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Abstract

Over the past four years, several research groups demonstrated the combination of domain-

specific language representation with recent NLP architectures to accelerate innovation

in a wide range of scientific fields. Chemistry is a great example. Among the various

chemical challenges addressed with language models, retrosynthesis demonstrates some

of the most distinctive successes and limitations. Single-step retrosynthesis, the task

of identifying reactions able to decompose a complex molecule into simpler structures,

can be cast as a translation problem, in which a text-based representation of the target

molecule is converted into a sequence of possible precursors. A common issue is a lack

of diversity in the proposed disconnection strategies. The suggested precursors typically

fall in the same reaction family, which limits the exploration of the chemical space. We

present a retrosynthesis Transformer model that increases the diversity of the predictions

by prepending a classification token to the language representation of the target molecule.

At inference, the use of these prompt tokens allows us to steer the model towards dif-

ferent kinds of disconnection strategies. We show that the diversity of the predictions

improves consistently, which enables recursive synthesis tools to circumvent dead ends

and consequently, suggests synthesis pathways for more complex molecules.

1 Introduction

Finding the optimal combination of readily available chemical building blocks to produce

a desired molecule is the Holy Grail of synthetic chemistry. The objective is to infer the
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individual (reaction) steps leading to a target material from known starting materials.

This method, known as retrosynthesis, is a technique that was long thought to be the

exclusive domain of a small but dedicated group of experts. In today’s world, retrosyn-

thesis is crucial to solving many materials problems. Still, a growing number of experts

is challenged by the complexity of the vast corpus of publicly available chemical informa-

tion. Computers lead to the development of rule-based algorithms in which disconnection

rules were applied to appropriate molecules to achieve the desired transformation. Re-

cent research has leveraged the powerful Deep Learning models to solve the problem and

automate the operation while still allowing for the skilled oversight of human chemists.

Different models have been proposed [23, 5, 24, 6, 21, 4, 8, 25, 28, 13, 26], usually clas-

sified as template-based or template-free models. Template-based models are trained to

predict pre-extracted rules, while template-free models learn the retrosynthetic rules from

the training data. The principle that underlies all these methods is the same: a model

is trained on some data (often the compound to synthesize, given as a text string, an

embedding, or a graph) and then evaluated by comparing its output to a target (the

set of ”optimal” precursors). However, this perspective is sometimes at odds with the

chemistry at hand. In fact, for each target molecule, there is generally a wide variety

of valid disconnections that connect the target molecule to different sets of precursors.

If the dataset were hypothetically perfectly balanced, all conceivable reactions leading

to a target molecule would be evenly represented, but in practice this is far from be-

ing the case. Existing reaction datasets, and consequently models, give more weight to

well-represented reaction classes, thus penalising more interesting but less frequent dis-

connections. For example, Figure 1 shows an insufficient diversity for the proposed list of

disconnections. Here, we interpret diversity as ”chemical class diversity”, considering a

model more diverse in its predictions if these belong to different reaction classes as defined

by NameRXN [2].

To increase the diversity of the predictions in single-step text-based retrosynthesis mod-

els and counteract the effect of imbalanced datasets, we propose a prompt-based scheme

to enhance and guide more diversity in the language model predictions. We introduce a

modified transformer-based model [29, 21]. Inspired by works in natural language pro-

cessing for prompt-based learning [15, 11, 18, 9], we show that concatenating a class

information during training (as an additional token), leads to more diverse predictions

at inference. We experiment with different classification strategies, including clustering

reaction fingerprints [22] to evaluate the adequate number of tokens. We compare the

cluster token prompt model to a baseline translation model in terms of topn accuracy,

round-trip accuracy, class diversity and coverage. After training our model on the propri-

etary Pistachio [3] data, we increased the class diversity of the predictions to an average

of 5.3 for each reaction target compared to 1.9 of the pristine model, while retaining a

high value of 62% for the round-trip accuracy of the disconnections.
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2,3-diamino-6-nitrotoluene

Single-step 
retrosynthesis 

model

[1] 6 6.1 6.1.1 N-Boc deprotection

[3] 6 6.1 6.1.4 N-Ac deprotection

[2] 6 6.1 6.1.1 N-Boc deprotection

[4] 7 7.1 7.1.1 Nitro to amino
[5] 6 6.1 6.1.4 N-Ac deprotection

…

C
onfidence

Figure 1: Classes of the single-step baseline predictions for the 2,3-diamino-6-nitrotolune
molecule, as produced by Schwaller et al. [21]. As can be noted, all but one are
different forms of deprotection ordered by model confidence.

2 Results and discussions

2.1 Introducing the cluster token prompt

We built our one-step retrosynthesis model out of the Transformer model [29, 21, 26].

Transformer models learn a representation of each token in the input string. To repre-

sent molecules, we use the simplified molecular-input line-entry system (SMILES) lan-

guage [30, 31], where atoms and bonds are codified as specific combinations of text

characters. Schwaller et al. [20] developed the tokenization regex used to tokenize the

SMILES. Examples of SMILES strings can be found in Figure 2. The embeddings

learned for each token depend on the context, which allows the model to encode much

more subtle information than a pure one-hot encoding of an atom or bond. To in-

crease diversity, we prepended during training a new token, corresponding to the chem-

ical class of the reaction, in front of each input SMILES product molecule. The clas-

sification was the one provided by the NameRXN classification software and is as fol-

lowing: 0→Unrecognized, 1→Heteroatom alkylation and arylation, 2→Acylation and

related processes, 3→C-C bond formation, 4→Heterocycle formation, 5→Protections,

6→Deprotections, 7→Reductions, 8→Oxidations, 9→FGI, 10→FGA, 11→Resolutions.

The data-preprocessing procedure for training can be visualized in Figure 2 (top).

At test time, the input product molecule can be concatenated to all the available
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Training

Product SMILES

Single-step retrosynthesis model

NameRXN classification

C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N

[Na+].O=P(O)([O-])O.O.OC(C)(C)C.[O-][Cl+]O[Na].
C/C(/C)=C/C.

C1C(C#N)=C(F)C=C(C2CCC3=NC=C(N23)C=O)C=1

[X0] C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N

Inference

Product SMILES

Single-step retrosynthesis model

Token concatenation

C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N

[X0] C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N
[X1] C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N
[X2] C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N
[X3] C1(C(F)=CC(C2CCC3=NC=C(N23)C(=O)O)=CC=1)C#N

…

Conditioned predictions

Figure 2: Top: Data-preprocessing procedure for training. The cluster token is prepended
to the product SMILES of the reaction and the set of precursors is used as the
target. Bottom: Data-preprocessing procedure for inference. A new string
is generated for each molecule where each different available cluster token is
concatenated. Conditioned predictions are then collected for each molecule.

cluster tokens derived from the classification schema (see Figure 2, bottom), generating

X equivalent inputs, where X is the number of cluster tokens used. The first token

seen by the transformer is the cluster token. This will steer the predictions towards

typical disconnections for that class. Collecting all the top1 predictions for the X class-
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tokens (and possibly additional predictions for each of the X class-tokens) leads to a set

of disconnections more diverse than the topN outputs of a regular Transformer model,

which we use as a baseline. The advantage of this strategy is that the steering acts as

a weak influencer of the predictions, rather than a forcing term, such as using a certain

template, which can either lead to failure or success. In comparison to the baseline model,

the cluster token prompt approach allows the model to “select” from a limited pool of

options while yet leaving it with much flexibility. In the following section, we present our

models and the results in more details.

2.2 High diversity single-step retrosynthesis models

As a training corpus, we utilized the proprietary reaction dataset Pistachio [3], consisting

of 2‘447‘596 unique reactions with both precursors and products in SMILES format. In

addition, we tested the procedure on the public dataset USPTO 50k [14], processed by

Ramsundar et al. [17], which we provide together with the code (available as additional

material). Results for this dataset can be found in Appendix 6.

The data were first suitably pre-processed (see Section 3.1). We used two ways to produce

the cluster tokens to prepend in front of each reaction: the first one relies on the NameRXN

classification and the second one on a K-means clustering algorithm. For the K-means

clustering, we identified the clusters with the reaction fingerprints [22] (see Section 3.3 for

details). The models tested are described below:

• baseline: a Transformer model [29, 21] with no cluster-token information.

• 12clusters: a model that utilizes as tokens all the first level classification available

from NameRXN (i.e. classes from ’0‘ to ’11‘).

• 3clustersRandom: a model built on top of the 12 classes from NameRXN which

we grouped randomly in 3 clusters.

• 4clustersRandom: same as the model above, but with 4 clusters.

• 3clustersKmeans: this model results from the application of the K-means clus-

tering algorithm with 3 clusters on the 3 dimensions obtained from a PCA analysis

of the reaction fingerprints.

• 4clustersKmeans: same as the model above, but with 4 clusters.

• optimalKmeans: in this model, we estimated the optimal PCA dimension for

the fingerprints (14) and the optimal number of clusters (10). The procedure is

described in Section 3.3.

Once the token was identified for each reaction, it was prepended to the SMILES string

with the following format: [i] for i = 0...X (see Figure 2), with X being the number of

tokens available in each of the models.
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For the models evaluation, we splitted randomly the data into a training/validation/test

set with a proportion of 80/10/10 for five different random seeds, and we proceeded as

follows:

1. We chose one of the splits randomly and we trained all the cluster token prompt

models. We tested them against the validation set and chose the best performing

model.

2. Then, we merged the train and validation set for the five different seeds and trained

the best prompt-based model plus the baseline model.

3. We compared the so-trained baseline and best models against the test sets.

Each of the trained models, including the baseline, was trained for 260000 steps with 1

GPU (approximately 48 hours of training).
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Figure 3: Model metrics. Top left: coverage. Top right: topn accuracy. Bottom left: class
diversity. Bottom right: round-trip accuracy.
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In Figure 3, we report the results for the prompt-based models evaluated on the vali-

dation set. For each model, we retained the top24 predictions as X ∗ topk = 24 = topN

where X is the number of class tokens for each model and topk is the number of predic-

tions retained for each token-concatenated sample (e.g. for the 12clusters model, X = 12

and topk = 2). The plots report 4 metrics of interest as a function of the number of topN

predictions analyzed (see Section 3.4 for the metrics definition). To properly compare

models, we looked only at top20 predictions (and not top24), as for the optimalKmeans

model only 20 predictions per sample were produced (2 for each token-conditioned input).

All cluster token models show a good coverage (above 95%) after top3 predictions. The

12clustersKmeans model is the only one performing poorly from this point of view.

Looking at the accuracy, we see that it increases slowly and reaches a top20 value between

18% and 25% for all models. In addition to reactants, our retrosynthesis models predicts a

wide range of precursors, and is not limited to the disconnected fragments only. Therefore,

many times the ground truth appears with a slightly different set of reagents, justifying

the low accuracy values. Accordingly, when a model can produce multiple correct answers,

accuracy is not the most crucial metric to consider. We consider the value of the round-

trip accuracy to be more interesting (see Section 3.4). This value measures the ability to

recover the input molecule by running a forward reaction model on top of the predicted

precursors (details on the forward model are in Section 3.2). This metric decreases with

the number of topN predictions considered. The decay is more consistent for models

utilizing a greater number of tokens (12clusters, 12clustersKmeans). Note that this is

to be expected, since we are asking for disconnection conditions that may be impossible

to satisfy for some input molecules. However, a high value of coverage guarantees at least

one proposed valid disconnection per input molecule. It is important to note that round-

trip accuracy does not take into consideration that the top20 predictions for a sample,

even if correct, can all collapse into one. This happens for example if the model predicts

an identical set of reactants (i.e. molecules into which the target is disconnected) and a

different solvent. For this reason, the final metric that we report, the class diversity, is

perhaps the most interesting one. It measures the average of the different (NameRXN)

classes predicted for a given input, considering only the valid predictions (see Section

3.4). The value highly depends on the number of cluster tokens used and differs from one

strategy (NameRXN) to the other (K-means clustering). Using more tokens results in

more diversity in the predictions (5.2 for the 12clusters model at top20 predictions), but

also a higher number of incorrect predictions. The 12clustersKmeans model instead

loses in round-trip accuracy without a relevant compensation on the class diversity side.

The most interesting models are the 12clusters, from the point of view of the increased

class diversity, and the optimalKmeans, which reaches decent values of class diversity

and could be used also in a setting where the reaction classification labels are not available.

In a second step, we chose the best models (12clusters and optimalKmeans), and
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Model Coverage Accuracy Round-trip accuracy Class diversity
Baseline 96.58 ± 0.06 % 28.28 ± 0.05 % 79.50 ± 0.68 % 1.90 ± 0.01
optimalKmeans 97.69 ± 0.04 % 19.02 ± 0.47 % 66.27 ± 0.95 % 3.67 ± 0.02
12clustersKmeans 97.94 ± 0.06 % 18.42 ± 0.31 % 62.03 ± 0.53 % 5.27 ± 0.05

Table 1: Comparison of the prompt-based models against the baseline on the test set.
Uncertainity bounds are computed based on the standard error and reported in
the table.

compared their performance against the baseline. We evaluated our models on five ran-

domly chosen test splits, where, this time, the validation set was included in the training.

The results on the top20 predictions are reported in Figure 4. As can be seen, the

prompt-based model does indeed boost the diversity of the predictions. On the test set,

we achieve an average boost of class diversity of about 3.4 points for the 12clusters

model. For completeness, we report in Appendix 7 the behaviour of the baseline model

and the best models as a function of the topn predictions, with standard errors.
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Figure 4: Final comparison of the best prompt-based models and the baseline against the
test set. The values of the metrics reported are averaged across five random
seeds. For convenience, standard error values are reported in Table 1 .

Table 1 shows the (top20) metrics with standard error bounds for the three models

under consideration, generated from the five different random seed experiments.

For comparison, we report in Figure 5 an example of prediction with the baseline model

and the 12clusters model. While for the baseline the proposed disconnections all belong

to the class of Saponification reactions (6), for the 12clusters model we observe much
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more diversity in terms of reaction classes. Also, looking at the main reactants generated,

the prompt-based model proposes different alternatives (e.g. Acylation reaction versus

Saponification).

2-(4-Cyclopropanecarbonyl-phenyl)-
2-methyl-propionic acid

Saponification
Class 6.2.1

B
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Saponification
Class 6.2.1

Saponification
Class 6.2.1

C
L

U
ST

E
R

 T
O

K
E

N
 P

R
O

M
PT

Acid Hydrolysis
Class 9.4.1

Acylation
Class 3.10.1

Acid Hydrolysis
Class 9.4.1

Saponification
Class 6.2.1

Basic Hydrolysis
Class 9.4.1

Figure 5: A chemical example predictions with the baseline retrosynthesis model and the
prompt-based model.

3 Methods

3.1 Data

The reaction data set used was the proprietary Pistachio [3], derived by text-mining chem-

ical reactions in US patents. All reactions went through a cleaning procedure, outlined

below (the RDKit library was used [12]):

• removal of duplicates and invalid reactions

• merge reactants and reagents: in chemistry reactants are the main actors in the

reaction, but they are helped by other molecules that allow the reaction to take

place (e.g. solvents) even if not contributing atoms to the final product. In our
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work we merged reactants and reagents (also known as ‘precursors’) on the left

hand side of the reaction (e.g. A>B>C → A.B>>C).

• set on the precursors: given no real relationship between the number of times a

molecule appears in the patent reaction and the stoichiometry, we made molecules

unique.

• removal of multi-products reactions: this operation was performed after removing

residual precursors molecules from the product side.

• removal of reactions where the product contains atom types not present in the

precursors side.

• removal of single-atom products.

• removal of reactions where the absolute formal charge exceeded the value of 2.

• removal of reactions where the maximum number of tokens was above 500.

• removal of reactions with the same set of precursors, but different products.

We provide the already cleaned public dataset [14] together with the code.

The cleaned data set was randomly split into training, test and validation sets (80%/10%/10%)

for five different random seeds. One of these splits was used to choose the best cluster

token model, while the comparison to the baseline was performed against all five random

seeds, merging validation and train set.

3.2 Models

Our Deep Learning approach to single-step retrosynthesis does not rely on reaction tem-

plates and takes into consideration both reactant and reagents as the target set. We

formulate the problem of going from the product to the target precursors as a machine

translation task, similar to Schwaller et al. [21]. The molecules were codified as SMILES

strings, tokenized, and fed to the Transformer model [29]. We used the OpenNMT frame-

work [10] and PyTorch [16] to build the models. The hyperparameters were the same used

in related work [21, 27] and were kept fixed throughout all simulations. The transformer

is made up of a set of encoder layers and a set of decoder layers. The tokens of the input

SMILES string are encoded into (learned) hidden vectors by the encoder. Those vectors

are then fed to the decoder to predict the output sequence, one token at a time. The

model size and hyperparameters where taken from previous literature [20]. The number

of layers in both the encoder and decoder was set to 4 (size 384). The main characteristic

of the transformer is the presence of multi-head attention and the number of these heads

was set to 8. Dropout was also included in the model at a rate of 0.1. An Adam optimizer

was used for loss minimization and the starting learning rate was set to 2. An exhaustive

file with all the parameter values used can be found in the code.
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3.2.1 Forward and Classification models

To better evaluate the single-step retrosynthesis models, two additional models are nec-

essary. The first model is the forward prediction model used for reaction prediction (from

precursors to product). This model was built with the same dataset used for the ret-

rosynthesis one, switching source and target. Training files are available together with

the code. The second model is a classification model to classify the retro predictions. For

this, we also relied on transformers. The procedure is the one of Schwaller et al. [22],

model ‘Transformer enc4-dec1’, applied to the same reaction dataset as the retro and

forward model.

3.3 K-means analysis

To evaluate whether adequately conditioned predictions can be obtained without relying

on ad-hoc classification, we generated the conditioning tokens starting from reaction fin-

gerprints [22] and applied a K-means clustering algorithm. Since the fingerprints live in a

high-dimensional space, we first reduced their dimension with principal component anal-

ysis (PCA). To choose the best number of components we performed a variance analysis

and identified the components which capture the greatest amount of variance in the data

(see Figure 6).
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Figure 6: Relevant PCA components analysis. Two drops in the variance are observed
around the 2nd/3rd component and a smaller one around the 14th component.

For the 12clustersKmeans, 3clustersKmeans and 4clustersKmeans models, we

kept only the first three components. For the optimalKmeans model we shot further

and included all the first 14 components. Subsequently, for the K-means clustering, we

relied on a fixed number of clusters for the first models (12clustersKmeans, 3cluster-

sKmeans and 4clustersKmeans). On the other hand, for the optimalKmeans model,

we first performed an analysis to determine the optimal grouping [7]. This can be done by

measuring the sum of the squared distances to the nearest cluster center (inertia). This
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allows computing a plot of the inertias against the number of clusters used. The optimal

k is said to coincide with the elbow of the plot, where the inertia value change starts to

be less significant. The inertia plots can be found in Appendix 8.

Figure 7 shows the clusters generated for the optimalKmeans model. The plots for

the other K-means-models can be found in Appendix 8.
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Figure 7: t-SNE projection for 50000 samples of the optimalKmeans model. The dif-
ferent colours represent the different Kmeans clusters.

3.4 Metrics

For the single-step retrosynthesis model evaluation we computed four different metrics.

The first one is the topn accuracy, which is over-evaluated for this kind of task for the

reasons we have explained before. In this section, we explain in more detail the other

three metrics considered [21, 27].

3.4.1 Round-trip accuracy

The round-trip accuracy metric, unlike the topn accuracy, takes the topk predictions for

a molecule and applies on top of them a forward prediction model (see Section 3.2). If the

original molecule is recovered through the forward model, then that reaction contributes

positively to the accuracy. This is also how we define a prediction to be valid. More

specifically, given X = {(xi, yi)...(xN , yN)} our dataset of N target products with target

precursors, we define the topk round-trip accuracy (RTk) as follows:

RTk(X) =
1

N ∗ k

N∑
i=0

k∑
j=0

xi,j ≡ F (R(xi,j)) (1)

Where xi,j is the jth prediction for the ith sample, R is the retrosynthesis model and F

is the forward translation model.
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3.4.2 Class diversity

Class diversity is the most interesting metric in our analysis. It measures the average

number of reaction classes predicted for each target product molecule. For example,

considering the first k predictions for a set of test molecules, a class diversity of 5 means

that, on average, the (valid) precursors predictions belong to five different reaction classes.

Here “valid” is in the sense of round-trip accuracy. Again, in mathematical terms, given

X = {(xi, yi)...(xN , yN)} our dataset of N target products with target precursors, we

define the topk class diversity (CDk) as follows:

CDk(X) =
1

N

N∑
i=0

|set({C(R(xi,j), xi,j)}kj=1|xi,j ≡ F (R(xi,j)))| (2)

Where set() is the set operation on the elements and || is the set cardinality. As above,

xi,j is the jth prediction for the ith sample, R is the retrosynthesis model and F is the

forward translation model. C is the classification model used to predict the classes (see

Section 3.2).

3.4.3 Coverage

The coverage is the fraction of test samples for which there exists at least one valid

prediction (in the round-trip accuracy sense). Given X = {(xi, yi)...(xN , yN)}, our dataset

of N target products with target precursors, we define the topk coverage (CVk) as follows:

CVk(X) =
1

N

N∑
i=0

any({xi,j ≡ F (R(xi,j))}kj=1) (3)

Where any() outputs 1 if at least one valid prediction exists among the topk for that

sample.

4 Data and code availability

The code used to train the high diversity models can be found at https://github.com/

rxn4chemistry/rxn_cluster_token_prompt. Moreover, we provide the cleaned open-

source dataset on which it is possible to reproduce the procedure, as well as the models

trained on USPTO (details in the GitHub repository). Results for the open-source dataset

are reported in Appendix 6.

The cluster token prompt models trained with Pistachio are also accessible through the

IBM RXN for Chemistry website [1].
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5 Conclusions and Outlook

Exploration and diversity are at the heart of any application of language models to ret-

rosynthesis algorithms. Current retrosynthesis models focus mainly on predicting the

reported ground truth, and do not take into account the ability to generate alternatives.

Our work is the first approach tackling and analysing diversity directly. We have presented

a cluster token prompt-based model that effectively increases diversity in predictions for

single-step retrosynthesis. In addition to improving on other measures, our approach

can increase class variety by a factor of two or more over the baseline. Incorporating a

diversity-boosted single-step retrosynthesis model, into a multi-step pipeline (for exam-

ple, Beam Search) to recursively build disconnection trees, offers a set of very diverse

reactions from which to choose. This strategy improves the search for less obvious and

more engaging paths. It becomes even more of interest in an interactive framework where

chemists can be assisted by AI to plan their retrosynthetic route relying on a wide variety

of chemical disconnection recommendations and indirectly less bias.
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Appendix

6 Open-source dataset results

The procedure applied to the proprietary Pistachio dataset [3] in the main manuscript

was also applied to an open-source dataset, USPTO 50k [14], for reproducibility reasons.

This dataset was chosen because it is the only open-source dataset with public chemical

reactions classification, performed by Schneider et al. [19].

The whole data processing procedure, the dataset, the scripts and the models are avail-

able with the code. For this smaller dataset, we built three random models and three

models based on clustering of reaction fingerprints. We used 2, 5 and 10 tokens for the

clustering. As for Pistachio, we chose the best cluster token prompt-based models by com-

paring them against the validation set. We concluded the analysis with the confrontation

against the baseline on five random seeds on the test set.

In Figure 8, we compare the cluster token prompt-based models trained on USPTO 50k,

while in Figure 9, we compare the final best models.

Differently from the results with Pistachio we notice that the models can better predict

the ground truth precursors. It is to be noted that USPTO 50k is a smaller dataset where

only reactants and not reagents are reported (differently from Pistachio), so the training

task is much easier than with Pistachio. At the same time, though, the round-trip accu-

racy has a quite low value, even if the forward model for the evaluations was trained with

the same USPTO 50k dataset and reached an accuray of 77.46% (and 95.29% accuracy

on the classification model). This behaviour can be ascribed to the fact that the dataset

is too small and it is not able to generalize sufficiently well.

Looking at Figure 9, we see that for the 10clusters model, corresponding to using all

the reaction classes ids as single tokens, the class diversity increases to 3.1. The best

top20 accuracy as well as the round-trip accuracy is reached by the 10clustersKmeans

model.

We also report the standard error values at top20 predictions for the best models,

computed with the same random seeds. The values can be found in Table 2. We observe

that the error bar is more significant for the open-source models. This can be ascribed to

the smaller dataset. Indeed, for only 50k data points we cannot create sufficiently general

splits as for the 2 million data samples from Pistachio. The 10clustersKmeans model

is the best compromise through all metrics.
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Figure 8: Metrics for the models trained on USPTO. Top left: coverage. Top right: topn
accuracy. Bottom left: class diversity. Bottom right: round-trip accuracy.

7 Baseline and other plots

Figure 10 shows the values for the metrics of interest for the baseline model. The shades

mark the standard error bounds for class diversity and round-trip accuracy.

The same plots are reported in Figure 11 and 12 for the 12clusters and the opti-

malKmeans models. For all models, it can be observed that the standard error on the

class diversity is quite high, changing a lot across compounds, but it is the same for the

cluster token prompt-based models and the baseline.

8 Kmeans plots

In this section we report the inertia plots for the K-means algorithm (Figure 13), as well as

the clustering plots for all the prompt-based K-means models (Figure 14). The clustering

plot for the optimalKmeans model can be found in Figure 7.
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Figure 9: Final comparison of the best cluster token prompt-based models and the baseline
against the test set for the open source dataset. The values of the metrics
reported are averaged across 5 random seeds. For convenience, standard error
values are reported in Table 2 .

Model Coverage Accuracy Round-trip accuracy Class diversity
Baseline 94.64 ± 0.97 % 70.94 ± 0.31 % 23.13 ± 0.46 % 1.54 ± 0.29
10clusters 97.28 ± 0.10 % 67.84 ± 0.47 % 30.84 ± 0.65 % 3.06 ± 0.07
10clustersKmeans 97.49 ± 0.15 % 74.09 ± 0.17 % 41.21 ± 0.69 % 2.60 ± 0.04

Table 2: Comparison of the cluster token prompt-based models for USPTO 50k against
the baseline on the test set. Uncertainity bounds are computed based on the
standard error and reported in the table.
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Figure 10: Metrics for the baseline model trained on Pistachio. Top left: coverage. Top
right: topn accuracy. Bottom left: class diversity. Bottom right: round-trip
accuracy.
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