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Abstract001

This study explores the impact of feature selection,002

particularly node centrality measures, on road type003

classification within a road network graph using004

Graph Neural Networks (GNNs) and traditional ma-005

chine learning models. By training six models on006

three distinct feature sets—primary road character-007

istics (S1), centrality measures (S2), and a combined008

feature set (S3)—we analyze how different feature009

representations affect model accuracy in distinguish-010

ing road types. The GraphSAGE model using S1011

achieved the highest test accuracy (0.89), indicating012

that primary road characteristics are highly effec-013

tive for classification, whereas the Random Forest014

model performed worst on the same set, achieving015

only 0.17 accuracy. Visualized embeddings from S1016

models reveal effective clustering by road type for017

models like GraphSAGE, particularly for residen-018

tial and tertiary roads, underscoring the model’s019

capability to capture nuanced structural relation-020

ships. These findings indicate that feature selection,021

especially the inclusion of relevant node centrality022

measures, plays a crucial role in enhancing classi-023

fication, though further improvement may require024

hybrid models or additional contextual data sources025

to address limitations in differentiating road types026

with overlapping attributes.027

1 Introduction028

Graph Neural Networks (GNNs) offer a robust frame-029

work for developing deep neural networks tailored030

to graph data. A key feature of GNNs is their use031

of neural message passing, where vector messages032

are communicated between nodes and processed033

through neural networks [1, 2]. The motivation for034

employing GNNs arises from the shortcomings of035

traditional neural networks, which typically function036

best with Euclidean data structured in regular grids,037

such as images (2D pixel grids) or sequences (1D038

time-ordered arrays). In such cases, data relation-039

ships are often implicit or follow a predetermined040

pattern, as seen with adjacent pixels in images or041

sequential time steps in data. However, many real-042

world scenarios present non-Euclidean data, where043

entities exhibit complex and irregular interconnec-044

tions that cannot be easily organized into grids or045

arrays. A good example is a road network, where046

intersections serve as nodes and the roads as edges. 047

Unlike the structured nature of images or sequences, 048

road networks feature irregular connections—some 049

intersections may link to multiple roads, while others 050

could connect to just one or two [3]. Additionally, 051

the distances between intersections may vary, and 052

the relationships among roads and intersections of- 053

ten carry crucial information, such as traffic dynam- 054

ics, optimal routes, or road conditions. The existing 055

literature categorizes the application of GNNs in 056

graphs into three main tasks: graph-level, edge- 057

level, and node-level tasks [4]. Researchers have 058

effectively harnessed GNNs for various applications 059

within road networks, including tasks such as road 060

surface extraction [5–7], traffic prediction [8–10], and 061

road crack detection [11]. In particular, road type 062

classification has benefited from edge-based [12] and 063

node-based approaches [13], illustrating the versa- 064

tile capabilities of GNNs in addressing real-world 065

challenges. GNN architectures can be categorized 066

into three main types: convolutional mechanisms, 067

attention mechanisms, and autoencoder mechanisms 068

[4]. The convolutional mechanism, typically referred 069

to as GCN, employs convolutional or pooling opera- 070

tions on graph structures. This method effectively 071

extracts richer representations for each node, which 072

can be applied to node classification tasks. How- 073

ever, a limitation of this approach is its inherently 074

transductive nature; it requires the presence of all 075

nodes during training, making it difficult to gen- 076

eralize to unseen nodes. This challenge led to the 077

development of GraphSAGE [14], which introduces 078

an inductive model capable of accommodating new 079

nodes, thus enhancing its applicability. In contrast, 080

attention mechanisms differentiate themselves from 081

GCN-based models by assigning variable contribu- 082

tions from different neighboring nodes to the target 083

node. This allows the model to concentrate on the 084

most relevant information, improving the overall 085

effectiveness of the classification process. The utility 086

of the autoencoder mechanism lies in its ability to 087

facilitate unsupervised learning, enabling the cre- 088

ation of low-dimensional embeddings from large sets 089

of unlabeled training data [1]. Despite the com- 090

petitive performance of GNNs in classifying graph- 091

structured data, it is crucial to emphasize feature 092

selection to maintain high performance [15]. In real- 093

world applications, features of neighboring nodes 094

across different hops may not always correlate with 095
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the target node’s features, leading to potential noise096

in the model’s aggregation process. Additionally,097

addressing the challenge of imbalanced datasets is098

essential, as such imbalances can significantly im-099

pact model performance [16]. By focusing on these100

aspects, we can further enhance the effectiveness101

and robustness of GNN implementations in various102

applications. Through the presented Graph Neural103

Networks (GNN) arhictectures, this study aims to104

observe the performance associated when road net-105

work graphs are used as input for node classification106

task, especially road network may have a property107

of homophily and heterophily [17]. To be specific,108

the study aims to achieve the following objectives:109

1. Train four GNN models using three sets of fea-110

tures: (1) primary road network characteris-111

tics: number of intersections connecting the112

road, speed limit, length, number of lanes, and113

oneway attribute denoting if the road accepts114

one or bidirectional traffic, (2) node centrality115

measures, and (3) the primary road network116

features and node centrality measures.117

2. Train four baseline machine learning models118

using the same feature set in the previous item.119

3. Compare the performance of these models120

across these three feature sets with other base-121

line machine learning models.122

This work offers a novel contribution by exploring123

a unique set of objectives that, to the best of the re-124

searchers’ knowledge, has not been comprehensively125

studied before. Specifically, it focuses on feature-126

engineered node attributes within road networks,127

including various centrality measures. Addition-128

ally, there has been limited investigation into using129

road network information for node classification of130

road types with the proposed feature sets. While131

mathematical graphs have a universal definition, the132

specific context and characteristics of road network133

data present challenges when adapting deep learn-134

ing architectures that have been successful in other135

domains. This highlights the importance of ana-136

lyzing road network data in this particular context.137

Furthermore, the research by [18] emphasizes the po-138

tential benefits of incorporating additional features,139

such as road lanes, to enhance predictive accuracy.140

2 Methods141

2.1 The Road Network Data142

This study focuses on extracting road network in-143

formation from selected regions within the Na-144

tional Capital Region of the Philippines using Open-145

StreetMap (OSM). It highlights an observed class146

imbalance regarding highway types. In contrast147

to the approach taken by [13], which involved re- 148

categorizing labels into different classes, we ad- 149

dress this imbalance by selectively choosing a sub- 150

set of highway categories: residential, tertiary, 151

secondary, primary, and unclassified. To en- 152

hance the quality of our analysis, we preprocess the 153

data to ensure that the resulting graph is undirected, 154

connected, and simple, thereby eliminating any mul- 155

tiple edges. Following this, we employ Geographic 156

Information Systems (GIS) to streamline the graph 157

partitioning process, which is essential for organizing 158

the training, testing, and validation sets, as illus- 159

trated in Figure 1. This method ensures that each 160

edge set remains mutually exclusive. 161

Figure 1. The Road Network Data.

Data Streets Nodes

Train 6009 4551
Test 4027 2868

Validate 1707 1253

Table 1. Street and Intersection Count of Train, Test,
Validate Sets.

This study explores three distinct input fea- 162

ture vectors to enhance our understanding of 163

road dynamics. The first vector focuses on 164

primary road characteristics, incorporating el- 165

ements such as maxspeed, length, oneway, 166

intersection count, and number of lanes. The 167

second vector delves into node centrality measures, 168

which include degree centrality, betweenness 169

centrality, and closeness centrality. Addi- 170

tionally, we examine the effects of combining both 171

feature sets to provide a more comprehensive analy- 172

sis. All numeric features (except oneway) are stan- 173

dardized which transforms the data: 174

x
′

i =
xi − µ

σ
(1) 175

where µ is the mean, σ is the standard deviation 176

of the features in the training set. In order to process 177

the networkx graph it needs to be first converted 178

into the format used by PyTorch Geometric, which 179
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requires the node feature matrix, edgelist, and labels180

of each node.181

2.2 The GNN Pipeline182

This study uses four GNN-based models trained183

and evaluate separately: Graph Convolutional Net-184

works (GCN) [19], ChebNet [20], Graph Attention185

Networks (GAT), and GraphSAGE and four base-186

line models: Random Forest (RF), Support Vector187

Classifier (SVC), Naive Bayes Classifier (NB), and188

Recurrent Neural Networks (RNN). The GNN mod-189

els follows the architecture depicted in Figure 2.190

For the first model, once the graph features are191

prepared, they are passed into a GCN layer where192

for each node v, the model aggregates the features193

of its neighbors and transforms them using learnable194

weights. The layer output is computed as:195

H(l+1) = σ
(
ÃH(l)W(l)

)
(2)196

H(l) is the feature matrix of the nodes at layer197

l, Ã is the normalized adjacency matrix, which is198

computed as:199

Ã = D− 1
2 (A+ I)D− 1

2 (3)200

such that I is the identity matrix and D is the201

degree matrix. W(l) is the learnable weight matrix202

for layer l and σ is the activation function. Note203

that the first layer accepts the data features as input204

given as:205

H(0) = X (4)206

The input layer receives the feature matrix and207

edge index, which represent the dual graph nodes208

and their connections, respectively. The first hidden209

layers applies the first graph convolution operation,210

which makes use of the eLU activation and dropout211

as displayed in equation 5:212

H(1) = Dropout
(
eLU

(
ÃXW(0)

))
(5)213

to produce the hidden representation at layer 1,214

for which is taken by layer 2 where a second graph215

convolution is applied to produce the logit matrix216

Z|V|×C , where |V| is the number of nodes and C is217

the number of classes, computed using equation 6:218

Z = ÃH(1)W(1) (6)219

The output layer then applies the log softmax220

function to the logits to produce the final class prob-221

abilities. When dealing with large or small logits,222

computing the softmax function directly can lead223

to numerical instability due to the exponentiation224

of these values. This can result in overflow (very225

large numbers) or underflow (very small numbers226

approaching zero), which can cause NaN (not a num-227

ber) results, which makes log softmax function more228

advantageous in some cases. The model ChebNet229

[20], a generalization of the GCN framework, is also 230

used that applies Chebyshev convolution layers to 231

the node features, mathematically executed using 232

the equation: 233

x(l+1) = σ

(
K∑

k=0

θkTk(L̃)x
(l)

)
(7) 234

where: x(l) is the node feature matrix at layer l, 235

Tk(L̃) are Chebyshev polynomials applied to the 236

normalized Laplacian L̃, θk are learnable parame- 237

ters, σ is a non-linear activation function (ReLU in 238

this case), and K is the polynomial order. The net- 239

work used in this study is composed of two layers of 240

Chebyshev convolution, with dropout applied after 241

the first layer to prevent overfitting. The ability of 242

ChebNet to compute Chebyshev polynomials of the 243

normalized graph Laplacian L̃ in linear time relative 244

to the polynomial order K represents a significant 245

advantage over traditional spectral graph convolu- 246

tional networks (GCNs), which rely on computa- 247

tionally expensive spectral decompositions. While 248

GCNs face a complexity of O
(
n3
)
due to the need 249

to evaluate eigenvalues and eigenvectors of the graph 250

Laplacian, ChebNet uses Chebyshev polynomial ap- 251

proximations to express graph convolutions as poly- 252

nomial evaluations without requiring a full spectral 253

decomposition. This is facilitated by the recursive 254

definition of Chebyshev polynomials, given as: Base 255

Cases: 256

T0(x) = 1 (constant polynomial)

T1(x) = x (linear polynomial)

Recursive Relation: For k ≥ 1 : 257

Tk+1(x) = 2xTk(x)−Tk−1(x)

which allows for efficient computation by building 258

on previously calculated values, resulting in only 259

O(K) computations for K polynomials. The main 260

operations involve multiplying the graph Laplacian 261

by these polynomials, yielding an overall complexity 262

of O(K ·m), where m is the number of edges in the 263

graph. Consequently, ChebNet effectively harnesses 264

the graph structure to aggregate information across 265

both local and distant node relationships while signif- 266

icantly reducing computational overhead. Two other 267

GNN models are trained, the GAT and GraphSAGE. 268

GAT introduces the concept of attention to graph 269

neural networks, allowing the model to assign dif- 270

ferent weights to neighbors based on their relevance 271

to a given node. This is achieved by learning atten- 272

tion coefficients, which determine the importance 273

of neighboring node features when aggregating in- 274

formation. After computing these coefficients, GAT 275

aggregates information from neighboring nodes by 276

taking a weighted sum of their features, allowing the 277

network to focus on more relevant neighbors. Graph- 278

SAGE, in contrast, follows a neighborhood sampling 279
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Figure 2. The GNN Pipeline

and aggregation approach, where each node aggre-280

gates information from a sampled set of its neighbors,281

making it particularly useful for inductive settings282

where new nodes are encountered during testing.283

GraphSAGE aggregates neighborhood information284

using functions such as mean, LSTM-based, or pool-285

ing aggregators, represented as:286

h
(l+1)
i = σ

(
W(l) ·AGG

(
h
(l)
i ∪ h

(l)
j ,∀j ∈ N (i)

))
(8)287

where h
(l+1)
i represents the node embeddings at288

layer l + 1,W(l) is a layer-specific learnable weight289

matrix, and AGG is the chosen aggregation function,290

in this case the mean function. The performance291

metrics include accuracy, precision, recall, F1-score292

and will be compared across different feature sets.293

3 Results and Discussion294

This section discusses the results obtained from train-295

ing six machine learning models for the node clas-296

sification task using a road network as the input297

graph. The analysis reveals significant differences in298

performance across various models and feature sets,299

emphasizing the importance of feature selection in300

machine learning applications. The GraphSAGE301

model utilizing feature set S1, which focuses on pri-302

mary road characteristics, achieved an impressive303

test accuracy of 0.89, as shown in Table 2. In con-304

trast, the Random Forest (RF) model recorded the305

worst accuracy of 0.17 with the same feature set. It306

is important to highlight the effects of changing the307

feature set for each model. For instance, the best-308

performing model for S1, D4, exhibited a drastic309

drop in accuracy when tested with node centrality310

features only (S2) and combination (S3), achieving311

only 0.48 and 0.59 accuracy, respectively. This sug-312

gests that centrality measures may not adequately313

capture the rich contextual information and com-314

bining it with road features may not be sufficient.315

Notably, there is an increase in performance for RF,316

SVC, RNN when S2 and S3 are used in training,317

although their accuracy are still inferior compared318

to the best values found in each feature set. While319

the Naive Bayes (NB) model is not based on Graph 320

Neural Networks (GNNs), its performance proves 321

to be competitive with that of the Graph Attention 322

Network (GAT). The node embeddings obtained 323

from S1 models are reduced into 2 components us- 324

ing t-SNE and are visualized in Figure 3. The figure 325

shows the comparison of various models used for 326

road type classification, with each road segment 327

colored according to the ground-truth classification 328

of the embedding: primary, residential, secondary, 329

tertiary, and unclassified. 330

In general, GNN-based models exhibit dense and 331

cohesive clustering patterns across various road 332

types, with particularly close associations among res- 333

idential roads. However, the GCN and GAT models 334

face challenges in distinguishing tertiary roads from 335

other highway types. Although ChebNet achieves 336

lower intra-cluster distances than GCN and GAT, 337

GraphSAGE produces better separation across res- 338

idential, tertiary, primary, and unclassified road 339

types. Despite these improvements, all GNN models 340

struggle to separate tertiary roads from residential 341

roads, primarily because these road types share sim- 342

ilar physical characteristics. The distinction arises 343

more from functional aspects and contextual ele- 344

ments, such as infrastructure and nearby buildings; 345

for instance, while both road types share similar 346

traits, residential roads primarily serve neighbor- 347

hoods and subdivisions. GraphSAGE also encoun- 348

ters difficulty distinguishing secondary highways, of- 349

ten overlapping with primary and unclassified roads. 350

This observation aligns with the role of secondary 351

roads, which, while not as critical as primary high- 352

ways, are integral to national and local route net- 353

works. In urban areas, secondary roads often serve as 354

major arteries with characteristics similar to primary 355

roads, such as lane count and intersection frequency, 356

but are distinguished by surrounding infrastructure 357

and the topological layout of the city. Unlike GNN- 358

based models, traditional machine learning models 359

show poorer separation between ground-truth road 360

labels, often classifying road types into more than 361

five classes due to more dispersed embeddings. This 362

indicates that traditional models struggle to capture 363

the graph’s structural relationships effectively. 364
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Figure 3. S1 Feature Set: Visualization of the node embeddings learned by the different models.

Table 2. Accuracy Results for S1, S2, and S3 Across
All Models

Model S1 S2 S3

D1 (GCN) 0.70 0.76 0.72
D2 (ChebNet) 0.80 0.75 0.74
D3 (GAT) 0.79 0.62 0.74
D4 (GraphSAGE) 0.89 0.48 0.59
B1 (RF) 0.17 0.43 0.44
B2 (SVC) 0.21 0.76 0.74
B3 (NB) 0.77 0.59 0.61
B4 (RNN) 0.12 0.52 0.54

Another analysis is conducted by focusing on the365

S1, the superior feature set, through the F1, Preci-366

sion, Recall, Macro, and Weighted averages across367

all models as shown in 4 and 5. For GCN, the368

macro avg and weighted avg show an imbalance369

in the prediction performance across classes, with370

relatively high performance for the residential class371

(precision = 0.90, recall = 0.79), but poor for the372

other categories like secondary (precision = 0.29)373

and unclassified (precision = 0.00). The ChebNet374

has improved accuracy and better performance in375

classes like tertiary (precision = 0.61, recall = 0.69),376

balanced performance between classes compared to377

D1, as seen in the macro average, but still strug-378

gling with unclassified. The precision remains low379

for unclassified label in D3. In D4, the model has380

significantly improved predictions for tertiary (F1-381

score = 0.83) and strongest performance on the382

residential class (F1-score = 0.97). In general, it383

is seen that there is a persistent struggle with the384

unclassified class in all GNN models. In terms of385

baseline models, B1 and B2 fails to generalize well386

to other categories: B1 seems to overfit the primary387

class (precision = 1.00) and B2 performs best on388

secondary roads (recall = 1.00), though at the cost389

of low precision in many classes. Like the GNN390

models, the NB struggles with unclassified roads.391

Figure 4. S1 Feature Set: Precision, Recall, and F1
Scores for different classes across all models.

Figure 5. S1 Feature Set: Macro and Weighted Average
of Precision, Recall, F1 scores across all models.

Finally, the behavior of the two superior models 392

on S1, the ChebNet and GraphSAGE are analyzed 393

through modifying the essential mode parameters 394

and its effect with respect to running time and accu- 395

racy. According to Figure 6, increasing the number 396

of hidden dimensions in GraphSAGE generally leads 397

to better accuracy, but with some fluctuations. This 398

suggests that higher hidden dimensions may allow 399

the model to capture more complex relationships be- 400
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tween road properties (features) and highway types401

but could also mean that beyond a certain complex-402

ity, the model might start overfitting or failing to403

generalize well to certain node types and the increase404

in hidden dimensions does not directly lead to higher405

accuracy, given that the increase is only of minute406

places. As hidden dimensions increase, training time407

is relatively stable within seven to nine seconds of408

running time. On the other hand, the same figure409

shows the result how the polynomial degree of the410

Chebyshev polynomial affects the ChebNet accuracy411

and running time. The Chebyshev polynomial de-412

gree determines how far the influence of each node’s413

features can propagate across the graph. In a road414

network, this corresponds to how much influence415

surrounding streets (connected streets) have on a416

given street’s highway type. However, higher poly-417

nomial degrees do not consistently improve accuracy,418

although there is trend seen in K = 1 to K = 7.419

The fluctuating performance could be due to the420

model focusing too much on distant nodes, which421

might be less relevant for classifying a street’s high-422

way type. The observed instability in accuracy may423

relate to the dual characteristics of road networks,424

which can display both heterophily and homophily.425

Heterophilic networks consist of connected nodes426

that possess dissimilar features. In the context of427

road networks, this would refer to streets that are428

directly linked but differ in highway classification429

(for instance, a residential street connecting to a430

national/primary road) or exhibit contrasting prop-431

erties. Conversely, homophilic networks consist of432

interconnected nodes that share similar attributes.433

For example, streets that are connected may all fall434

under the same highway type (such as being resi-435

dential streets) or may have similar characteristics436

like speed limits or lane counts.437

To conclude this section, the experiments per-438

formed to analyze the effects of node centrality are439

composed of four parts: (1) test accuracy of six ML440

models on three feature sets, (2) the visualization of441

the node embeddings on the best feature set across442

all models, (3) the classification metrics for the best443

feature set, and (4) accuracy, running time behavior444

of the two models, GraphSAGE and ChebNet, when445

two parameters are modified. The results showed446

that there is a significant difference when GNN and447

traditional ML models are subjected to different448

feature sets, which can introduce noise and redu-449

dancy in the embedding space, just like what [15]450

found out that using all node features for learning451

on node classification task leads to sub-optimal per-452

formance. The visualization of the embeddings has453

also provided insight on how classes exhibiting simi-454

lar characteristics affect the ability of the model to455

learn the clustering by comparing the distribution of456

points across the embedding space and the ground457

truth labels.458

4 Conclusion and Recommen- 459

dations 460

This section discusses the results from training six 461

machine learning models on a road network graph 462

for node classification. The analysis shows that 463

GNN-based models, especially GraphSAGE, per- 464

form best in clustering road types, leveraging local 465

neighborhood structures to capture subtle distinc- 466

tions between road types. The results also emphasize 467

how model performance fluctuates with feature set 468

variations. For example, the top-performing model 469

for S1 (D4) saw significant drops in accuracy when 470

using only centrality features (S2) and combined 471

features (S3), achieving accuracies of 0.48 and 0.59, 472

respectively. These findings suggest that centrality 473

measures alone lack the contextual information re- 474

quired for road classification, and combining them 475

with road features may not be sufficient to achieve 476

high accuracy. While the Naive Bayes (NB) model 477

is not GNN-based, its competitive performance com- 478

pared to the Graph Attention Network (GAT) high- 479

lights that traditional models can still yield use- 480

ful results under certain conditions. In conclusion, 481

GNN-based models demonstrate promising cluster- 482

ing capabilities for road classification, particularly 483

with GraphSAGE’s superior separation of residential, 484

tertiary, and primary road types. The neighborhood 485

aggregation mechanism in GraphSAGE provides a 486

more effective capture of local structural variations, 487

helping distinguish road types that have overlap- 488

ping physical characteristics but differing functional 489

roles. However, the challenges GNN models face 490

in separating tertiary roads from residential roads 491

and secondary highways from primary roads reveal 492

inherent limitations in encoding global topological 493

contexts. These road types often share structural 494

similarities—such as intersection frequency and lane 495

configuration—but differ in their roles within the 496

overall network, which includes factors like connec- 497

tivity and surrounding infrastructure. Additional ex- 498

ploration could involve integrating external datasets, 499

such as population density, land use, or traffic data, 500

to enrich the functional context for road types. This 501

approach may enhance model accuracy by allowing 502

for the incorporation of environmental and infras- 503

tructural characteristics that contribute to road type 504

distinctions, especially in urban areas with complex 505

road networks. 506
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Figure A.1. S2 Feature Set: Visualization of the node embeddings learned by the different models.

Figure A.2. S3 Feature Set: Visualization of the node embeddings learned by the different models.
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