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ABSTRACT

Policy learning for targeted coordination of massive-scale populations of, in the
limit a continuum spectrum of, intelligent agents is severely underexplored with
sparse literature in reinforcement learning research. The purpose of this work is
to fill in this gap by addressing the major challenge: the curse of dimensionality
caused by the huge population size. To this end, we formulate such an intelligent
agent population as a parameterized deterministic dynamical system defined on a
function space, referred to as a group system. This in turn gives rise to a functional
setting of reinforcement learning problems involving group systems. A novel mo-
ment transform is then proposed to give a kernel representation of group systems,
under which we develop a hierarchical algorithm for learning optimal policies of
group systems. As a significant advantage, each hierarchy of the algorithm pre-
serves the optimality of all its lower-level children, which then leads to the fast
convergence of the algorithm with a theoretical guarantee.

1 INTRODUCTION

Reinforcement learning (RL), a major machine learning paradigm, has been recognized as one of
the most powerful tools for shaping the desired behavior of intelligent agents by learning optimal
policies in an autonomous manner. This scope naturally identifies control theory as a primary dis-
cipline in which RL is extensively investigated, and prominent examples of RL for control systems
range from path planning for robotic agents and cyber-attack detection for cyber-physical systems
to safety validation for autonomous vehicles (Kober et al., 2013; Li & Qiu, 2019; Bertsekas, 2019;
Dixon et al., 2020; Meyn, 2022). In this decade, the research stream of learning to control has
rapidly shifted to large-scale populations of intelligent agents arising from diverse cutting-edge ap-
plications, including neural stimulation and brain medicine (Marks, 2005; Wilson, 2005; Shoeb,
2009; Bomela et al., 2020), quantum control and quantum machine learning (Glaser et al., 1998;
Li et al., 2011; Dong et al., 2008; Chen et al., 2014), and complex networks and network inference
(Zlotnik et al., 2016; Abel et al., 2016; Wang et al., 2018). In particular, the massive scale of such
populations significantly increases the complexity of understanding their behavior toward the fun-
damental limit, e.g., a neural population in neuroscience may contain up to ⇠ 1011 neuron cells
(Zlotnik & Li, 2012; Li et al., 2013; Ching & Ritt, 2013), and a spin sample in quantum science
generally consists of ⇠ 1023 nuclear spins (Li & Khaneja, 2006; Kobzar et al., 2005). In addition,
these populations generally only allow broadcasting control policies applied at the population level
to guide each individual agent as desired, which is beyond the scope of RL algorithm developed for
Markov decision processes. This in turn drives the urgent demand for a general theory inclusive for
RL of such massive-scale group systems.

Driven by the hope to fill in this literature gap, this work is devoted to the development of a novel
RL framework for learning control policies of group systems. The emphasis is on establishing the
fundamentals that lead to an effective algorithmic approach targeted at those systems composed
of a huge number, in the limit a continuum, of intelligent agents. This in turn sheds light on the
generizability of the proposed framework in the sense of its applicability regardless of the size of
group systems.
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Our contributions. We propose a systematic formulation of populations of intelligent agents re-
sponding to a common policy in terms of deterministic group systems defined on function spaces,
which in turn gives rise to the formulation of RL problems for group systems in a functional setting.
Then, we introduce a moment kernel representation for group systems, under which we develop
a hierarchical algorithm for RL of group systems. In particular, this hierarchical structure has the
optimality-preserving property, leading to the fast convergence of the proposed algorithm with a
theoretical guarantee. The contributions of our work can then be summarized as follows.

• Systematic formulations of populations of intelligent agents as deterministic group systems
defined on function spaces and RL problems for group systems in the functional setting,
regardless of the population size.

• Development of the moment kernel representation for group systems.
• Design of a hierarchical algorithm for RL of group systems with fast convergence that is

verified both theoretically and numerically.

Related works. Reinforcement learning of large-scale populations of intelligent agents has been
witnessed to attract increasing attention in recent years. In the deterministic dynamical systems set-
ting, a current active research focus is on multi-agent systems by using distributed learning and op-
timization infrastructures (Menger) (Yazdanbakhsh et al., 2020), retrieval mechanisms (Humphreys
et al., 2022), and deep neural network techniques (Chu et al., 2020; Andrychowicz et al., 2021; Fu
et al., 2022; Sarang & Poullis, 2023), where the scale of the systems varies from hundreds to thou-
sands. However, allowing the number of agents in a group system to approach infinity as considered
in this work remains under-explored with sparse literature in the RL society. In the stochastic dy-
namical systems setting, RL of Markov decision processes has been a prosperous research area for
decades, in which dynamic programming techniques serve as the main tool (van Otterlo & Wiering,
2012; Garcı́a et al., 2015; Sutton & Barto, 2018; Bertsekas, 2019). Moreover, the formulation of RL
problems over infinite-dimensional spaces has only been proposed in the stochastic setting, for the
purpose of learning feedback control policies of stochastic partial differential equation systems by
using variational optimization methods (Evans et al., 2019).

2 PROBLEM FORMULATION: REINFORCEMENT LEARNING OF GROUP
SYSTEMS

Despite the prosperity of RL research for decades, policy learning for large-scale populations of
intelligent agents remains challenging from both theoretical and practical perspectives. In addition
to the huge size, the lack of a systematic mathematical formulation of such populations in the RL
setting is also a major issue, which will be tackled in this section.

2.1 GROUP SYSTEM FORMULATION OF POPULATION AGENTS

Many large-scale population agents, e.g., nuclear spin samples, robot swarms, and neural ensembles,
can be formulated as parameterized differential equation systems in the form of

d

dt
x(t,�) = F (�, x(t,�), u(t)), (1)

where the system parameter � taking values on a compact set ⌦ ⇢ R, x(t,�) 2 Rn is the state
of the �

th agent, and u(t) 2 Rm the policy implemented by every agent at time t (Li & Khaneja,
2006; 2009; Becker & Bretli, 2012; Li et al., 2013; Zlotnik & Li, 2012). Note that this group system
formulation of population agents is regardless of the population size, equivalently the cardinality of
the system parameter space ⌦, indicating its advantage of dealing with large-scale populations.

On the other hand, it is also worth mentioning that there is no randomness and dynamics involved in
�, and hence the group system formulation in (1) is fundamentally different from the Markov deci-
sion process formulation commonly used in RL. This further stimulates the demand for a novel RL
framework to learn control policies for such group systems. To initialize the development, we first
note that with � varying on ⌦, the state x(t, ·) of the group system can be viewed as an Rn-valued
function defined on ⌦. In the limiting case that the group system is composed of infinitely many
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intelligent agents, equivalently ⌦ is an infinite set, the space F(⌦,Rn) of such functions is infinite-
dimensional, which rises to a significant challenge to the policy learning problem. Technically, for
the purpose of developing an RL approach over the infinite-dimensional function space to tackle this
learning problem, we further require x(t, ·) to be square integrable, i.e., F(⌦,Rn) ✓ L

2(⌦,Rn).

2.2 REINFORCEMENT LEARNING OVER FUNCTION SPACES

Given an immediate reward r
�
x(t,�), u(t)

�
, it is generally impossible to simultaneously minimize

the (discounted) future rewards V�(x(t,�)) =
R1
t e

��s
r(x(s,�), u(s))ds for all the agents by a

universal policy u(t) (see Appendix ?? for an example), where � > 0 is the discount factor. Instead,
we define the value function of the group system in (1) as the “averaged further rewards” over all
the agents

V (xt) =

Z

⌦
V�(x(t,�))d� =

Z

⌦

Z 1

t
e
��s

r(x(s,�), u(s))dsd�, (2)

where xt(·) = x(t, ·) denotes the state of the group system in (1) as a function defined on
⌦. However, to guarantee the existence of the optimal policy u

⇤(t) such that V
⇤(xt) =R

⌦

R1
t e

��s
r(x⇤(s,�), u⇤(s))dsd� = minu|[t,1)

R
⌦

R1
t e

��s
r(x(s,�), u(s))dsd�, more stringent

conditions on the agent dynamics and immediate reward function than classical RL problems need
to be imposed, where x

⇤(t,�) is the optimal trajectory and u[t,1)] denotes the restriction of the
policy, as an Rm-valued function defined on [0,1), on [t,1).

Assumption S1. The policy u : [0, T ]! Rm takes values on a compact subset U ⇢ Rm.

Assumption S2. The function F : ⌦⇥Rn⇥U ! Rn is bounded and Lipschitz continuous in the
state variable uniformly, that is, there is a constant L such that |F (�, x, a)�F (�, y, a)|  L|x� y|
for all x, y 2 Rn, � 2 ⌦, and a 2 U , where | · | denotes a norm on Rn.

Assumptions 1 and 2 guarantee that, with any policy implemented, the system representing each
agent has a unique and Lipschitz continuous solution for almost every t � 0 (Arnold, 1978).

Assumption C1. The immediate reward r : Rn ⇥U ! R is bounded and Lipschitz continuous in
the state variable uniformly.

Assumption C2. The discounted immediate reward is integrable for any policy, i.e.,R
⌦

R1
0 e

��t|r(x(t,�), u(t))|dtd� <1.

The above assumptions not only warrant that the optimal value function V
⇤ is well-defined but also

make it satisfy some regularity conditions.

Proposition 1 (Regularity of the optimal value function) Given a group system as in (1) satisfy-
ing Assumptions S1 and S2 with an immediate reward satisfying Assumptions C1 and C2. Then, an
optimal policy u

⇤ exists. In addition, if the discount factor � > L, then the optimal value function
V

⇤ is bounded and Lipschitz continuous; otherwise, V ⇤ is Hölder continuous with some exponent
0 < ↵ < 1, where L denotes the Lipschitz constant of F .

Proof. For the existence of u⇤, we note that the value function V is also a function of u. Then, it
suffices to show that V is a continuous function of u and the space of all control polices satisfying
Assumption S1 is compact, because any continuous function defined on a compact space attains its
minimum. The regularity of V ⇤ directly follows from the dynamic programming principle. See
Appendix A for the detailed proof. ⇤

3 HIERARCHICAL REPRESENTATION FOR REINFORCEMENT LEARNING OF
GROUP SYSTEMS

The existence of optimal policies discussed in the previous section lays the foundation for the de-
velopment of an RL approach to training the dynamic behavior of group systems consisting of
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large-scale intelligent agents. One major challenge to this end is unarguably the large group size,
leading to the high dimension of group systems, so that the learning problem experiences the curse
of dimensionality. To address this challenge, we will propose the novel moment representation of
group systems, which gives rise to a hierarchical structure of the RL problem for tackling it in a
low-dimensional environment.

3.1 MOMENT KERNEL REPRESENTATIONS OF GROUP SYSTEMS ON FUNCTION SPACES

The method of moments concerns with representing a function or probability distribution in terms of
a sequence of numbers, called the moments. It was established by the Russian mathematicians P. L.
Chebyshev and A. Markov at the end of 19 century, and then extensively studied under different set-
tings, notably the Hamburger, Hausdorff, and Stieltjes moment problems (Hamburger, 1920; 1921;
Hausdorff, 1923; Stieltjes, 1993). The most general formulation of the moment problem in the mod-
ern language was proposed by the Japanese mathematician K. Yosida (Yosida, 1980). The functional
interpretation of group systems mentioned in Section 2.1 opens up the possibility of introducing the
method of moments to study group systems.

To fix the idea, we consider the case that the group system in (1) evolves on a Banach space B
consisting of real-valued integrable functions. We further assume that the dual space B⇤, i.e., the
space of continuous linear functionals on B, is separable, and hence has a countable basis {�k}k2N.
Then, we define the k

th-moment of the group system to be

mk(t) = h�k, xti, (3)

where h·, ·i : B⇤⇥B ! R denotes the dual-primal space pairing, i.e., mk(t) is essentially the evalu-
ation of the function �k : B ! R at the point xt 2 B. To be more specific, because xt is assumed to
be integrable, �k can be represented by an integral kernel such that mk(t) = h�k, xti =

R
⌦ �kxtdµ

for some measure µ on ⌦. On the other hand, Yosida’s moment problem implies that the state xt

of the group system corresponds to the associated moment sequence m(t) = (m0(t),m1(t), . . . )
in a one-to-one manner and vice versa (Yosida, 1980). Indeed, we can think of m(t) as the kernel
representation of the group state xt with respect to these moment kernels �k, k 2 N.

The moment kernel representation of the group system in (1) can be derived by using the linearity of
the dual-primal pairing as d

dtmk(t) =
d
dt h�k, xti =

D
�k,

d
dtxt

E
= h�k, F (·, xt, u(t))i, where the

second equality follows from the continuity of the functional �k. A comparison between the term
h�k, F (·, xt, u(t))i and the definition of the moment in (3) immediately reveals that it is nothing but
the k

th-moment F (�, xt, u(t)) as a function of �. Let F̄ denote the entire moment sequence of F ,
then we obtain the moment kernel representation of the group system as

d

dt
m(t) = F̄ (m(t), u(t)). (4)

The derivation of the moment system in (4) further indicates that the moment kernels �k not only
kernelize the group state as in (3) but also the entire group system.

More importantly, it is worth noticing that even for a group system composed of a continuum of
intelligent agents, i.e., ⌦ is an uncountable set, its moment kernel representation always contains
countably many components. This means that the moment kernelization process can be generically
used as a model reduction to massive-scale group systems, which is also the key feature leading to
the desired hierarchical structure of RL problems for group systems.

3.2 HIERARCHICAL ALGORITHM FOR REINFORCEMENT LEARNING OF MOMENT
KERNELIZED GROUP SYSTEMS

Of course, to carry over RL of group systems to the moment domain, it is inevitable to find the
value function V , defined in (2), in moment kernel representation as well. The derivation is similar
to that of the moment system. Specifically, the integrability assumption on the immediate reward r

(Assumption C2) implies that the order of the two integrals in V can be changed, yielding V (xt) =R1
t e

��s
⇥ R

⌦ r(x(s,�), u(s))d�
⇤
ds, in which the integral with respect to � essentially calculates

the 0th-moment of r(x(s,�), u(s)) as a function of �. Denoting this quantity by r̄(m(t), u(t)), we
obtained the moment kernelized value function as V (m(t)) =

R1
t e

��s
r̄(m(s), u(s))ds.
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Figure 1: Workflow of the proposed hierarchical algorithm for RL of group systems in the moment kernel
representation.

Owing to the aforementioned countable nature of the moment sequence m(t) =
(m0(t),m1(t), . . . ), we consider the hierarchy formed by the truncation of the moment ker-
nelized RL problem. To elaborate it, we let bmN (t) = (m0(t),m1(t), . . . ,mN (t)) be the truncated
moment sequence up to order N , and VN (bmN (t)) be the value function associated to the order
N truncated moment system, that is, d

dt bmN (t) = bFN (bmN (t), u(t)), where as before bFN is the
truncation of F̄ up to order N . It is crucial to observe that VN is essentially the restriction of V
on the space MN consisting of all order N truncated moment sequences. Therefore, V can be
approximated by VN for large enough N , which can then be algorithmically realized by solving a
sequence of RL problems with the truncation order N increasing as shown in Figure 1.

Specifically, we parameterize the value function V of the moment kernerlized group sys-
tem by a parameter vector ✓ 2 Rr and represent it as V (m; ✓), where ✓ can be associ-
ated with a neural network, a kernel function or simply a regression slope (Bertsekas, 2019;
Meyn, 2022). Starting with an initial truncation order N0 and parameter value ✓

(0)
N0

, the best
approximation VN0(bmN0 , ✓

⇤
N0

) of V
⇤
N0

(bmN0), the optimal value function for the order N0-
truncated moment system, can be learned by solving ✓

⇤
N0

= argmin✓L(DN0(t; ✓)), where L
is a loss function, e.g., the L

2-error L(DN0(t; ✓)) =
R1
0 |DN0(t; ✓)|2dt, and DN0(t; ✓) =

VN0(bm⇤
N0

(t); ✓) �
R t
0 e

��t
r̄(bm⇤

N0
(s), bu⇤

N0
(s))ds + e

��t
VN0(bm⇤

N0
(t); ✓) is the temporal differ-

ence. In particular, the optimal policy u
⇤
N0

can be obtained by minimizing the system
Hamiltonian as u

⇤
N0

(t) = argminaH
�
bm⇤

N0
(t),rVN0(bm⇤

N (t)), a
�

= argmina
�
r(bm⇤

N0
(t), a) +

hrVN0(bm⇤
N0

(t)), bFN0(bm⇤
N0

(t), ai
 

, and is generally represented in the feedback form as a function
of bmN0(t). Then, the optimization min✓L(DN0(t; ✓) can be solved by a standard value iteration
or policy improvement (Doya, 2000). Denoting ✓

⇤
N0

= argmin✓L(DN0(✓)), we then pick a new
truncation order N1 > N0 and learn VN1 by using the same procedure from the initial condition
✓
(0)
N1

= ✓
⇤
N0

. Keep increasing the truncation order and repeat the above learning procedure until a
truncation order Nk is reached so that the projection error (see Remark 1 below for the explana-
tion of this terminology) PNk(bm⇤

Nk
(t)) = VNk(bm⇤

Nk
(t); ✓⇤Nk

) � VNk�1(bm⇤
Nk

(t); ✓⇤Nk�1
) satisfies

L(PNk(m̂
⇤
Nk

(t))) < " for some predetermined approximation accuracy " > 0. This algorithm is
shown in Algorithm 1.

Theorem 1 (Moment convergence of reinforcement leaning for group systems) Let u⇤
N and V

⇤
N

denote the optimal policy and optimal value function of the order N truncated moment system,
respectively. Then, there is a sequence of truncation orders Ni 2 N such that u⇤

Ni
! u

⇤ and
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Algorithm 1 Hierarchical algorithm for RL of group systems
Input: x0, F , r, �, L, "
Output: u

⇤

Initialization : Given N0, ✓(0)N0
, P , j = 0

2: Compute r̄

while P � " do
4: Compute bmNj (0), bFNj

Solve u
⇤
Nj

(t) = u
⇤
Nj

(bm⇤
Nj

(t)) = argmina
�
r̄(bm⇤

Nj
(t), a) +

hrVNj (bm⇤
Nj

(t); ✓), bFNj (bm⇤
Nj

(t), ai
 

6: Solve ✓
⇤
Nj

= argmin✓L(DNj (t; ✓)) with the initial condition ✓
(0)
Nj

and DNj (t; ✓) =

VNj (bm⇤
Nj

(t); ✓)�
R t
0 e

��t
r̄(bm⇤

Nj
(s), bu⇤

Nj
(s))ds+ e

��t
VNj (bm⇤

Nj
(t); ✓)

PNj (bm⇤
Nj

(t)) = VNj (bm⇤
Nk

(t); ✓⇤Nj
)� VNj�1(bm⇤

Nj
(t); ✓⇤Nj�1

)
8: P = L(PNj (bm⇤

Nj
(t)))

j  j + 1

10: ✓
(0)
j = ✓

⇤
Nj�1

Pick Nj > Nj�1

12: end while
u
⇤(t) = argmina

�
r̄(bm⇤

Nj�1
(t), a) + hrVNj�1(bm⇤

Nj�1
(t); ✓⇤Nj�1

), bFNj�1(bm⇤
j�1(t), ai

 

14: return u
⇤

V
⇤
Ni
! V

⇤ as i ! 1, where u
⇤ and V

⇤ are the optimal policy and optimal value function of the
moment system in 4.

Proof. The first step is to show the convergence of V ⇤
Ni

to V
⇤ by fully utilizing the fact that V ⇤

Ni
is

bounded by the restriction of V ⇤ on the space consisting of order Ni truncated moment sequences.
The second step is to use the first step to show that V ⇤ is the viscosity solution of a Hamilton-Jacobi-
Bellman equation. See Appendix B for the detailed proof. ⇤
Theorem 1 provides the convergence proof of Algorithm 1, and also offers the theoretical guarantee
that the limiting policy and value function are exactly the optimal policy and value function of the
moment kernelized, and hence the original, group system. Before demonstrating the applicability of
the learning algorithm by using some examples, we would like to point out its remarkable feature
due to the hierarchical structure.

Remark 1 (Optimaliy preserving hierarchy) By the definition of the value function for the trun-
cated moment system, for any j > i, VNi is essentially the restriction / projection of VNj on MNi . In
the algorithm, because VNj (·; ✓⇤Nj

) gives the best approximation of V ⇤
Nj

, its restriction on MNi nec-
essarily approximates V ⇤

Ni
at least as good as VNi(·; ✓⇤Ni

) does. Therefore, this hierarchical learning
structure, with respect to the increasing of the truncation order, indeed preserves the optimality in
each hierarchy.

Conversely, the hierarchical structure also guarantees that higher-ranking problems always start
with better initial conditions, the minimizers of their children problems. Together with the fact that
higher-ranking problems have higher dimensions, it further demonstrates the high efficiency of the
proposed algorithm.

4 EXAMPLE AND SIMULATION

To demonstrate the applicability as well as the effectiveness and efficiency of the proposed RL
algorithm, in this section, we will conduct a detailed investigation into the linear quadratic regulator
(LQR) problem for group systems. It is also worth mentioning that although the LQR problem for
classical linear systems has been thoroughly studied, it remains unexplored for group systems.

To fix the idea, we consider the group system d
dtx(t,�) = �x(t,�) + u(t) defined on L

2([�1, 1]),
the space of real-valued square integrable functions defined on [�1, 1], with the immediate reward
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and discount factor given by r(x(t,�), u(t)) = x
2(t,�)+ 1

2u
2(t) and � = �2.5, respectively. Then,

the value function is defined as V (xt) =
R 1
�1

R1
t e

�2.5t
⇥
x
2(t,�) + 1

2u
2(t)

⇤
dtd�.

Moment kernel representation. The initial step in Algorithm 1 is to kernelize the group system
and value function in terms of moment sequences. In particular, we choose the moment kernels
{�k}k2N to be the set of Chebyshev polynomials, which is an orthonormal basis of L2([�1, 1])
and satisfies the recursive relation 2��k(�) = �k�1(�) + �k+1(�) for all k 2 N, where we
defined ��1 = 0. Then, this recursive relation can be applied to derive the moment kernel rep-
resentation of the system as d

dtmk(t) = d
dt

R 1
�1 �k(�)x(t,�)d� =

R 1
�1 �k(�)

d
dtx(t,�)d� =

R 1
�1 �k(�)[�x(t,�) + u(t)]d� =

R 1
�1 ��k(�)x(t,�)d� +

R 1
�1 �ku(t)d� = 1

2

R 1
�1[�k�1(�) +

�k+1(�)]x(t,�)d�+
R 1
�1 �ku(t)d�, giving d

dtm0(t) =
1
2m1(t)+u(t) and d

dtmk(t) =
1
2 [mk�1(t)+

mk+1(t)] for k � 1. Next, by using the L
2-orthonormality of {�k}k2N, we obtain the

moment kernelized value function as V (m(t)) =
R 1
�1

R1
t e

�2.5t
⇥
x
2(t,�) + 1

2u
2(t)

⇤
dtd� =

R1
t e

�2.5t
R 1
�1

⇥
x
2(t,�) + 1

2u
2(t)

⇤
d�dt =

R1
t e

�2.5t[km(t)k2 + u
2(t)]dt, where km(t)k =

[
P1

k=0 m
2
k(t)]

1/2 is the `
2-norm of m(t). This further indicates m(t) 2 `

2, the space of square
summable sequences so that the moment kernerlized system is a dynamical system defined on `

2.

Moment truncation. For any truncation order N , the truncated moment system is given by a
linear system defined on RN in the form of

d

dt
bmN (t) = bAN bmN (t) + bBNu(t)

=

2

6666664

0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 · · · 0 0

. . .
0 0 0 · · · 0 1
0 0 0 · · · 1 0

3

7777775
bmN (t) +

2

6666664

1
0
0
...
0
0

3

7777775
u(t),

and the value function restricted to the space of order N truncated moment sequences is
V (bmN (t)) =

R1
t

⇥
bm0

N (t)bmN (t) + u
2(t)

⇤
dt, where bm0

N (t) denotes the transpose of bmN (t) 2 RN .

Hierarchical policy learning. We parameterize the value function VN by using an N -by-N sym-
metric matrix ✓N in the way that VN (bmN ; ✓N ) = bm0

N✓N bmN , and choose L to be the L
2-loss.

Then, we vary the truncation order N from 2 to 20, and the simulation results are shown in Fig-
ure 2. Specifically, Figure 2a shows the learned optimal polices u

⇤
N (t) and optimal value func-

tions (evaluated along the the system trajectories) V (bm⇤
N (t); ✓⇤N ) for all N = 2, . . . , 20, from

which we observe that both u
⇤
N (t) and V (bm⇤

N (t); ✓⇤N ) converge to the corresponding shadowed
regions as N increases. To further verify the convergence behavior, we plot the projection error
kVN (·; ✓⇤N ) � VN�1(·; ✓⇤N�1)k =

� R1
0 |VN (m̂⇤

N (t); ✓⇤N ) � VN�1(m̂⇤
N�1(t); ✓

⇤
N�1)|2dt

�1/2 and

ku⇤
N � u

⇤
N�1k =

� R1
0 |u⇤

N (t) � u
⇤
N�1(t)|2dt

�1/2 in Figure 2b, both of which converge to 0 as
desired. To be more specific, the projection error decreases very fast and starts to maintain a small
value from the N = 10, which in turn demonstrates the high efficiency of the proposed algorithm.
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Figure 2: Reinforcement learning for the group system d
dtx(t,�) = �x(t,�) + u(t) defined on the Hilbert

space L2([�1, 1]) by using Algorithm 1, with the truncation order N in the moment parameterization ranging
from 2 to 20. Specifically, (a) shows the learned value functions (top) along the trajectories of the truncated
moment systems driven by the learned optimal control policies (bottom), and both of them are convergent into
the shadowed regions. (b) shows that the L2-error between the value functions, as well as the optimal control
policies, for the order N and N � 1 truncation converges to 0.

Moreover, to check the effectiveness of the moment kernel representation, we also apply the learned
polices to the original group system, and compare the obtained trajectories, denoted by xN (t, ·), with
those obtain by dekernelizing the optimal moment trajectories as bxN (t, ·) =

PN
k=0 bm⇤

N (t)�k(·),
with the simulation results shown in Figure 3. In particular, Figure 3a shows the maximum L

2-
truncation error supt

� R 1
�1 |xN (t,�)�bxN (t,�)|2d�

�1/2 with respect to the truncation order, which
stabilizes to small values starting from N = 10, coinciding with the truncation order at which the
truncation error stabilizes. More specifically, we also plot the time-evolution of the truncation error,
that is,

� R 1
�1 |xN (t,�) � bxN (t,�)|2d�

�1/2 with respect to t, for each N = 2, . . . , 20 in Figure
3b. Although the truncation error accumulates over time, it maintains a small value, and with the
truncation order N increasing, we observe a decrease in the increasing rate of the truncation error
(the curve becomes flat). An efficient way to avoid the accumulation of the truncation error over
time is to repeat restarting the reinforcement learning process after a short period of time.
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Figure 3: Analysis of the moment truncation error. In particular, (a) shows the time-evolution of the L2-error
between the trajectory of the ensemble system and the one recovered from the order-20 truncated moment
system, both of which are driven by the optimal control policy shown in Figure 2a (top) for N = 20, and (b)
plots the maximal truncation error with respect to the truncation order.
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Comparison with conventional reinforcement learning approach. To further demonstrate the
advantage of the proposed algorithm, we compare the above results with those obtained by directly
applying an RL algorithm to the agents sampled from the group system. Following similar nota-
tions as above, here we use N to denote the number of agents uniformly sampled from the the
group system d

dtx(t,�) = �x(t,�) + u(t) with � 2 [�1, 1]. These agents compose of a linear
system defined on RN of the form d

dtxN (t) = ANxN (t) + bNu(t), in which AN 2 RN⇥N is
the diagonal matrix with the entries �k = �1 + 2k/(N � 1) for k = 0, 1, . . . , N � 1 on the
diagonal and bN 2 RN⇥1 is the vector with every entry equal to 1. Correspondingly, the value
function of the sampled system can be represented in the form of a Riemann sum as VN (xN (t)) =

2
N�1

PN�1
k=0

R1
t e

�2.5t
⇥
x
2(t,�i) + u

2(t)
⇤
dt = 2

N�1

R1
t e

�2.5t
⇥
x
0
N (t)xN (t) + u

2(t)
⇤
dt. We then

apply the value iteration algorithm with the sample size ranging from 2 to 20, and the simulation
results are shown in Figure 4. Although, as shown in Figure 4a, the learned optimal value functions
and policies have the trend to become closer as the sample size N increases, their projection error
definitely do not decrease to 0, and hence both of them fail to converge up to the sample size 20.
As a comparison, we would like to reiterate that the proposed hierarchical learning algorithm for
the moment kernelized group system converges at the truncation order 10 as shown in Figure 2b.
However, the critical issue here is that the optimal value function starts to blow-up as we can observe
from the top panel in Figure 4a, which is indeed the ill-pose problem caused by sampling the group
system.
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Figure 4: Reinforcement learning of sampled group systems by using the value iteration algorithm with the
sample size N ranging from 2 to 20. In particular, (a) shows the learned optimal value functions evaluated
along the optimal trajectories (top) and the optimal policies (bottom) for all N = 2, . . . , 20, and (b) plots the
projection error for both the learned value functions and policies with respect to N .

5 CONCLUSIONS

In this paper, we propose a hierarchical algorithm for reinforcement learning of group systems con-
sisting of large-scale, in the limit a continuum spectrum of, intelligent agents. In particular, we
rigorously formulate such a reinforcement learning problem over an infinite-dimensional function
space and then develop a moment kernel representation to transform the group system and its value
function to the moment coordinates. By using the hierarchical structure induced by the “discrete na-
ture” of the moment representation, that is, the moment coordinates always contain countably many
components, we develop a reinforcement learning algorithm to learn the optimal policy of the group
system hierarchically. In particular, each hierarchy in the proposed algorithm preserves the optimal-
ity of all the lower hierarchies, and this observation leads to the fast convergence of the algorithm,
which is verified both theoretically and numerically. Limitations. Because this work focuses on the
”continuous setting” with moments defined in terms of integrals, in practice, a sufficient amount of
”discrete” data is required to obtain an accurate approximation of moments.
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