DAE (128× 128 noise) 0.127±0.040 0.186±0.045

Table 3: Noise magnitude ablation on validation data. Noise is generated at a resolution of
16× 16 using N (0, σ2) with the specified σ.

Method AUPRC ⌈Dice⌉

DAE (noise σ = 0.05) 0.543±0.009 0.582±0.006

DAE (noise σ = 0.1) 0.768±0.016 0.715±0.014

DAE (noise σ = 0.2) 0.829±0.005 0.765±0.005

DAE (noise σ = 0.3) 0.817±0.012 0.752±0.011

DAE (noise σ = 0.4) 0.794±0.006 0.729±0.004
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