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Abstract001

Multilingual speakers often switch languages002
in the middle of a conversation. Similarly,003
recent reasoning-focused bilingual large lan-004
guage models (LLMs) exhibit language mix-005
ing—alternating languages within their chain006
of thought. Discouraging language mixing in007
DeepSeek-R1 was found to degrade accuracy,008
suggesting that language mixing may benefit009
reasoning performance. In this work, we study010
language switching in Chinese-English bilin-011
gual reasoning models. We identify reinforce-012
ment learning with outcome-based rewards as013
the critical training stage that leads to language014
mixing. We demonstrate that language mix-015
ing can enhance reasoning: enforcing mono-016
lingual decoding reduces accuracy by 2% on017
math reasoning tasks. We further show that018
a lightweight probe can predict whether a po-019
tential language switch would benefit or harm020
reasoning, and use this to guide decoding, in-021
creasing accuracy by up to 4.10%. Our find-022
ings suggest that language mixing is not merely023
a byproduct of multilingual training, but is a024
strategic reasoning behavior.025

1 Introduction026

Multilingual speakers sometimes mix languages027

during reasoning, which is a phenomenon known in028

linguistics as code-switching (Appel and Muysken,029

2005; Özkara et al., 2025). Though switching030

languages seems to add complexity, multilingual031

speakers persist in this behavior for practical rea-032

sons. Each language organizes thoughts differently033

and some express certain concepts more efficiently034

than others (Boroditsky, 2001). This strategy helps035

them express ideas more precisely, fill lexical gaps036

when one language falls short (Kuzyk et al., 2020),037

and reduce cognitive load by directing more men-038

tal effort toward the reasoning task itself (Lehti-039

Eklund, 2013).040

LLMs have evolved from English-centric mod-041

els to those with strong multilingual abilities, with042

some achieving true bilingualism through balanced 043

English-Chinese training (Liu et al., 2024; Qwen 044

et al., 2025). How these bilingual models differ 045

from primarily monolingual LLMs raises intrigu- 046

ing questions for computational linguists. One 047

compelling phenomenon in this space is language 048

mixing, with recent RL-trained English-Chinese 049

bilingual LLMs displaying human-like language 050

mixing behavior in their chain-of-thought (Team, 051

2024; Guo et al., 2025): they respond in languages 052

different from the prompt and switch languages 053

(sometimes repeatedly) during their reasoning pro- 054

cess. 055

Figure 1: An illustration of language mixing when solv-
ing a math problem. Bilingual speakers and an LLM-
powered robot alternate between Chinese and English.

Proficient multilingual speakers of both lan- 056

guages can benefit from reasoning with code- 057

switching. Can LLMs similarly benefit? The par- 058

allel seems plausible: both humans and LLMs po- 059

tentially share needs for expressivity, precision, fill- 060

ing vocabulary gaps, and reducing cognitive load 061

(which for LLMs translates to using fewer tokens 062

and shorter context windows). Supporting this, 063

DeepSeek-R1 demonstrates a performance degra- 064

dation when a language consistency reward is in- 065
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Figure 2: Overview of our analysis of language mixing in LLM reasoning. (a) We identify common language
mixing patterns and triggers that lead to increased language mixing. (b) We compare unconstrained bilingual outputs
with constrained monolingual outputs to evaluate the impact of language mixing on reasoning performance.(c) We
train a probe to classify code-switches as {Beneficial, Neutral, or Harmful}, and use it to guide decoding.

troduced during training (Guo et al., 2025). These066

findings motivate our study into how language mix-067

ing affects LLM reasoning, centered on a key ques-068

tion: textitDo LLMs reason better or worse with069

English-Chinese language mixing?070

To investigate this, we study: (1) Where does071

language mixing occur? We analyze the evolution072

of LLMs and identify RL with outcome rewards073

as the main trigger, with dominant switches into074

English and increased complexity correlating with075

more mixing. (2) Do LLMs reason better or worse076

with language mixing? Comparing unconstrained077

bilingual outputs with constrained monolingual078

ones shows enforcing language consistency impairs079

Math500 performance. (3) Can we guide strate-080

gic language mixing? We classify code-switches081

as Beneficial, Neutral, or Harmful and steer lan-082

guage mixing through probing. Our findings sug-083

gest language mixing isn’t a random artifact but084

a potentially useful strategy for enhancing LLM085

reasoning.086

Our contributions are summarized as follows:087

⋆ We demonstrate that bilingual chain-of-thought088

reasoning with language mixing can enhance089

reasoning, as evidenced by unconstrained bilin-090

gual outputs outperforming monolingually con-091

strained outputs.092

⋆ We identify reinforcement learning with093

outcome-based rewards as the critical training094

stage that triggers language mixing, suggest-095

ing this behavior may emerge from natural096

optimization.097

⋆ We show that reasoning performance can be fur-098

ther improved using a lightweight probe to guide099

language mixing strategically.100

2 Where does Language Mixing Occur? 101

2.1 Detecting Code-Switches 102

Code-switching, by definition, means switching 103

between languages in a single conversation. As 104

illustrated in Fig.2(a), segments of Chinese (in 105

green) and segments of English alternate, and these 106

transitions represent code-switching occurrences. 107

In written text, elements such as mathematical 108

expressions or code (typically composed of En- 109

glish tokens) are language-agnostic and univer- 110

sally used across speakers of different languages. 111

Thus, a paragraph written in Chinese that includes 112

mathematical expressions using English tokens 113

should not be considered language mixing. We 114

define a code-switching position as the first text 115

token (in either English or Chinese) where the lan- 116

guage switches from one to another, excluding any 117

language-agnostic content such as math expres- 118

sions. These positions correspond to the arrow 119

markers shown in Fig. 2(a). 120

Based on this definition, we implement a rule- 121

based procedure to detect Chinese-English code- 122

switching. We first strip out all LaTeX math and 123

related symbols, including digits, brackets, oper- 124

ators, and Greek letters, using regex. Then we 125

segment the text by Unicode ranges, distinguish- 126

ing Chinese characters (U+4E00 to U+9FFF) from 127

ASCII letters, while excluding math terms (sin, 128

cos, ln), short variable names, and geometric labels. 129

Finally, we scan adjacent segments for language 130

changes and log each code-switch’s direction, lo- 131

cal context, position, and the token count of the 132

non-prompt language. 133

We evaluate code-switching behavior with three 134

key statistics on bilingual datasets that contain par- 135

allel English–Chinese versions of each problem (by 136

translating from the original language): 137
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Table 1: Language-mixing statistics across QwQ and DeepSeek-R1 series for Chinese (ZH) and English (EN)
prompts. %Prob.: percentage of problems with code-switch; Switch: average number of switches per problem;
Tokens/Switch: mean tokens between consecutive switches; Non-prompt (%): fraction of tokens in a language
different from the prompt; White: Base models with pretraining only; Grey: Models fine-tuned with SFT and
RLHF; Pink: Models trained with RL on outcome-based rewards.

ZH EN

Model % Prob. Switch Tokens/Switch Non-prompt (%) % Prob. Switch Tokens/Switch Non-prompt (%)

Qwen2.5-32B 14.8% 1.98 667.96 1.42% 0.0% 0.00 0.00 0.00%
Qwen2.5-32B-Instruct 8.8% 0.36 1986.71 0.23% 0.0% 0.00 0.00 0.00%
QwQ32B-Preview 77.4% 7.22 217.03 4.28% 0.6% 0.02 1.50× 105 0.00%
QwQ32B 29.2% 6.20 585.85 0.48% 0.5% 0.01 2.85× 105 0.00%

DeepSeek-V3-Base 32.2% 9.95 190.78 2.53% 4.2% 1.51 980.76 1.18%
DeepSeek-V3 8.4% 0.39 3574.98 0.08% 0.4% 0.01 1.50× 105 0.02%
DeepSeek-R1-Zero 10.9% 0.21 7048.94 0.82% 0.0% 0.00 0.00 0.00%
DeepSeek-R1 27.1% 4.39 688.31 0.38% 0.0% 0.00 0.00 0.00%
DeepSeek-R1-Distill-Llama-8B 23.6% 2.46 1128.53 0.31% 0.0% 0.00 0.00 0.00%
DeepSeek-R1-Distill-Qwen-32B 21.2% 1.94 1292.15 0.24% 0.0% 0.00 0.00 0.00%

• Switch count: The total number of switches138

(back and forth) between languages when pro-139

cessing problems under English and Chinese140

prompts.141

• Tokens between switches: The average num-142

ber of tokens generated between consecu-143

tive language switches, quantifying how fre-144

quently the model alternates between lan-145

guages measured in tokens.146

• Non-prompt language fraction: The frac-147

tion of tokens generated in a language dif-148

ferent from the prompt language (shown as149

the shaded area between arrows in Fig. 2(a)),150

measuring how long the model stays in the151

non-prompt language. This evaluates the ex-152

tent and persistence of language mixing.153

2.2 Tracing the Evolution of Language154

Mixing in LLMs155

We are interested in when language mixing first ap-156

pears in multilingual LLMs, or equivalently, which157

training stages trigger it. During large-scale pre-158

training, LLMs are exposed to web-scale multi-159

lingual corpora, yet they rarely encounter natural160

code-switched input, which is far more common in161

speech than in text. But training data contains natu-162

ral code-switching, and concatenating text chunks163

from independent sources can produce synthetic164

switches (Wu et al., 2025), so LLMs may learn165

to code-switch. Supervised fine-tuning (SFT) and166

Reinforcement Learning from Human Feedback167

(RLHF) (Ouyang et al., 2022) explicitly align out-168

puts with human preferences, which typically favor169

monolingual responses for readability. In more re-170

cent reinforcement learning approaches that use171

outcome-based rewards to enhance reasoning abil- 172

ities (Chen et al., 2025; Xie et al., 2025), lan- 173

guage mixing has been well observed and docu- 174

mented, particularly in open-weight models such 175

as QwQ32B (Team, 2024) and DeepSeek-R1 (Guo 176

et al., 2025). 177

We trace the evolution of language-mixing be- 178

havior across iterations of QwQ32B and DeepSeek- 179

R1 models. For the QwQ series, we exam- 180

ine Qwen2.5-32B (base model with pre-training 181

only), Qwen2.5-32B-instruct (enhanced with SFT 182

and RLHF) (Qwen et al., 2025), and two gener- 183

ations with reinforcement learning on outcome 184

rewards: QwQ32B-preview (Team, 2024) and 185

QwQ32B (Team, 2025). For the DeepSeek-R1 se- 186

ries, we analyze DeepSeek-V3-base (the founda- 187

tion model with only pretraining), DeepSeek-V3 188

(with SFT and RLHF applied) (Liu et al., 2024), 189

DeepSeek-R1-zero (a version without language 190

consistency reward, where language mixing was 191

documented), DeepSeek-R1 (with language consis- 192

tency reward implemented), and various DeepSeek- 193

R1 distilled variants (Guo et al., 2025). 194

We evaluate language mixing occurrences across 195

these models using Math500 (in both English and 196

Chinese versions). To ensure comparable analysis, 197

we prompt base and instruct models for lengthy 198

chain-of-thought reasoning to match output lengths. 199

Our findings are as follows: 200

1. Pretraining effects vary significantly across 201

models. Qwen exhibits minimal code- 202

switching, while DeepSeek-V3-Base fre- 203

quently code-switches but tends to ramble 204

with irrelevant content (e.g., "1 months ago请 205

详细解释以下名词：药剂学" [translated to: 206
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Figure 3: Four patterns of code-switching observed in LLM outputs. Top left: Phrase-level switching, often short
and used for precision or efficiency. Top Right: Switching to English for technical terms. Bottom left: Switching
to match reasoning or answer formats. Bottom right: Full switch to another language when the model is unable to
find a solution.

Please explain the term: Pharmacy]). This dif-207

ference may stem from DeepSeek’s balanced208

pretraining data distribution (with slightly209

more Chinese than English content), though210

Qwen’s language distribution remains undoc-211

umented.212

2. SFT and RLHF consistently enforce monolin-213

gual outputs across model families, minimiz-214

ing both switching frequency and non-prompt215

language intrusions.216

3. Reinforcement learning with outcome re-217

wards triggers language mixing in both218

QwQ32B/preview and DeepSeek-R1.219

4. Contrary to claims in their paper, DeepSeek-220

R1-zero displays fewer code-switching in-221

stances in our testing. This discrepancy may222

result from our use of non-full precision pa-223

rameters and greedy decoding.224

5. QwQ32B-preview exhibits substantially more225

code-switching than the newer QwQ32B re-226

lease, potentially hinting at added language227

consistency constraints in the updated model.228

We select QwQ32B-preview for our subse-229

quent analyses.230

2.3 Characterizing Code-Switching Behavior231

Code-switching patterns. Based on analysis of232

QwQ32B-Preview outputs, we identify four main233

patterns of switches as shown in Figure 3. The 234

most common pattern is phrase-level switching in 235

the top-left examples of Figure 3, driven primar- 236

ily by a need for precision or efficiency. Certain 237

concepts may be more clearly expressed in one lan- 238

guage, with less ambiguity and often using fewer 239

tokens. For instance, the use of undefined in the 240

first example is more precise and less ambiguous 241

than its Chinese counterparts: 无意义 (which can 242

mean “meaningless,” as in “He felt his effort was 243

meaningless”) or未定义 (which may imply some- 244

thing is not yet defined but could be). It also re- 245

quires fewer tokens—undefined is a single token, 246

while both Chinese alternatives require two. 247

The second pattern (top right) involves switching 248

to English for technical terminology, likely because 249

the model has limited capacity to store special- 250

ized translations across multiple languages. The 251

third pattern (bottom left) shows language switch- 252

ing to conform to specific reasoning or answer 253

formats, such as interjecting "wait, let me dou- 254

ble check this" or concluding with "Final answer: 255

..." in English within otherwise Chinese responses. 256

These formats may originate from supervised fine- 257

tuning on data containing such patterns or reflect 258

the model’s emergent self-reflective cues that aren’t 259

well-aligned across languages. The fourth pattern 260

(bottom right) involves switching entirely to an- 261

other language when the model encounters diffi- 262

culties or recognizes errors in its reasoning when 263
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Figure 4: Quantitative analysis of language-mixing behavior in Math500 responses. (a) Correlation between
problem difficulty level and response token count for Chinese prompts. (b) Normalized switch count and non-
prompt language fraction as functions of token count, showing both code-switching frequency and non-prompt
language use increase as chain-of-thought reasoning lengthens.

the model encounters difficulties or recognizes er-264

rors in its reasoning. This behavior may suggest265

a strategy to "clear its mind" or to seek cues in266

another language. However, this pattern typically267

appears in more challenging problems, and even268

after switching languages, the model often fails to269

reach the correct solution.270

Quantifying language mixing behavior. In271

QwQ-32B-preview responses to the Math500272

dataset, 77.4% of answers to Chinese prompts ex-273

hibit language mixing, with an average of 7.22274

code-switches per problem, compared to just 0.6%275

for English prompts. It is already notable that En-276

glish prompts (with math expressions fully in En-277

glish tokens) occasionally trigger Chinese token278

generation. However, Chinese-to-English switch-279

ing occurs far more frequently, indicating that En-280

glish remains the model’s dominant or preferred281

language for reasoning.282

We analyze how language mixing behavior re-283

lates to problem complexity and response length.284

Figure 4(a) demonstrates the correlation between285

token count in responses to Chinese prompts and286

MATH500 problem difficulty levels (5 discrete lev-287

els). Figures 4(b) and (c) quantify switch counts288

(normalized by token count) and non-prompt lan-289

guage fraction as functions of token count. Since290

these statistics are normalized, we can conclude291

that longer chain-of-thought reasoning exhibits292

slightly increased code-switching frequency and a293

growing fraction of non-prompt language use. This294

indicates that when tackling more difficult prob-295

lems, the model produces longer chain-of-thought296

reasoning adopts as a strategy to use greater lan-297

guage mixing—both switching between languages298

more frequently and shifting more toward the non-299

prompt language (English in this case).300

3 Do LLMs reason better or worse with 301

language mixing? 302

3.1 Constrained Decoding 303

0.6719
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0.0038

0.0025

0.5562
…

0.3269

0.0880
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vocabulary
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给
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Figure 5: Token-level constrained decoding: We mask
out tokens from the undesired language, forcing genera-
tion in the target language.

We expect that reasoning trajectories differ be- 304

tween monolingual and bilingual thinking, as lan- 305

guages have different structural focuses and are tied 306

to distinct contexts (Keysar et al., 2012). Our goal 307

is to determine whether these trajectories actually 308

differ in practice and if one is superior to others 309

in reasoning outcomes. Similar to how bilingual 310

humans can be instructed to respond in a single 311

language, we can constrain LLMs to generate out- 312

puts exclusively in one language. By applying this 313

constraint, we effectively ablate code-switching 314

capabilities from the model, which enables direct 315

comparison between unconstrained bilingual out- 316

puts and constrained monolingual outputs in terms 317

of reasoning performance. Specifically, at the de- 318

coding step, we enforce token-level language con- 319

straints by allowing only tokens from the desig- 320

nated language (Fig. 5). 321

We apply two types of constraints. In the no- 322

switch mode, we prohibit the model from gen- 323
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Figure 6: Unconstrained vs. constrained accuracy performance for Left: MATH500, Right: AIME2024. Each plot
compares Chinese and English reasoning performance under unconstrained decoding; unconstrained vs. constrained
decoding on code-switching problems
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Figure 7: Unconstrained vs. constrained accuracy performance for Gaokao Cloze. The plot compares Chinese
and English reasoning performance under unconstrained decoding; unconstrained vs. constrained decoding that
enforces Chinese vs. English outputs on code-switching problems given Chinese prompts.

erating tokens in a particular language by mask-324

ing those tokens in the vocabulary, which enforces325

strictly monolingual output. In the forced-switch326

mode, the model is required to switch languages327

at a specified token position, at which point only328

tokens from the target switch-to language are al-329

lowed.330

3.2 Constrained vs. Unconstrained Decoding331

Language mixing can enhance reasoning. Un-332

der the default unconstrained decoding, overall ac-333

curacy for MATH500 in English and Chinese is bal-334

anced, while for AIME2024, English outperforms.335

We then compared the unconstrained output and336

constrained output given Chinese prompts in Fig-337

ure 6. When we constrain Chinese responses to338

only output consistent monolingual responses, we339

find that performance in accuracy drops by around340

1.3% for MATH500 and 3.3% for AIME2024. This341

indicates that the ability to code-switch between342

languages can be beneficial for complex mathe-343

matical reasoning, suggesting that the reasoning344

trajectories adopted by bilingual chain-of-thought345

may be superior to monolingual ones, by poten-346

tially leveraging the strengths of each language.347

Language mixing may also hurt reasoning. We348

then analyzed responses on Gaokao Cloze prob-349

lems. Chinese responses significantly outperform350

English responses, as shown in the left-hand chart 351

in Figure 7. This is as expected, since Gaokao-like 352

problems (from the Chinese college entrance exam- 353

ination) would predominantly appear in Chinese 354

within the pretraining data. 355

But contrary to our observations in Math500, 356

constrained monolingual Chinese decoding out- 357

performs unconstrained bilingual decoding. We 358

attribute this to an imbalance in monolingual rea- 359

soning capabilities where Chinese performance ex- 360

ceeds English for these problems. Yet the model 361

still defaults to switching to English–a strategy that 362

helps with most tasks but significantly undermines 363

performance here. 364

4 Can we steer the model toward 365

strategic language mixing? 366

4.1 Probe-Guided Decoding 367

As we’ve shown in the previous section, language 368

mixing is not always beneficial for reasoning. 369

Code-switching can help, harm, or have no impact 370

on the reasoning trajectories, which consequently 371

impacts the overall reasoning outcome. Harm- 372

ful code-switches may disrupt coherent reasoning 373

chains, while advantageous ones can reduce cogni- 374

tive demands, address lexical gaps, or beneficially 375

reset problematic reasoning directions. Here, we 376
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hypothesize that the beneficial, harmful, or neutral377

impact of each code-switch follows predictable pat-378

terns that could be decoded from model activations379

during generation.380

To quantify the impact of code-switching, we381

compare full generations with and without a switch382

at each token position and label switches as383

{Beneficial, Neutral, or Harmful}. We apply384

constraints at a single token position, either by385

preventing a natural switch (no-switch mode) or386

forcing a switch where one would not naturally387

occur (forced-switch mode). A switch is labeled388

Beneficial if it leads to a correct answer that the389

monolingual version does not; Harmful if it causes390

an otherwise correct answer to become incorrect;391

and Neutral if it has no effect on the final output.392

In practice, we collect all natural switch-393

ing positions and synthesize additional switches394

at high language entropy positions. We then395

train a lightweight three-layer MLP probe (Fig.8)396

on hidden activations extracted from the LLM.397

We augment activations with three meta fea-398

tures: ❶ is_natural (natural or synthetic switch),399

❷ switch_direction (Chinese to English or vice400

versa), and ❸ language_entropy (entropy of the401

model’s predicted language distribution).402

2-layer 
MLP

P

PC
A

+

Helpful

Neutral

Harmful
1: Dimension Reduction

2: Concat. Meta Features

3: Predict Outcome

Activations 0.3
0.2

0.5

Figure 8: Architecture of the probe. The model
classifies each code-switch as {Beneficial, Neutral,
Harmful} using hidden activations at the switching step
along with meta features.

With the trained probe, we can control the decod-403

ing process by predicting online whether a code-404

switch is beneficial or harmful, and applying token-405

level constraints accordingly. If a natural switch406

is classified as Harmful, we suppress it using con-407

strained decoding in no-switch mode. If a high lan-408

guage entropy position is classified as Beneficial,409

we trigger a forced switch at that step using forced-410

switch mode. This allows us to steer the model411

toward strategic language mixing with minimal412

computational overhead, using only a lightweight413

and easily deployable 3-layer MLP probe during414

decoding.415

4.2 Performance of Probe-Guided Decoding 416

Probe achieves positive utility score. Since 417

the probe is ultimately used to guide decoding 418

decisions rather than to precisely classify code- 419

switching impacts, its effectiveness should be as- 420

sessed in terms of its practical impact on multilin- 421

gual reasoning. Specifically, we assign a utility 422

score of +1 when the probe correctly classifies 423

a Harmful or Beneficial switch (i.e., ypred = 424

ytrue and ytrue ∈ {0, 2}), and a score of −1 425

when a critical error is made, such as allowing 426

a Harmful switch to persist or incorrectly suppress- 427

ing a Beneficial one. 428

Instead of using the default argmax, we tune the 429

decision thresholds τharm and τhelp to address clas- 430

sification challenges under highly imbalanced data. 431

The highest utility score, s = 0.0031, is achieved 432

at τharm = 0.25 and τhelp = 0.45. While this score 433

may appear small, each Chinese prompt naturally 434

results in about 8 potential code-switches on aver- 435

age. This means that 1 in 40 questions is expected 436

to benefit directly from a correctly identified help- 437

ful switch, corresponding to a potential 2.5% gain 438

in accuracy. 439

Probe-Guided decoding further improves rea- 440

soning. We integrated the trained probe with 441

optimal thresholds into our end-to-end decoding 442

pipeline to assess its practical impact on LLM rea- 443

soning accuracy. We evaluate this intervention on 444

the Math500 and Gaokao Cloze benchmark, where 445

it yields a notable accuracy improvement of 1.56% 446

and 4.10% in test set. 447

Examining the probe’s switching strategy reveals 448

interesting patterns. Since our probe is trained 449

on both natural switches and synthesized switches 450

at non-switching positions, it learns not only to 451

suppress harmful switches but also to generate 452

beneficial ones. Approximately half of all probe- 453

controlled switches involve adding new switches 454

(47.3% in MATH500 and 50% in Gaokao Cloze). 455

Examples of helpful switches include converting 456

"柯西-施瓦茨不等式" to "Cauchy-Schwarz" to 457

utilize more grounded English terminology, and 458

in response to a Chinese prompt, switching from 459

"表达式" to "notation" in the context "Wait, no, 460

in standard notation: a = BC, b = AC, c = AB.所 461

以，根据标准notation". Here, using "notation" 462

instead of the Chinese equivalent "表达式" creates 463

stronger referential coherence with the previously 464

established English mathematical expressions. 465

These results demonstrate that employing a 466
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lightweight probe successfully guides language-467

mixing toward an optimal strategy, preventing468

harmful language switching while introducing ben-469

eficial transitions.470

5 Related Work471

Multilingual Reasoning in LLMs. As LLMs472

have evolved from primarily English-centric sys-473

tems to incorporate more balanced multilingual474

corpora, they have developed substantial multilin-475

gual capabilities (Cui et al., 2023; Faysse et al.,476

2024; Yang et al., 2024; Liu et al., 2024). How-477

ever, these models still underperform when rea-478

soning in non-English languages, particularly low-479

resource ones. This is evidenced by their superior480

performance on English-translated questions (Shi481

et al., 2022) and their tendency to switch to En-482

glish against instructions (Marchisio et al., 2024;483

Hinck et al., 2024; Guo et al., 2025), a limitation484

long attributed to training data imbalance (Kew485

et al., 2023; Papadimitriou et al., 2022). Mech-486

anistic interpretability studies have investigated487

whether multilingual LLMs truly reason in non-488

English languages, revealing that some models can489

"think" in latent non-English languages for specific490

tasks (Wendler et al., 2024; Zhong et al., 2024) and491

that distinct language-specific neural circuits exist492

within these systems (Zhao et al., 2024; Tang et al.,493

2024; Zhang et al., 2024). With the same aim of494

understanding multilingual reasoning in LLMs, in-495

stead of evaluating monolingual responses across496

languages, we examine bilingual code-switching497

within responses to study how polyglot LLMs rea-498

son differently from proficient monolingual speak-499

ers or models.500

Code-Switching in LLMs. Code-switching, a501

common linguistic phenomenon in multilingual502

humans, can emerge in LLMs from exposure to503

human-generated mixed-language text in training504

corpora (Wang et al., 2025). While research sug-505

gests code-switching in pretraining corpora im-506

proves cross-lingual alignment in LLMs (Wang507

et al., 2025), the unintended mixing of languages508

in LLM outputs has been negatively characterized509

as language confusion, primarily observed when510

models processing low-resource languages shifted511

toward English during generation (Marchisio et al.,512

2024; Chen et al., 2024).513

Only recently have models begun to more fre-514

quently mix English and Chinese, which are two515

high-resource and structurally distinct languages,516

within their reasoning chains. This behavior has 517

emerged in models trained with reinforcement 518

learning (Guo et al., 2025; Team, 2024; Xie et al., 519

2025), where optimizing for outcome-based re- 520

wards appears to override the preference for mono- 521

lingual output. Notably, enforcing language consis- 522

tency in DeepSeek-R1 resulted in a measurable 523

drop in performance, suggesting a trade-off be- 524

tween language consistency and reasoning ability 525

(Guo et al., 2025). Though a follow-up study using 526

a smaller model claimed language mixing harms 527

reasoning, this conclusion was based on a single 528

logic puzzle dataset and lacks generalizable evi- 529

dence (Xie et al., 2025). Given these conflicting 530

findings, our work aims to systematically evaluate 531

the impact of code-switching on reasoning perfor- 532

mance. 533

6 Conclusion 534

We investigate the impact of English-Chinese lan- 535

guage mixing on LLM reasoning. Tracing LLM 536

development shows reinforcement learning with 537

outcome rewards primarily triggers language mix- 538

ing in bilingual models. These models predom- 539

inantly transition to English, with language mix- 540

ing frequency correlating with problem complex- 541

ity. Language mixing enhances reasoning in some 542

contexts, as unconstrained bilingual outputs out- 543

perform constrained monolingual ones on MATH500 544

and AIME2024, though it impairs performance on 545

Gaokao. Code-switches follow decodable patterns 546

as beneficial, harmful, or neutral, allowing us to 547

steer models toward strategic language mixing that 548

further improves reasoning. These findings sug- 549

gest that language mixing is not a random artifact 550

of multilingual training, but may be a purposeful 551

behavior that LLMs deliberately adopt. 552

We hope this work motivates further compu- 553

tational linguistic analysis of code-switching in 554

LLM outputs, including their alignment with the- 555

ories such as the Equivalence Constraint Theory 556

(Poplack, 1980). For researchers studying LLM 557

reasoning, our findings suggest a new view that 558

language mixing may function as a reasoning aid 559

rather than a flaw. More broadly, we propose that 560

language mixing can extend beyond spoken lan- 561

guages, occurring across modalities such as text 562

and math, text and code, or formal and informal 563

reasoning (Jiang et al., 2022). We encourage future 564

research to explore these broader forms of language 565

mixing in LLMs. 566
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7 Limitations567

Our study mainly focuses on the model QwQ32B-568

Preview, as broader evaluation is limited by the569

lack of access to RL-trained models that exhibit570

language mixing (public models such as DeepSeek-571

R1 and its distilled variants are constrained by en-572

forced language consistency). The benchmarks573

we tested are limited to math tasks, and evaluat-574

ing other domains such as science or logic puz-575

zles is needed to assess the generality of our con-576

clusions on LLM reasoning. We only focus on577

English-Chinese mixing, and it remains an open578

question whether similar patterns extend to other579

language pairs. Additionally, our use of hard con-580

strained decoding may inherently reduce perfor-581

mance by imposing an extra language constraint.582

Future work could explore finer or continuous con-583

trol over switching frequency and provide stronger584

empirical comparisons between unconstrained and585

constrained decoding.586
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A Appendix755

A.1 Overall Setup756

All model inference is conducted using half-757

precision (float16) quantization. For the Qwen758

model series, we run inference on either three759

NVIDIA V100 GPUs (32 GB each) or a single760

NVIDIA A100 GPU (80 GB). Tasks involving761

probing and probe-guided decoding, which require762

extracting model activations are executed exclu-763

sively on the A100 GPU. The DeepSeek family of764

models (including V3 and R1 variants) are queries765

with OpenRouter API.766

Decoding is performed using greedy decod-767

ing with a temperature of 0.0, ensuring deter-768

ministic outputs across runs. We set the maxi-769

mum generation length to either 4096 for Gaokao770

MathQA, Gaokao Cloze, MATH500 or 8192 tokens771

for AIME2024.772

A.2 Evaluation datasets773

We evaluate model behavior across four math rea-774

soning benchmarks:775

• Math500 (Lightman et al., 2023): A cu-776

rated dataset of 500 high school and early777

undergraduate-level math word problems, de-778

signed to test symbolic reasoning and arith-779

metic across diverse topics.780

• AIME2024 (Mathematical Association of781

America, 2024) Invitational Mathematics Ex-782

amination): A benchmark of 30 challeng-783

ing math problems targeted at advanced high784

school students.785

• Gaokao Cloze and Gaokao MathQA: A set of786

standardized math questions from the Chinese787

college entrance examination. These prob-788

lems are extracted from the AGIEval bench-789

mark (Zhong et al., 2023). Gaokao Cloze790

contains 118 fill-in-the-blank problems, and791

Gaokao MathQA includes 351 muliple choice792

problems.793

All problems are translated into both English and794

Chinese to support code-switching and bilingual795

evaluation. Translations are first generated using796

GPT-4o, followed by manual review and correc-797

tion.798

We evaluate model performance using Pass@1799

accuracy, defined as the percentage of problems800

correctly solved on the first attempt. Specifically,801

We extract the final answer from the model’s output 802

using a pattern-based parser ( 803

boxed) and compare it against the ground truth. For 804

outputs that do not exactly match the reference, we 805

perform manual evaluation to account for correct 806

answers expressed in alternative formats. 807

A.3 Rule-based Code-Switch Detection 808

First, we remove domain-specific mathematical 809

content, which is language-agnostic by nature. We 810

strip LaTeX-style math expressions using regular 811

expressions that match content enclosed in dollar 812

signs, () delimiters, and [] environments. In addi- 813

tion, we filter digits, parentheses, brackets, mathe- 814

matical operators, and Greek letters, as these sym- 815

bols are typically language-agnostic in reasoning 816

contexts. 817

Second, we detect language boundaries by iden- 818

tifying continuous runs of characters belonging 819

to either the Chinese Unicode range (U+4E00 to 820

U+9FFF) or ASCII alphabetic characters. To im- 821

prove precision, we implement the following filter- 822

ing rules for English token candidates: ❶ We ex- 823

clude domain-specific terms common in mathemat- 824

ical discourse, including mathematical functions 825

(e.g., sin, cos, ln), standard variable names (e.g., 826

ab, bc), and geometric designations (e.g., ABCD). 827

❷ Single-letter English tokens are discarded to pre- 828

vent false positives from isolated variable names. 829

❸ All-capitalized sequences of 2-3 characters are 830

filtered, as these typically represent geometric enti- 831

ties rather than English words. 832

Finally, we identify language transitions by 833

tracking adjacent language segments. A code- 834

switch is recorded when the language classification 835

of adjacent valid segments changes (e.g., from Chi- 836

nese to English or vice versa). For each switch, we 837

capture the switch direction, the text content at the 838

boundary, and the position within the full response. 839

Additionally, we track the starting language of each 840

response to establish the baseline language context. 841
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A.4 Examples of Language Mixing in842

QwQ-32B-Preview843

Question: 将点(0, 3)从直角坐标系转换
为极坐标系，需要找到对应的极径r 和
极角θ。极坐标表示为(r, θ)，其中r > 0
且0 ≤ θ < 2π。
Answer: 首先，回忆一下直角坐标和极
坐标的转换公式：
1. r =

√
x2 + y2

2. θ = tan−1
( y
x

)
但是，这些公式在某些情况下需要特
别处理，比如当x = 0 时，因为除法
会undefined。
given point is (0,3), so x = 0 and y = 3。
首先计算r:
r =

√
02 + 32 =

√
9 = 3

所以，r = 3
接下来是θ:
通常，θ = tan−1

( y
x

)
，但在这里x =

0，所以这个表达式undefined。
这意味着点在y 轴上。具体来说，since
x = 0 and y = 3，which is positive y-
axis。
在极坐标系中，θ是从正x 轴顺时针或
逆时针测量到径向线的角度。
对于positive y-axis, θis π

2 radians (or 90
degrees)。
所以，θ = π

2
因此，极坐标是

(
3, π2

)
但为了确保没有错误，让我再检查一
下。
点(0,3)位于直角坐标系的positive y-axis
上。
在极坐标中，r 是点到原点的距
离，which is 3,正确。
θ是从positive x-axis到连接原点和点的
线段的角度，顺时针或逆时针，取决于
约定。在这里，我们使用标准的数学约
定，即逆时针方向。
从positive x-axis 逆时针转到positive y-
axis是π

2 radians。
所以，θ = π

2 是正确的。
另外，需要确认θ的范围是0 ≤ θ <
2π，which π

2 satisfies。
所以，最终答案是

(
3, π2

)
**Final Answer**(

3,
π

2

)
844

Question: In the land of Ink, the money
system is unique. One Trinket is equal to 4
Blinkets, and 3 Blinkets are equal to 7 Drin-
kets. In Trinkets, what is the value of 56
Drinkets? Answer: Let’s tackle this prob-
lem step by step. So, in the land of Ink, they
have these different units of money: Trin-
kets, Blinkets, and Drinkets. The relation-
ships between them are given, and I need
to find out what 56 Drinkets are worth in
Trinkets.
First, I need to understand the relationships
between these units. It says that one Trinket
is equal to 4 Blinkets. So, if I have one
Trinket, it’s the same as having 4 Blinkets.
Got it.
Next, it says that 3 Blinkets are equal to 7
Drinkets. So, 3 Blinkets = 7 Drinkets. That
means that one Blinkey must be worth 7/3
Drinkets, but maybe I don’t need to go that
far yet.
I need to find out what 56 Drinkets are worth
in Trinkets. To do that, I probably need to
convert Drinkets to Blinkets first, and then
convert Blinkets to Trinkets.
So, let’s start by converting Drinkets to Blin-
kets. If 3 Blinkets = 7 Drinkets, then how
many Blinkets are there in 56 Drinkets?
I can set up a proportion for this. If 3 Blin-
kets are equal to 7 Drinkets, then x Blinkets
are equal to 56 Drinkets. So, 3/7 = x/56.
Wait, actually, that might not be the right
way to set it up. If 3 Blinkets = 7 Drin-
kets, then the ratio of Blinkets to Drinkets
is 3:7. So, to find out how many Blinkets
correspond to 56 Drinkets, I can set up the
proportion like this:
...
Then, to find out how many Trinkets are in
56 Drinkets, I divide 56 by the number of
Drinkets per Trinket, which is 28/3.
So, Trinkets = 56 / (28/3) = 56 * 3/28 = 6
Trinkets.
一致的结果是6 Trinkets.
I think it’s safe to conclude that 56 Drinkets
are worth 6 Trinkets.
**Final Answer**

6
845
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A.5 Probing for Beneficial Code-Switches846

To identify code-switching positions that are bene-847

ficial to reasoning accuracy, we train a lightweight848

supervised contrastive probe (Figure 8) on hidden849

representations extracted from QwQ-32B-Preview.850

Specifically, we concatenate activations from a se-851

lected set of transformer layers and project it into852

a lower-dimensional space using a PCA transfor-853

mation fitted on the training set. We also add three854

related Meta Features: ❶ is natural (whether855

a switch is natural or synthetic), ❷ switch856

direction (whether the switch direction is from857

Chinese to English or not), ❸ language entropy858

(the entropy calculated from the model probability859

of output Chinese or English token). These feature860

are appended to the hidden embedding after PCA.861

The probe model consists of a shared encoder862

and a 2-layer MLP classifier head. We jointly opti-863

mize a supervised contrastive loss and a weighted864

cross-entropy loss, both for countering highly im-865

balanced class distribution as explained in Sec-866

tion 4.2 . The encoder maps the input features867

into a compact embedding space optimized for868

contrastive learning, while the classifier predicts869

one of three classes: {Beneficial, Neutral,870

or Harmful}. For contrastive learning, we im-871

plemented a balanced batch sampler, making872

sure that samples from all three classes will ap-873

pear in each batch. For classification, we use874

class weight of {1.0, 0.1, 1.0} for {Beneficial,875

Neutral, Harmful} to downweight the majority876

class (Neutral) and upweight the minority class877

(Beneficial and Harmful).878

During inference, the probe outputs predicted879

probabilities for each class after softmax. To maxi-880

mize decision utility, we apply a thresholding strat-881

egy: if the predicted probability of a harmful switch882

exceeds a threshold τharm, we suppress the switch;883

if the predicted probability of a beneficial switch884

exceeds a threshold τhelp, we enforce the switch.885

Thresholds are selected via a grid search on a held-886

out validation set to maximize a custom utility met-887

ric that penalizes missed beneficial switches and888

incorrectly allowed harmful switches.889

A.6 Probe Performance and Utility890

Training Data Collection and Statistics. We891

collect training data for the probe using a modified892

constrained decoding strategy focused on positions893

with high language entropy. To stay within compu-894

tational limits, we consider only the top 1% of to-895

ken positions across the dataset ranked by entropy. 896

We begin by identifying natural code-switching 897

positions and apply the blocked switch mode to 898

collect examples where switching is suppressed. 899

If the number of natural switches falls short of 900

the 1% threshold, we supplement the dataset by 901

introducing synthetic switches using the forced 902

switch mode. We provide detailed statistics of 903

the activation data we collected for Math500 and 904

Gaokao Cloze in Table 2 and Table 3, respectively. 905

The statistics reveal a strong class imbalance: the 906

majority of code-switching instances fall into the 907

Neutral category. 908

Table 2: Class distribution of the MATH 500 dataset
across train, validation, and test splits.

Class Train Validation Test

Harmful 773 127 204
Neutral 7,120 803 1,699
Helpful 894 125 241

Total 8,787 1,055 2,144

Table 3: Class distribution of the Gaokao Cloze dataset
across train, validation, and test splits.

Class Train Validation Test

Harmful 172 23 73
Neutral 1,427 199 394
Helpful 260 36 86

Total 1,859 258 553

Hyperparameters and Experimental Setup. 909

We use a stratified train/validation/test split of 910

70%/10%/20% by problem ID, ensuring that code- 911

switch examples from the same problem do not 912

appear in multiple splits. All experiments are con- 913

ducted on a single NVIDIA A100 GPU. The probe 914

uses intermediate layer activation derived from five 915

transformer layers (layers 63, 47, 31, 15, and 0), 916

with additional metadata features. We reduce the 917

input dimensionality using PCA, followed by a pro- 918

jection layer of dimension 512 and a hidden layer 919

of size 512. The model is trained using a hybrid 920

loss that combines contrastive and cross-entropy 921

components, with loss weight α and temperature 922

τ for the contrastive term. Due to class imbalance, 923

we apply class weights of [1.0, class1_w, 1.0] for 924

the {Beneficial, Neutral, Harmful} classes, re- 925
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spectively. Training is run for 30 epochs with a926

batch size of 16 and a learning rate of 1e−4.927

Table 4: Hyperparameters for the probe model used on
the MATH 500 dataset.

Hyperparameter Value

Selected Layers [63, 47, 31, 15, 0]
Use Metadata True
PCA Dimension 512
Projection Dimension 512
Hidden Dimension 512
α 0.81
τ 0.8
Class Weights [1.0, 1.819, 1.0]
Number of Epochs 30
Batch Size 16
Learning Rate 1.36× 10−5

Table 5: Hyperparameters for the probe model used on
the Gaokao Cloze dataset.

Hyperparameter Value

Selected Layers [47, 31, 15]
Use Metadata True
PCA Dimension 512
Projection Dimension 256
Hidden Dimension 512
α 0.3449
τ 0.2593
Class Weights [1.0, 1.1923, 1.0]
Number of Epochs 30
Batch Size 64
Learning Rate 1.78× 10−4

Probe Performance on Classification and Utility.928

We start by evaluate the probe on conventional929

classicication metric including confusion matrix930

(Figure 11, and Figure 12 ) and F1 scores (Figure 9,931

and Figure 10 ), and our tailored utility score. As932

we can see, although the classification performance933

of minority class is still worse than majority class,934

but it is much more improved compared to the935

severe class imblance in Figure . Formally, the936

utility score s is given by the average utility over937

N examples is given by938

Utility =
1

N

N∑
i=1

si,939

where si is the utility for the i-th example, com- 940

puted as: 941

• si = +1 if ytrue = ypred and ytrue ∈ {0, 2}; 942

• si = −1 if a Harmful switch is misclassified 943

as Beneficial, or vice versa; 944

• si = 0 otherwise. 945

We then tune the decision thresholds τharm and 946

τhelp, which govern the probe’s intervention policy 947

for suppressing predicted Harmful switches and 948

promoting Beneficial ones, respectively. 949
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Figure 9: Probe F1 score per class on test set for Gaokao
Cloze.
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Figure 10: Probe F1 score per class on test set for Math
500.
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Figure 11: Normalized confusion matrix on test set for
Gaokao Cloze.
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Figure 12: Normalized confusion matrix on test set for
Math 500.
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