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Figure 1: We propose a sparse non-rigid shape matching approach that is provably invariant to rigid transformations and

global scaling, can (often) be solved to optimality, and scales linearly with mesh resolution. (a, b) Our matchings for non-

rigid shapes with drastically different scale and partiality. (c, d) Our method is the only one that is able to both solve the

majority of pairs to global optimality within a time budget of 1h, as well as scaling up to high mesh resolutions.

Abstract

We propose a novel mixed-integer programming (MIP)

formulation for generating precise sparse correspondences

for highly non-rigid shapes. To this end, we introduce a

projected Laplace-Beltrami operator (PLBO) which com-

bines intrinsic and extrinsic geometric information to mea-

sure the deformation quality induced by predicted corre-

spondences. We integrate the PLBO, together with an

orientation-aware regulariser, into a novel MIP formula-

tion that can be solved to global optimality for many prac-

tical problems. In contrast to previous methods, our ap-

proach is provably invariant to rigid transformations and

global scaling, initialisation-free, has optimality guaran-

tees, and scales to high resolution meshes with (empiri-

cally observed) linear time. We show state-of-the-art re-

sults for sparse non-rigid matching on several challenging

3D datasets, including data with inconsistent meshing, as

well as applications in mesh-to-point-cloud matching.

1. Introduction

Finding correspondences or matchings between parts of

3D shapes is a well-studied problem that lies at the heart

of many tasks in computer vision, computer graphics and

beyond. Example tasks related to such 3D shape match-

ing problems include generative shape modelling [49], 3D

shape analysis [34], motion capture [46], or model-based

image segmentation [5], which are relevant for applications

in autonomous driving, robotics, and biomedicine.

While 3D shape matching is traditionally addressed

in terms of an optimisation problem formulation, in re-

cent years learning-based approaches became more popu-

lar. Specifically, with the advent of geometric deep learn-

ing we have witnessed a dramatic improvement in the per-

formance of data-driven methods for 3D shape matching,

even for difficult settings such as unsupervised learning for

partial shapes [13, 3]. Yet, such learning-based approaches

lack theoretical guarantees, both regarding the (global) op-

timality and often also regarding structural properties of

obtained solutions. While optimality guarantees are cru-

cial in safety-critical domains (e.g. autonomous driving,

or computer-aided surgery), desirable structural properties

may be related to geometric consistency, such as smooth-

ness or the continuity of matchings [48]. From a tech-

nical point of view it is typically straightforward to im-

pose respective structural properties within an optimisation-



Method Init.-free Solver % of optimal pairs† Scale Inv. Rigid Inv. Data

PMSDP [25] ✓ convex solver 5.0% ✓ ✓ point cloud

MINA [6] ✓ MIP solver 11.5% ✗ (✓)⋆ mesh & point cloud

SM-comb [38] ✗ custom solver 23.5%‡ ✗ ✓ mesh

Ours ✓ MIP solver 73.0% ✓ ✓ mesh & point cloud

Table 1: Overview of axiomatic shape matching approaches that have a global optimisation flavour. Our approach is the

only one that at the same time is initalisation-free, scale- and rigid motion-invariant, and works on both meshes and point

clouds. Moreover, ours achieves the best proportion of globally optimal solutions across all experiments. (†summarised

across all datasets. ‡w/o runtime budget. ⋆MINA explicitly optimises for a global rotation using an SO(3) discretisation.)

based framework. However, resulting formulations are

high-dimensional and non-convex, so that finding ‘good’

solutions is a major challenge ± many resulting problems

lead to large-scale integer linear programming formula-

tions, e.g. when imposing discrete diffeomorphism con-

straints [48], or when considering the NP-hard quadratic

assignment problem [21, 30, 35, 36, 17, 47].

Yet, 3D shape matching typically involves profound

structural characteristics (e.g. related to geometric con-

straints), so that, despite the complexity and high dimen-

sional nature of respective optimisation problems, several

formalisms have been proposed that can be efficiently

solved in practice. Often they are built on a low dimensional

matching representation, e.g. in the spectral domain [27],

or in terms of a sparse set of discrete control points that

give rise to a dense correspondence [6]. In this work we

build upon the latter and propose a novel formalism that has

a range of desirable properties, including scale invariance,

rigid motion invariance and a substantially better scalabil-

ity (compared to [6]), which directly leads to a major im-

provement of the matching quality. In Tab. 1 we provide

an overview of the properties of our method and its direct

competitors.

Contributions. We propose a novel mixed-integer pro-

gramming formulation for Scale-Invariant Global sparse

shape Matching (SIGMA) based on a projected Laplace-

Beltrami operator, which combines intrinsic and extrinsic

geometric information and is applicable to a variety of chal-

lenging non-rigid shape matching problems. In summary,

our main contributions are:

• A novel initialisation-free mixed-integer programming

formulation for sparse shape matching, which can be

solved to global optimality for many practical instances

and (empirically) scales linearly with the mesh resolution.

• Our method is provably invariant to rigid transformations

and global scaling, thus eliminating the extrinsic align-

ment required by many shape matching pipelines.

• We propose the use of the projected Laplace-Beltrami op-

erator for geometry reconstruction, which combines in-

trinsic and extrinsic geometric information, while still be-

ing invariant under actions of the Euclidean group E(3).

• We obtain state-of-the-art results on multiple challenging

non-rigid shape matching datasets.

2. Related Work

Shape matching is a widely studied topic and providing

an in-depth survey would be beyond the scope of this pa-

per. We refer the reader to [40] for an overview of non-rigid

matching and only mention directly related literature here.

Quadratic Assignment Problem. The shape match-

ing problem can be formulated as a quadratic assignment

problem (QAP) [23]. The respective QAP aims to find the

optimal permutation between (vertices of) two shapes pre-

serving a predefined pairwise property. For non-rigid shape

matching this property is often chosen as the geodesic dis-

tance between pairs of vertices. However, the QAP is NP-

hard [35], so that most methods rely on convex relaxations

[41, 12, 7, 19], or heuristics [22, 47]. In consequence, these

methods cannot guarantee to find the global optimum of the

original non-convex problem and can thus result in arbitrar-

ily bad solutions. Instead of considering a QAP formula-

tion that seeks to find a permutation between all shape ver-

tices, our approach uses a low-dimensional, discrete match-

ing representation that is combined with dense geometry re-

construction, thereby requiring only the computation of a

permutation between a small number of keypoints.

Matching with Optimality Guarantees. Even though

computing global optima is intractable for general QAP

formulations, some existing works that consider more spe-

cialised shape matching models can be solved efficiently.

This is the case for contour-to-contour [42], contour-to-

image [15, 43], and contour-to-surface [20, 37] matchings.

An analogous approach has been proposed for surface-to-

surface matching in [48]. However, it does not scale to high

resolutions and global optimality cannot be guaranteed. In

[38] an efficient decomposition of [48] has been introduced

which scales to higher resolutions but still cannot guarantee

optimality. The approach of [6] uses a convex mixed-integer

alignment model to find correspondences between two sur-

faces. While its worst-case time complexity is exponential,

it converges to a global optimum in reasonable time in many

practical settings.



Another direction was taken by [27] in which point-wise

correspondences are transformed to functional correspon-

dences which can then be reduced to a low-dim, continuous

problem via the Laplace-Beltrami eigenfunctions. The op-

timisation for this so-called functional map can be done to

global optimality depending on the energy in the spectral

domain, but it is hard to guarantee properties like bijectivity

for the underlying point-wise correspondence, despite sev-

eral recent improvement attempts [28, 32].

Sparse Matching. Sparse matching methods only com-

pute correspondences for a small subset of vertices of the

input. This allows to impose constraints that are otherwise

intractable for full resolution shapes, and therefore leads

to few but often high quality matches. Many dense cor-

respondence methods can only find local optima [47, 14],

and hence rely on a meaningful initialisation, which can f.e.

be given by a robust sparse set of initial correspondences

[39, 50, 29]. The sparsity of the solution in [36] is achieved

by utilising an L1-norm formulation, directly promoting

sparsity. In [25] the problem of non-rigid matching is posed

as high-dimensional procrustes matching problem which is

convexified so that the relaxed problem can be solved to

global optimality. The MINA approach of [6] defines a de-

formation model based on sparse keypoints, and eventually

optimises via mixed-integer programming. While concep-

tually [6] resembles our approach, it explicitly solves for a

rotation matrix. In contrast, ours does not require this and

is thus significantly more efficient, so that we reduce opti-

mality gaps substantially faster, see Fig. 1c.

Scale Invariant Shape Analysis. Shapes with differ-

ent global scaling are ubiquitous, and techniques such as

shape normalisation and scale-invariant feature descriptors

have been developed [4, 10]. A scale-invariant metric incor-

porating Gaussian curvature as the adaptive normalisation

factor has been proposed in [1]. Based on that, an intrinsic

scale-invariant Laplacian-Beltrami Operator (LBO) can be

constructed. In contrast, our projected LBO is also invari-

ant to rigid motions and blended with extrinsic information,

which is found useful for shape reconstruction.

3. Global Sparse Shape Matching

We address the task of sparse non-rigid shape matching,

which we summarise in the following. For each problem

instance, we consider a pair of surfaces X and Y which

are given as triangle mesh discretisations of Riemannian 2-

manifolds embedded in 3D space. These are defined as the

triplets X =
(

X,F(X ), I
)

and Y =
(

Y,F(Y),J
)

, where

the first element denotes the vertices, the second element the

faces, and the third element the indices of keypoints (i.e. a

subset of vertex indices). Tab. 2 summarises our notation.

Our aim is to determine optimal correspondences be-

tween the keypoint vertices XI and YJ (of X and Y ,

respectively), which we represent as a permutation ma-

Symbol Description

X =
(

X,F
(X )

, I
)

shape X

|X|, |F(X )| number of vertices and faces in X

X ∈ R
|X|×3 vertices of shape X

F
(X ) ∈ N

|F(X)|×3 faces of shape X
I ∈ N

n keypoint indices on shape X
XI ∈ R

n×3 keypoint coordinates on shape X

X̃ ∈ R
|X|×4 vertices of shape X in homogeneous coordi-

nates (appended with 1)

X̂ ∈ R
|X|×3 reconstruction of X with connectivity of X

and pose of Y (same vertex ordering as X)

Π
(X ) ∈ R

|X|×|X| projection onto the null space of X̃

h
(X ) ∈ R

|X| orientation-aware features of X

h
(X )
I ∈ R

n orientation-aware features of X ’s keypoints

Y =
(

Y,F
(Y)

,J
)

shape Y
... (analogous as above)

P ∈ {0, 1}n×n permutation of keypoints

Table 2: Summary of our notation.

(proj. LBO) (keypoints)

Figure 2: We utilise synergies between shape match-

ing and shape reconstruction. To this end, rigid motion-

invariant geometric information of shape X , encoded in the

projected LBO ∆
(X )
proj, and the keypoint coordinates YJ of

shape Y , are combined to reconstruct shape X in the pose

of shape Y . Our motivation is that high quality correspon-

dences will lead to better reconstruction and vice versa.

trix P ∈ {0, 1}n×n. In order to find this permutation,

we consider a regularisation that utilises synergies between

shape matching and shape reconstruction. To this end,

we utilise rigid motion-invariant geometric information of

shape X , and then use keypoints of shape Y in order to re-

construct shape X in the pose of shape Y (and vice-versa

with swapped roles of X and Y), see Fig. 2.

For the rigid motion-invariant geometry encapsulation

we introduce the projected Laplace-Beltrami operator in

Sec. 3.1 and our sparse matching formalism in Sec. 3.2.

3.1. Projected Laplace-Beltrami Operator

To encapsulate rigid motion-invariant geometric infor-

mation, we propose a variant of the Laplace-Beltrami op-

erator that we call Projected Laplace-Beltrami operator

(PLBO). For ∆
(X )
stiff being the stiffness matrix component of



the Laplacian [31], we define the PLBO as

∆
(X )
proj :=

(

Π(X )
)⊤

∆
(X )
stiffΠ

(X ), (1)

where Π(X ) denotes the projection matrix

Π(X ) := I− X̃(X̃⊤X̃)−1X̃⊤, with X̃ :=
(

X 1
)

, (2)

and 1 ∈ R
|X| is a vector of all ones. To obtain an opera-

tor that is scale-invariant, the definition of Eqn. (1) is area-

normalised, i.e. based only on the stiffness matrix compo-

nent ∆
(X )
stiff of the Laplacian. Due to the use of the coor-

dinate function, the PLBO is not purely intrinsic but also

incorporates extrinsic information. We found this mix of in-

trinsic and extrinsic information beneficial for accurate cor-

respondence computation, and even though the PLBO uses

the extrinsic coordinate function, it is still invariant under

transformations in the Euclidean group E(3):

Lemma 1. Let ∆(X) := ∆
(X )
proj ∈ R

|X|×|X| be the pro-

jected Laplace-Beltrami operator for the vertices X, de-

fined in Eqn. (1). For any rigid body transformation

(

R t

0 1

)

∈ E(3), with R ∈ O(3), t ∈ R
3, (3)

it holds that ∆(X) = ∆(XR⊤ + 1t⊤).

See the supplementary material for the proof.

While there are several popular deformation models in

the literature [8, 16, 44, 45], we find that existing for-

mulations often depend on the extrinsic pose of the input

surfaces. Therefore, such methods require rigidly aligned

poses since applying a rotational offset XR⊤ can alter the

results for any R ∈ O(3). Compared to the standard LBO

operator ∆(X ) ∈ R
|X|×|X|, the PLBO ∆

(X )
proj projects the

original coordinate function X onto its null space, so that

when used as a regulariser (as we introduce in Eqn. (6))

only components outside the null space are penalised. In

practice, this reduces oversmoothing and leads to more ac-

curate reconstructions, see Fig. 3 for an illustration.

3.2. Sparse Matching

Our final optimisation problem comprises a reconstruc-

tion term Erec, a deformation term Edef and an orientation-

aware term Eori, and reads

min
P,X̂,Ŷ

Erec(P, X̂, Ŷ) + λdefEdef(X̂, Ŷ) + λoriEori(P)

s.t. P ∈ {0, 1}n×n, P⊤1n = 1n, P1n = 1n. (4)

Our formulation is provably invariant under global scaling

and rigid-body motions of the inputs:

Lemma 2. Let
(

P, X̂, Ŷ
)

be a global optimiser of Eqn. (4).

L
B

O
p

ro
j.

L
B

O

Figure 3: Comparison of reconstructed shapes using the

standard LBO and our proposed projected LBO. From the

definition in Eqn. (1) we can show that ∆
(X )
projX = 0, i.e.

this yields a deformation prior that incurs no cost on exact

reconstructions of the initial geometry X. Thus, the pro-

jected LBO is able to better preserve local geometry and

leads to more realistic reconstructions. See the supplemen-

tary material for details.

(a) Let X ′ :=
(

sX,F(X ), I
)

be a rescaled input shape X ,

where a scalar factor s > 0 is applied to the vertex

coordinates. Then
(

P′, X̂′, Ŷ′
)

:=
(

P, X̂, sŶ
)

is a

global optimiser of Eqn. (4) between X ′ and Y .

(b) Let X ′′ :=
(

XR⊤ + 1t⊤,F(X ), I
)

be a rigidly trans-

formed version of X with R ∈ SO(3), t ∈ R
3. Then

(

P′′, X̂′′, Ŷ′′
)

:=
(

P, X̂, ŶR⊤ + 1t⊤
)

is a global

optimiser of Eqn. (4) between X ′′ and Y .

Lemma 2 holds analogously for rescaling and rigid trans-

formations of Y due to the symmetry of the formulation. We

provide proofs in the supplementary material.

The reconstruction term Erec encourages the recon-

structed keypoints X̂I to be best aligned with the given key-

points of Y after they have been reordered via the permu-

tation P (we apply the same in a symmetric manner for re-

constructing keypoints ŶJ from keypoints of X reordered

via P⊤):

Erec =
1

ndY

∥

∥X̂I−PYJ

∥

∥

F
+

1

ndX

∥

∥ŶJ−P⊤XI

∥

∥

F
, (5)

where dX and dY denote the diameter of X and Y , i.e. the

maximum among the geodesic distances between all pairs

of vertices for each shape, respectively.

The deformation term Edef favours reconstructions X̂

which have a similar local geometry to X as it was encoded

in its PLBO ∆
(X )
proj (again, we apply the same in a symmetric

manner for favouring reconstructions Ŷ with a similar local

geometry to Y as encoded by ∆
(Y)
proj):

Edef =
1

|X|dY

∥

∥∆
(X )
projX̂

∥

∥

F
+

1

|Y|dX

∥

∥∆
(Y)
projŶ

∥

∥

F
. (6)



Fig. 3 shows how the use of the PLBO affects X̂.

The orientation-aware term Eori preserves the sur-

face orientation in the correspondence through extrinsic

orientation-aware feature maps h(X ) and h(Y):

Eori =
1

n

∥

∥h
(X )
I −Ph

(Y)
J

∥

∥

F
. (7)

Even though the PLBO uses extrinsic information, it is

still agnostic to intrinsic symmetries, such as left-right

flips, due to the in-built invariance under the group E(3),
which includes mirror-symmetries. Thus, we propose the

orientation-aware regularisation term to disambiguate such

intrinsic symmetries. Similar solutions were developed

previously for the functional maps framework [33]. Our

orientation-aware feature map is defined as

h(X ) =









〈

(∇f (X ))1 × (∇g(X ))1 ,n
(X )
1

〉

...
〈

(∇f (X ))|X| × (∇g(X ))|X|,n
(X )
|X|

〉









, (8)

where n
(X )
i ∈ R

3 are the unit outer normals at the i-

th vertex of X , and f (X ) and g(X ) are two distinct scalar

fields (see Sec. 4.2 and supplementary material for details).

The outer product of their normalised gradient fields con-

vey their orientation through the right-hand rule. Thus, the

resulting feature field h(X ) implicitly encodes such orienta-

tion information. Comparing the features on both surfaces

X and Y allows us to disambiguate intrinsic symmetries.

At the same time, h(X ) maintains (proper) rotation in-

variance. This follows directly from the fact that the gra-

dient fields ∇f (X ),∇g(X ) and normal field n(X ) are both

rotation-equivariant, leaving their inner product unchanged.

4. Experiments

In this section, we qualitatively and quantitatively eval-

uate our proposed method on several shape matching

datasets (including TOSCA [9], SMAL [51], SHREC20

Non-Isometric [11] and the DeformingThings4D-Matching

dataset [24]), and study its performance in terms of accu-

racy, global optimality and global scaling dependency.

4.1. Evaluation Metric

Accuracy. We evaluate the correspondence accuracy ac-

cording to the Princeton benchmark protocol [18], which

reports the percentage of correct keypoints (PCK) for the

given sparse control points. For dense methods [38], we

only consider this subset of sparse keypoints to enable a di-

rect comparison of accuracy.

Optimality. We use the relative optimality gap to mea-

sure the degree of optimality. It is defined as

gap =
∣

∣

∣

obj − obj

obj

∣

∣

∣, (9)

where obj is the best upper bound, and obj the best lower

bound of the objective.

4.2. Implementation Details

Optimisation. The optimisation of all MIP-based meth-

ods was performed using MOSEK 10.0.35 [2] on a desktop

computer with AMD Ryzen 9 5950X 16-core processor and

64GB RAM. A time budget of 1h is set for each problem in-

stance and its global optimum is considered to be found if

the relative gap is reduced below 10−2.

Parameters. We set λdef = 5 and λori = 0.025 in

Eqn. (4) and choose two entries with different frequen-

cies from the scale-invariant wave kernel signature [4] as

f (X ) and g(X ) for the orientation-aware feature defined in

Sec. 3.2. We coin the full formulation in Eqn. (4) as Ours

and additionally show results without the orientation term

Eori as Ours w/o Ori.. Moreover, we note that dropping ei-

ther Edef or Erec will lead to a linear assignment problem for

the permutation P and a failed reconstruction in X̂, Ŷ.

Solution Pruning. We employ the same solution prun-

ing strategy as done in [6] to reduce the search space.

For each keypoint the pruning process keeps k poten-

tial matches based on the similarity of the histogram of

geodesics at each keypoint, see [6] for details. In our exper-

iments, we apply this pruning with k = 11 to all methods

that admit an initial search space reduction, namely to our

method, MINA and PMSDP.

4.3. Competing Methods

We compare against state-of-the-art matching methods

which exhibit a global optimisation flavour.

SM-comb is a combinatorial solver for the elastic shape

matching formalism [48] proposed by Roetzer et al. [38].

It solves an integer linear program to find triangle-triangle

matchings. This approach heavily relies on the discretisa-

tion of both shapes and might fail to produce a feasible so-

lution entirely in cases of large triangulation discrepancies.

PMSDP is a convex semidefinite programming relax-

ation approach proposed by Maron et al. [25]. It uses the

LBO eigenbases as a high-dimensional feature embedding

in the procrustes matching problem and is therefore an in-

trinsic and global scaling invariant formalism. Its imple-

mentation uses a pruning strategy to rule out unlikely cor-

respondences using the average geodesic distance (AGD)

descriptor [18]. We found this to be too aggressive and of-

ten pruning the correct ground truth matches, thus, leading

to poor performance. It is reported in Fig. 4 under PMSDP

vanilla. Hence, we replace its pruning strategy with ours,

as discussed in Sec. 4.2, while keeping all other default op-

tions, and coin it as PMSDP tuned.

MINA. This method proposed by Bernard et al. [6] is

the closest to ours among all baselines. Although MINA

also employs a MIP model for sparse deformable shape
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Figure 4: PCK curves on datasets TOSCA [9], SMAL

[51], SHREC20 [11] and DT4D-M [24]. The values in the

legends are Area-Under-the-Curves (AUC ↑). Across all

datasets our method consistently outperforms all other ap-

proaches. For SMAL and SHREC20 our method produces

nearly perfect results. The orientation-aware term improves

our performance in most cases.

matching problems, the key difference is that their approach

is extrinsic due to its piece-wise affine deformation of the

source to the target shape that is combined with a global

rigid transformation, which in turn makes it computation-

ally more expensive. Note that MINA originally uses an

aggressive search space pruning which we found to prune

a large portion of correct matchings. Thus, we use a more

conservative pruning by allowing twice as many potential

matches as MINA.

4.4. Isometric Shape Matching

TOSCA [9] is a popular dataset for the task of isomet-

ric shape matching. It contains shapes of 9 different cate-

gories and for each category, multiple non-rigidly deformed

shapes. In our experiment, the sparse keypoints provided by

[18] with ground truth labels are considered for matching,

leading to 71 different isometric pairs with 21 to 46 key-

points. We run all experiments with a time budget of 1h1.

Fig. 4 summarises the PCK for the keypoints and

Fig. 5 (left) unveils the statistics of the final relative opti-

mality gaps. Fig. 6 shows qualitative matching results. Our

proposed method outperforms all baselines and is able to

produce the lowest relative gaps. More specifically, ours

successfully certifies 56 out of the total 71 matching pairs

whereas MINA can only certify 8 pairs (cf. Fig. 1c, Tab. 3).

Note that these numbers are different to the ones reported in

1SM-comb runs till its end due to the lack of time limitation.
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Figure 5: (Left) Relative optimality gap statistics on the

TOSCA. The Inf gap reflects cases where SM-comb [38]

fails to find a solution. Our proposed method produces

the lowest and most concentrated relative optimality gap.

(Right) Mean geodesic error for shape pairs with differ-

ent shape scales. PMSDP [25] and our method are the

only ones which perform consistently across different shape

scales, with ours being more accurate.

MINA [6] due to their substantially more aggressive search

space pruning. PMSDP computes sparse correspondences

very fast due to its convex (relaxed) formulation of the orig-

inal non-convex problem. However, it requires an additional

post-processing step to project onto the space of permu-

tations and the final results have larger relative optimality

gaps and are less accurate. SM-comb’s final estimation also

has larger optimality gaps, which results in bad matching

performance. Consequently, it is only able to provide opti-

mality certification for 13 out of all 71 pairs (cf. Tab. 3).

SMAL [51] is a 3D animal dataset containing near-

isometric shapes, such as foxes and dogs. For our exper-

iments we use furthest point sampling (FPS) to select 25
sparse keypoints, consistently subsample the shapes to 5k

faces, and then transfer the selected keypoints to the lower

resolution by nearest neighbour search. This introduces

noise into the keypoint positions while leaving the mesh

topology consistent. Furthermore, the shapes are not pre-

aligned and used ‘as is’ in our experiments.

As shown in Fig. 4, our proposed method works well in

this setting and solves all matching instances to global op-

timality within the 1h budget (cf. Tab. 3). SM-comb [38]

can produce high quality matchings due to the consistent

meshing, which, however, is often not available in practice.

MINA [6] can handle near-isometric shapes and estimate

accurate correspondences. However, it fails to close the rel-

ative optimality gap and thus cannot certify global optimal-

ity. The same holds for PMSDP [25].

4.5. Non-Isometric Shape Matching

SHREC20 [11] contains 14 non-isometric, high resolu-

tion animal shapes, ranging from dog and cow to giraffe

and elephant. It provides consensus-based sparse keypoint

correspondences which we use in our evaluation. Note that

these keypoints are manually selected by a human and an
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Figure 6: Qualitative results on instances of DT4D-M [24] ( 1⃝± 3⃝), SHREC20 [11] ( 4⃝± 6⃝), SMAL [51] ( 7⃝, 8⃝) and

TOSCA [9] ( 9⃝, 10⃝). While our approach consistently produces good results across all datasets, the other approaches have

difficulties: SM-comb [38] (which is continuous and thus may match keypoints of shape X to any point of shape Y) cannot

always find a feasible solution, which results in incomplete solutions ( 3⃝, 6⃝, 9⃝); PMSDP [25] especially struggles with

non-isometric shape pairs ( 1⃝, 4⃝, 6⃝), similarly as MINA [6] ( 4⃝, 8⃝).

absolute ground truth does not exist. In total, 25 shape pairs

are randomly selected from the dataset.

Our proposed method outperforms all competitors on

this dataset and finds the global optima for all 25 match-

ing pairs (cf. Tab. 3). Furthermore, all competing meth-

ods deteriorate heavily in this non-isometric setting. While

it is much harder for MINA [6] to deform the shapes, the

high-dimensional embedding of LBO eigenfunctions used

in PMSDP [25] breaks for non-isometric shapes, hence their

unsatisfactory performance. SM-comb [38] suffers from

the large scale variation and the inconsistent triangulation

present in the dataset.

DeformingThings4D-Matching (DT4D-M) [24] is a re-

cent dataset with humanoid shapes in various poses and in-

consistent meshing. Dense but incomplete ground truth cor-

respondences are provided for evaluation. We randomly

created 60 shape pairs, consistently sample 30 keypoints

and then (independently) subsample shapes to about 10k

faces. In this way, the selected keypoints are not in exact

correspondence. This dataset often exhibits non-isometric

and non-rigid deformations at the same time and poses a

challenging task for all methods.

As shown in Fig. 4, ours yields the best accuracy and

obtains the most globally optimal solutions among all base-

lines despite the present difficulties (Tab. 3). Note that Eori
is less helpful here than in TOSCA since it is designed to

disambiguate symmetry based on the orientation-aware h(·)

which is more accurate for isometric shapes. DT4D-M (cf.

TOSCA) has less isometric shapes (some without any sym-

metry, e.g. prisoner), so Eori has less impact (Fig. 6). Be-

sides the challenges mentioned above, many its shapes con-

tain non-manifold structures which empirically causes more

difficulties.

4.6. Global Scaling

We showed the scale invariance of our method in

Lemma 2 in theory, but also validate our claims with ex-

periments. Shapes with different scales exist naturally, such

as the dog-camel and bison-elephant shown in Figs. 1a & 6,



SM-comb MINA PMSDP Ours

TOSCA (71) 13 8 4 56

SMAL (44) 31 9 2 44

SHREC20 (25) 0 5 0 25

DT4D-M (60) 3 1 4 21

Table 3: The number of matching instances with certi-

fied global optimality within 1h time budget. Numbers in

parentheses in the 1st column are the total number of match-

ing pairs. SM-comb [38] does not allow to set a time budget,

so we let it run until it terminates.

but many methods struggle with such large scale changes.

We randomly select five SHREC20 [11] pairs to further

study the effect of shape scale by rescaling one shape while

fixing the other. More specifically, we fix the shape X
and rescale shape Y by a factor of {0.1, 0.5, 1, 5, 10} re-

spectively, to create 5 instances with different scales of the

same matching pair. As shown in Lemma 2 and Fig. 5

(right), our proposed method is scale-invariant and solves

all matching instances to global optimality independent of

the shape scale, hence consistently achieving the lowest

mean geodesic error. While PMSDP [25] is also scale-

invariant, it fails under non-isometric deformation. All

other baselines depend on shape scale and thus manifest an

accuracy reduction upon scale changes.

4.7. Mesh Resolution

The mesh resolution of shapes often plays an vital role

in the scalability of matching methods, especially for global

methods. The elastic matching model [48] targeted by SM-

comb [38] is constructed in the space of product-surfaces,

and therefore the number of binary variables to be optimised

increases quadratically with the number of mesh triangles.

MINA [6] deforms each mesh triangle using an affine trans-

formation, and in addition requires a global rotation matrix

that drastically increases its runtime due to the involved dis-

cretisation. In our approach the continuous variables X̂, Ŷ

increase linearly with the number of mesh vertices while

the number of binary variables P remains unchanged. As

we demonstrate in Fig. 1d, our approach scales much better

compared to SM-comb and MINA, which stems from our

more efficient matching formalism (e.g. without rotation

matrices opposed to MINA, or without a quadratic number

of binary variables opposed to SM-comb).

5. Discussion & Limitations

Despite the state-of-the-art performance, SIGMA has

also limitations. We show some failure cases due to incon-

sistent orientation maps in Fig. 7. As proof-of-concept, we

showed in Fig. 1b that SIGMA can also work for partial

shapes. However, its performance is far from perfect under

Figure 7: (Left) Mesh to point cloud matching. Shapes in

the top row are matched to respective shapes in the bottom

row. Our method is able to tackle this challenging scenario.

(Right) failure modes. For few shapes our orientation term

does not help to disentangle intrinsic symmetry.

this challenging scenario and often cannot find the global

optimum within an adequate time limit. This is due to the

fact that the equality constraints on P become the inequal-

ities P⊤1 ≤ 1, P1 ≤ 1 (cf. Eqn. (4)) under partiality,

and this increases the size of the solution search space, re-

sulting in longer runtime. We can handle mesh to point

cloud matching quite well, as shown in Fig. 7. Here, we

replace the geodesic distance with Euclidean distances for

the pruning strategy. Another challenge are matchings be-

tween pairs with topological changes. Here, SIGMA strug-

gles since the mesh of one shape could not well-explain the

deformation into the other shape anymore. We leave these

challenging problem settings for future exploration.

6. Conclusion

We presented SIGMA, an initialisation-free MIP formu-

lation for sparse shape matching problems, for which we

demonstrate that it can be solved to global optimality for

many instances. Our method is provably invariant to global

scaling and rigid transformations of the input shapes, elim-

inating the need for an extrinsic shape (pre-)alignment re-

quired by many shape matching methods. Furthermore, we

introduced the projected Laplace-Beltrami operator PLBO,

which combines both intrinsic and extrinsic geometric in-

formation and remains invariant under E(3) group actions ±

we believe it may also be useful for a broad range of other

geometry processing tasks. In our experiments, we demon-

strated that our method outperforms competitive baselines

in terms of matching quality, optimality and scalability,

across a spectrum of challenging 3D shape benchmarks.
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