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Abstract

As Large Language Models (LLMs) are used for increasingly complex cognitive
tasks, a natural question is whether AI really understands. The study of under-
standing in LLMs is in its infancy, and the community has yet to incorporate
research and insights from philosophy, psychology, and education. Here we focus
on understanding algorithms, and propose a hierarchy of levels of understanding.
We validate the hierarchy using a study with human subjects (undergraduate and
graduate students). Following this, we apply the hierarchy to large language mod-
els (generations of GPT), revealing interesting similarities and differences with
humans. We expect that our rigorous criteria for algorithm understanding will help
monitor and quantify AI’s progress in such cognitive domains.

1 Introduction

Since the release of GPT-4, mainstream users have begun to experiment with Large Language Models
(LLMs) on increasingly complex tasks. However, the degree to which it is safe, legal, and ethical to
rely on LLMs has been under fierce debate. Across many studies, researchers have identified apparent
shortcomings of LLMs including hallucinations, inability to plan, and lack of understanding [Rawte
et al., 2023, Mahowald et al., 2024, Valmeekam et al., 2023]. However, the literature notably lacks
rigorous criteria to measure the progress toward solving these issues. A particular problem lies in
claims surrounding understanding; AI understanding is frequently compared to human understanding,
and it is folklore among AI researchers that the reasoning processes of LLMs differ from those of
humans. While the concept of understanding is widely discussed, it remains ill-defined.

In this paper, we propose an precise definition of understanding an algorithm with the following
properties: (a) it provides a scale by which to evaluate any entity’s understanding of an algorithm, (b)
it aligns with the standard usage of the term ‘understanding’ in philosophy and psychology, and (c) it
can be used to evaluate AI’s progress toward understanding algorithms.

Motivation - Why study algorithm understanding? Large language models are increasingly
trusted for coding assistance. Code generation tools such as GitHub Copilot [GitHub, 2024] and
Meta’s Code Llama [Roziere et al., 2023] are currently used in practice to improve developer
productivity [Vaithilingam et al., 2022, Mozannar et al., 2024] and assist novice programmers in
learning [Kazemitabaar et al., 2023, Becker et al., 2023]. It is likely that the degree of AI involvement
in software development will only grow as these tools improve. However, reliance on imperfect
systems comes with risk. Tools such as Copilot are known to generate code that is subject to
license [Becker et al., 2023] or contains security vulnerabilities [Pearce et al., 2022].

The question of whether LLMs demonstrate meaningful understanding of algorithms is relevant if we
are relying on LLMs to implement algorithms in production or teach them to novice programmers.
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Algorithm understanding is distinct from language understanding and deserves its own line of study.
Those who argue that LLMs do not understand language draw a distinction between linguistic form
and meaning[Bender and Koller, 2020, Mitchell and Krakauer, 2023, Pavlick, 2023]. When humans
understand language, their understanding is informed by their communicative intent and the real-life
properties of the objects described. Thus, a system trained only to replicate statistical correlations
between words cannot understand language in the way that humans do. Algorithms, however, can be
precisely represented using formal programming languages. One might argue that a computer can
meaningfully observe an algorithm in full through code implementations and examples.

1.1 Related Work

Cognitive Abilities of LLMs. The past few years have seen an explosion of studies exploring the
ability of LLMs to answer complex mathematical questions. Researchers have developed prompting
strategies to enable multi-step reasoning Wei et al. [2022], Fu et al. [2022]. Still others fine-tune
models to improve mathematical problem-solving Yu et al. [2023], Luo et al. [2023]. The benchmarks
for these methods typically include large datasets such as GSM8k Cobbe et al. [2021] (grade school
word problems) and MATH Hendrycks et al. [2021] (math competition problems). These works
focus on correct evaluation and do not address whether the language models understand mathematical
reasoning.

Others have studied metacognitive skills in LLMs. Didolkar et al. [2024] investigate whether LLMs
can assign skill labels to mathematical problems. Also related is Aher et al. [2023] which proposes
Turing experiments comparing humans and LLM simulations.

Understanding in LLMs. A parallel line of work investigates language understanding in LLMs. A
key concept in the debate over language understanding is the difference between linguistic form and
meaning Bender and Koller [2020], Merrill et al. [2021]. Bender and Koller [2020] argue that an AI
trained only on linguistic form (i.e. text) cannot understand meaning. In an opinion piece, Pavlick
[2023] counters this perspective, arguing that it is premature to draw conclusions on whether LLMs
can model language understanding when the study of language models is itself in its infancy. There
has been some effort to determine the extent to which LLMs represent linguistic meaning, primarily
by studying word representations Li et al. [2021], Patel and Pavlick [2021]. For a survey on linguistic
competence in LLMs, see Mahowald et al. [2024]. Also see Mitchell and Krakauer [2023] for a
general survey on the debate over understanding.

1.2 Theories of Understanding

The debate over what constitutes understanding has a long history in philosophy and psychology.
It is generally agreed that understanding is different from ‘mere’ knowledge, but the nature of that
distinction is up for debate Pritchard [2009], Baumberger et al. [2016], Páez [2019]. Pritchard [2014]
provides some examples of when the concepts of ‘knowing why’ and ‘understanding why’ may not
overlap. Khalifa [2017] and Baumberger et al. [2016] are accessible surveys of this debate.

The philosophy of science also relates understanding and explanation, and the goal of explanation
can be thought of as the production of understanding Friedman [1974], Grimm [2010], Baumberger
et al. [2016]. Most theories assert that understanding a concept requires not only accurate knowledge
of the concept, but also some additional mastery over it Baumberger et al. [2016].

For our hierarchy, we employ the framework of Understanding as Representation Manipulability
(URM) Wilkenfeld [2013]. This theory posits that understanding arises from the ability to modify the
internal representation of a concept in order to make effective inferences.

For language models, this representation is collected from the thousands of examples, explanations,
and code snippets that appear in its training data. The mechanism behind human memory is not
understood as precisely. However, humans also learn via hearing explanations, collecting examples,
and reinforcing their knowledge. This forms a representation encoded in the neural pathways of our
brains Durstewitz et al. [2000], György Buzsáki [2019]. The goal of our hierarchy will be to test how
the existing internal representation can be manipulated to produce responses at different levels of
difficulty.
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2 A Definition of Understanding

We ask the question: how well does an entity understand an algorithm? Our goal is a definition of
understanding that is itself algorithmically testable. Therefore, we adopt a functional lens, meaning
that we define understanding by what it allows the entity to do.

Figure 1: A hierarchy of under-
standing.

Levels of Understanding. In this section, we define under-
standing as a spectrum by presenting a series of levels. Under-
standing at each level is intended to be more difficult than the
previous one, although they do not formally follow each other.
Rather, they measure increasing levels of abstraction. Precise
definitions of the levels are given in the appendix.

These levels of understanding and the partial ordering among
them is summarized in Fig. 1. The first three levels measure the
ability of the entity to recall a procedure and execute a known
set of instructions. In Mayer’s taxonomy of learning, they fall
under the cognitive processes of recognizing, recalling, and
executing [Mayer, 2002].

At the first level (denoted Level 1), the entity is capable of
evaluating the algorithm on some ‘simple’ examples, where the
simplicity of an input is defined by the length of the execution
path. At this level, the entity has some representation of the
input-output mapping, whether or not it can formally express it.

At the second level, the entity can describe how it evaluates the
algorithm in a language that it knows. Level 2 requires the entity to output the execution steps of the
algorithm on x as well as produce the correct answer.

The third level takes this one step further, requiring the entity to produce a set of instructions that can
be followed to produce the right answer for any input x.

The next two levels target deep learning, and require a more complex manipulation of knowledge. We
split the next levels into two subtrees, to distinguish cognitive processes utilizing functional linguistic
skills from those utilizing mathematical reasoning [Mahowald et al., 2024].

At Level 4, the entity demonstrates an understanding of ‘why’ the algorithm is constructed as it is. It
requires them to provide an example to illustrate a property (mathematical reasoning) or explain the
existence of a property to a specified audience (natural language).

At Level 5, the entity can reason on perturbations of the algorithm and perturbations of the input, and
it can describe the effect on the execution path. Under mathematical reasoning, this includes skills
such as certifying if a modification to an algorithm changes the output for a subset of examples. Under
natural language reasoning, this includes describing the effects of modifying inputs, or answering
counterfactual questions about modifications to the algorithm.

3 Hypotheses and Methods

We conducted an experiment on LLMs and human participants with two main goals; 1) to assess the
proposed hierarchical scale (Figure 1) as a tool for comparing levels of understanding, and 2) to rate
algorithm understanding across generations of GPT. We will assess the scale with a student survey,
where we can use self-reported understanding and educational level as a basis for comparison. Then,
we will apply the same questions to GPT and assess its understanding on the same scale. Related to
these goals, we test the following hypotheses:
1. The understanding hierarchy (Figure 1) captures depth of understanding.
We expect the fraction of correct answers to be non-increasing with higher levels of understanding.
Furthermore, more education and training in algorithms should be reflected in the scores, so we
expect graduate students to perform better than undergraduates.
2. Newer generations of GPT understand algorithms at a higher level than older generations.
Concretely, we expect an increase in performance at higher levels between GPT-3.5 and GPT-4.
3. LLMs will exhibit a performance gap between natural language reasoning and mathematical
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reasoning tasks.
We expect the difference in performance between these two types of tasks to be much smaller in
students than LLMs. Furthermore, we expect that GPT may have a higher performance at Level 3,
since GPT is fine-tuned on code generation and has been exposed to code for common algorithms.

We use two classical algorithms to test our scale of understanding: the Euclidean algorithm for
computing the greatest common divisor of two integers, and the Ford-Fulkerson algorithm for
computing the maximum flow between two nodes on a directed graph with capacity constraints [Ford
and Fulkerson, 1956]. Both algorithms are widely taught in undergraduate computer science curricula.

For each of the assessed algorithms, we produced a series of questions corresponding to each of the
levels (Figure 1). Human participants were assigned an algorithm at random, and given five questions,
testing either the mathematical or natural language reasoning branch.

The number of participants in the survey was n = 34 (10 doctoral and 24 undergraduate). Students
who reported that they did not understand the algorithm or completed less than half of the survey
questions were removed the analysis. This left n = 23 students (10 doctoral and 13 undergraduate).
Of these students, ten had some teaching assistant experience in algorithms classes. For experiments
on GPT, each version was prompted with 30 randomized questions per algorithm and per question
number. Further details about the survey design will be deferred to the Appendix, where the full
survey questions will also be available.

4 Results

Hypothesis 1. The understanding hierarchy (Figure 1) captures depth of understanding.

Figure 2: Mean scores between students (top) and GPT
(bottom). Error bars are 95% confidence intervals.

We compare undergraduate and doctoral
levels in Fig. 2. Across all students,
the accuracy on the questions was highest
for Question 1, and decreased uniformly
through Question 5. Doctoral students per-
formed better on average than undergrad-
uates (p < 0.05). They received higher
scores on Q4 and Q5 (p < 0.05), while the
differences on Q1, Q2, and Q3 were not
statistically significant.

Hypothesis 2. Newer generations of GPT
understand algorithms at a higher level.
Among versions of GPT, GPT-4 and GPT-
4o performed about the same, and the dif-
ferences in their overall scores were not
significant (Figure 2). Both GPT-4 and
GPT-4o demonstrated an increase in score

on every question compared to GPT-3.5 (p < 0.05).

The response score of GPT-4 was close to that of graduate students, as shown in Figure 2. Doctoral
students scored better than GPT-4 on the extension questions (Q5) to a statistically significant degree.
LLMs on average out-performed the undergraduate students on questions 3, 4, and 5 (p < 0.05),
while the differences on Q1 and Q2 were not statistically significant.

Hypothesis 3. LLMs will exhibit a performance gap between language and math reasoning.
As shown in Figure 3, all three GPT versions tested performed better on language tasks than on math
reasoning tasks for Ford-Fulkerson (significant with p < 0.05) despite student performance being the
same or slightly worse. For GCD, all GPT versions performed better on language tasks on Level 4,
but the same or slightly worse on Level 5.

We also hypothesized that the performance on code tasks would be higher compared to the perfor-
mance on evaluation and reasoning tasks. We find that this does hold. As shown in Figure 2, LLM
performed better on the coding tasks (Q3) than on the evaluation tasks (Q2), while the students
exhibited the opposite trend.
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Prompting with examples. We also investigated whether the use of example responses can improve
the responses to MaxFlow problems. We tested 200 randomly instantiated MaxFlow problems (100
trivial and 100 intermediate), with and without a correct example response included in chat history.

Figure 3: The difference in mean score between mathe-
matical and language reasoning tasks on Ford-Fulkerson
(Left) and the Euclidean algorithm (right), on Level 4
tasks (top) and Level 5 tasks (bottom)

We find that this strategy generally causes
the response to mimic the structure of the
example response. As shown in Figure 4,
including an example response improves
accuracy for GPT-3.5, but has little to no ef-
fect on GPT-4o, and marginally decreases
the accuracy for GPT-4. One possible ex-
planation for this phenomenon is that GPT-
4 naturally responds to the prompt with
effective chain of thought reasoning; there-
fore, instructing it to reason in a specific
format does not improve its reasoning abil-
ities, and may in fact interfere with them.

Discussion. We have presented a hierar-
chical scale for quantifying the understand-
ing of algorithms. We verified its predic-

tions empirically on human subjects and used it to compare generations of GPT and students. Our
results show a significant improvement from GPT-3.5 to GPT-4/4o at all levels of algorithm under-
standing.

Figure 4: Accuracy of versions of GPT on MaxFlow
problems. Shows base accuracy (blue) and accuracy
with example (orange). Error bars show the 95% confi-
dence interval.

All versions of GPT were nearly perfect
on code generation tasks. In contrast, stu-
dents performed better at evaluating the
algorithm than producing code on aver-
age. One possible reason for this is that
the code for common algorithms, such as
those tested, are prevalent in GPT’s train-
ing data. Code is highly structured, so even
if the particular implementation of the al-
gorithm has not been observed by GPT, it
could replicate the changes by statistical
inference.

Another trend is that GPT generally per-
formed better on language reasoning than mathematical reasoning, while student performance was
about the same. This difference goes beyond algebraic computations - GPT struggles with questions
testing common-sense graph reasoning that humans can answer easily. However, for explanation ques-
tions and reasoning questions that do not involve examples, GPT-4 and 4o give consistently quality
responses. This may suggest that mathematical examples play a larger role in human understanding
than in LLMs.

Our results show that the hierarchy of understanding is consistent with classical notions of depth of
understanding when tested on humans. While the results are also consistent with later versions of
GPT having a ‘better’ understanding of the tested algorithms than undergraduates, such a conclusion
does not follow. We worked with a limited population size, and the difference is confounded by other
factors such as subject fatigue. Further research is needed to compare the quality of GPT and human
responses to questions about algorithms. Despite these limitations, we feel that our scale makes
progress towards a testable definition of understanding and can be extended to other algorithmic and
similarly precise realms of understanding.

Acknowledgements. The authors are grateful to Rosa Arriaga, Adam Kalai and Sashank Varma
for helpful discussions. This work was funded in part by NSF Award CCF-2106444 and a Simons
Investigator award.
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A Levels of Understanding: Full Definitions

In this section, we present precise definitions of the levels of understanding given in the main body of
the paper. For concreteness, we also give an example of a question which could be answered by an
entity that understands the Euclidean algorithm at each level. For simplicity, we present these levels
as deterministic; however, they can be defined with a failure probability dependent on the entity’s
internal randomness and the required memory and time.

The execution path of A on an input x is the sequence of states taken by the algorithm when executing
on x. The trace of the execution is the execution path plus the contents of the tape at each step.
Finally, define a property to be a function mapping the trace or execution path to {0, 1}.

At the first level (denoted Level 1), the entity is capable of evaluating the algorithm on some ‘simple’
examples, where the simplicity of an input is defined by the length of the execution path. At this
level, the entity has some representation of the input-output mapping, whether or not it can formally
express it.
Definition (Level 1: Execution). E understands A at Level 1 if there exists parameters M0, T0 such
that the following holds: for any x ∈ Ω with M(x) ≤ M0 and T (x) ≤ T0, AE(x) = f(x).
Example: Compute GCD(24, 15).

At the next level, the entity can describe how it evaluates f(x) in a language that it knows. Level 2
requires the entity to output the execution steps of the algorithm on x as well as produce the correct
answer.
Definition (Level 2: Step-By-Step Evaluation). E understands A at Level 2 if, given an x ∈ Ω with
M(x) ≤ ME it can provide one of the following:

• the execution path in natural language or code

• a flow chart or other unambiguous pictoral representation of the execution path

executed when running A on x.
Example: Compute GCD(462, 948) and show each step of the calculation.

The next level will take this one step further, requiring the entity to produce a set of instructions that
can be followed to produce the right answer for any x ∈ Ω.
Definition (Level 3: Representation). E understands A at Level 3 if it understands at Levels 1 and 2,
and it can produce one of the following:

• a formal representation; e.g., code for A in a Turing-complete programming language it
knows, a structured natural language description, an abstract syntax tree or Turing machine
diagram.

• an unambiguous description of the execution steps in natural language.

Example: Write a function in a programming language you know that can compute the GCD of any
two integers.

The first three levels measure the ability of the entity to recall a procedure and execute a known set of
instructions. We place these in the category of ‘shallow learning’; in Mayer’s taxonomy, they fall
under the cognitive processes of recognizing, recalling, and executing [Mayer, 2002]. Note that all
three levels could be achieved by a hard-coded script.

The next two levels target deep learning, and measure cognitive processes in the ‘Understanding’ and
‘Analyzing’ categories. We split the next levels into two subtrees, to distinguish cognitive processes
utilizing functional linguistic skills from those utilizing mathematical reasoning [Mahowald et al.,
2024].

At Level 4, the entity demonstrates an understanding of ‘why’ the algorithm is constructed as it is.
Definition (Level 4a: Exemplification). Given a property P of an execution path of the algorithm A,
E can generate an x ∈ Ω which satisfies P or report that none exists. Example: Give an integer
0 < x < 55 that requires the greatest number of recursive steps to compute GCD(55, x). Describe
how you chose this number.
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Definition (Level 4b: Explanation). Given A, or a property P satisfied by the execution path of
A(x), and an audience E ′, the entity can produce a text in natural language that has the following
characteristics:

• Accurately describes the steps of the algorithm/execution path.

• Abstracts or shortens the full description by referencing other algorithms known by the
audience.

• Uses examples and analogies to other algorithms known by the audience to convey intuition.

Example: You are teaching a student who understands basic math operations but struggles with
algebra and division with remainders. Explain how the Euclidean algorithm is used to find the
greatest common divisor (GCD) of two given numbers, prioritizing intuition.

At Level 5, the entity can reason on perturbations of the algorithm and perturbations of the input, and
it can describe the effect on the execution path.
Definition (Level 5a: Extrapolation). The entity can answer questions about A of the following form.

• Given an algorithm A′, the entity can determine whether A and A′ produce the same output
on all x ∈ Ω. If not, it can find a counterexample such that A′(x) ̸= A(x).

• Given a relation R ⊂ Ω× Ω, the entity can find a pair (x, x′) ∈ R with different execution
paths on A.

Example: Determine whether the following statement is true. If not, provide a counterexample. If
x > y, then computing GCD(2x, y) with the Euclidean algorithm requires more division operations
than computing GCD(x, y).
Definition (Level 5b: Counterfactual Reasoning). The entity can produce natural language descrip-
tions of A of the following form.

• Given an algorithm A′ and an audience E ′, the entity can produce an explanation (c.f. Level
4b) contrasting the two algorithms.

• Given a relation R ⊂ Ω× Ω, the entity can describe a property highlighting the differences
in execution paths for (x, x′) ∈ R.

Example: Consider the Fibonacci sequence defined by F (0) = 0, F (1) = 1, and F (n) = F (n−
1) + F (n− 2) for n ≥ 2. Why do consecutive Fibonacci numbers result in the maximum number of
iterations for the Euclidean algorithm?

These levels of understanding and the partial ordering among them is summarized in Fig. 1.

B Experimental Design

B.1 Evaluation

Each question is rated on a scale from zero to two. With the exception of the explanation questions,
the scores have the following interpretations: (0) incorrect; (1) partially correct, surface level; (2)
completely correct, thorough.

B.1.1 Evaluating Explanations

The quality of explanations and summaries can be subjective; however, they offer a deep insight into
the subject’s understanding of the material. We evaluate the explanations on three axes.

1. Correctness; the explanation is accurate and includes the key ideas of the algorithm.
2. Audience adaptation; the explanation is tuned to the audience, and the level of detail matches

their prior knowledge.
3. Intuitiveness; the explanation conveys intuition; via contrast, example, analogy etc. and uses

clear language.
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Summaries and explanations are by definition selective and not necessarily complete [Mittelstadt
et al., 2019]. The ability to identify key ideas is part of what differentiates explanation (Level 4) from
the production of instructions (Level 3). An explanation is awarded 2/3 of a point for each bullet, for
a maximum score of 2 per question.

B.2 Survey Questions

We conducted a survey on students of algorithms courses at a premier CS-teaching university. Each
student was assigned either the Euclidean or Ford-Fulkerson Algorithm at random, and was asked
to rate their own understanding of the algorithm on a six-point scale. Each survey consisted of five
test questions to test their understanding. There were three versions of the survey for each algorithm,
assigned at random. The questions are available in the Appendix.

This section contains the text of the survey given to human subjects. Each respondent was asked
some preliminary questions about their course level and experience with algorithms. They were
assigned either the Ford-Fulkerson algorithm or the Euclidean algorithm at random and asked to
self-report their understanding (Figure 5). Some students who reported that they did not understand
the Ford-Fulkerson algorithm were then given the survey for the Euclidean algorithm.

The student was then randomly assigned one of three survey versions, shown below.

B.3 Euclidean Algorithm

B.3.1 Version 1

1. Compute GCD(24, 15), and show each step of the algorithm.

2. Compute GCD(462, 946), and show each step of the algorithm.

3. Using a programming language you are familiar with, write code for a function gcd(a,b),
which computes the greatest common divisor of two integers a and b using the Euclidean
algorithm.

4. You are instructing a student in an algebra course. The student is familiar with basic
mathematical operations such as addition, subtraction, multiplication and division. However,
she struggles with algebraic equations and division with remainders. Explain the Euclidean
algorithm to her, prioritizing conveying intuition.

5. Suppose gcd(a,b) = x and gcd(b,c) = y. Does gcd(a,b,c) = gcd(x,y)? Explain your reasoning.

B.3.2 Version 2

1. Compute GCD(24, 15), and show each step of the algorithm.

2. Compute GCD(4088, 1241), and show each step of the algorithm.

3. Using a programming language you are familiar with, write code for a function gcd(a,b),
which computes the greatest common divisor of two integers a and b using the Euclidean
algorithm

4. Consider computing GCD(55, x) for an input x. Give an integer 0 < x < 55 that requires
the greatest number of recursive steps to compute GCD(55, x). Describe how you chose this
number.

5. Determine whether the following statement is true. If not, provide a counterexample. For
any two positive, nonzero integers a,b, the equation sa + tb = GCD(a,b) has exactly one
solution where s and t are integers.

B.3.3 Version 3

1. Compute GCD(24, 15), and show each step of the algorithm.

2. Compute GCD(1008, 468), and show each step of the algorithm.

3. Using a programming language you are familiar with, write code for a function gcd(a,b),
which computes the greatest common divisor of two integers a and b using the Euclidean
algorithm.
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Figure 5: The six point-scale shown to students to self-report their understanding, and the distribution
of responses.

4. You are speaking with a mathematics student who understands modular arithmetic. Explain
the proof that the Euclidean algorithm finds the greatest common divisor of two numbers.

5. The Fibonacci numbers are a sequence F(n) where F(0) = 0, F(1) = 1, and F(n) = F(n-1) +
F(n-2) for any n ≥ 2. Consecutive Fibonacci numbers can be thought of as ‘worst case’
inputs for the Euclidean algorithm. Can you explain why?

B.4 Ford-Fulkerson Algorithm

B.4.1 Version 1

1. Compute the maximum flow between A and B. List each augmenting path and the flow
along the path at each step.
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2. Compute the maximum flow between A and D. List each augmenting path and the flow
along the path at each step.

3. The following is an implementation of breadth-first search in Python with one line missing.
Write a condition to replace the highlighted text. If you are not familiar with Python syntax,
you may use your best guess.
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4. Give an example of a graph where the Ford-Fulkerson algorithm computes exactly six
augmenting flows before terminating. Write the example as a list of edges and capacities.

5. Consider an implementation of Ford-Fulkerson which uses a breadth-first search to find
the augmenting path. Give an example which illustrates why the algorithm needs to track
residual capacity of reverse edges.

B.4.2 Version 2

1. Compute the maximum flow between A and B. List each augmenting path and the flow
along the path at each step.

2. Compute the maximum flow between A and D. List each augmenting path and the flow
along the path at each step.
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3. The following is an implementation of Ford-Fulkerson in Python with two lines missing.
Write code to replace the highlighted text. If you are not familiar with Python syntax, you
may use your best guess.

4. You are a civil engineer at a city planning commission. Your boss has asked you whether
it is possible to calculate the maximum volume of traffic that can be routed between two
destinations in the city. Describe the Ford-Fulkerson algorithm, but since he is a busy man,
do not bore him with the details.

5. Suppose you are an event planner, and you need to determine the maximum amount of
traffic that can be routed from the airport to one of two event venues. In other words, you
want to compute the maximum flow between a source s and two sinks t1 and t2. How would
you implement this?

B.4.3 Version 3

1. Compute the maximum flow between A and B. List each augmenting path and the flow
along the path at each step.
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2. Compute the maximum flow between A and D. List each augmenting path and the flow
along the path at each step.

3. The following is an implementation of Ford-Fulkerson in Python with three lines missing.
Write code to replace the highlighted text. If you are not familiar with Python syntax, you
may use your best guess.
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4. You are assisting a student in an algorithms course. He is struggling to understand the Ford-
Fulkerson algorithm for computing MAXFLOW. Describe it to him, prioritizing conveying
intuition.

5. An s-t cut is a set of edges which, when removed, divide vertex s and vertex t into separate
components. For example, the dotted edges in the graph below are an A-F cut with capacity
24.

It turns out that the maximum s-t flow on a graph with capacities is equal to the minimum
capacity of any s-t cut. Describe your intuition for why this might be true.

C Further details on LLM experiments

The LLM was queried using randomized versions of the survey. For evaluation questions, the input
values were assigned uniformly at random within a given range. For the flow questions, the graph
structure was also varied slightly. For the code questions, we took an example code implementation
of the algorithm, randomly masked a line or group of lines, and asked the LLM to fill in the missing
part. We also included several versions of the example, explanation, and extension questions.
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Each survey was started in a fresh chat session, and the five questions were presented in the same
order (within the survey, previous questions and responses were included in the chat history). In each
experiment, the query included a system prompt to encourage the model to produce only relevant
information. The system prompts used in the experiments are as follows:

‘You will answer a series of questions related to computing the maximum flow
on a directed graph. You provide concise responses and do not include detail or
explanations unless explicitly requested by the user.’
‘You will answer a series of questions related to the Euclidean algorithm for
computing the greatest common divisor (gcd) of two integers. You provide concise
responses and do not include detail or explanations unless explicitly requested by
the user.’

GPT was queried via the OpenAI Chat Completions API using the default parameters (e.g. tempera-
ture=1). Specific versions queried are ‘gpt-3.5-turbo-0125’,‘gpt-4-turbo-2024-04-09’, and ‘gpt-4o-
2024-05-13’.

We conducted two experiments with GPT. In the first, GPT was asked randomized versions of the
questions given to students (a quiz), with the images being replaced with text descriptions of the
graphs. For each quiz, the questions corresponding to each of the levels of understanding were asked
in order, and the previous questions and responses were included in the API query. This quiz was
repeated thirty times for each GPT version and algorithm. All trials were hand-graded on a scale
from zero to two.

In the second experiment, GPT was queried with only the simple and intermediate evaluation
questions for Max Flow (with varying graph structure and random weights). In one trial, GPT was
first asked the simple question followed by the intermediate (with its response to the simple question
passed to the API in the chat history). In the second trial, a sample response to an intermediate
evaluation was passed to the chat history. The responses were checked by hand for correctness, and
the rate of correctness was recorded.
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