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Abstract

Multilingual speakers often switch languages
in the middle of a conversation. Similarly,
recent reasoning-focused bilingual large lan-
guage models (LLMs) exhibit language mix-
ing—alternating languages within their chain
of thought. Discouraging language mixing in
DeepSeek-R1 was found to degrade accuracy,
suggesting that language mixing may benefit
reasoning performance. In this work, we study
language switching in Chinese-English bilin-
gual reasoning models. We identify reinforce-
ment learning with outcome-based rewards as
the critical training stage that leads to language
mixing. We demonstrate that language mix-
ing can enhance reasoning: enforcing mono-
lingual decoding reduces accuracy by 2% on
math reasoning tasks. We further show that
a lightweight probe can predict whether a po-
tential language switch would benefit or harm
reasoning, and use this to guide decoding, in-
creasing accuracy by up to 4.10%. Our find-
ings suggest that language mixing is not merely
a byproduct of multilingual training, but is a
strategic reasoning behavior.

1 Introduction

Multilingual speakers sometimes mix languages
during reasoning, which is a phenomenon known in
linguistics as code-switching (Appel and Muysken,
2005; Ozkara et al., 2025). Though switching
languages seems to add complexity, multilingual
speakers persist in this behavior for practical rea-
sons. Each language organizes thoughts differently
and some express certain concepts more efficiently
than others (Boroditsky, 2001). This strategy helps
them express ideas more precisely, fill lexical gaps
when one language falls short (Kuzyk et al., 2020),
and reduce cognitive load by directing more men-
tal effort toward the reasoning task itself (Lehti-
Eklund, 2013).

LLMs have evolved from English-centric mod-
els to those with strong multilingual abilities, with

some achieving true bilingualism through balanced
English-Chinese training (Liu et al., 2024; Qwen
et al., 2025). How these bilingual models differ
from primarily monolingual LLMs raises intrigu-
ing questions for computational linguists. One
compelling phenomenon in this space is language
mixing, with recent RL-trained English-Chinese
bilingual LLMs displaying human-like language
mixing behavior in their chain-of-thought (Team,
2024; Guo et al., 2025): they respond in languages
different from the prompt and switch languages
(sometimes repeatedly) during their reasoning pro-
cess.
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Figure 1: An illustration of language mixing when solv-
ing a math problem. Bilingual speakers and an LLM-
powered robot alternate between Chinese and English.

Proficient multilingual speakers of both lan-
guages can benefit from reasoning with code-
switching. Can LLMs similarly benefit? The par-
allel seems plausible: both humans and LL.Ms po-
tentially share needs for expressivity, precision, fill-
ing vocabulary gaps, and reducing cognitive load
(which for LLMs translates to using fewer tokens
and shorter context windows). Supporting this,
DeepSeek-R1 demonstrates a performance degra-
dation when a language consistency reward is in-
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Figure 2: Overview of our analysis of language mixing in LLM reasoning. (a) We identify common language
mixing patterns and triggers that lead to increased language mixing. (b) We compare unconstrained bilingual outputs
with constrained monolingual outputs to evaluate the impact of language mixing on reasoning performance.(c) We
train a probe to classify code-switches as {Beneficial, Neutral, or Harmful}, and use it to guide decoding.

troduced during training (Guo et al., 2025). These
findings motivate our study into how language mix-
ing affects LLM reasoning, centered on a key ques-
tion: textitDo LLMs reason better or worse with
English-Chinese language mixing?

To investigate this, we study: (1) Where does
language mixing occur? We analyze the evolution
of LLMs and identify RL with outcome rewards
as the main trigger, with dominant switches into
English and increased complexity correlating with
more mixing. (2) Do LLMs reason better or worse
with language mixing? Comparing unconstrained
bilingual outputs with constrained monolingual
ones shows enforcing language consistency impairs
Math500 performance. (3) Can we guide strate-
gic language mixing? We classify code-switches
as Beneficial, Neutral, or Harmful and steer lan-
guage mixing through probing. Our findings sug-
gest language mixing isn’t a random artifact but
a potentially useful strategy for enhancing LLM
reasoning.

Our contributions are summarized as follows:

* We demonstrate that bilingual chain-of-thought
reasoning with language mixing can enhance
reasoning, as evidenced by unconstrained bilin-
gual outputs outperforming monolingually con-
strained outputs.

* We identify reinforcement learning with
outcome-based rewards as the critical training
stage that triggers language mixing, suggest-
ing this behavior may emerge from natural
optimization.

* We show that reasoning performance can be fur-
ther improved using a lightweight probe to guide
language mixing strategically.

2  Where does Language Mixing Occur?

2.1 Detecting Code-Switches

Code-switching, by definition, means switching
between languages in a single conversation. As
illustrated in Fig.2(a), segments of Chinese (in
green) and segments of English alternate, and these
transitions represent code-switching occurrences.
In written text, elements such as mathematical
expressions or code (typically composed of En-
glish tokens) are language-agnostic and univer-
sally used across speakers of different languages.
Thus, a paragraph written in Chinese that includes
mathematical expressions using English tokens
should not be considered language mixing. We
define a code-switching position as the first text
token (in either English or Chinese) where the lan-
guage switches from one to another, excluding any
language-agnostic content such as math expres-
sions. These positions correspond to the arrow
markers shown in Fig. 2(a).

Based on this definition, we implement a rule-
based procedure to detect Chinese-English code-
switching. We first strip out all LaTeX math and
related symbols, including digits, brackets, oper-
ators, and Greek letters, using regex. Then we
segment the text by Unicode ranges, distinguish-
ing Chinese characters (U+4E00 to U+9FFF) from
ASCII letters, while excluding math terms (sin,
cos, In), short variable names, and geometric labels.
Finally, we scan adjacent segments for language
changes and log each code-switch’s direction, lo-
cal context, position, and the token count of the
non-prompt language.

We evaluate code-switching behavior with three
key statistics on bilingual datasets that contain par-
allel English—Chinese versions of each problem (by
translating from the original language):



Table 1: Language-mixing statistics across QwQ and DeepSeek-R1 series for Chinese (ZH) and English (EN)
prompts. %Prob.: percentage of problems with code-switch; Switch: average number of switches per problem;
Tokens/Switch: mean tokens between consecutive switches; Non-prompt (%): fraction of tokens in a language
different from the prompt; White: Base models with pretraining only; Grey: Models fine-tuned with SFT and
RLHF; Pink: Models trained with RL on outcome-based rewards.

ZH EN
Model % Prob. Switch Tokens/Switch Non-prompt (%) % Prob. Switch Tokens/Switch Non-prompt (%)
Qwen2.5-32B 14.8% 1.98 667.96 1.42% 0.0% 0.00 0.00 0.00%
Qwen2.5-32B-Instruct 8.8% 0.36 1986.71 0.23% 0.0% 0.00 0.00 0.00%
QwQ32B-Preview 77.4% 7.22 217.03 4.28% 0.6% 0.02 1.50 x 10° 0.00%
QwQ32B 29.2% 6.20 585.85 0.48% 0.5% 0.01 2.85 x 10° 0.00%
DeepSeek-V3-Base 32.2% 9.95 190.78 2.53% 4.2% 1.51 980.76 1.18%
DeepSeek-V3 8.4% 0.39 3574.98 0.08% 0.4% 0.01 1.50 x 10° 0.02%
DeepSeek-R1-Zero 10.9% 0.21 7048.94 0.82% 0.0% 0.00 0.00 0.00%
DeepSeek-R1 27.1% 4.39 688.31 0.38% 0.0% 0.00 0.00 0.00%
DeepSeek-R1-Distill-Llama-8B 23.6% 2.46 1128.53 0.31% 0.0% 0.00 0.00 0.00%
DeepSeek-R1-Distill-Qwen-32B  21.2% 1.94 1292.15 0.24% 0.0% 0.00 0.00 0.00%

* Switch count: The total number of switches
(back and forth) between languages when pro-
cessing problems under English and Chinese
prompts.

* Tokens between switches: The average num-
ber of tokens generated between consecu-
tive language switches, quantifying how fre-
quently the model alternates between lan-
guages measured in tokens.

* Non-prompt language fraction: The frac-
tion of tokens generated in a language dif-
ferent from the prompt language (shown as
the shaded area between arrows in Fig. 2(a)),
measuring how long the model stays in the
non-prompt language. This evaluates the ex-
tent and persistence of language mixing.

2.2 Tracing the Evolution of Language
Mixing in LLMs

We are interested in when language mixing first ap-
pears in multilingual LLMs, or equivalently, which
training stages trigger it. During large-scale pre-
training, LL.Ms are exposed to web-scale multi-
lingual corpora, yet they rarely encounter natural
code-switched input, which is far more common in
speech than in text. But training data contains natu-
ral code-switching, and concatenating text chunks
from independent sources can produce synthetic
switches (Wu et al., 2025), so LLMs may learn
to code-switch. Supervised fine-tuning (SFT) and
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) explicitly align out-
puts with human preferences, which typically favor
monolingual responses for readability. In more re-
cent reinforcement learning approaches that use

outcome-based rewards to enhance reasoning abil-
ities (Chen et al., 2025; Xie et al., 2025), lan-
guage mixing has been well observed and docu-
mented, particularly in open-weight models such
as QwQ32B (Team, 2024) and DeepSeek-R1 (Guo
et al., 2025).

We trace the evolution of language-mixing be-
havior across iterations of QwQ32B and DeepSeek-
R1 models. For the QwQ series, we exam-
ine Qwen2.5-32B (base model with pre-training
only), Qwen2.5-32B-instruct (enhanced with SFT
and RLHF) (Qwen et al., 2025), and two gener-
ations with reinforcement learning on outcome
rewards: QwQ32B-preview (Team, 2024) and
QwQ32B (Team, 2025). For the DeepSeek-R1 se-
ries, we analyze DeepSeek-V3-base (the founda-
tion model with only pretraining), DeepSeek-V3
(with SFT and RLHF applied) (Liu et al., 2024),
DeepSeek-R1-zero (a version without language
consistency reward, where language mixing was
documented), DeepSeek-R1 (with language consis-
tency reward implemented), and various DeepSeek-
R1 distilled variants (Guo et al., 2025).

We evaluate language mixing occurrences across
these models using Math500 (in both English and
Chinese versions). To ensure comparable analysis,
we prompt base and instruct models for lengthy
chain-of-thought reasoning to match output lengths.
Our findings are as follows:

1. Pretraining effects vary significantly across
models. Qwen exhibits minimal code-
switching, while DeepSeek-V3-Base fre-
quently code-switches but tends to ramble
with irrelevant content (e.g., "1 months agoi&
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(Phrase-level Switching for Precision or Efficiency

>[binix = 0B, BEARRIES undefined,

For example, when x=0, the division becomes undefined.

> Now, since AB is parallel to DE, the height from DE
to C is the same as from AB to C, scaled by the ratio
of #g4{Ul triangles.

) (Using English for Technical Terminology

> XEEFRE K Cauchy FIZHIZEH,

This looks somewhat like a variant of the Cauchy equation.

>#1248F—* Pythagorean identity:1 — sin®x = cos?x,
| remember there's a Pythagorean identity.

>F1248% polynomial long division iXF77i%.

similar triangles
-

I remember there’s a method called polynomial long division.

- J

(Switching to Match Reasoning/Answer Formats

> wait a minute, HEFEWILA—TXITEiL.
Wait a minute, / need to double-check this conclusion.
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Maybe I need to find a polynomial r(x),

> prl, RZ&EFEE13535, **Final Answer**
So, the final answer is 13535. **Final Answer**

(Full Switching when Facing Cognitive Challenges
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perhaps the problem is to show that CD = 4, ...[EN]
Maybe there’s an error in the question, or | misunderstood
something. Or. perhaps ...

> WIFRIEFTEH—H U E. A maybe I made a
mistake in calculating the cross product. ...[EN]
Maybe | still need to simplify further. Or, maybe ...
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Figure 3: Four patterns of code-switching observed in LLM outputs. Top left: Phrase-level switching, often short
and used for precision or efficiency. Top Right: Switching to English for technical terms. Bottom left: Switching
to match reasoning or answer formats. Bottom right: Full switch to another language when the model is unable to

find a solution.

Please explain the term: Pharmacy]). This dif-
ference may stem from DeepSeek’s balanced
pretraining data distribution (with slightly
more Chinese than English content), though
Qwen’s language distribution remains undoc-
umented.

SFT and RLHF consistently enforce monolin-
gual outputs across model families, minimiz-
ing both switching frequency and non-prompt
language intrusions.

Reinforcement learning with outcome re-
wards triggers language mixing in both
QwQ32B/preview and DeepSeek-R1.

Contrary to claims in their paper, DeepSeek-
R1-zero displays fewer code-switching in-
stances in our testing. This discrepancy may
result from our use of non-full precision pa-
rameters and greedy decoding.

. QwQ32B-preview exhibits substantially more
code-switching than the newer QwQ32B re-
lease, potentially hinting at added language
consistency constraints in the updated model.
We select QwQ32B-preview for our subse-
quent analyses.

2.3 Characterizing Code-Switching Behavior

Code-switching patterns. Based on analysis of
QwQ32B-Preview outputs, we identify four main

patterns of switches as shown in Figure 3. The
most common pattern is phrase-level switching in
the top-left examples of Figure 3, driven primar-
ily by a need for precision or efficiency. Certain
concepts may be more clearly expressed in one lan-
guage, with less ambiguity and often using fewer
tokens. For instance, the use of undefined in the
first example is more precise and less ambiguous
than its Chinese counterparts: J&7& Y. (which can
mean “meaningless,” as in “He felt his effort was
meaningless”) or i€ X (which may imply some-
thing is not yet defined but could be). It also re-
quires fewer tokens—undefined is a single token,
while both Chinese alternatives require two.

The second pattern (top right) involves switching
to English for technical terminology, likely because
the model has limited capacity to store special-
ized translations across multiple languages. The
third pattern (bottom left) shows language switch-
ing to conform to specific reasoning or answer
formats, such as interjecting "wait, let me dou-
ble check this" or concluding with "Final answer:
..." in English within otherwise Chinese responses.
These formats may originate from supervised fine-
tuning on data containing such patterns or reflect
the model’s emergent self-reflective cues that aren’t
well-aligned across languages. The fourth pattern
(bottom right) involves switching entirely to an-
other language when the model encounters diffi-
culties or recognizes errors in its reasoning when
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Figure 4: Quantitative analysis of language-mixing behavior in Math50@ responses. (a) Correlation between
problem difficulty level and response token count for Chinese prompts. (b) Normalized switch count and non-
prompt language fraction as functions of token count, showing both code-switching frequency and non-prompt
language use increase as chain-of-thought reasoning lengthens.

the model encounters difficulties or recognizes er-
rors in its reasoning. This behavior may suggest
a strategy to "clear its mind" or to seek cues in
another language. However, this pattern typically
appears in more challenging problems, and even
after switching languages, the model often fails to
reach the correct solution.

Quantifying language mixing behavior. In
QwQ-32B-preview responses to the Math500
dataset, 77.4% of answers to Chinese prompts ex-
hibit language mixing, with an average of 7.22
code-switches per problem, compared to just 0.6%
for English prompts. It is already notable that En-
glish prompts (with math expressions fully in En-
glish tokens) occasionally trigger Chinese token
generation. However, Chinese-to-English switch-
ing occurs far more frequently, indicating that En-
glish remains the model’s dominant or preferred
language for reasoning.

We analyze how language mixing behavior re-
lates to problem complexity and response length.
Figure 4(a) demonstrates the correlation between
token count in responses to Chinese prompts and
MATHS00 problem difficulty levels (5 discrete lev-
els). Figures 4(b) and (c) quantify switch counts
(normalized by token count) and non-prompt lan-
guage fraction as functions of token count. Since
these statistics are normalized, we can conclude
that longer chain-of-thought reasoning exhibits
slightly increased code-switching frequency and a
growing fraction of non-prompt language use. This
indicates that when tackling more difficult prob-
lems, the model produces longer chain-of-thought
reasoning adopts as a strategy to use greater lan-
guage mixing—both switching between languages
more frequently and shifting more toward the non-
prompt language (English in this case).

3 Do LLMs reason better or worse with
language mixing?

3.1 Constrained Decoding
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Figure 5: Token-level constrained decoding: We mask
out tokens from the undesired language, forcing genera-
tion in the target language.

We expect that reasoning trajectories differ be-
tween monolingual and bilingual thinking, as lan-
guages have different structural focuses and are tied
to distinct contexts (Keysar et al., 2012). Our goal
is to determine whether these trajectories actually
differ in practice and if one is superior to others
in reasoning outcomes. Similar to how bilingual
humans can be instructed to respond in a single
language, we can constrain LLMs to generate out-
puts exclusively in one language. By applying this
constraint, we effectively ablate code-switching
capabilities from the model, which enables direct
comparison between unconstrained bilingual out-
puts and constrained monolingual outputs in terms
of reasoning performance. Specifically, at the de-
coding step, we enforce token-level language con-
straints by allowing only tokens from the desig-
nated language (Fig. 5).

We apply two types of constraints. In the no-
switch mode, we prohibit the model from gen-
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Figure 7: Unconstrained vs. constrained accuracy performance for Gaokao Cloze. The plot compares Chinese
and English reasoning performance under unconstrained decoding; unconstrained vs. constrained decoding that
enforces Chinese vs. English outputs on code-switching problems given Chinese prompts.

erating tokens in a particular language by mask-
ing those tokens in the vocabulary, which enforces
strictly monolingual output. In the forced-switch
mode, the model is required to switch languages
at a specified token position, at which point only
tokens from the target switch-to language are al-
lowed.

3.2 Constrained vs. Unconstrained Decoding

Language mixing can enhance reasoning. Un-
der the default unconstrained decoding, overall ac-
curacy for MATH500 in English and Chinese is bal-
anced, while for AIME2024, English outperforms.
We then compared the unconstrained output and
constrained output given Chinese prompts in Fig-
ure 6. When we constrain Chinese responses to
only output consistent monolingual responses, we
find that performance in accuracy drops by around
1.3% for MATH500 and 3.3% for AIME2024. This
indicates that the ability to code-switch between
languages can be beneficial for complex mathe-
matical reasoning, suggesting that the reasoning
trajectories adopted by bilingual chain-of-thought
may be superior to monolingual ones, by poten-
tially leveraging the strengths of each language.

Language mixing may also hurt reasoning. We
then analyzed responses on Gaokao Cloze prob-
lems. Chinese responses significantly outperform

English responses, as shown in the left-hand chart
in Figure 7. This is as expected, since Gaokao-like
problems (from the Chinese college entrance exam-
ination) would predominantly appear in Chinese
within the pretraining data.

But contrary to our observations in Math500,
constrained monolingual Chinese decoding out-
performs unconstrained bilingual decoding. We
attribute this to an imbalance in monolingual rea-
soning capabilities where Chinese performance ex-
ceeds English for these problems. Yet the model
still defaults to switching to English—a strategy that
helps with most tasks but significantly undermines
performance here.

4 Can we steer the model toward
strategic language mixing?

4.1 Probe-Guided Decoding

As we’ve shown in the previous section, language
mixing is not always beneficial for reasoning.
Code-switching can help, harm, or have no impact
on the reasoning trajectories, which consequently
impacts the overall reasoning outcome. Harm-
ful code-switches may disrupt coherent reasoning
chains, while advantageous ones can reduce cogni-
tive demands, address lexical gaps, or beneficially
reset problematic reasoning directions. Here, we



hypothesize that the beneficial, harmful, or neutral
impact of each code-switch follows predictable pat-
terns that could be decoded from model activations
during generation.

To quantify the impact of code-switching, we
compare full generations with and without a switch
at each token position and label switches as
{Beneficial, Neutral, or Harmful}. We apply
constraints at a single token position, either by
preventing a natural switch (no-switch mode) or
forcing a switch where one would not naturally
occur (forced-switch mode). A switch is labeled
Beneficial if it leads to a correct answer that the
monolingual version does not; Harmful if it causes
an otherwise correct answer to become incorrect;
and Neutral if it has no effect on the final output.

In practice, we collect all natural switch-
ing positions and synthesize additional switches
at high language entropy positions. We then
train a lightweight three-layer MLP probe (Fig.8)
on hidden activations extracted from the LLM.
We augment activations with three meta fea-
tures: @ is_natural (natural or synthetic switch),
@ switch_direction (Chinese to English or vice
versa), and ® language_entropy (entropy of the
model’s predicted language distribution).

2: Concat. Meta Features

2- Iayer
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Figure 8: Architecture of the probe. The model
classifies each code-switch as {Beneficial, Neutral,
Harmful} using hidden activations at the switching step
along with meta features.

With the trained probe, we can control the decod-
ing process by predicting online whether a code-
switch is beneficial or harmful, and applying token-
level constraints accordingly. If a natural switch
is classified as Harmful, we suppress it using con-
strained decoding in no-switch mode. If a high lan-
guage entropy position is classified as Beneficial,
we trigger a forced switch at that step using forced-
switch mode. This allows us to steer the model
toward strategic language mixing with minimal
computational overhead, using only a lightweight
and easily deployable 3-layer MLP probe during
decoding.

4.2 Performance of Probe-Guided Decoding

Probe achieves positive utility score. Since
the probe is ultimately used to guide decoding
decisions rather than to precisely classify code-
switching impacts, its effectiveness should be as-
sessed in terms of its practical impact on multilin-
gual reasoning. Specifically, we assign a utility
score of +1 when the probe correctly classifies
a Harmful or Beneficial switch (i.e., Ypred =
Yirue and yre € {0,2}), and a score of —1
when a critical error is made, such as allowing
a Harmful switch to persist or incorrectly suppress-
ing a Beneficial one.

Instead of using the default argmax, we tune the
decision thresholds Tiamm and Therp to address clas-
sification challenges under highly imbalanced data.
The highest utility score, s = 0.0031, is achieved
at Tharm = 0.25 and 71 = 0.45. While this score
may appear small, each Chinese prompt naturally
results in about 8 potential code-switches on aver-
age. This means that 1 in 40 questions is expected
to benefit directly from a correctly identified help-
ful switch, corresponding to a potential 2.5% gain
in accuracy.

Probe-Guided decoding further improves rea-
soning. We integrated the trained probe with
optimal thresholds into our end-to-end decoding
pipeline to assess its practical impact on LLM rea-
soning accuracy. We evaluate this intervention on
the Math500 and Gaokao Cloze benchmark, where
it yields a notable accuracy improvement of 1.56 %
and 4.10% in test set.

Examining the probe’s switching strategy reveals
interesting patterns. Since our probe is trained
on both natural switches and synthesized switches
at non-switching positions, it learns not only to
suppress harmful switches but also to generate
beneficial ones. Approximately half of all probe-
controlled switches involve adding new switches
(47.3% in MATH500 and 50% in Gaokao Cloze).
Examples of helpful switches include converting
"] PG FL Xk A S 20" to "Cauchy-Schwarz" to
utilize more grounded English terminology, and
in response to a Chinese prompt, switching from
"#31A3" to "notation” in the context "Wait, no,
in standard notation: a = BC, b = AC, c = AB. fIT
LL, #R¥EPRifEnotation”. Here, using "notation"
instead of the Chinese equivalent "#iAZ" creates
stronger referential coherence with the previously
established English mathematical expressions.

These results demonstrate that employing a



lightweight probe successfully guides language-
mixing toward an optimal strategy, preventing
harmful language switching while introducing ben-
eficial transitions.

5 Related Work

Multilingual Reasoning in LLMs. As LLMs
have evolved from primarily English-centric sys-
tems to incorporate more balanced multilingual
corpora, they have developed substantial multilin-
gual capabilities (Cui et al., 2023; Faysse et al.,
2024; Yang et al., 2024; Liu et al., 2024). How-
ever, these models still underperform when rea-
soning in non-English languages, particularly low-
resource ones. This is evidenced by their superior
performance on English-translated questions (Shi
et al., 2022) and their tendency to switch to En-
glish against instructions (Marchisio et al., 2024;
Hinck et al., 2024; Guo et al., 2025), a limitation
long attributed to training data imbalance (Kew
et al., 2023; Papadimitriou et al., 2022). Mech-
anistic interpretability studies have investigated
whether multilingual LLMs truly reason in non-
English languages, revealing that some models can
"think" in latent non-English languages for specific
tasks (Wendler et al., 2024; Zhong et al., 2024) and
that distinct language-specific neural circuits exist
within these systems (Zhao et al., 2024; Tang et al.,
2024; Zhang et al., 2024). With the same aim of
understanding multilingual reasoning in LLMs, in-
stead of evaluating monolingual responses across
languages, we examine bilingual code-switching
within responses to study how polyglot LLMs rea-
son differently from proficient monolingual speak-
ers or models.

Code-Switching in LLMs. Code-switching, a
common linguistic phenomenon in multilingual
humans, can emerge in LLMs from exposure to
human-generated mixed-language text in training
corpora (Wang et al., 2025). While research sug-
gests code-switching in pretraining corpora im-
proves cross-lingual alignment in LLMs (Wang
et al., 2025), the unintended mixing of languages
in LLM outputs has been negatively characterized
as language confusion, primarily observed when
models processing low-resource languages shifted
toward English during generation (Marchisio et al.,
2024; Chen et al., 2024).

Only recently have models begun to more fre-
quently mix English and Chinese, which are two
high-resource and structurally distinct languages,

within their reasoning chains. This behavior has
emerged in models trained with reinforcement
learning (Guo et al., 2025; Team, 2024; Xie et al.,
2025), where optimizing for outcome-based re-
wards appears to override the preference for mono-
lingual output. Notably, enforcing language consis-
tency in DeepSeek-R1 resulted in a measurable
drop in performance, suggesting a trade-off be-
tween language consistency and reasoning ability
(Guo et al., 2025). Though a follow-up study using
a smaller model claimed language mixing harms
reasoning, this conclusion was based on a single
logic puzzle dataset and lacks generalizable evi-
dence (Xie et al., 2025). Given these conflicting
findings, our work aims to systematically evaluate
the impact of code-switching on reasoning perfor-
mance.

6 Conclusion

We investigate the impact of English-Chinese lan-
guage mixing on LL.M reasoning. Tracing LLM
development shows reinforcement learning with
outcome rewards primarily triggers language mix-
ing in bilingual models. These models predom-
inantly transition to English, with language mix-
ing frequency correlating with problem complex-
ity. Language mixing enhances reasoning in some
contexts, as unconstrained bilingual outputs out-
perform constrained monolingual ones on MATH500
and AIME2024, though it impairs performance on
Gaokao. Code-switches follow decodable patterns
as beneficial, harmful, or neutral, allowing us to
steer models toward strategic language mixing that
further improves reasoning. These findings sug-
gest that language mixing is not a random artifact
of multilingual training, but may be a purposeful
behavior that LLMs deliberately adopt.

We hope this work motivates further compu-
tational linguistic analysis of code-switching in
LLM outputs, including their alignment with the-
ories such as the Equivalence Constraint Theory
(Poplack, 1980). For researchers studying LLM
reasoning, our findings suggest a new view that
language mixing may function as a reasoning aid
rather than a flaw. More broadly, we propose that
language mixing can extend beyond spoken lan-
guages, occurring across modalities such as text
and math, text and code, or formal and informal
reasoning (Jiang et al., 2022). We encourage future
research to explore these broader forms of language
mixing in LLMs.



7 Limitations

Our study mainly focuses on the model QwQ32B-
Preview, as broader evaluation is limited by the
lack of access to RL-trained models that exhibit
language mixing (public models such as DeepSeek-
R1 and its distilled variants are constrained by en-
forced language consistency). The benchmarks
we tested are limited to math tasks, and evaluat-
ing other domains such as science or logic puz-
zles is needed to assess the generality of our con-
clusions on LLM reasoning. We only focus on
English-Chinese mixing, and it remains an open
question whether similar patterns extend to other
language pairs. Additionally, our use of hard con-
strained decoding may inherently reduce perfor-
mance by imposing an extra language constraint.
Future work could explore finer or continuous con-
trol over switching frequency and provide stronger
empirical comparisons between unconstrained and
constrained decoding.
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A Appendix
A.1 Overall Setup

All model inference is conducted using half-
precision (float16) quantization. For the Qwen
model series, we run inference on either three
NVIDIA V100 GPUs (32 GB each) or a single
NVIDIA A100 GPU (80 GB). Tasks involving
probing and probe-guided decoding, which require
extracting model activations are executed exclu-
sively on the A100 GPU. The DeepSeek family of
models (including V3 and R1 variants) are queries
with OpenRouter APL.

Decoding is performed using greedy decod-
ing with a temperature of 0.0, ensuring deter-
ministic outputs across runs. We set the maxi-
mum generation length to either 4096 for Gaokao
MathQA, Gaokao Cloze, MATH500 or 8192 tokens
for AIME2024.

A.2 Evaluation datasets

We evaluate model behavior across four math rea-
soning benchmarks:

* Math500 (Lightman et al., 2023): A cu-
rated dataset of 500 high school and early
undergraduate-level math word problems, de-
signed to test symbolic reasoning and arith-
metic across diverse topics.

* AIME2024 (Mathematical Association of
America, 2024) Invitational Mathematics Ex-
amination): A benchmark of 30 challeng-
ing math problems targeted at advanced high
school students.

¢ Gaokao Cloze and Gaokao MathQA: A set of
standardized math questions from the Chinese
college entrance examination. These prob-
lems are extracted from the AGIEval bench-
mark (Zhong et al., 2023). Gaokao Cloze
contains 118 fill-in-the-blank problems, and
Gaokao MathQA includes 351 muliple choice
problems.

All problems are translated into both English and
Chinese to support code-switching and bilingual
evaluation. Translations are first generated using
GPT-40, followed by manual review and correc-
tion.

We evaluate model performance using Pass@1
accuracy, defined as the percentage of problems
correctly solved on the first attempt. Specifically,
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We extract the final answer from the model’s output
using a pattern-based parser (

boxed) and compare it against the ground truth. For
outputs that do not exactly match the reference, we
perform manual evaluation to account for correct
answers expressed in alternative formats.

A.3 Rule-based Code-Switch Detection

First, we remove domain-specific mathematical
content, which is language-agnostic by nature. We
strip LaTeX-style math expressions using regular
expressions that match content enclosed in dollar
signs, () delimiters, and [] environments. In addi-
tion, we filter digits, parentheses, brackets, mathe-
matical operators, and Greek letters, as these sym-
bols are typically language-agnostic in reasoning
contexts.

Second, we detect language boundaries by iden-
tifying continuous runs of characters belonging
to either the Chinese Unicode range (U+4E@0 to
U+9FFF) or ASCII alphabetic characters. To im-
prove precision, we implement the following filter-
ing rules for English token candidates: @ We ex-
clude domain-specific terms common in mathemat-
ical discourse, including mathematical functions
(e.g., sin, cos, In), standard variable names (e.g.,
ab, bc), and geometric designations (e.g., ABCD).
0 Single-letter English tokens are discarded to pre-
vent false positives from isolated variable names.
® All-capitalized sequences of 2-3 characters are
filtered, as these typically represent geometric enti-
ties rather than English words.

Finally, we identify language transitions by
tracking adjacent language segments. A code-
switch is recorded when the language classification
of adjacent valid segments changes (e.g., from Chi-
nese to English or vice versa). For each switch, we
capture the switch direction, the text content at the
boundary, and the position within the full response.
Additionally, we track the starting language of each
response to establish the baseline language context.



A.4 Examples of Language Mixing in

QwQ-32B-Preview
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**Final Answer**
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Question: In the land of Ink, the money
system is unique. One Trinket is equal to 4
Blinkets, and 3 Blinkets are equal to 7 Drin-
kets. In Trinkets, what is the value of 56
Drinkets? Answer: Let’s tackle this prob-
lem step by step. So, in the land of Ink, they
have these different units of money: Trin-
kets, Blinkets, and Drinkets. The relation-
ships between them are given, and I need
to find out what 56 Drinkets are worth in
Trinkets.

First, I need to understand the relationships
between these units. It says that one Trinket
is equal to 4 Blinkets. So, if I have one
Trinket, it’s the same as having 4 Blinkets.
Got it.

Next, it says that 3 Blinkets are equal to 7
Drinkets. So, 3 Blinkets = 7 Drinkets. That
means that one Blinkey must be worth 7/3
Drinkets, but maybe I don’t need to go that
far yet.

I need to find out what 56 Drinkets are worth
in Trinkets. To do that, I probably need to
convert Drinkets to Blinkets first, and then
convert Blinkets to Trinkets.

So, let’s start by converting Drinkets to Blin-
kets. If 3 Blinkets = 7 Drinkets, then how
many Blinkets are there in 56 Drinkets?

I can set up a proportion for this. If 3 Blin-
kets are equal to 7 Drinkets, then x Blinkets
are equal to 56 Drinkets. So, 3/7 = x/56.
Wait, actually, that might not be the right
way to set it up. If 3 Blinkets = 7 Drin-
kets, then the ratio of Blinkets to Drinkets
is 3:7. So, to find out how many Blinkets
correspond to 56 Drinkets, I can set up the
proportion like this:

Then, to find out how many Trinkets are in
56 Drinkets, I divide 56 by the number of
Drinkets per Trinket, which is 28/3.

So, Trinkets = 56 / (28/3) =56 * 3/28 = 6
Trinkets.

— B[4 R /&6 Trinkets.

I think it’s safe to conclude that 56 Drinkets
are worth 6 Trinkets.

**Final Answer**

[6]



A.5 Probing for Beneficial Code-Switches

To identify code-switching positions that are bene-
ficial to reasoning accuracy, we train a lightweight
supervised contrastive probe (Figure 8) on hidden
representations extracted from QwQ-32B-Preview.
Specifically, we concatenate activations from a se-
lected set of transformer layers and project it into
a lower-dimensional space using a PCA transfor-
mation fitted on the training set. We also add three
related Meta Features: ® is natural (whether
a switch is natural or synthetic), ® switch
direction (whether the switch direction is from
Chinese to English or not), ® language entropy
(the entropy calculated from the model probability
of output Chinese or English token). These feature
are appended to the hidden embedding after PCA.

The probe model consists of a shared encoder
and a 2-layer MLP classifier head. We jointly opti-
mize a supervised contrastive loss and a weighted
cross-entropy loss, both for countering highly im-
balanced class distribution as explained in Sec-
tion 4.2 . The encoder maps the input features
into a compact embedding space optimized for
contrastive learning, while the classifier predicts
one of three classes: {Beneficial, Neutral,
or Harmful}. For contrastive learning, we im-
plemented a balanced batch sampler, making
sure that samples from all three classes will ap-
pear in each batch. For classification, we use
class weight of {1.0, 0.1, 1.0} for {Beneficial,
Neutral, Harmful} to downweight the majority
class (Neutral) and upweight the minority class
(Beneficial and Harmful).

During inference, the probe outputs predicted
probabilities for each class after softmax. To maxi-
mize decision utility, we apply a thresholding strat-
egy: if the predicted probability of a harmful switch
exceeds a threshold 75, We suppress the switch;
if the predicted probability of a beneficial switch
exceeds a threshold 7y1p, we enforce the switch.
Thresholds are selected via a grid search on a held-
out validation set to maximize a custom utility met-
ric that penalizes missed beneficial switches and
incorrectly allowed harmful switches.

A.6 Probe Performance and Utility

Training Data Collection and Statistics. We
collect training data for the probe using a modified
constrained decoding strategy focused on positions
with high language entropy. To stay within compu-
tational limits, we consider only the top 1% of to-
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ken positions across the dataset ranked by entropy.
We begin by identifying natural code-switching
positions and apply the blocked switch mode to
collect examples where switching is suppressed.
If the number of natural switches falls short of
the 1% threshold, we supplement the dataset by
introducing synthetic switches using the forced
switch mode. We provide detailed statistics of
the activation data we collected for Math500 and
Gaokao Cloze in Table 2 and Table 3, respectively.
The statistics reveal a strong class imbalance: the
majority of code-switching instances fall into the
Neutral category.

Table 2: Class distribution of the MATH 500 dataset
across train, validation, and test splits.

Class Train Validation Test
Harmful 773 127 204
Neutral 7,120 803 1,699
Helpful 894 125 241
Total 8,787 1,055 2,144

Table 3: Class distribution of the Gaokao Cloze dataset
across train, validation, and test splits.

Class Train Validation Test
Harmful 172 23 73
Neutral 1,427 199 394
Helpful 260 36 86
Total 1,859 258 553

Hyperparameters and Experimental Setup.
We use a stratified train/validation/test split of
70%/10%/20% by problem ID, ensuring that code-
switch examples from the same problem do not
appear in multiple splits. All experiments are con-
ducted on a single NVIDIA A100 GPU. The probe
uses intermediate layer activation derived from five
transformer layers (layers 63, 47, 31, 15, and 0),
with additional metadata features. We reduce the
input dimensionality using PCA, followed by a pro-
jection layer of dimension 512 and a hidden layer
of size 512. The model is trained using a hybrid
loss that combines contrastive and cross-entropy
components, with loss weight o and temperature
7 for the contrastive term. Due to class imbalance,
we apply class weights of [1.0, class1_w, 1.0] for
the {Beneficial, Neutral, Harmful} classes, re-



spectively. Training is run for 30 epochs with a
batch size of 16 and a learning rate of le—4.

Table 4: Hyperparameters for the probe model used on
the MATH 500 dataset.

Hyperparameter Value
Selected Layers [63, 47, 31, 15, 0]
Use Metadata True

PCA Dimension 512
Projection Dimension 512
Hidden Dimension 512

« 0.81

T 0.8

Class Weights [1.0, 1.819, 1.0]
Number of Epochs 30

Batch Size 16
Learning Rate 1.36 x 107°

Table 5: Hyperparameters for the probe model used on
the Gaokao Cloze dataset.

Hyperparameter Value
Selected Layers [47, 31, 15]
Use Metadata True
PCA Dimension 512
Projection Dimension 256
Hidden Dimension 512

« 0.3449

T 0.2593
Class Weights [1.0, 1.1923, 1.0]
Number of Epochs 30
Batch Size 64
Learning Rate 1.78 x 10~*

Probe Performance on Classification and Utility.
We start by evaluate the probe on conventional
classicication metric including confusion matrix
(Figure 11, and Figure 12 ) and F1 scores (Figure 9,
and Figure 10 ), and our tailored utility score. As
we can see, although the classification performance
of minority class is still worse than majority class,
but it is much more improved compared to the
severe class imblance in Figure . Formally, the
utility score s is given by the average utility over
N examples is given by

N

1
Utility = > s,

=1
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where s; is the utility for the ¢-th example, com-
puted as:

* 5, =+1if Ytrue = Ypred and Ytrue € {07 2};

e 5; = —1 if a Harmful switch is misclassified
as Beneficial, or vice versa;

* s; = 0 otherwise.

We then tune the decision thresholds 7j,m and
Thelp» Which govern the probe’s intervention policy
for suppressing predicted Harmful switches and
promoting Beneficial ones, respectively.

F1-score per Class

1.0

0.8 A

0.6

Fl-score

0.4

0.2 1

0.0

Harmful Neutral Helpful

Figure 9: Probe F1 score per class on test set for Gaokao
Cloze.
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Figure 10: Probe F1 score per class on test set for Math
500.
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Figure 11: Normalized confusion matrix on test set for
Gaokao Cloze.
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