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Abstract
In this work, we investigate how to leverage pre-
trained visual-language models (VLM) for online
Reinforcement Learning (RL). In particular, we
focus on sparse reward tasks with pre-defined tex-
tual task descriptions. We first identify the prob-
lem of reward misalignment when applying VLM
as a reward in RL tasks. To address this issue,
we introduce a lightweight fine-tuning method,
named Fuzzy VLM reward-aided RL (FuRL),
based on reward alignment and relay RL. Specifi-
cally, we enhance the performance of SAC/DrQ
baseline agents on sparse reward tasks by fine-
tuning VLM representations and using relay RL
to avoid local minima. Extensive experiments on
the Meta-world benchmark tasks demonstrate the
efficacy of the proposed method. Code is avail-
able at: https://github.com/fuyw/FuRL.

1. Introduction
Deep reinforcement learning (RL) has achieved great suc-
cess in many different domains, including games, robotic
control, and graphics (Mnih et al., 2015; Silver et al., 2016;
Haarnoja et al., 2018; Agostinelli et al., 2019; Akkaya et al.,
2019; Berner et al., 2019; Kalashnikov et al., 2018; Peng
et al., 2021). However, despite these great achievements,
one well-known issue of RL is the large number of environ-
mental interactions required for policy learning (Wang et al.,
2017; Espeholt et al., 2018).

How to improve the sample efficiency is one of the most
important topics in RL (Du et al., 2019; Zhang et al., 2020).
A large body of work has been done in the community
from different aspects, including better exploration strat-
egy (Pathak et al., 2017; Zhang et al., 2022), leveraging
in-house behavior data (Singh et al., 2021), using transfer
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learning and (or) meta-learning (Rakelly et al., 2019; Mehta
et al., 2020; Agarwal et al., 2023; Beck et al., 2023), etc.

Recent progress on the large foundation models shows im-
pressive results in many applications (Nair et al., 2023; Ma
et al., 2023a;c; Rocamonde et al., 2023a; Chan et al., 2023).
These models are useful in the sense that they contain a
large amount of common knowledge, which can be used
in diverse downstream tasks. One promising downstream
application is to use the VLM to generate dense rewards for
RL tasks with sparse rewards.

Based on these observations, we investigate how to leverage
a pre-trained VLM in online RL. The topic of leveraging
VLM in the form of reward in RL is an emerging field, with
a few recent work on this (Mahmoudieh et al., 2022; Roca-
monde et al., 2023b; Adeniji et al., 2023; Rocamonde et al.,
2023a; Chan et al., 2023). We follow this line of research
and study the issue of reward misalignment when using
VLM-based rewards in RL, where inaccurate VLM rewards
could trap the agent in local minima. To mitigate this issue,
we introduce a VLM-representation fine-tuning loss and
adopt relay RL (Lan et al., 2023) to improve exploration.
The primary contributions of this work are as follows:

• We investigate some practical challenges of using pre-
trained VLM in online RL and highlight the issue of
reward misalignment.

• We introduce the Fuzzy VLM reward-aided RL (FuRL),
a simple yet effective method to address the challenge
brought by reward misalignment.

• We compare FuRL against different baselines and pro-
vide ablation studies to reveal the importance of ad-
dressing the fuzzy reward issue.

2. Background
2.1. Markov Decision Process (MDP) and RL

An MDP (Sutton & Barto, 2018) is commonly defined by a
tuple (S,A, P, r, γ), where S , A denote the state space and
action space. P : S ×A → ∆(S) denotes the transition
probability between states. r : S ×A→R is the reward
function. γ ∈ [0, 1] denotes the discount factor. In the
standard RL formulation, our goal is to learn a policy that
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Figure 1. Raw VLM reward is sub-optimal to teach RL agents. In this example, the text instruction l is “press a button from the
top”. We plot the cosine similarity-based VLM reward with language embedding ΦL(l) and image embedding ΦI(ot) and also show the
distance between the end-effector and the goal. It can be observed that the cosine similarity between ΦL(l) and ΦI(ot) can reflect some
aspects of the task but is not always well aligned with the task progress, reflecting the fuzzy aspects of the VLM reward.

maximizes the expected accumulated discounted return. In
practice, the policy is typically modelled using a neural
network πθ(at|st) with learnable parameters θ (Mnih et al.,
2013), taking observation st as input and generating the
action from policy πθ(at|st) for each time step t.

2.2. Vision Language Models (VLM)

Vision Language Models have advanced rapidly in the past
few years (Radford et al., 2021; Alayrac et al., 2022; Ma
et al., 2023a). One representative work is CLIP (Radford
et al., 2021), which trains the VLM by aligning image and
text embedding in the latent space. CLIP has been shown
to be effective in downstream tasks such as classification
and also shows zero-shot transfer ability. While CLIP is
a generic model motivated by vision tasks, there is also
recent work on specially designed VLM for RL tasks (Ma
et al., 2023a). VLM is an attractive type of models for
aiding RL from different perspectives, such as reward shap-
ing (Mahmoudieh et al., 2022; Rocamonde et al., 2023b;
Adeniji et al., 2023; Rocamonde et al., 2023a; Chan et al.,
2023; Lubana et al., 2023; Dang et al., 2023; Klissarov et al.,
2023), task specification and success detection (Du et al.,
2023) and representation (Chen et al., 2023).

3. Method
In this section, we first revisit some existing work on utiliz-
ing VLM as a reward model in RL and pinpoint the chal-
lenges therein. We then introduce the main idea and formu-
lation of the proposed method.

3.1. VLM as Rewards Revisited

Leveraging VLM as a source of reward in RL is a popular
and active emerging trend (Mahmoudieh et al., 2022; Roca-
monde et al., 2023b; Adeniji et al., 2023; Rocamonde et al.,
2023a; Chan et al., 2023; Lubana et al., 2023; Dang et al.,
2023; Klissarov et al., 2023; Nam et al., 2023), either as a
way of reward-based task specification (Mahmoudieh et al.,
2022; Rocamonde et al., 2023b; Adeniji et al., 2023), or
generating VLM-based reward as an additional source of

supervision apart from the original task reward for RL (Ro-
camonde et al., 2023a; Chan et al., 2023; Lubana et al.,
2023; Dang et al., 2023; Klissarov et al., 2023).

Given an observation st received at timestep t, the RL agent
generates an action at ∼ πθ(at|st) and receives a sparse
task reward rtaskt after at is executed. rtaskt is typically de-
fined as rtaskt = δsuccess, meaning a reward of 1 is received
only upon task success and otherwise the reward is 0.

This is a type of task setting commonly encountered in
practice. The sparse reward makes the RL training more
challenging. (Rocamonde et al., 2023a; Chan et al., 2023)
propose to use VLM as reward, i.e., augmenting the sparse
task reward with another VLM reward rVLM

t :

rt = rtaskt + ρ · rVLM
t , (1)

where ρ is a scalar weight parameter for balancing the VLM
reward with the task reward.

Simply, these methods (Rocamonde et al., 2023a; Chan
et al., 2023) add the CLIP reward, i.e. the cosine similarity
between the language goal with an image of the latest state:

rVLM
t ≜ rCLIP

t =
⟨ΦL(l),ΦI(ot)⟩

∥ΦL(l)∥ · ∥ΦI(ot)∥
, (2)

to the sparse task reward. ot is the image observation re-
ceived at step t. l is the language-based task instruction
issued at the beginning of the episode. ΦL and ΦI denote
the language embedding network and image embedding net-
work of the pre-trained CLIP model (Radford et al., 2021).

Another related set of work is using VLM as a success detec-
tor (Du et al., 2023), i.e., as a sparse task reward. Apart from
RL-based policy training, some recent work also proposed
to use VLM-based reward for model-based planning (Ma
et al., 2023a). In this case, the task reward is omitted (i.e.
rt = rVLM

t ) and MPC type of online planning methods are
used to obtain the next action by maximizing future return.

In this work, we follow the line of research on VLM-as-
reward. Same as Rocamonde et al. (2023a); Chan et al.
(2023), we focus on sparse-reward tasks, and assume the ac-
cess to the task instruction l (Table 4) and a goal image og at
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Figure 2. Fuzzy VLM reward effect. Visualization of end-effector trajectory in terms of (x, y) positions. Oracle denotes an expert policy.
VLM denotes the policy trained using sparse task reward together with VLM reward.

the beginning of the episode. Without loss of generality, we
first present results using state-based observations as policy
input to disentangle the impacts of feature learning. We then
increase the complexity by using pixel-based observations
as policy input. For computing the VLM feature, a visual
image is provided at each time step.

3.2. VLM as Fuzzy Rewards

Many previous methods on VLM-as-rewards (Rocamonde
et al., 2023a; Chan et al., 2023; Mahmoudieh et al., 2022;
Ma et al., 2023a) have a shared assumption that VLM-based
rewards are accurate in order to achieve good policy opti-
mization to avoid undesired solutions.

In this work, we demonstrate that zero-shot VLM rewards
are fuzzy: meaningful in capturing the coarse semantics but
inaccurate in characterizing some details. Therefore, this
fuzziness in the VLM-based rewards could potentially mis-
lead the policy optimization in the VLM-as-reward frame-
work (Chan et al., 2023; Mahmoudieh et al., 2022; Ma et al.,
2023a). While the degree of the reward’s fuzziness can be
reduced by changing different aspects of the VLM model,
such as increasing its capacity, the reward’s fuzziness is
not likely to be eliminated due to the zero-shot nature of
the VLM-as-reward framework. We carry out two sets of
studies from complementary aspects to illustrate this point.

Rewards along Expert Trajectory. Figure 1 shows the
VLM reward curve for an expert trajectory, where we com-
pute the VLM reward rVLM

t using Eqn. 2. In the ideal
case, the reward curve should be aligned with the expert’s
progress, i.e., higher reward when the state is closer to the
task completion. However, as can be observed in Figure 1,
the reward curve can reflect some aspects of task progress
but is not well aligned with the task progress, reflecting the
fuzzy aspect of the VLM reward.

VLM Reward Only Policy Behavior. We also trained
a VLM policy only with rVLM. Figure 2 illustrates the
end-effector (gripper) trajectories of the robot arm in the
window-close and door-open tasks from the Meta-world
environment (Yu et al., 2020). We compared the trajecto-
ries generated by an oracle policy with those of a VLM
policy. As depicted in Figure 2 (a-b) and Figure 2 (c-d), we
can observe that the gripper is close to the window in the
window-close task and the gripper is far away from the door
in the door-open task at the last step, also exemplifying the
effect of fuzzy VLM reward on policy behavior.

These two set of case studies show that VLM reward some-
times could provide meaningful information, i.e., identi-
fying the window in window-close task. However, when
pre-trained VLM representations fail to capture crucial in-
formation in the target RL tasks, inaccurate VLM rewards
can hinder efficient exploration. For instance, as seen in
Figure 2(c-d), the robot arm got stuck at the right corner
in the door-open task and failed to collect any successful
trajectories during the training. Such inaccurate VLM re-
wards are mainly due to the domain shift between VLM’s
training dataset and the downstream target RL task (Sankara-
narayanan et al., 2018; Zhang et al., 2021).

All these results indicate that the VLM-based rewards are
fuzzy, i.e., meaningful in some cases but could also be
misleading due to their inaccuracy. This fuzzy reward is-
sue has caught some attentions very recently (Mahmoudieh
et al., 2022; Adeniji et al., 2023; Rocamonde et al., 2023a).
Adeniji et al. (2023) mitigate this issue by using VLM-based
reward for behavior pre-training only. Mahmoudieh et al.
(2022) retrain the VLM model by using a specially tailored
dataset. We instead focus on how to leverage a pre-trained
VLM model in online RL and strategies to mitigate the
challenges therein, as presented in the sequel.
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Figure 3. Illustration of the proposed method: (left) the overall pipeline of FuRL. (right) FuRL freezes the pre-trained VLM and only
fine-tunes two MLP-based projection heads fWL , fWI .

3.3. FuRL: Fuzzy VLM rewards-aided RL

In this subsection, we introduce the Fuzzy VLM rewards-
aided RL (FuRL), a framework that utilizes VLM rewards
to facilitate learning in sparse reward tasks while addressing
the inherent fuzziness of these rewards through two mecha-
nisms: (1) reward alignment and (2) relay RL, as depicted
in Figure 3 (left). These two components interact with each
other in terms of exploration and learning in FuRL: (i) Re-
ward Alignment: which fine-tunes VLM representations
(generated embeddings) in a lightweight form to improve
the VLM rewards, which helps exploration and policy learn-
ing; (ii) Relay RL: which helps to escape the local minima
due to the fuzzy VLM rewards during exploration, and it
also helps to collect more diverse data to improve the re-
ward alignment and policy learning. We will detail these
components in the following subsections respectively.

3.3.1. REWARD ALIGNMENT

It is natural to understand that a VLM-based reward function,
as an instance of learning-based reward function, is hard
to be accurate under all kinds of input variations. Reward
inaccuracy is undesirable since it could be misleading to the
policy learning (Skalse et al., 2022).

With cosine similarity, inaccurate VLM rewards as defined
in Eqn. 2 can be attributed to the misalignment between
image and text embedding from pre-trained VLM represen-
tations. To address this issue, we introduced a lightweight
alignment method as illustrated in Figure 3 (right). In par-
ticular, we freeze the pre-trained VLM and only append two
small learnable networks fWL

and fWI
to VLM’s text em-

bedding and image embedding, respectively. In our experi-
ments, fWL

and fWI
are two simple two-layer MLPs (Tol-

stikhin et al., 2021). Therefore, compared with fine-tuning
the whole VLM model, the number of parameters to be
learned in our method is much smaller.

We define the VLM reward via the cosine-similarity fol-
lowing (Rocamonde et al., 2023a; Chan et al., 2023) but
with our projected image embedding fWI

(ΦI(ot)) and the

projected text embedding fWL
(ΦL(l)):

rVLM
t ≜

⟨fWL
(ΦL(l)), fWI

(ΦI(ot))⟩
∥fWL

(ΦL(l))∥ · ∥fWI
(ΦI(ot))∥

. (3)

Next, we introduce the following definition:

Definition 3.1. (Reward Alignment) Given a target task T ,
and a reward function r, we define the process of adjusting
the initially inaccurate reward function r to be more accurate
in characterizing the target task T as reward alignment.

Since the sparse reward function rtask in the MDP charac-
terizes the target task to a great extent, we will leverage the
information from rtask for reward alignment, i.e., optimiz-
ing the projection network fWL

and fWI
. We denote the

samples from the successful trajectories τp as positive sam-
ples op, and the samples from the unsuccessful trajectories
τn as negative samples on. We propose the following loss
for reward alignment:

L = E
{op∈τp,on∈τn}

ℓδ(o
p, on)︸ ︷︷ ︸

Lpos-neg

+ E
{opi−k,o

p
i ∈τp}

ℓδ(o
p
i , o

p
i−k)︸ ︷︷ ︸

Lpos-pos

,

(4)
where ℓδ(op, on) ≜ max(0, rVLM(on)− rVLM(op) + δ) is
a ranking loss with a margin of δ ∈ R+, generating a loss
if rVLM(on) + δ is larger than rVLM(op). Lpos-neg learns to
generate a higher VLM reward for a positive sample than
that of a negative sample. Lpos-pos learns to rank two samples
from the same successful trajectory, giving samples later in
time a higher rank (larger score) since it is closer to the task
success. Here, k is a window size parameter.

Moreover, since successful trajectories are unavailable in the
beginning of the training, an optional step can be used when
an additional goal image og is available before encountering
any successful trajectories, i.e., learning from all negative
samples with zero task rewards:

Lneg-neg = E
{oni ,o

n
j ∈τn

L2(oni ,og)<L2(onj ,og)−δ′}
ℓδ(o

n
i , o

n
j ),

(5)
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Figure 4. Contrastive learning loss: (left) without any successful
trajectories, we can use L2 distance w.r.t. an goal image to rank the
goodness of two negative samples; (right) when we collected some
successful trajectories, the contrastive loss learns to distinguish
samples from both of the successful and unsuccessful trajectories.

with L2(o, og) ≜ ∥ΦI(o) − ΦI(og)∥2. This essentially
uses the distance w.r.t. the goal image og in the image
embedding space to rank the goodness of samples, ranking
samples with smaller distance higher (Figure 4). The main
purpose of Eqn. 5 is to accelerate the learning to find the first
successful trajectory earlier. In practice, we can also replace
Lneg-neg by using parallel agents or exploration intrinsic
reward to search for the first successful trajectory. We leave
the exploration of this as a future work.

Algorithm 1 Fuzzy VLM rewards aided RL (FuRL)
Input: pre-trained VLM ΦI and ΦL, goal image og , task
language goal l, relay steps Ts = [T1, · · · , Tn], shared
replay buffer Dshared, total trajectory number N .
Output: trained VLM agent πVLM.
Initialize: image projection head fWI

, language projec-
tion head fWL

, VLM agent πVLM, SAC agent πSAC.
for i = 1 to N do

if Collected positive samples then
Unroll VLM policy πVLM.
Update fWI

and fWL
using Eqn. 4.

Update πVLM using rtask + ρrVLM.
else

Sample a replay step Ti from Ts.
Iteratively unroll πVLM and πSAC for Ti steps.
Update fWI

and fWL
using Eqn. 5.

Update πSAC using rtask.
Update πVLM using rtask + ρrVLM.

end if
end for

3.3.2. RELAY RL

As previously mentioned, one notable challenge in VLM
reward alignment is how to find the first successful trajec-
tory earlier. When the current VLM policy is trapped in
local minima due to the inaccurate VLM rewards, as shown
in Figure 2, it is likely that the agent fails to collect any
successful trajectories. Under such circumstances, Eqn. 4 is
never triggered as we have no positive samples.

Given this observation, we introduce a simple exploration
strategy based on the relay RL (Gupta et al., 2020; Lan et al.,
2023) to mitigate this representative issue caused by fuzzy
VLM reward. More specifically, we maintained an extra
SAC agent πSAC besides the current VLM agent πVLM. At
the beginning of an episode τi, we first randomly select a
relay step Ti from some pre-defined values or a specified
range. We then iteratively unroll πSAC and πVLM for Ti

steps until the end of the trajectory, as shown in Figure 5.
The collected samples are added to a shared buffer, which
we use to train πVLM with rtaskt + ρrVLM

t and πSAC with
rtaskt . The evaluation is done on the VLM agent.

The motivation of the relay RL is to let the SAC agent help
to escape the local minima once the VLM agent gets stuck.
On the other hand, relay RL also helps to increase the data
diversity by starting πVLM and πSAC from different initial
states. Generally, starting with πVLM forms a curriculum
learning for the SAC agent as in Jump-start RL (Uchendu
et al., 2023). Once we have collected some successful trajec-
tories, we can turn off the relay RL and focus on collecting
samples with the VLM policy πVLM. The pseudo-code of
FuRL is summarized in the Algorithm 1.

4. Related Work
4.1. RL with VLM

As one specific type of foundation models, VLM connects
language with visual signals and has been playing an impor-
tant role in the fields that involves both modalities such as vi-
sual question answering (Antol et al., 2015; Das et al., 2018;
Zhang et al., 2023a). VLM has been used in RL in various
ways. It has been used as a reward function (Mahmoudieh
et al., 2022; Rocamonde et al., 2023b; Adeniji et al., 2023;
Rocamonde et al., 2023a; Chan et al., 2023; Lubana et al.,
2023; Dang et al., 2023; Klissarov et al., 2023; Nam et al.,
2023), as revisited in detail in Section 3.1. Sontakke et al.
(2023) also used VLM for reward computation but requires
additional expert demonstrations. Sumers et al. (2023) used
a generative VLM for hindsight relabeling-based data aug-
mentation to improve dataset diversity.

Apart from this, VLM has also been used in other ways such
as a promptable representation learner (Chen et al., 2023).
In this work, we focus on the VLM-as-reward setting. In
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Figure 5. Illustration of the relay RL based exploration: at the beginning of an episode τi, we randomly select a relay step Ti. We
iteratively unroll a VLM agent and a SAC agent for Ti steps and save the collected samples in a shared buffer. We turn off the relay
exploration when we collected 2500 positive samples from the successful trajectories.

Table 1. Experiment results on the MT10 benchmark with sparse reward and fixed goal. We report the average success rate P (%) in
the evaluation at the last timestep across 5 random seeds after training.

Environment
SAC VLM-RMs VLM-RMs-GB LIV LIV-Proj Relay FuRL w/o goal-image FuRL

rVLM
✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

rtask ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

button-press-topdown-v2 0 0 0 0 0 60 80 100
door-open-v2 50 0 0 0 0 80 100 100
drawer-close-v2 100 0 0 100 100 100 100 100
drawer-open-v2 20 0 0 0 0 40 80 80
peg-insert-side-v2 0 0 0 0 0 0 0 0
pick-place-v2 0 0 0 0 0 0 0 0
push-v2 0 0 0 0 0 0 40 80
reach-v2 60 0 0 80 80 100 100 100
window-close-v2 60 0 0 60 40 80 100 100
window-open-v2 80 0 0 40 20 80 100 100

average 37.0 0.0 0.0 28.0 24.0 54.0 70.0 76.0

terms of training, VLM can be trained in a general way,
without being tailored to the downstream tasks. Recently,
robotics/RL oriented VLM are emerging (Gao et al., 2023;
Ma et al., 2023a). The backbone VLM of this work is base
on one of such a model (Ma et al., 2023a).

4.2. RL with Foundation Models

Our work falls within the broader category of leveraging
foundation models in RL, which is an active field with many
exciting advances (Lubana et al., 2023; Nam et al., 2023;
Wang et al., 2023; Hu et al., 2023). Apart from VLM, other
forms of foundation models such as large language models
(LLM) have also been used in many different ways, includ-
ing planning (Huang et al., 2022a;b), task decomposing
with grounding (Ahn et al., 2022; Huang et al., 2023; Zhang
et al., 2023b), generating code as policy/skill (Liang et al.,
2023), reward design (Yu et al., 2023; Ma et al., 2023b) etc..
In this paper, we focus on a complementary perspective by
highlighting the potential issues of using a pre-trained VLM
in RL and proposing practical remedies.

5. Experiments
In this section, we focus on the following questions: (1)
How does the proposed FuRL perform compared to other
baselines? (2) Is FuRL effective with pixel-based observa-
tions? (3) Can FuRL generalize to other VLM backbone
models? (4) Are both the reward alignment and relay RL
components useful? (5) What is the influence of the VLM
reward weight parameter ρ?

5.1. Baselines

To validate the efficacy of the proposed method, we compare
the proposed FuRL to the following baselines:

1. SAC: a state-based SAC agent (Haarnoja et al., 2018)
using the sparse binary task reward rtaskt .

2. VLM-RMs (Rocamonde et al., 2023a): a recent base-
line which only uses the cosine similarity based VLM
reward without the task reward.

3. VLM-RMs-GB (Rocamonde et al., 2023a): a variant of
VLM-RMs which adds a goal-baseline regularization.
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4. LIV (Ma et al., 2023a): a state-based SAC agent trained
with task reward and dense LIV reward as in Eqn. 1.

5. LIV-Proj: similar to LIV baseline but with the LIV re-
ward computed as in Eqn. 3 using randomly initialized
and fixed fWL

and fWI
.

6. Relay (Lan et al., 2023): a simplified version of FuRL
where we incorporated relay into LIV baseline.

7. FuRL-without-image: a variant of FuRL that does not
use the goal image and starts to fine-tune only after
collecting the first successful trajectory.

5.2. Experiment Settings

We use ten robotics tasks from the Meta-world MT10 envi-
ronment (Yu et al., 2020) with state-based observations and
sparse rewards (referred to as Sparse Meta-world Tasks).
In each task, the RL agent only receives reward 1 when
it reaches the goal and otherwise the reward is 0. We use
SAC (Haarnoja et al., 2018) as the backbone RL agent, and
the total environmental step is 1e6. We use the Adam op-
timizer with a learning rate of 0.0001. The VLM reward
weight ρ is 0.05. For the VLM model, we use the pre-trained
LIV (Ma et al., 2023a) from the official implementation. We
provide more detailed information in the Appendix B. More
results and resources are available on the project page. 1

5.3. Results on Sparse MT10

We first validate the effectiveness of FuRL on the fixed-goal
MT10 benchmark (Yu et al., 2020). Experiment results are
shown in the Table 1 and Figure 6. We report the average
and standard deviation of the success rate in the evaluation
across five random seeds. We can observe that FuRL and
FuRL-without-image generally outperform the other base-
lines in most tasks. In addition, none of these methods is
able to solve the peg-insert-side and pick-place tasks. The
main reason is that these two tasks require the agent to
master multiple subtasks, i.e., grabbing an item and then
moving to a target position, which is highly challenging
under a sparse reward setting. All the methods struggle
on these tasks including those with VLM rewards. This is
a common weakness within the existing VLM as reward
framework and how to go beyond to address this issue is an
interesting future direction.

From Table 1, we can also observe that the VLM-RMs and
VLM-RMs-GB fail to solve any tasks. This is not surprising
since no task reward is used in VLM-RMs and VLM-RMs-
GB, and purely the VLM reward is used. This exemplifies
that it is hard to only rely on the zero-shot VLM rewards
since there is no guarantee on the reward alignment. More-

1
https://sites.google.com/site/hczhang1/projects/furl

Table 2. Experiment on Sparse MT10 with random goals.

Environment SAC Relay FuRL

button-press-topdown-v2 16.0 (32.0) 56.0 (38.3) 64.0 (32.6)
door-open-v2 78.0 (39.2) 80.0 (30.3) 96.0 (8.0)
drawer-close-v2 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
drawer-open-v2 40.0 (49.0) 50.0 (42.0) 84.0 (27.3)
pick-place-v2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
peg-insert-side-v2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
push-v2 0.0 (0.0) 0.0 (0.0) 6.0 (8.0)
reach-v2 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
window-close-v2 86.0 (28.0) 96.0 (4.9) 100.0 (0.0)
window-open-v2 78.0 (39.2) 92.0 (7.5) 96.0 (4.9)

average 49.8 (7.9) 57.4 (7.0) 64.6 (5.0)

over, the lower performance of LIV compared to SAC fur-
ther illustrates the fuzzy reward effect, showing that naively
using VLM rewards in online RL can perform worse than
the SAC baseline, leading to policies getting stuck in lo-
cal minima as shown in Figure 2. The better performance
of FuRL compared to Relay proves the benefits of reward
alignment in mitigating the issue of fuzzy VLM rewards.

We also evaluate the proposed FuRL on the random-goal
MT10 benchmark, where the goal position changes in each
trajectory. We compare FuRL with the SAC and Relay
baselines in the Table 2. We can observe that FuRL also
outperforms other baselines, which indicates that FuRL is
able to generalize well with different goal positions.

5.4. Results with Pixel-based Observations

We further evaluate the proposed method with pixel-based
observations. More specifically, we adopt the DrQ (Yarats
et al., 2021; 2022) as the backbone RL agent. We mainly
follow the settings from the DrQ to use an image size of 84,
stacking frame of 3 and action repeat of 2. Figure 7 shows
the results on the window-open tasks with random goals.
We can observe that the evaluation curve of FuRL is quite
similar to the result in the state-based experiments, which
learns much faster than the DrQ baseline.

5.5. Ablation Studies

We conducted ablation studies to validate the efficacy of
the different components in FuRL. We used the average
success rate and the average Area Under the Curve (AUC) as
evaluation metrics. To facilitate comparison, we normalized
both metrics with respect to the FuRL results.

The Impact of Reward Alignment. We first validate the
effectiveness of the proposed reward alignment loss func-
tions in Figure 8. The no Reward-align baseline is a variant
of FuRL without reward alignment. We can observe that no
Reward-align baseline consistently underperforms FuRL,
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Figure 6. Evaluation curves on the Sparse Meta-world tasks: FuRL generally outperforms the other baselines.

Figure 7. Results on the window-open task with pixel-based
observations: FuRL is also effective with pixel-based inputs.

which demonstrates the efficacy of the reward alignment
component. Furthermore, we refer no Stage1 to fine-tuning
with only Eqn. 4, and we refer no Stage2 to fine-tuning
with only Eqn. 5. We can observe that removing any of
Stage1 or Stage2 will lead to performance degradation, i.e.,
slower convergence and (or) higher variance. This shows
that both loss functions in the reward alignment component
are effective, where the Eqn. 4 helps to mitigate the repre-
sentation misalignment issue, and Eqn. 5 helps to find the
first successful trajectory earlier.

The Impact of Relay RL. From Figure 8, we can also
observe that the relay RL plays a crucial role in FuRL.
Without relay RL, the agent completely failed in the some
tasks, i.e., button-press-topdown and door-open tasks. This
is because the reward alignment loss function Eqn. 4 is
triggered after we collected the first successful trajectory.
The relay RL addresses the challenge of getting stuck in
local minima when we only have negative samples.

The Impact of VLM Embedding. Figure 9 shows the

Figure 8. Ablations. Reward alignment is important and leads
to better performance (FuRL v.s. no Reward-align). Within the
reward alignment part, both Stage 1 (Eqn. 5) and Stage 2 (Eqn. 4)
have contributions. Relay RL is crucial for tasks where the explo-
ration is hard, i.e., the VLM policy is prone to get stuck in local
minima due to inaccurate VLM rewards.

results of training a FuRL agent without the pre-trained
VLM-representation. We can observe that the variant with-
out VLM-representation performs worse than FuRL and
performs better than the SAC baseline. This verifies the
benefits of using the VLM model and also the effectiveness
of the proposed reward alignment objective.

Figure 9. Impact of VLM-representation.

Using CLIP as the VLM model. In the previous experi-
ments, we instantiate the VLM model as a pre-trained LIV

8
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Table 3. Experiment of using CLIP as the VLM.

Environment CLIP CLIP-FuRL

button-press-topdown-v2 0 (0) 80 (40)
door-open-v2 60 (49) 100 (0)
drawer-close-v2 100 (0) 100 (0)
drawer-open-v2 0 (0) 80 (40)
peg-insert-side-v2 0 (0) 0 (0)
pick-place-v2 0 (0) 0 (0)
push-v2 0 (0) 60 (49)
reach-v2 80 (40) 100 (0)
window-close-v2 60 (49) 100 (0)
window-open-v2 80 (40) 80 (40)

average 38 (9.8) 70 (6.3)

model (Ma et al., 2023a). In this subsection, we evaluate
the proposed FuRL by instantiating the VLM model as a
pre-trained CLIP (Radford et al., 2021). Results on MT10
with fixed-goal are shown in Table 3. The CLIP baseline is
a SAC agent that learns with task reward and dense CLIP
reward. We can observe that the CLIP-based FuRL also out-
performs the CLIP baseline, which shows that the proposed
method can generalize to different VLM base models.

Figure 10. Impact of parameter ρ.

The Impact of ρ. Figure 10 shows the results of using
different ρ values on the drawer-open and button-press-
topdown tasks with random goals. We can observe that a
large value usually performs poorly, where the inaccurate
VLM reward distracts the agent from learning from the task
reward information. On the other hand, a small value might
lead to slow learning or larger variance.

5.6. Visualization of VLM Rewards

Figure 11 shows the VLM rewards before (LIV) and af-
ter alignment (FuRL) for the trajectory shown in Figure 1.
Compared with the pre-trained LIV reward curve, the FuRL
VLM reward curve generally has a larger value when it is
closer to the goal. The reason that the reward does not reach
1 after alignment is because a ranking loss is used in Eqn. 4,
which focuses on the relative ranking instead of absolute
reward values. The accurate relative trend in the aligned re-
ward from FuRL is already effective in aiding the RL agent
in exploration and learning.

Figure 11. VLM reward curves before (left) and after (right) fine-
tuning, along the same expert trajectory. Some frames along the
trajectory are shown in Figure 1. FuRL reward has a larger value
when it is closer to the goal.

6. Conclusion and Future Work
In this work, we highlighted the fuzzy reward issue in ap-
plying VLM reward in online RL and further proposed
the FuRL approach, which mitigated the fuzzy reward is-
sue with reward alignment and relay RL collaboratively.
Various experiments demonstrated the effectiveness of the
proposed method. In the current work, we have demon-
strated the approach on a number of tasks, with the reward
alignment networks trained with data from a single task.
An interesting future direction is to train the reward align-
ment module across multiple task jointly. Another point
is that we have used simple language descriptions follow-
ing Rocamonde et al. (2023a); Ma et al. (2023a). Applying
the proposed approach to more complex compositional lan-
guage instructions is also an interesting direction to pursue
in the future. From a broader perspective, the hallucination
issue of VLMs and large language models (LLMs) (Li et al.,
2023; Chakraborty et al., 2024) has greatly impacted their
applicability in downstream tasks. It is an interesting future
work to generalize some of the ideas in this work together
with other techniques such as adversarial learning (Ilyas
et al., 2019; Zhang & Wang, 2019; Yao et al., 2023) to a
broader context with pre-trained foundations models.

Impact Statement
Since our work is a combination of VLM and RL, one poten-
tial negative societal impact could be the improper language
instructions. When we apply the proposed method to real-
world applications, the usage of some language instructions
might lead to dangerous behaviours. To mitigate this is-
sue, we could adopt some rule-based keyword blacklists to
filter dangerous language instructions, or we could further
fine-tune the trained policy to learn some safety knowledge.
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A. Limitations, Potential Broader Impact, Ethical Aspects and Societal Impacts
In this work, we mainly focus on illustrating the Fuzzy-reward effect and why it could be problematic to directly apply the
pre-trained VLM rewards in online RL tasks. One limitation is that our current experiments are all in simulated environments.
We plan to validate the effectiveness of the proposed method in real-world robotics in future work. Another limitation is that
we maintained a second policy for Relay RL to escape the local minima during the online exploration. Though we turn off
the Relay RL when we collect some successful trajectories, the extra policy still increases the computation complexity. An
interesting future direction is to replace the replay policy by some lightweight exploration intrinsic reward to mitigate the
issue of getting stuck in local minima.

Since our work is a combination of VLM and RL, one potential negative societal impact could be the improper language
instructions. When we apply the proposed method to real-world applications, the usage of some language instructions might
lead to dangerous behaviours. To mitigate this issue, we could adopt some rule-based keyword blacklists to filter dangerous
language instructions, or we could further fine-tune the trained policy to learn some safety knowledge.

B. Experimental Setup
B.1. Implementation Details

In the experiment, we re-implement the SAC (Haarnoja et al., 2018) and DrQ (Yarats et al., 2021) baseline RL agents in
JAX (Frostig et al., 2018). For the VLM model, we use the provided PyTorch code (Imambi et al., 2021) and checkpoint for
both of LIV and CLIP from the official LIV codebase2. In the experiments, we use the latest Meta-world environment 3. For
the other main softwares, we use the following versions:

• Python 3.9

• jax 0.4.16

• jaxlib-0.4.16+cuda12.cudnn89-cp39

• flax 0.7.4

• gymnasium 0.29.1

• imageio 2.33.1

• optax 0.1.7

• torch 2.1.2

• torchvision 0.16.2

• numpy 1.26.2

B.2. Meta-world MT10 Benchmark

In the experiments, we use a constant reward shaping rtask - 1 for the sparse task reward as in some previous work (Kostrikov
et al., 2022). For the task description for each environment, we followed the setting from the CARE (Sodhani et al., 2021).

In the experiments of Table 1, the goal is hidden and fixed for each random seed. Since we always use the mean action of
the SAC policy in the evaluation and the Meta-world environment is deterministic, the evaluation success rate for each task
is either 1 or 0 for each random seed. For the results of random goal setting in Table 2, we report the average evaluation
success rate over ten trajectories. For the average results across all tasks in the Table 1, Table 2, and Table 3, we first group
experiments for one algorithm into five runs across ten tasks, and get an ten-task average success rate, and compute the
standard deviation based on the five numbers. For the goal image, we simply use a fixed goal image for both fixed goal
and random goal tasks. The main idea of the goal image is to provide some useful information to distinguish two negative
samples. Therefore, we adopt this simple setting without the loss of generality.

2https://github.com/penn-pal-lab/LIV
3https://github.com/Farama-Foundation/Metaworld

14



FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning

Figure 12. Meta-world MT10 benchmark tasks.

Table 4. Text instruction for each environment in the experiments.

Environment Text instruction

button-press-topdown-v2 Press a button from the top.
door-open-v2 Open a door with a revolving joint.
drawer-close-v2 Push and close a drawer.
drawer-open-v2 Open a drawer.
peg-insert-side-v2 Insert a peg sideways.
pick-place-v2 Pick and place a puck to a goal.
push-v2 Push the puck to a goal.
reach-v2 Reach a goal position.
window-close-v2 Push and close a window.
window-open-v2 Push and open a window.

B.3. Computation Complexity

We run our experiments on a workstation with NVIDIA GeForce RTX 3090 GPU and a 12th Gen Intel(R) Core(TM)
i9-12900KF CPU. The average wall-clock running time for the FuRL on the state-based experiment and pixel-based
experiment are 3 hours and 6.5 hours, respectively.

B.4. Parameter Settings

Some key parameters are summarized in the Table 5. We mainly followed the parameter settings from some prior work (Ma
et al., 2023c;a; Yarats et al., 2021; 2022). For the relay steps, we select Ts to be a set of four discrete values [50, 100, 150,
200] out of simplicity. Some other choices, i.e., using a uniform distribution U[50, 250], are also acceptable. Since the main
focus of this work is to illustrate the Fuzzy reward issue and showcase the effectiveness of the proposed method, therefore,
we did not tune much of these hyper-parameters. It is likely to achieve better performances with further parameter tuning.
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Table 5. Summarization of hyper-parameters.
Parameter Value

Total environment step 1e6
Adam learning rate 1e-4
Batch size 256
Camera Id 2
VLM reward weight ρ 0.05
Target network τ 0.01
Discount factor γ 0.99

FuRL language projection network (256, 64)
FuRL image projection network (256, 64)
FuRL window size k 10
FuRL reward margin 0.1
FuRL L2 distance margin 0.2

SAC buffer size 1e6
SAC actor network (256, 256)
SAC critic network (256, 256)
SAC target entropy -|A|/2
DrQ buffer size 2e5
DrQ action repeat 2
DrQ frame stack 3
DrQ image size (84, 84, 3)
DrQ embedding dimension 50
DrQ CNN features (32, 32, 32, 32)
DrQ CNN kernels (3, 3, 3, 3)
DrQ CNN strides (2, 1, 1, 1)
DrQ CNN padding VALID
DrQ actor network (256, 256, 256)
DrQ critic network (256, 256, 256)

C. Additional Experiment Results
C.1. Experiment on Sparse MT10 with random goals

Figure 13 shows the results of SAC, Relay and FuRL on Sparse MT10 with random goals. Similar to the conclusion as in
Figure 6, FuRL generally outperforms the SAC and Relay baselines. Compared with the fixed goal setting, we can observe
that FuRL generally achieved similar performances except for the push-v2 task. Figure 14 shows two successful trajectories
for the oracle policy and the FuRL policy. We can observe that the oracle policy first grasps the red cylinder and then moves
to the green goal position. On the other hand, the FuRL policy didn’t learn how grasp the cylinder and just simply pushes
the cylinder to the goal position. Compared with the oracle policy, the FuRL policy is less robust without grasping the
object, especially when the goal position is far away from the initial object position and the cylinder falls down and starts
rolling. Moreover, another challenge in the push-v2 task is that the arm sometimes blocks the goal and (or) the cylinder
in the camera due to their small sizes. This makes the random goal setting much more difficult because the current VLM
reward only relies on the input image, and an image without the goal provides less informative VLM reward.

C.2. The impact of language instructions

In the previous experiments, we all used the same language instructions. Here, we try to investigate how the input language
instruction affects the final performance. We compare three different language instructions for the button-press-topdown and
drawer-open tasks. The first language instruction is a dummy input text of “None”. The other two language instructions are
summarized in Table 6. From Figure 15, we can observe that using a more detailed language instruction can help to learn
faster, while using a meaningless language instruction usually performs poorly. These results indicate that a more detailed
language instruction sometimes could provide more accurate VLM rewards that help the agent to find the first successful
trajectory earlier, and a misleading language instruction could provide inaccurate VLM rewards, which are more likely to
trap the agent in local minima. Since the focus of this work is to illustrate the issue of Fuzzy VLM rewards and how to
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Figure 13. Evaluation curves for tasks with random goal.

address this issue, we leave the exploration of how to generate better text instructions for future work.

Table 6. Different text instructions.

Environment Length Text instruction

button-press-topdown-v2 Short Press a button from the top.
Long Move close to the orange box and press down the red button.

drawer-open-v2 Short Open a drawer.
Long Grab the white handle and open the green drawer.

C.3. Visualization of Inaccurate VLM Reward

In Figure 16, we plot three trajectories for an oracle policy πo, a sub-optimal policy πs and a random policy πr. The
sub-optimal policy is a policy been trained for small number of steps (1e5), which can move the arm around but is not able
to complete the task yet (task success rate is 0%).

In Figure 17, we plot the VLM-rewards at different steps for the oracle policy πo, random policy πr and sub-optimal policy
πs for 50 trajectories, showing both individual curves as well as mean-std curves. We can observe that the random policy πr

is not very informative in this case since a random policy mostly causes the robot arm to jitter around its initial position
and can barely move the arm. In addition, we can observe that the VLM-reward is very noisy. For example, there is a
significant overlap between the curves from oracle and sub-optimal policies, although their level of expertise is drastically
different, meaning the set of states covered by them are very different. Moreover, for the sub-optimal trajectories, there are
cases where the VLM assigns very high reward to some sub-optimal states (e.g. around step 40, and step 80), with values
comparable to (sometime even higher than) the VLM-reward for expert trajectory’s success state (expert’s trajectory around
step 80). All these illustrate the fuzzy VLM-reward issue. Learning using this type of reward could mislead or trap RL agent
in a local minimum and leading to undesired behaviors as shown in Figure 2 of the main paper.
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Figure 14. Comparison of the oracle policy and the FuRL policy. The oracle policy first grasps the red cylinder and then move to the
green goal position (top row). On the other hand, the learned FuRL policy simply pushes the cylinder to the goal position (bottom row).

Figure 15. Ablation for different language instructions.
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Figure 16. More trajectory visualizations: (top) an oracle policy πo, (middle) a sub-optimal policy πs, and (bottom) a random policy πr .

Figure 17. Visualization of noisy VLM-rewards: there is a significant overlap between the curves from oracle and sub-optimal policies.

19


