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Abstract
As machine learning models are increasingly em-
ployed in medicine, researchers, healthcare or-
ganizations, providers, and patients have all em-
phasized the need for greater transparency. To
provide explanations of models in high-stakes ap-
plications, two broad strategies have been outlined
in prior literature. Post hoc explanation methods
explain the behaviour of complex black-box mod-
els by highlighting image regions critical to model
predictions; however, prior work has shown that
these explanations may not be faithful, and even
more concerning is our inability to verify them.
Specifically, it is nontrivial to evaluate if a given
feature attribution is correct with respect to the un-
derlying model. Inherently interpretable models,
on the other hand, circumvent this by explicitly
encoding explanations into model architecture,
making their explanations naturally faithful and
verifiable, but they often exhibit poor predictive
performance due to their limited expressive power.
In this work, we aim to bridge the gap between the
aforementioned strategies by proposing Verifiabil-
ity Tuning (VerT), a method that transforms black-
box models into models with verifiable feature
attributions. We begin by introducing a formal
theoretical framework to understand verifiability
and show that attributions produced by standard
models cannot be verified. We then leverage this
framework to propose a method for building veri-
fiable models and feature attributions from black-
box models. Finally, we perform extensive exper-
iments on semi-synthetic and real-world datasets,
and show that VerT produces models (1) yield
explanations that are correct and verifiable and (2)
are faithful to the original black-box models they
are meant to explain.
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1. Introduction
The rapid adoption of machine learning in many high-stakes
applications, such as healthcare, finance, and more, has
brought with it the rise in popularity of explainable AI
(XAI), which attempts to demystify ML models so that
users can make informed decisions about their trustwor-
thiness, accuracy, and usefulness. XAI methods can be
broadly split into two categories: post hoc explainability
and inherent interpretability. The majority of post hoc expla-
nations aim to explain instance-level decisions of pre-trained
black box models through feature attribution, or labelling
which features were the most relevant to a model’s decision.
These methods often work by approximating model behav-
ior through local linear function approximation (Han et al.,
2022). However, given that these methods are approxima-
tions at the local input regions, they are often not faithful to
the true behavior of models beyond the local regions. This
is particularly concerning because it is difficult to directly
and decisively verify the faithfulness or correctness of the
attributions produced. Inherently interpretable models, on
the other hand, are explainable by nature and are crafted
such that humans can clearly trace the steps, reasoning, and
computations made by a model. As such, the explanations
yielded by these models are highly faithful and can be read-
ily verified; however, the models themselves are often less
useful in practice due to their decreased performance and
limited expressivity.
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Figure 1: Illustration of our method, Verifiability Tuning,
which converts black-box models and their training datasets
into verifiably-interpretable models and the minimal dataset
required to yield them.

In this work, we aim to bridge the gap between the two
aforementioned categories of methods by proposing Veri-
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fiability Tuning (VerT), which converts black box models
into verifiably-interpretable ones. Specifically, the models
produced by our method generate feature attributions that
are verifiable by nature and highly faithful to the underlying
behavior of the original black-box model. Our contributions
are the following:

1. We first formalize a framework for understanding fea-
ture attribution verification, and show theoretically that
feature attributions applied to black-box models are
unverifiable.

2. We propose verifiability tuning (VerT), a novel
method that converts black-box models into verifiably-
interpretable ones, such that the feature attributions of
the resulting models are verifiable, in that model pre-
dictions remain consistent after masking unimportant
features.

3. We perform experiments on semi-synthetic and real-
world computer vision and medical imaging datasets
and show that VerT outputs models that are faithful to
its original input models, and that their feature attribu-
tions are interpretable, verifiable, and correct, in the
sense that they match ground-truth feature attributions.

By proposing a method to produce verifiable and faithful
attributions while still leveraging black-box models, our
work offers a promising approach to address the limitations
of both post hoc explanation methods and inherently inter-
pretable models.

2. Related Work
Post-Hoc Explainability. Post-hoc explainability meth-
ods aim to explain the outputs of fully trained black-box
models either on an instance-level or global level. The most
common post-hoc methods are feature attribution methods
that rank the relative importance of features, either by explic-
itly producing perturbations (Ribeiro et al., 2016; Lundberg
& Lee, 2017), or by computing variations of input gradients
(Smilkov et al., 2017; Srinivas & Fleuret, 2019; Selvaraju
et al., 2017). Perturbation-based methods are especially pop-
ular in computer vision literature (Zeiler & Fergus, 2014;
Fong & Vedaldi, 2017; Fong et al., 2019; Dabkowski & Gal,
2017), which use feature removal strategies adapted specifi-
cally for image data. However, these methods all assume a
specific form for feature removal, and we show theoretically
in Section 3 that this can lead to unverifiable attributions.

Inherently Interpretable Models. Inherently inter-
pretable models are constructed such that we know exactly
what they do, either through their weights or explicit modu-
lar reasoning. As such, the explanations provided by these

models are more accurate than those given by post-hoc meth-
ods; however, the performance of interpretable models often
suffers when compared to unconstrained black-box archi-
tectures. The most common inherently interpretable model
classes include linear models, decision trees and rules with
limited depth, GLMs, GAMs (Hastie, 2017), JAMs (Chen
et al., 2018; Yoon et al., 2019; Jethani et al., 2021), and
prototype- and concept-based models (Chen et al., 2019;
Koh et al., 2020). While (Chen et al., 2019; Koh et al., 2020)
leverage the expressivity of deep networks, they constrain
hypothesis classes significantly and still often suffer from
a decrease in performance. Among these, our work most
closely relates to JAMs, which amortise feature attribution
generation using a learnt masking function to generate at-
tributions in a single forward pass, and trains black-box
models using input dropout. On other hand, JAMs (1) trains
models from scratch, whereas VerT can interpret black-box
models, (2) amortises feature attributions using a masking
function resulting in less accurate attributions, (3) trains
models to be robust to a large set of candidate masks via
input dropout, leading to low predictive accuracy, whereas
VerT trains models only to be robust to the optimal mask,
leading to more flexibility and higher predictive accuracy.

Evaluating Correctness of Explanations. As explainabil-
ity methods grow in number, so does the need for rigorous
evaluation of each method. Research has shown that humans
naively trust explanations regardless of their “correctness”
(Lakkaraju & Bastani, 2020), especially when explanations
confirm biases or look visually appealing. Common ap-
proaches to evaluate explanation correctness rely on feature
/ pixel perturbation (Samek et al., 2016; Srinivas & Fleuret,
2019; Agarwal et al., 2022), i.e., an explanation is correct
if perturbing unimportant feature results in no change of
model outputs, whereas perturbing important features re-
sults in large model output change. Hooker et al. (2019)
proposed remove-and-retrain (ROAR) for evaluating fea-
ture attribution methods by training surrogate models on
subsets of features denoted un/important by an attribution
method and found that most gradient-based methods are
no better than random. While prior works focused on de-
veloping metrics to evaluate correctness of explanations,
our method VerT produces models that have explanations
that are accurate by design, according to pixel-perturbation
methods.

3. A Framework for Verifiability
In this section, we first demonstrate that the attributions
produced by standard models are difficult to verify. We then
introduce formal notions of verifiable models and feature
attributions and characterize the conditions under which
such verifiability can be achieved.
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Intuitively, feature attribution methods work by simulat-
ing the removal of certain features and estimating how the
model behaves when those features are removed: removal
of unimportant features should not change model behaviour.
Typically, this removal is implemented in practice by re-
placing features with scalar values, such as the mean of
the dataset (Zeiler & Fergus, 2014; Samek et al., 2016;
Srinivas & Fleuret, 2019). However, this can result in out-
of-distribution inputs that the classifier mishandles, making
it challenging to verify whether the classifier is solely re-
liant on the signal from the relevant features. To ground this
argument in an example, consider a model that classifies
cows and camels. For an image of a camel, a feature attribu-
tion might note that only the hump of camel and the sand
it stands on are important for classification. As such, we
would expect that the sky was irrelevant to the classifier’s
prediction, and we can concretely test this by altering it and
creating a counterfactual sample. For example, we could
mask the sky with an arbitrary uniform color; however, this
may result in the sample being out-of-distribution for the
model, and its prediction may change drastically even if the
sky was actually not important for prediction. Ideally, we
would be able to mask the sky in a manner that preserves the
on-manifoldness of the image, but this is extremely tricky
and dependent on both the dataset and the model. We for-
malize this argument below by defining feature attributions
with respect to a given counterfactual distribution of masks
that determine feature replacement, which we refer to as
(ϵ,Q)-feature attribution.

Notation. Throughout this paper, we shall assume the
task of classification with inputs x ∼ X with x ∈ Rd and
y ∈ [1, 2, ...C] with C-classes. We consider the class of
deep neural networks f : Rd → △C which map inputs x
onto a C-class probability simplex. This paper considers
binary feature attributions, which are represented as binary
masks m ∈ {0, 1}d, where mi = 1 indicates an important
feature and mi = 0 indicates an unimportant feature. We
shall also use the notation m′ ⊂ m to represent m′ such
that m′

i = 1 on a subset of indices i for which mi = 1. We
say that m′ is a subset mask of m.

3.1. Verifiable Models and Feature Attributions

We first define the notion of feature attribution in the fol-
lowing manner, where the feature replacement method is
made explicit, and features are replaced with samples from a
counterfactual distributionQ. Particularly, we are interested
in binary attributions as opposed to real-valued attributions
because of their greater interpretability (i.e., a feature is
either considered important for prediction or not rather than
somewhat important).
Definition 1. (ϵ,Q)-feature attribution (QFA) is a binary
mask m(f,x,Q) that relies on a model f(·), an instance x,

and a d-dimensional counterfactual distribution Q, and is
given by

m(f,x,Q) = argmin
m′
∥m′∥0

such that E
q∼Q
∥f(xs(m

′, q))− f(x)∥1 ≤ ϵ

where xs(m, q) = m⊙ x+ (1−m)⊙ q

Thus an (ϵ,Q)-feature attribution (henceforth, QFA) refers
to the sparsest mask that can be applied to an image such
that the model’s output remains approximately unchanged.
Observe that QFA depends on the feature replacement dis-
tribution Q, where Q is independent of both x and y. This
generalizes the commonly used heuristics of replacing unim-
portant features with the dataset mean, in which case Q is a
dirac delta distribution at the mean value. The choice of Q
is indeed critical, as an incorrect choice can hurt our ability
to recover the correct attributions due to the resulting inputs
being out-of-distribution, and the classifier being sensitive
to such changes. Specifically, an incorrect Q can result
in QFA being less sparse, as masking even a few features
with the wrong Q would likely cause large deviations in
the model’s outputs. As a result, given a model, we must
aim to the find the Q that leads to the sparsest QFA masks.
However, the problem of searching over Q is complex, as it
requires searching over the space of all d-dimensional dis-
tributions. To avoid this, we reverse the problem: given Q,
we find the class of models which have the sparsest QFAs
w.r.t. that particular Q. We call this the Q-verifiable model
class, which we define below:
Definition 2. Q-verifiable model class Fv(Q): For some
given distribution Q, the class of models F for which Q
gives the sparsest QFA mask as opposed to any other Q′,
such that for all f ∈ F ,

Q = argmin
Q′

E
x
∥m(f,x,Q′)∥0

is called the model class with verifiable QFA.

For the rest of this paper, we shall refer to QFA applied to
a model from a Q-verifiable model class as a ”verifiable”
feature attribution.

3.2. Recovering the Signal-Distractor Decomposition

In the study of feature attribution, the ‘ground truth’ attribu-
tions are often unspecified. Here, we show that for datasets
that are signal-distractor decomposable, formally defined
below, there exists a ground truth attribution, and feature
attributions for optimal verifiable models are able to recover
it. Intuitively, given an object classification dataset between
cows and camels, the ”signal” refers to the regions in the im-
age that are discriminative, or correlated with the label, such
as the cows or camels. The distractor refers to everything
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else, such as the background or sky. Note that if objects
in the background are correlated with the label, i.e. sand
or grass, those would be part of the signal, not the distrac-
tor. For all datasets with this decomposition, the ground
truth attributions correspond to the signal. We first begin by
formally defining the signal-distractor decomposition.
Definition 3. A labelled dataset D = {(x, y)Ni=1} is said to
be signal-distractor decomposable if its generative process
is given by:

s ∼Xsignal(y) ; d ∼ Xdistractor ; m ∼M
x = s⊙m+ d⊙ (1−m)

where the mask m ∈ {0, 1}d and the distractor d ∈ Rd are
independent of the label y, and the signal s ∈ Rd depends on
y, with the following conditions met: (1) p(y | x) = p(y |
s ⊙m) = p(y | s), and (2) for any other mask m ̸⊂ m′,
we have p(y | s⊙m′) < p(y | s⊙m)

We have the condition here that any mask that is not a
superset of the ground truth mask leads to a strict loss in
predictive power of the input. It follows from this non-
redundancy constraint that given the distractor d and the
signal s, the mask that determines x is unique, and is the
sparsest mask such that condition (1) is met.

Theorem 3.1. For datasets which are signal-distractor de-
composable, QFA recovers the signal distribution when ap-
plied to the optimal predictor f∗

v ∈ Fv(Q).

Proof Idea. For datasets with the signal-distractor decompo-
sition, the optimalQ is always equal to the ground truth dis-
tractor, and this leads to the sparsest QFA. If a Q-verifiable
model aims to recover the sparsest masks, then its QFA
mask must equal that obtained by setting Q equal to the
distractor. From uniqueness arguments, this is possible only
when the signal distribution is recovered by QFA, such that
it is not masked by Q.

Corollary. For datasets which are signal-distractor decom-
posable, QFA does not recover the signal distribution when
applied to a predictor f ̸∈ Fv(Q).

This follows from the fact that for any f ̸∈ Fv(Q), there
exists some other Q′ that results in a sparser mask, indicat-
ing that the true signal distribution is not recovered. Thus,
this shows that feature attributions applied to the incorrect
model class can be less effective - in this case they fail to
recover the ground truth signal distributions.

To summarize, we have defined a feature attribution method
with the feature removal process made explicit via the coun-
terfactual distribution Q. To minimize sparsity of the attri-
bution masks, we have to either (1) find the best distribution
Q, which is difficult to compute, or (2) given a fixed Q, use
models from the Q-verifiable model class Fv(Q). Finally,

we find that feature attributions derived from model class
Fv(Q) are able to recover the signal-distractor decomposi-
tion of datasets.

4. Verifiability Tuning
In the previous section we showed that given a Q-verifiable
model fv ∈ Fv(Q), we are able to apply QFA to recover the
ground truth signal from the dataset. In this section, we shall
discuss how to practically build such verifiable models that
recover the optimal ground truth signal, xs(m, q) = x ⊙
m(x)+ q⊙ (1−m(x)), given a pre-defined counterfactual
distribution q ∼ Q that determines feature replacement.

Relaxing QFA. We note that QFA as defined in definition
1 is difficult to optimize in its current form due to its use
of ℓ0 regularization and its constrained form. To alleviate
this problem, we perform two relaxations: first, we relax
the ℓ0 objective into an ℓ1 objective, and second, we convert
the constrained objective to an unconstrained one by using
a Lagrangian. The resulting objective function is given in
equation 1. Assuming the model fv is known to us, we
can minimize this objective function to obtain (ϵ,Q)-feature
attributions for each point x ∈ X .

LQFA(θ, {m(x)}x∈X ) =

E
x∈X

∥m(x)∥1︸ ︷︷ ︸
mask sparsity

+λ1 ∥fv(x; θ)− fv(xs(m, q)); θ)∥1︸ ︷︷ ︸
data distillation


(1)

Enforcing Model Verifiability via Distillation. Assum-
ing that the optimal masks denoting the signal-distractor
decomposition are known w.r.t. every training data point
(i.e., {m(x)}x∈X ), one can project any black-box model
into a Q-verifiable model via distillation. Specifically, we
can use equation 2 for this purpose, which contains (1) a
data distillation term to enforce the ϵ constraint in QFA, and
(2) a model distillation term to enforce that the resulting
model and original model are approximately equal. Accord-
ingly, the black-box model fb and our resulting model fv
both have the same model architecture, and we initialize
fv = fb.
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Ltrain(θ, {m(x)}x∈X )

= E
x∈X

∥fv(x; θ)− fv(xs(m(x), q)); θ)∥1︸ ︷︷ ︸
data distillation


+ E

x∈X

λ2 ∥fb(x)− fv(x; θ)∥1︸ ︷︷ ︸
model distillation

 (2)

Alternating Minimization between θ and m. We are in-
terested in both of the above objectives: we would like to
recover the optimal masks from the dataset, as well as use
those masks to enforce (ϵ,Q) constraints via distillation to
yield our Q-verifiable models. We can thus formulate the
overall optimization problem as the sum of these terms, as
shown in equation ??. Notice that both these objectives as-
sume that either the optimal masks, or the verifiable model
is known, and in practice we know neither. A common strat-
egy in cases which involve optimizing over multiple sets
of variables is to employ alternating minimization (Jain &
Kar, 2017), which involves repeatedly fixing one of the vari-
ables and optimizing the other. We handle the constrained
objective on the mask variables via projection, i.e., using
hard-thresholding / rounding to yield binary masks.

θ∗, {m∗(x)}
= argmin

θ,m
(Ltrain(θ, {m(x)}) + LQFA(θ, {m(x)}))

such that m(x) ∈ {0, 1}d ∀x ∈ X

Iterative Mask Rounding with Increasing Sparsity. In
practice, mask rounding makes gradient-based optimization
unstable due to sudden jumps in the variables induced by
rounding. This problem commonly arises when dealing
with sparsity constraints. To alleviate this problem, use a
heuristic that is common in the model pruning literature
(Han et al., 2015) called iterative pruning, which involves
introducing a rounding schedule, where the sparsity of the
mask is gradually increased during optimization steps. In-
spired from this choice, we employ a similar strategy over
our masks variables.

Practical Details. We implement these objectives as fol-
lows. First, we initialize the verifiable model to be the same
as the original model, fv = fb, and the mask to be all ones,
Ds = m ⊙ Dd,m = 1. We then iteratively (1) simplify
Ds by optimizing LQFA until m converges, (2) round m
such that it is binary (i.e. Ds is a subset a features in Dd

rather than a weighting of them), and (3) update fv by min-
imizing Ltrain such that Ds is equally as informative as
Dd to fv and fv is functionally equivalent to fb. As per

Algorithm 1 Verifiability Tuning

Input: Dataset Dd := (x, y), model fb, hyperparameter
k rounding steps
Hyperparameters: k rounding steps, u mask scaling
factor
{m(x)}, s.t. m(x)← ones with shape Rd/u

fv ← fb
for k rounding steps do

while LQFA not converged do
{m(x)} ← {m(x)}+∇mLQFA

end while
m← round(m) ∀m ∈ {m(x)}
while Ltrain not converged do
fv ← fv +∇θLtrain

end while
end for
return {m(x)}, fv

Definition 2, we replace masked pixels in Ds with a pre-
determined counterfactual distribution Q. This ensures that
the given Q is the optimal counterfactual distribution for
fv, meaning fv comes from the Q-verifiable model class
Fv(Q). Pseudocode is shown below.

Mask Scale. In order to encourage greater “human inter-
pretability,” we explore different levels of mask granularity.
We do this by downscaling the masks before optimization.
Concretely, we initialize the masks to be of size md = xd/u,
where xd is the dimension of the image x and u is the su-
perpixel size we wish to consider. We then upsample the
mask to be of dimension xd before applying it to x. The
more we downscale the mask by (i.e. the greater u is), the
larger the superpixels, or features, of xs are, and the more
interpretable and visually cohesive the distilled dataset xs

is.

5. Experimental Evaluation
In this section, we present our empirical evaluation in de-
tail. We consider various quantitative and qualitaive metrics
to evaluate the correctness of feature attributions given by
VerT models as well as the faithfulness of VerT models to
the models they are meant to explain. We also evaluate
VerT models’ ability to explain models manipulated to have
arbitrary uninformative input gradients. Finally, we ana-
lyze the effect of the mask downscaling hyperparameter on
attributions.

Datasets. Hard MNIST: The first is a harder variant of
MNIST where the digit is randomly placed on a small sub-
patch of a colored background. Each sample also contains
small distractor digits and random noise patches. For this
dataset, we consider the signal to be all pixels contained
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Figure 2: Visualization of datasets and attribution methods considered in this work. Row 1: Raw data samples, Row 2:
Ground truth attributions, Row 3: VerT attributions, Rows 4-7: Baseline methods.

within the large actual digit, and the distractor to be all pixels
in the background, noise, and smaller digits. Chest X-ray:
Second, we consider a semi-synthetic chest x-ray dataset for
pneumonia classification (Kermany et al., 2018). To control
exactly what information the model leverages such that we
can create ground truth signal-distractor decompositions,
we inject a spurious correlation into this dataset. We place
a small, barely perceptible noise patch on random location
at the top of each image in the “normal” class. We con-
firm that the model relies only on the spurious signal during
classification by testing the model’s drop in performance
when flipping the correlation (adding the noise patches to
the “pneumonia” class) and seeing that the accuracy goes
from 100% to 0%. As such, for this dataset, the signal
is simply the noise patch and the distractor is the rest of
the xray. CelebA: The last dataset is a subset of CelebA
(Liu et al., 2018) for hair color classification with classes
{dark hair, blonde hair, gray hair}. We correlate the dark
hair class with glasses to allow for qualitative evaluation
of each methods’ ability to recover spurious correlations.
This dataset does not have a ground truth signal distractor
decomposition, as there are many unknown discriminative
spurious correlations the model may rely upon.

Models. For all experiments, we use ImageNet pre-trained
ResNet18s for our baseline models, fb. All models achieve
over 96% test accuracy. We train VerT models with
Q ∼ 1d∗d ∗ N (µ(Dd), σ

2(Dd)), meaning that each im-
age is masked with a uniform color drawn from a normal
distribution around the mean color of the dataset. For all

evaluation, we use Q ∼ 1d∗d ∗ N (µ(Dd), 0) (the dirac
delta of the dataset mean) to ensure that masked samples are
minimally out-of-distribution for the baseline models fb.

5.1. Evaluating the Correctness of Feature Attributions

Pixel Perturbation Tests. We test the verifiability of our
explanations via the pixel perturbation variant proposed in
(Srinivas & Fleuret, 2019; Hooker et al., 2019), where we
mask the k least salient pixels as determined by any given
attribution method and check for degradation in model per-
formance with the mean of the dataset. This metric evaluates
whether the k masked pixels were necessary for the model
to make its prediction. As mentioned in previous works,
masked samples come from a different distribution than the
original samples, meaning poor performance after pixel per-
turbation can either be a product of the model’s performance
on the masks or the feature attribution scores being incorrect.
To disentangle the correctness of the attributions from the
verifiability of the model, we perform pixel perturbation
tests on ground truth feature attributions, with results re-
ported in the appendix. Note that our method returns binary
masks, but this metric requires continuous valued attribu-
tions to create rankings. As such, for this experiment we
use the attributions created by our method before rounding.

Results are shown in Figure 3. We find that the attributions
produced by VerT , used in conjunction with VerT models
outperform all baselines. Furthermore, VerT attributions
tested on the baseline model also generally perform better
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than gradient-based attributions.

Table 1: Intersection Over Union Results

Hard MNIST Chest X-ray

VerT (Ours) 0.461 ±0.08 0.821± 0.05

SmoothGrad 0.252±0.05 0.045 ±0.05
GradCAM 0.295 ±0.09 0.000 ±0.00
Input Grad 0.117 ±0.05 0.017±0.03
FullGrad 0.389 ±0.10 0.528 ±0.12

Intersection Over Union. We further evaluate the correct-
ness of our attributions by measuring their Intersection Over
Union (IOU) with the “ground truth” attributions. We use
the signal from the ground truth signal-distractor decompo-
sition as described in 5 for the ground truth attributions. For
each image, if the ground truth attribution is comprised of
n pixels, we take the intersection over union of the top n
pixels returned by the explanation method and the n ground
truth pixels, meaning an IOU of 1 corresponds to a per-
fectly aligned/correct attribution. Results are shown in 1,
where our method performs the best for both datasets. We
report mean and standard deviation over the dataset for each
method.

5.2. Evaluating the Faithfulness of VerT Models

To ensure that the VerT model (fv) returned by our method
is faithful the the original model (fb) it approximates, we
test the accuracy of VerT models with respect to the pre-
dictions produced by the original model. Specifically, we
take the predictions of the original model fb to be the labels
of the dataset. We evaluate VerT models on both the orig-
inal dataset (fv(Dd) ≈ fb(Dd)) and the simplified dataset
(fv(Ds) ≈ fb(Dd)), with results shown in 2. We see that
VerT models are highly faithful to the baseline models they
approximate.

5.3. Qualitative Analysis of Simplified Datasets

We first explore how well VerT recovers signal-distractor
decompositions. For CelebA, we see that all methods except
for input gradients correctly recover the spurious correlation
for the “dark hair/glasses” class, however only our method
provides useful insights into the other two classes. We see
that our method correctly identifies hair as the signal for the
“blonde hair” class, whereas other methods simply look at
the eyes, which are not discriminative. Furthermore, we see
that for the “gray hair” class, our method picks up on hair,
as well as initially unknown spurious correlations such as
wrinkles and bowties. For Hard MNIST, we see that our
method clearly isolates the signal and ignores the distractor.
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Figure 3: Pixel perturbation tests (higher is better) for
MNIST, Chest X-ray, and CelebA. VerT’s recommended
mask sparsity is shown as a vertical dashed line. We observe
that VerT performs the best overall. Refer to Section 5.1 for
details.
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FullGrad and GradCAM suffer from a locality bias and tend
to highlight the center of each digit. SmoothGrad and vanilla
gradients are much noisier and highlight edges and many
random background pixels. For the Chest X-ray dataset, we
see that our method and FullGrad perfectly highlight the
spurious signal. GradCAM again suffers from a centrality
bias, and cannot highlight pixels on the edge. SmoothGrad
and gradients appear mostly random to the human eye.

We also consider the visual quality of our attributions com-
pared with the baselines (examples are shown in 2). We find
that our method, FullGrad, and GradCAM appear the most
interpretable, as opposed to SmoothGrad and vanilla gradi-
ents, because they consider features at the superpixel level
rather than individual pixels. We also see that GradCam and
FullGrad seem relatively class invariant, and tend to focus
on the center of most images, rather than the discriminative
features for each class, providing for less useful insights
into the models and datasets.

Table 2: Faithfulness of VerT to Original Model

Hard
MNIST

Chest
X-ray

CelebA

Faithfulness on
Original Data

0.996 1.00 0.995

Faithfulness on
Simplified Data

0.987 1.00 0.975

5.4. Robustness to Adversarial Manipulation of
Explanations

In this section, we highlight our method’s robustness to ad-
versarial explanation manipulation. To this end, we follow
the manipulation proposed in (Heo et al., 2019), which ad-
versarially manipulates gradient-based explanations. This is
achieved by adding an extra term to the training objective
that encourages input gradients to equal an arbitrary uninfor-
mative mask of pixels in the top left corner of each image.
Note that model accuracy on the classification task is the
same as training with only cross-entropy loss.

We repeat experiments for all evaluation metrics on these
manipulated models, with pixel-perturbation shown below
7, and IOU, model faithfulness, and model verifiability in
the appendix. We see that gradient-based methods perform
significantly worse on manipulated models; however, our
method remains relatively invariant. We also note while the
models are only manipulated to have arbitrary input gradi-
ents, SmoothGrad and GradCAM are also heavily affected
such that their attributions are entirely uninterpretable as
well, as shown below.
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Figure 4: Pixel perturbation test and example images for
models trained with gradient manipulation on Hard MNIST.
Results for other datasets are in the appendix. Refer to
Section 5.4 for details.

5.5. Attribution Sensitivity to Hyperparamaters

We conduct an ablation study on the choice of how much
to downscale the mask by. The less we downscale by, the
more fine-grained the mask is, allowing for optimization
over a larger set of masks. However, the more we downscale
by, the visually cohesive or “interpretable” to humans the
masks are. We evaluate the trade-off between these two via
pixel perturbation tests over multiple downscaling factors
and with qualitative evaluations of the final masks in 5. We
see that a downscaling factor of 8 performs the best on pixel
perturbation tests. Increased factors of downscaling impose
a greater locality constraint that results in informative pixels
being masked, as shown in the visualization.

6. Discussion
In this paper, we seek to bridge the gap between existing
post hoc explanation methods, which are unfaithful and non-
verifiable, and inherently interpretable models, which are
restrictive and often less performant than black-box models.
In particular, we propose, VerT, a method that can transform
any black-box model into a verifiably interpretable model,
whose feature attributions can be easily evaluated for faith-
fulness. We empirically evaluate VerT and find that the
resulting verifiable models are highly faithful and produce
interpretable and verifiable attributions.

Limitations. We note that VerT requires full access to
the training dataset and the baseline model. Furthermore,
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Figure 5: Ablation study of pixel perturbation test with
varying levels of mask downscaling for MNIST. Example
images for both datasets are shown below.

while it produces verifiable feature attributions that tell us
how important each feature is to the model’s prediction, it
does not tell us what the relationship between important
features and the output/label is, as is true with all feature
attributions. Finally, the utility of these attributions, and
indeed, all feature attributions, relies on the existence of a
non-trivial signal distractor decomposition of the dataset.
If such a decomposition does not meaningfully exist, for
example when the entire input is the signal, then ours, and
all other feature attributions, are inapplicable.
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A. Proofs
Theorem A.1. For datasets with signal-distractor decompositions, ϵQ-feature attributions applied to ϵQ verifiable models,
fv ∈ Fv(Q), recover the signal distribution for the optimal predictor f∗

v .

Proof. We first notice that the ideal counterfactual distribution Qopt is exactly the distractor distribution, i.e., if we set
Qopt = Xdistractor, we recover the inputs x, if we know the ground truth mask mdataset, i.e, x ⊙mdataset = s ⊙mdataset,
which implies that the ”simplified” inputs equal the real inputs, i.e., xs = x ⊙ mdataset + qopt ⊙ (1 − mdataset) =
s⊙mdataset + d⊙ (1−mdataset) = x. However we do not know the ground truth mask mdataset.

Given the ”non-redundancy” constraint in the signal-distractor decomposition, it follows that the ground truth mask is
the sparsest mask such that p(y | s ⊙m) = p(y | x), or f∗(x) = f∗(xs), since f∗ is the optimal predictor. Given the
uniqueness of the ground truth mask by definition, we recover mdataset = mQFA where mQFA is computed using Qopt.

For a ”non-ideal” fixed distractor Q, and the corresponding verifiable model class Fv(Q), we know that Q attains least
sparsity compared to any other counterfactual. However, we know from the above argument that Qopt = Xdistractor attains
the least sparsity for any optimal predictor. Thus it follows that these must be equal. This implies that the mask recovered by
mQFA = mdataset.

We now present proof for an additional statement not described in the main text, where we connect QFA to other commonly
used feature attributions via the local function approximation framework (Han et al., 2022) as follows.

Theorem A.2. QFA is an instance of the local function approximation framework (LFA), with (1) random binary perturba-
tions, and (2) an interpretable model class consisting of linear models with binary weights

Proof. Assume a black box model given by fb(x;m) = 1 (Eq ∥f(xs(m, q))− f(x)∥2 ≤ ϵ) ,loss function ℓ(f, g, x, ξ) =
(f(x; ξ)− g(ξ))2, neighborhood perturbation Z = Uniform(0, 1)d, and an interpretable model family G being the class of
binary linear models.

For these choices, it is easy to see that

argmin
g∈G

ℓ(f, g,x, ξ)

= argmin
g∈G

E
ξ

(
fb(x; ξ)− g⊤ξ

)2
+ λ∥g∥0

=argmin
g∈G

E
ξ

(
1

(
E
q
∥f(xs(ξ, q))− f(x)∥2 ≤ ϵ

)
− g⊤ξ

)2

+ λ∥g∥0

This above objective is minimized when g = m∗, i.e., the ideal ϵQ-FA mask, because this sets the first term to be zero by
definition, and the second sparsity term ensures the minimality of the mask.

B. Additional Results
Model Verifiability. We further test the verifiability of our model by evaluating how the model’s performance changes
when performing the pixel perturbation test on groundtruth attributions. This enables us to disentangle the verifiability of the
model from the correctness of the attributions, as we know that our attributions are correct. We use the same groundtruth
attributions as in 5.1. We report the ℓ1 norm between predictions made on the original samples and predictions made on the
masked samples. We compare our verifiable models to the baseline models they approximate, as well as models trained with
input dropout, which (Jethani et al., 2021) proposes as their verifiable model class. Training with input dropout is equivalent
to training fv with random masks and cross-entropy loss rather than optimized masks and fb prediction matching. Results
are shown in 3, where we see that our model performs similarly for masked and normal samples, whereas the other models
do not.
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Hard
MNIST

Chest
X-ray

VerT Model (fv) 0.027 0.0009
Original Model (fb) 0.107 0.0032

fb + Input Dropout 0.167 0.0536

Table 3: Model Verifiability

Robustness to Explanation Attacks. We report additional results on Chest X-ray and CelebA for the pixel perturbation
tests, IOU tests, and model faithfulness tests for baseline models trained with manipulated gradients, as outlined in 5.4. We
see that VerT models are still highly faithful and produce correct explanations even when derived from models adversarially
trained to have manipulated explanations.

Table 4: Faithfulness of VerT Model for Manipulated Models

Hard
MNIST

Chest
X-ray

CelebA

Accuracy on
Original Data
fv(Dd) = fb(Dd)

0.990 1.00 0.970

Accuracy on
Simplified Data
fv(Ds) = fb(Dd)

0.980 1.00 0.946

Table 5: Intersection Over Union Results for Manipulated Models

MNIST
(manipulated)

Chest X-ray
(manipulated)

M
et

ho
d

VerT (Ours) 0.454 ±0.08 0.631±0.12
SmoothGrad 0.158 ±0.07 0.000 ±0.00
GradCAM 0.040±0.06 0.000 ±0.00
Input Grad 0.002±0.01 0.000 ±0.00
FullGrad 0.333 ±0.12 0.004 ±0.04
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Figure 6: Pixel perturbation tests for models trained with gradient manipulation for Chest X-ray (middle) and CelebA (right).
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Attribution Sensitivity to Hyperparamaters. We report additional results on CelebA for the ablation study on mask
downscaling, as outlined in 5.5. We find minimal upscaling at higher levels of masking allows for better optimization and
yields better results.
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Figure 7: Ablation study of pixel perturbation test with varying levels of mask downscaling for CelebA. Example images
shown in main paper.

C. Additional Implementation and Computation Details
Models were trained on the original train/test split given by https://github.com/jayaneetha/
colorized-MNIST for Hard MNIST and (Kermany et al., 2018) for the Chest X-ray dataset and with a random
80/20 split for CelebA. Baseline models were trained with Adam for 10 epochs with learning rate 1e− 4 and batch size 256.
All hyperparameters are included in the code for this paper. We learn our masks with SGD (lr=300, batch size = 128 and our
verifiable models with Adam (lr=1e− 4, batch size = 128). We ran all experiments on a single A100 80 GB GPU with 32
GB memory.

D. Broader Impact
Our method, VerT, aims to transform black-box models into verifiably interpretable models, which produce easily verifiable
feature attributions. As such, if applied correctly, it can help users and stakeholders of machine learning models better
understand a model’s predictions and behavior by isolating the features necessary for each prediction, which can help
highlight biases, overfitting, mistakes, and more. It can also help to identify spurious correlations that naturally exist in
datasets and are leveraged by models through identification of the signal-distractor decomposition. However, even if VerT
does not identify a spurious correlation, that does not mean that further dataset cleaning, processing, or curation is not
needed, as a different model may still learn a spurious correlation that was not leveraged by the original model. Furthermore,
feature attributions often do not constitute a complete explanation of a model. For instance, while an attribution tells us what
was important, it does not tell us how it was important or how the model uses that feature. In all high stakes applications, it
is still imperative that stakeholders think critically about each prediction and explanation, rather than blindly trusting either.
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