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Abstract Recently, leveraging on the development of end-
to-end convolutional neural networks (CNNs), deep stereo
matching networks have achieved remarkable performance
far exceeding traditional approaches. However, state-of-the-
art stereo frameworks still have difficulties at finding correct
correspondences in texture-less regions, detailed structures,
small objects and near boundaries, which could be allevi-
ated by geometric clues such as edge contours and corre-
sponding constraints. To improve the quality of disparity
estimates in these challenging areas, we propose an effec-
tive multi-task learning network, EdgeStereo, composed of
a disparity estimation branch and an edge detection branch,
which enables end-to-end predictions of both disparity map
and edge map. To effectively incorporate edge cues, we pro-
pose the edge-aware smoothness loss and edge feature em-
bedding for inter-task interactions. It is demonstrated that
based on our unified model, edge detection task and stereo
matching task can promote each other. In addition, we de-
sign a compact module called residual pyramid to replace
the commonly-used multi-stage cascaded structures or 3-D
convolution based regularization modules in current stereo
matching networks. By the time of the paper submission,
EdgeStereo achieves state-of-art performance on the Fly-
ingThings3D dataset, KITTI 2012 and KITTI 2015 stereo
benchmarks, outperforming other published stereo matching
methods by a noteworthy margin. EdgeStereo also achieves
comparable generalization performance for disparity esti-
mation because of the incorporation of edge cues.
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1 Introduction

Stereo matching and depth estimation from stereo images
have a wide range of applications, including robotics [49],
medical imaging [43], remote sensing [52], 3-D computa-
tional photography [3] and autonomous driving [41]. The
main goal of stereo matching is to find corresponding pix-
els from two viewpoints, producing dense depth data in a
cost-efficient manner. Given a rectified stereo pair, suppos-
ing a pixel (x,y) in the left image has a disparity d, its corre-
sponding point can be found at (x−d,y) in the right image.
Consequently, the depth of this pixel can be obtained by f T

d ,
where f denotes the focal length and T denotes the baseline
distance between two cameras.

As a classical research topic for decades, stereo match-
ing was traditionally formulated as a multi-stage optimiza-
tion problem [22,65] with a popular four-step pipeline [48]
including matching cost computation, cost aggregation, op-
timization and disparity refinement. For instance, the pop-
ular Semi-Global Matching (SGM) [22] adopted dynamic
programming to optimize an energy function for a locally
optimal matching cost distribution, followed by several post-
processing functions. However, performance of the tradi-
tional stereo matching methods is severely limited by hand-
crafted matching cost descriptors, and engineered energy
function and optimization procedures.

Recently, with the development of convolutional neural
networks, stereo matching is cast as a learning task. Early
CNN-based stereo matching methods [64,36] mainly focused
on representing image patches with powerful deep features
then conducting matching cost computations. Significant gains
are achieved compared with the traditional approaches, how-
ever most of these stereo networks have following limita-
tions: 1) high computational burden from multiple forward
passes for all potential disparities; 2) limited receptive field
and the lack of context information to infer reliable corre-
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Left image Without edge cues                                             With edge cues

Fig. 1: Examples of disparity estimates. From top to bottom: KITTI 2012, KITTI 2015 and FlyingThings3D datasets. From
left to right: left image, disparity map from the disparity sub-network without edge cues, and disparity map from EdgeStereo.
As shown in the boxes, disparity estimates are more accurate in ill-posed regions (reflective regions), detailed structures, and
sky where ground-truth disparities don’t exist, after incorporating edge cues. (Better zoom in and view in color)

spondences in ill-posed regions; 3) still used post-processing
functions which are hand-engineered with a number of em-
pirically set parameters. Alternatively, the end-to-end dis-
parity estimation networks seamlessly integrate all steps in
the stereo matching pipeline for joint optimization [38], pro-
ducing dense disparity maps from stereo images directly. 2-
D encode-decoder structures with cascaded refinement [44]
and regularization modules composed of 3-D convolutions
[26] are two of the most popular structures in current end-
to-end stereo matching networks, which are demonstrated to
be extremely effective for disparity estimation, benefitting
from a large number of training data.

However, even the state-of-the-art end-to-end stereo net-
works may find it difficult to overcome local ambiguities
in ill-posed regions, such as repeated patterns, textureless
regions or reflective surfaces. Producing accurate disparity
estimates is also challenging for detailed structures, small
objects and near boundaries. Several end-to-end stereo net-
works [26,5] enlarged their receptive fields through a stack
of convolutional layers or spatial pooling modules, to en-
code context information for ill-posed regions where many
potential correspondences exist. However, overlooking global
context will inevitably lose high-frequency information that
helps generate fine details in disparity maps. Moreover, with-
out geometric constraints being utilized, most of these stereo
matching networks are over-fitted, and corresponding gener-
alization capabilities are poor.

Humans perform binocular alignment well at ill-posed
regions by perceiving object boundaries in scenes, which
is an important clue for detecting depth changes between
background and foreground, and maintaining depth consis-
tency for individuals. Consequently, combining semantic-
meaningful edge cues provides beneficial geometric knowl-

edge for stereo matching, meanwhile high-frequency feature
representations are also supplemented for stereo networks
with large receptive fields. For example, in Fig. 1, the dis-
parity estimates in vehicle’s reflective surface, sky and im-
age details are refined after incorporating edge cues.

This paper also asks a question, which has not been dis-
cussed by other CNN-based stereo methods yet, can stereo
matching help other computer vision tasks through a unified
convolutional neural network? In dense and high-quality dis-
parity maps, the accurate depth boundary serves as an im-
plicit but helpful geometric constraint for tasks like edge de-
tection, semantic segmentation or instance segmentation etc.
Considering the aforementioned problems in stereo match-
ing, we intend to explore the mutual exploitation of stereo
and edge information in a unified model, which is the main
contribution of this paper.

Consequently, we design an effective multi-task learning
network, EdgeStereo, that incorporates edge cues and corre-
sponding regularization into the stereo matching pipeline.
EdgeStereo consists of a disparity estimation branch and an
edge detection branch, meanwhile two sub-networks share
the shallow part of the backbone and low-level features. Dur-
ing training, interactions between the tasks are two-folds:
firstly, the edge features are embedded into the disparity
branch providing fine-grained representations; secondly, the
edge map in the edge branch is utilized in our proposed
edge-aware smoothness loss, which guides the multi-task
learning in EdgeStereo. During testing, end-to-end predic-
tions of both disparity map and edge map are enabled.

Basically, we first use ResNet [20] to extract image de-
scriptors from a stereo pair and compute a cost volume by
means of a correlation layer [12]. Then the concatenation of
left image descriptor, matching cost volume and edge fea-
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tures are fed to a regularization module, to regress a full-
size disparity map. In EdgeStereo, we design an hourglass
structure composed of 2-D convolutions as the regulariza-
tion module. Different from the decoder in DispNet [38],
cascaded structures in [44,31] and 3-D convolution based
regularization modules in [26,5], we propose a compact mod-
ule called residual pyramid as the decoder for disparity re-
gression. Some works use the same principle of residual
pyramid for both optical flow [54] and stereo matching [56].
In residual pyramid, the disparities are directly estimated
only at the smallest scale and the residual signals are pre-
dicted at other scales, hence making EdgeStereo an efficient
one-stage model. Compared with other regularization mod-
ules, the proposed residual pyramid reduces the amount of
parameters and improve the generalization capability as well
as model interpretability. Finally, the produced disparity map
and edge map are both optimized under the guidance of the
edge-aware smoothness loss.

In EdgeStereo, the edge branch and disparity branch are
both fully-convolutional so that end-to-end training can be
conducted. Considering there is no dataset containing both
edge annotations and ground-truth disparities, we propose
an effective multi-stage training method. After multi-task
learning, stereo matching task and edge detection task are
both improved quantitatively and qualitatively. For stereo
matching, EdgeStereo achieves the best performance on the
FlyingThings3D dataset [38], KITTI 2012 [14] and KITTI
2015 [41] stereo benchmarks compared with all published
stereo methods. Particularly in the evaluation of “Reflec-
tive Regions” in the KITTI 2012 benchmark, EdgeStereo
also outperforms other methods by a noteworthy margin.
For edge detection, after the multi-task learning on a stereo
matching dataset, edge predictions from EdgeStereo are im-
proved, even if the stereo matching dataset does not contain
ground-truth edge labels for training.

Our contributions and achievements are summarized be-
low.

– We propose the multi-task learning network EdgeStereo
that incorporates edge detection cues into the disparity es-
timation pipeline. For effective multi-task interactions, we
design the edge feature embedding and propose the edge-
aware smoothness loss. It is demonstrated that edge detec-
tion task and stereo matching task can promote each other
based on our unified model. As far as we know, EdgeStereo
is the first multi-task learning framework for stereo match-
ing and edge detection.

– We design the residual pyramid, which is a compact
decoder structure for disparity regression.

– Our method achieves state-of-the-art performance on
the FlyingThings3D dataset, KITTI 2012 and KITTI 2015
stereo benchmarks, outperforming other stereo methods by a
noteworthy margin. In addition, EdgeStereo is demonstrated

with a comparable generalization capability for disparity es-
timation.

The rest of paper is organized as follows. After review-
ing related work in Section 2, we introduce the overall ar-
chitecture, residual pyramid and edge regularization in Sec-
tion 3. Then in Section 4, we conduct detailed ablation stud-
ies to confirm the effectiveness of our design, and we com-
pare EdgeStereo with other state-of-the-art stereo matching
methods. Finally, Section 5 concludes the paper.

2 Related Work

2.1 Stereo Matching

Following the traditional stereo pipeline [48], a great num-
ber of hand-engineered stereo matching methods have been
proposed for matching cost computation [15,21], aggrega-
tion [65] and optimization [22,29,27]. Over the past few
years, the convolutional neural network has been introduced
to solve various problems in traditional stereo methods, and
state-of-the-art performance is achieved. We hereby review
stereo matching with emphasis placed on CNN-based meth-
ods, which can be roughly divided into three categories.

2.1.1 Non-end-to-end Stereo Matching

For non-end-to-end stereo methods, a CNN is introduced to
replace one or more components in the legacy stereo pipeline.
The first success of convolutional neural network for stereo
matching was achieved by substituting hand-crafted match-
ing cost with deep metrics. Zbontar and LeCun [63] first in-
troduced a deep siamese network to measure the similarity
between two 9× 9 image patches. Luo et al. [36] acceler-
ated matching cost calculation by an inner-product layer and
proposed to learn a multi-label classification model over all
possible disparities. Chen et al. [6] proposed an embedding
model fusing multi-scale features for matching cost calcula-
tion. Concurrently, Zagoruyko et al. [62] investigated var-
ious CNN structures to compare image patches. In these
methods, after obtaining a cost volume through a CNN, sev-
eral non-learned post-processing functions are followed, in-
cluding the cross-based cost aggregation, semi-global match-
ing, left-right consistency check, sub-pixel enhancement and
bilateral filtering [39].

Besides the similarity measurement, deep neural networks
could also be used in other sub-tasks. Gidaris et al. [16]
substituted hand-crafted disparity refinement functions with
a three-stage network that detects, replaces and refines er-
roneous predictions. Shaked and Wolf [51] introduced an
network pooling global information from a cost volume for
initial disparity prediction. Seki et al. [50] raised the SGM-
Net framework that predicts SGM penalties for regulariza-
tion. Knobelreiter et al. [28] learned smoothness penalties
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through a CRF model for energy function optimization. In
these methods, a number of hand-crafted regularization func-
tions are still necessary to achieve comparable results.

2.1.2 End-to-end Stereo Matching

Inspired by other pixel-wise labeling tasks, fully-convolutio-
nal networks (FCN) [34] were carefully designed to regress
disparity maps from stereo inputs without post-processing.
All components in the legacy stereo pipeline are combined
for joint optimization. Mayer et al. [38] proposed the first
end-to-end disparity estimation network called DispNet, in
which an 1-D correlation layer was proposed for the cost
calculation, and an encoder-decoder structure with shor-tcut
connections [46] was designed for disparity regression. They
also released a large synthetic stereo matching dataset, mak-
ing it possible to pretrain an end-to-end stereo matching net-
work without over-fitting. Based on DispNet, Pang et al.
[44] proposed a two-stage architecture called cascade resid-
ual learning (CRL) where the first stage gives initial pre-
dictions, and the second stage learns residuals. Liang et al.
[31] extended DispNet and designed a different disparity re-
finement sub-network, in which two stages are combined for
joint learning based on the feature constancy.

Different from DispNet and its variants, Kendall et al.
[26] raised GC-Net in which the feature dimension is not
collapsed when constructing a cost volume, and 3-D convo-
lutions are used to regularize the cost volume and incorpo-
rate more context from the disparity dimension. Inspired by
GC-Net, Chang et al. [5] employed a spatial pyramid pool-
ing module to extract multi-scale representations and de-
signed a stacked 3-D CNN for cost volume regularization.
Tulyakov et al. designed a practical deep stereo (PDS) net-
work [57] where memory footprint is reduced by compress-
ing concatenated image descriptors into compact represen-
tations before feeding to the 3-D regularization module.

Several end-to-end stereo methods focused on design-
ing specific functional modules. Lu et al. [35] introduced
an efficient stereo matching method based on their proposed
sparse cost volume. Yu et al. [61] proposed a two-stream ar-
chitecture for better generation and selection of cost aggre-
gation proposals from cost volumes. Jie et al. [24] proposed
a left-right comparative recurrent (LRCR) model for stereo
matching, which is the first end-to-end network that incor-
porates left-right consistency check into disparity regression
using stacked convolutional LSTM.

Our method also enables end-to-end predictions of full-
size disparity maps. Rather than regressing disparities from
multi-stage cascaded structures or 3-D convolution based
regularization modules, which makes stereo networks over-
parameterized, EdgeStereo is an efficient one-stage network
with better model interpretability because of the proposed
residual pyramid.

2.1.3 Unsupervised Stereo Matching

Over the past few years, based on spatial transformation and
view synthesis, several unsupervised learning methods were
proposed for stereo matching without the need of ground-
truth disparities during training. Tonioni et al. [55] propose a
novel unsupervised adaptation approach that enables to fine-
tune a deep learning stereo model without any ground-truth.
Based on GC-Net, Zhong et al. [67] proposed an unsuper-
vised self-adaptive stereo matching network under the guid-
ance of photometric errors. Zhou et al. [68] presented an
unsupervised framework to learn matching costs iteratively,
supervised by a left-right consistency loss.

The view-synthesis based unsupervised stereo matching
can also be adapted to unsupervised monocular depth esti-
mation. Garg et al. [13] proposed the first unsupervised net-
work for single-view depth estimation, in which per-pixel
disparity is learned driven by an image reconstruction loss
in a calibrated stereo environment. Based on [13], Godard et
al. [18] developed a fully-differentiable structure for photo-
metric error minimization and designed a left-right disparity
consistency term for regularization. Kuznietsov et al. [30]
proposed a semi-supervised approach where ground-truth
depths and unsupervised binocular alignment losses are both
used to train the monocular depth estimation network.

Although unsupervised methods get rid of the depen-
dence on ground truth disparities, they are still not compara-
ble with supervised methods (Our EdgeStereo). In addition,
in unsupervised stereo networks, various smoothness terms
were designed to regularize disparity maps. However, these
image gradient based regularization terms are not robust and
are inferior to our proposed edge-aware smoothness loss, as
demonstrated in Section 4.

2.2 Edge Detection

Edge detection is a classical low-level vision task. Early
methods focused on designing hand-engineered descriptors
using low-level cues such as intensity and gradient [4,10],
then employing sophisticated learning paradigm for clas-
sification [11]. Recently, inspired by FCN [34], Xie et al.
[58] designed the first end-to-end edge detection network
called holistically-nested edge detector (HED), in which all
output layers in side branches are connected to aggregate
coarse-to-fine predictions for a final output. Liu et al. [33]
achieved some improvements compared with HED by em-
ploying relaxed labels to guide the training process. Liu et
al. [32] modified the network structure of HED, combining
all meaningful convolutional features in the backbone for
prediction. Since the structures of these fully-convolutional
edge detection networks are concise and efficient, we pro-
pose a similar edge detection sub-network in our unified
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Fig. 2: Overall architecture. EdgeStereo consists of a disparity estimation branch and an edge detection branch, sharing the
shallow part of the backbone. Taking a fused representation as input, the regularization module (encoder and the residual
pyramid) produces a full-size disparity map. To obtain disparity maps with fine details and conduct multi-task learning, edge
cues are incorporated into the disparity branch by the edge feature embedding and edge-aware smoothness loss.

model, providing semantic-meaningful edge features and ge-
ometric constraints for stereo matching.

2.3 Deep Multi-task Network

Kendall et al. [25] propose a multi-task learning model learn-
ing per-pixel depth regression, semantic and instance seg-
mentation from a monocular input image. Ramirez et al.
[45] propose a semi-supervised framework aimed at joint se-
mantic segmentation and depth estimation. Cheng et al. [7]
proposed an end-to-end architecture called SegFlow, which
enables the joint learning of video object segmentation and
optical flow. This model consists of a FCN [34] based seg-
mentation branch and a FlowNet [12] based flow branch,
in which feature maps of two tasks are concatenated and
two branches are trained alternately. However, this multi-
task architecture requires the dataset containing all types of
ground-truth labels for different tasks during training, which
limits its adaptation ability to other tasks. Mao et al. [37]
also proposed a multi-task network called HyperLearner to
help pedestrian detection. Diverse features from different
tasks, such as semantic segmentation and edge detection etc,
provide various representations which are concatenated with
the backbone pedestrian detection network. However, multi-
task learning is not conducted in this architecture because
losses in the detection branch could not be propagated back
to other branches, meanwhile geometric knowledge from
other tasks is not fully exploited. With a similar motivation
to ours, Yang et al. [60] proposed a unified model called
SegStereo for semantic segmentation and disparity estima-
tion, in which semantic features are utilized and a seman-
tic softmax loss is introduced to improve the quality of dis-
parity estimates especially in texture-less regions. However,
in SegStereo, disparity estimation could not help semantic

segmentation, and incorporating high-level semantic cues
causes the loss of high-frequency information.

In this paper, we incorporate edge cues into the disparity
estimation pipeline obtaining a unified multi-task learning
architecture. The embedded edge features provide semantic-
meaningful and high-frequency representations, meanwhile
the proposed edge-aware smoothness loss carries beneficial
geometric constraints for effective multi-task learning. In
addition, the training dataset is not required to contain all
types of ground-truth labels for different tasks. Comparisons
with our previous work [53] can be found in Section 4.7.
Our latest EdgeStereo model achieves state-of-the-art per-
formance on the FlyingThings3D, KITTI 2012 and KITTI
2015 datasets, outperforming all published stereo matching
methods.

3 Approach

We present EdgeStereo, which is an effective multi-task learn-
ing network for stereo matching and edge detection. We would
like to learn an optimal mapping from a stereo pair to a
disparity map and an edge map corresponding to the ref-
erence image. However, we do not intend to design a ma-
chine learning model acting as a complete black box. Hence
we develop several differentiable modules representing ma-
jor components in the stereo matching pipeline, meanwhile
leveraging geometric knowledge from edge detection.

In this section, we first present the basic network archi-
tecture of EdgeStereo. Then we introduce a key module for
disparity regression: residual pyramid. Next we detail the in-
corporation strategies of edge cues, including the edge fea-
ture embedding and edge-aware smoothness loss. Further-
more we show how to conduct multi-task learning through
the proposed multi-stage training method. Finally we intro-
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duce the detailed structure of EdgeStereo and give a layer-
by-layer definition.

3.1 Basic Network Architecture

The overall architecture of EdgeStereo is shown in Fig. 2,
in which two branches share the shallow part of the back-
bone. For the disparity branch, instead of using multiple net-
works for different components, we combine all modules
into a single network composed of extraction, matching and
regularization modules. In addition, we propose the residual
pyramid so that disparity refinement is not required, making
EdgeStereo an efficient one-stage architecture.

The extraction module outputs the image descriptors Fl

and Fr carrying local semantic features for left and right im-
ages through the shared backbone. Then the matching mod-
ule performs an explicit correlation operation using the 1-
D correlation layer from [12], capturing coarse correspon-
dences between two descriptors for each potential disparity.
Then the cost volume Fc is obtained. To preserve detailed
information in the left image descriptor, we apply a convo-
lutional block on Fl obtaining the refined representation Fl

r.

The edge branch shares shallow layer representations
with the disparity branch, meanwhile remaining convolu-
tional features in the backbone are used to produce edge fea-
tures and a semantic-meaningful edge map of the left image.
Similarly, we also apply a convolutional block and obtain the
transformed edge features Fl

e. The left image descriptor Fl
r,

cost volume Fc and transformed edge features Fl
e are con-

catenated as the hybrid feature representation Fh, which is
referred to as edge feature embedding.

The regularization module takes Fh as input, regular-
izes it and produces a dense disparity map. This module is
usually implemented as an hourglass structure with short-
cut connections between encoder and decoder. We design a
2-D convolution based encoder different from existing en-
coder structures [38,44,31], in which the residual block in
ResNet [20] is adopted as the basic block for better infor-
mation flow. Furthermore, we design the residual pyramid
as the decoder, where shortcut connections are not required
and a coarse-to-fine learning mechanism is employed. In the
residual pyramid, which takes the sub-sampled hybrid fea-
ture representation as input, disparities are directly regressed
only at the smallest scale and residual signals are predicted
for refinement at other scales. The smallest scale of dispar-
ity estimates is not fixed, which can be specified by applying
several deconvolutional blocks on the encoder. Finally, dis-
parity and residual learning are regularized across multiple
scales in the residual pyramid, guided by the edge-aware
smoothness loss .

Upsample 2 × ⋯Upsample 2 ×

Feature From      

Encoder

Convolution

Blocks
Sum

Warp

s

RF

s

LF

s

LF
Corr

Cost

Warp

0

RF

0

LF

0

LF
Corr

Cost

Full-size Disparity map

Fig. 3: Overview of the residual pyramid. Disparities are
directly estimated only at the smallest scale and residual
signals are produced at other scales for refinement, mak-
ing EdgeStereo an efficient one-stage architecture. Convo-
lutional blocks are adopted to produce initial disparities and
residual signals.

3.2 Residual Pyramid

For disparity refinement, existing methods [16,44,31] cas-
caded additional networks on the initial disparity prediction
network, learning multi-scale residual signals. However, these
cascaded structures that model the joint space of multiple
networks are over-parameterized. In addition, the initial full-
size disparity estimates are quite accurate in ordinary ar-
eas, but residual learning without geometric constraints is
not easy in ill-posed regions, leading to approximately zero
residual signals.

To alleviate the aforementioned problems, we adopt the
coarse-to-fine residual learning mechanism, and propose the
residual pyramid that enables learning and refining dispari-
ties in a single decoder. In general, estimating disparities at
the smallest scale is easier since the searching range is nar-
row, meanwhile significant areas are emphasized and less
details are required. Therefore the initial disparity estimate
acts as a good starting point. To obtain an up-sampled dis-
parity map with extra details, we continuously predict resid-
ual signals at other scales, utilizing high-frequency represen-
tations and beneficial geometric constraints from edge cues.
In addition, the coarse-to-fine residual learning mechanism
benefits the overall training and alleviates the problem of
over-fitting.

The structure of the residual pyramid is flexible. The
number of scales S in the residual pyramid is dependent on
the total sub-sampling factor of the input volume. The dis-
parity map at the smallest scale is denoted as dS−1 ( 1

2S−1 of
the full size), then it is continuously up-sampled and refined
with the residual signal rs at scale s, until the full-size dis-
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Fig. 4: Overview of the edge branch. To preserve subtle details, fine-grained edge features are supplemented, meanwhile the
edge-aware smoothness loss imposes beneficial object-level constraints on disparity training and multi-task learning.

parity map d0 is obtained. As shown in Eq. (1), u(·) denotes
up-sampling by a factor of 2 and s denotes the scale.

ds = u(ds+1)+ rs, 0≤ s < S (1)

Existing encoder-decoder structures [44,31,5,26] rely on
shortcut connections to fuse high-level and fine-grained rep-
resentations, which complicates the feature space of dispar-
ity regularization and makes stereo networks less explain-
able. Conversely we leverage the knowledge from stereo ge-
ometry and geometric constraints from edge cues to learn
residuals, without the need for shortcut connections for di-
rect disparity regression. As shown in Fig. 3, to predict the
residual signal at scale s, we first use the up-sampled dis-
parity map u(ds+1) to warp the right image features Fs

R at
scale s in the backbone, obtaining the synthesised left im-
age features Fs

L . Then we perform 1-D correlation between
the synthesised and real left image features Fs

L , obtaining a
cost volume cost that characterizes left-right feature consis-
tency based on existing disparity estimates u(ds+1). We use
feature representations rather than raw pixel intensities for
binocular warping, because they are more robust to photo-
metric appearances and can encode local context informa-
tion. Finally, the concatenation of the left image features
Fs

L , up-sampled disparity map u(ds+1) and cost volume cost
are processed by several convolutional blocks, producing the
residual signal rs. At each scale, residuals are explicitly su-
pervised by the edge-aware smoothness loss and the differ-
ence between disparity estimates and ground-truth labels,
learning sharp transitions at object boundaries.

3.3 Incorporation of Edge Cues

As shown in Fig. 1, the disparity estimation sub-network
without edge cues works well in ordinary areas, where match-

ing clues can be easily captured. However, accurate predic-
tions for detailed structures are not given due to the lack of
fine-grained representations in the deep stereo network. In
addition, disparity estimates in reflective regions and near
boundaries are not accurate due to the lack of geometric
knowledge and constraints. Hence we incorporate edge cues
to regularize the disparity learning, as shown in Fig. 4.

The first incorporation of edge cues is the edge feature
embedding. After the extraction module and matching mod-
ule, the transformed edge features Fl

e are concatenated with
the left image descriptor Fl

r and cost volume Fc before fed to
the regularization module. Advantages are: 1) The cooper-
ated edge branch shares the efficient computation and effec-
tive representations with the disparity branch; 2) The edge
features Fl

e supplement fine-grained representations from im-
age details and boundaries, bringing beneficial scene priors
to the regularization module; 3) The aggregation of feature
maps from different tasks facilitates the multi-task interac-
tions during training.

The second incorporation of edge cues is the proposed
edge-aware smoothness loss, denoted as Lsm. We encourage
smooth disparity estimates in local neighborhoods and the
loss term penalizes drastic depth changes in flat regions. To
allow for depth discontinuities at object boundaries, previ-
ous methods [17,67] weight smoothness regularization terms
based on the image gradient which is not robust to vari-
ous photometric appearances. Differently, we raise the edge-
aware smoothness loss based on the edge map gradient from
the edge detection sub-network, which is more semantic-
meaningful than the variation of raw pixel intensities. As
shown in Eq. (2), where N denotes the number of valid pix-
els, ∂d denotes the disparity gradient, ∂E denotes the edge
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map gradient and the hyper-parameter β controls the inten-
sity of this smoothness regularization term.

Lsm =
1
N ∑

i, j
|∂xdi, j|e−β |∂xEi, j |+ |∂ydi, j|e−β |∂yEi, j | (2)

The edge-aware smoothness loss also facilitates the multi-
task learning in EdgeStereo. During training, the edge-aware
smoothness loss is propagated back to the disparity branch
and edge branch. The disparity estimates and edge predic-
tions are improved simultaneously, until sharp disparities
and fine edge predictions are obtained. The regularization
term utilizes the geometric prior that depth boundaries in a
disparity map should be consistent with edge contours in the
scene, which imposes beneficial object-level constraints on
disparity training and multi-task learning.

The experiments in Section 4 demonstrate that incorpo-
rating edge cues can effectively help disparity estimation in
detailed structures, reflective regions and near boundaries. In
addition, edge predictions are also improved after the multi-
task learning on a stereo matching dataset, even if edge an-
notations are not provided for training.

3.4 Multi-stage Training Method and Objective Function

Considering there is no dataset containing both ground-truth
disparities and edge annotations, in order to conduct effec-
tive multi-task learning in EdgeStereo , we propose a multi-
stage training method where training is split into three stages.
Weights of the shallow part of the backbone that two tasks
share are fixed in all three stages.

In the first stage, the edge detection branch is trained on
an edge detection dataset, guided by the class-balanced per-
pixel binary cross-entropy loss proposed in [32].

In the second stage, we supervise disparities across S
scales in the residual pyramid on a stereo matching dataset.
Deep supervision is adopted, forming the total loss as C =

∑
S−1
s=0 Cs where Cs denotes the loss at scale s. Besides the

edge-aware smoothness loss, we adopt the L1-loss Lr as the
disparity regression loss for supervised learning, as shown
in Eq. (3).

Lr =
1
N
||d− d̂ ||1 , (3)

where d̂ denotes the ground truth disparity. Hence the loss
at scale s becomes Cs = λ s

r Ls
r + λ s

smLs
sm, where λ s

r and λ s
sm

are the loss weights for the edge-aware smoothness loss and
disparity regression loss at scale s respectively. In addition,
weights in the edge branch are fixed in the second stage.

In the third stage, all layers in EdgeStereo except the
shared backbone are optimized on the same stereo matching

Table 1: Layers in EdgeStereo RP 2. K means kernel size, S means stride, I/O means
input/ouput channels. “,” means concat and “+” means element-wise summation.

Type Layer K S c I/O Input Resolution

1. Extraction Module

Conv
conv1 1a

3 2 3/64
left image 1/2

conv1 1b right image

Conv
conv1 2a

3 1 64/64
conv1 1a 1/2

conv1 2b conv1 1b

Conv
conv1 3a

3 1 64/128
conv1 2a 1/2

conv1 3b conv1 2b

2. Edge Detection Sub-network

Pooling max pool1 3 2 128/128 conv1 3a 1/4
ResNet50 conv2 1Õconv2 3 3 1 128/256 max pool1 1/4
ResNet50 conv3 1Õconv3 4 3 2 256/512 conv2 3 1/8
ResNet50 conv4 1Õconv4 6 3 1 512/1024 conv3 4 1/8
Conv conv1 3 edge 1 3 1 128/64 conv1 3a 1/2
Conv conv1 3 edge 3 1 64/32 conv1 3 edge 1 1/2
Conv conv2 3 edge 1 3 1 256/64 conv2 3 1/4
Conv conv2 3 edge 3 1 64/32 conv2 3 edge 1 1/4
Interp conv2 3 edge i - 2 - conv2 3 edge 1/2
Conv conv3 4 edge 1 3 1 512/64 conv3 4 1/8
Conv conv3 4 edge 3 1 64/32 conv3 4 edge 1 1/8
Interp conv3 4 edge i - 4 - conv3 4 edge 1/2
Conv conv4 6 edge 1 3 1 1024/64 conv4 6 1/8
Conv conv4 6 edge 3 1 64/32 conv4 6 edge 1 1/8
Interp conv4 6 edge i - 4 - conv4 6 edge 1/2

Conv conv edge 1 1 128/128
conv1 3 edge,conv2 3 edge i, 1/2
conv3 4 edge i,conv4 6 edge i

Conv edge score (no BN/ReLU) 1 1 128/1 conv edge 1/2
Sigmoid edge map - - - edge score 1/2

3. Matching Module and Edge Feature Embedding

Conv
conv trans a

3 1 128/128
conv1 3a 1/2

conv trans b conv1 3b

Corr Corr 1d - - 128/97
conv trans a 1/2
conv trans b

Pooling pool corr 3 2 225/225 conv trans a,Corr 1d 1/4
Conv conv edge trans 3 2 128/64 conv edge 1/4
Concat hybrid feature - - /289 pool corr,conv edge trans 1/4

4. Encoder

ResBlock res2 1Õres2 3 3 1 289/256 hybrid feature 1/4
ResBlock res3 1Õres3 4 3 2 256/512 res2 3 1/8
ResBlock res4 1Õres4 6 3 1 512/1024 res3 4 1/8
ResBlock res5 1Õres5 3 3 1 1024/2048 res4 6 1/8
Conv disp conv5 4 3 1 2048/512 res5 3 1/8

5. Decoder and Residual Pyramid

Deconv disp deconv1 3 2 512/256 disp conv5 4 1/4
Deconv disp deconv2 3 2 256/128 disp deconv1 1/2
Conv disp conv6 3 1 128/32 disp deconv2 1/2
Conv disp 2 (no BN/ReLU) 3 1 32/1 disp conv6 1/2

Deconv
disp ref a

3 2 128/32
conv1 3a 1

disp ref b conv1 3b
Interp up disp 2 - 2 - disp 2 1

Warp w disp ref a - - 32/32
disp ref b 1
up disp 2

Corr Corr 1d res - - 32/21
disp ref a 1
w disp ref a

Conv disp res conv1 1 1 1 54/64 Corr 1d res,up disp 2,disp ref a 1
Conv disp res conv1 2 3 1 64/64 disp res conv1 1 1
Conv disp res conv1 3 3 1 64/32 disp res conv1 2 1
Conv disp res 1 (no BN/ReLU) 3 1 32/1 disp res conv1 3 1
Sum disp 1 - - - up disp 2+disp res 1 1

dataset used in the second stage. We adopt the same deep su-
pervision strategy as stage two and conduct effective multi-
task learning.
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3.5 Model Specifications

The backbone network is ResNet-50 [20]. The shallow part
that two tasks share is conv1 1 to conv1 3 in the ResNet-50
backbone. Hence the extracted unary features Fl and Fr are
of 1/2 spatial size to the raw image. In the matching module,
the max displacement in the 1-D correlation layer (unidirec-
tional, leftward) is set to 96 hence the channel number of the
cost volume Fc is 97.

For the edge detection branch in EdgeStereo, we design a
fully-convolutional sub-network similar to HED [58], while
the semantic-meaningful edge features are easier to obtain
in our architecture. As shown in Fig. 4, we introduce four
side branches, concatenate and fuse feature representations
in all side branches, obtaining the edge features for embed-
ding. Through another 1× 1 convolutional layer and a sig-
moid layer, an edge map is produced, in which the edge
probability is given for each pixel. The edge branch uses the
ResNet-50 backbone from conv1 1 to conv4 6 and four side
branches start from conv1 3, conv2 3, conv3 4 and conv4 6
respectively. In addition, each side branch consists of two
3×3 convolutional blocks and a bilinear interpolation layer.

Taking the hybrid feature representation Fh as input, the
disparity encoder contains 16 residual blocks, similar to the
structure of ResNet-50 from conv2 3 to conv5 3. Several
convolutional layers in residual blocks are replaced with di-
lated convolutional layers [66] to integrate wider context in-
formation, hence the sub-sampled hybrid feature represen-
tation Fd from the encoder is of 1/8 size.

As mentioned above, the structure of the residual pyra-
mid is flexible. Depending on the smallest scale of dispar-
ity estimates, there are three different residual pyramids, de-
noted as RP 2, RP 4 and RP 8 respectively: for RP 2, two
3×3 deconvolutional blocks with stride two are applied on
Fd , hence the initial disparity map is of 1/2 size and only
full-size residual signals are required; for RP 4, one 3× 3
deconvolutional block with stride two is applied; for RP 8,
no deconvolutional block is applied hence the initial dispar-
ity map is of 1/8 size. At each scale in the residual pyra-
mid, three 3× 3 convolutional blocks and a convolutional
layer with a single output are adopted to regress disparities
or residual signals.

Finally, we present a detailed layer-by-layer definition
of EdgeStereo RP 2, which denotes the EdgeStereo model
with the residual pyramid RP 2. As shown in Table 1, each
convolutional or deconvolutional block contains a convolu-
tional or deconvolutional layer, a batch normalization layer
and a ReLU layer, “Interp” denotes the bilinear interpolation
layer, “ResNet50” denotes a part of the ResNet-50 back-
bone, and “ResBlock” denotes the residual blocks in the en-
coder.

4 Experiments

The experimental settings and results are provided. We first
conduct detailed ablation studies to verify our design choices
in EdgeStereo, meanwhile we also demonstrate that stereo
matching task and edge detection task can promote each
other based on our unified model. Then we compare EdgeStereo
with other state-of-the-art stereo matching methods on the
FlyingThings3D dataset [38], KITTI 2012 [14] and KITTI
2015 [41] stereo benchmarks. Finally, we prove that our
EdgeStereo has a comparable generalization capability for
disparity estimation because of the incorporation of edge
cues.

4.1 Datasets and Evaluation Metrics

4.1.1 Datasets

Five publicly available stereo matching datasets are adopted
for training and testing in EdgeStereo.

(i) FlyingThings3D [38]: a large-scale synthetic dataset
with dense ground-truth disparities, containing 22390 stereo
pairs for training and 4370 pairs for testing. This virtual
dataset contains some unreasonably large disparities; hence
two specific testing protocols are widely used: Protocol 1,
following CRL [44], if more than 25% of disparity values
in the ground-truth disparity map are greater than 300, the
corresponding stereo pair is removed; Protocol 2, follow-
ing PSMNet [5], we only calculate errors for pixels whose
ground-truth disparity < 192. We adopt both protocols for
fair comparison with other state-of-the-art stereo matching
methods.

(ii) KITTI2012 [14]: a real-world dataset with still street
views from a driving car. It contains 194 stereo pairs for
training with sparse ground-truth disparities and 195 test-
ing pairs without ground-truth. We further divide the whole
training data into a training set (160 pairs) and a validation
set (34 pairs) 1.

(iii) KITTI2015 [41]: a real-world dataset with dynamic
street views. It contains 200 training pairs and 200 testing
pairs. We divide the whole training data into a training set
(160 pairs) and a validation set (40 pairs), following [36].

(iv) CityScapes [8]: an urban scene understanding dataset.
This dataset provides 19997 rectified stereo pairs and their
disparity maps pre-computed by the SGM algorithm [22] in
the extra training set. As illustrated in [59], combining syn-
thetic and realistic data for pretraining is helpful. Hence we
fuse the data in the extra training set of CityScapes with the
training data in FlyingThings3D for EdgeStereo pretraining.

1 The validation image indexes are 3, 15, 33, 34, 36, 45, 59, 60, 69,
71, 72, 80, 85, 88, 104, 108, 115, 146, 149, 150, 159, 161, 162, 163,
170, 172, 173, 175, 178, 179, 181, 185, 187, 188.



10 Xiao Song, Xu Zhao, Liangji Fang and Hanwen Hu

(v) Middlebury 2014 [47]: a small in-door dataset con-
taining 15 training pairs with dense ground-truth disparities
and 15 test pairs.

Two publicly available edge detection datasets are adopted
for training and testing in EdgeStereo.

(i) Multicue [40]: a boundary and edge detection dataset
with challenging natural scenes. All 100 images are used for
training. We mix the augmentation data of Multicue with
the PASCAL VOC Context dataset [42], to pretrain the edge
detection sub-network in EdgeStereo.

(ii) BSDS500 [1]: a widely used edge detection dataset
composed of 200 training, 100 validation and 200 testing
images. We only use this dataset for testing.

4.1.2 Metrics

For stereo matching evaluation, we adopt the end-point-error
(EPE) which measures the average Euclidean distance be-
tween ground-truth and disparity estimate. We also calculate
the percentage of pixels whose EPE is larger than t pixels,
denoted as t-pixel error (> t px).

For edge detection evaluation, we adopt two widely used
metrics: F-measure ( 2∗Precision∗Recall

Precision+Recall ) of optimal dataset scale
(ODS), and F-measure of optimal image scale (OIS).

4.2 Implementation Details

We implement EdgeStereo based on Caffe [23]. The ResNet-
50 model pre-trained on ImageNet [9] is adopted to initialize
our network. The training is conducted on eight Nvidia GTX
1080Ti GPUs.

In the first training stage, we fuse the Multicue dataset
with PASCAL VOC Context dataset to pretrain the edge
branch. We adopt the stochastic gradient descent (SGD) with
a minibatch of 16 images. The initial learning rate is set to
0.01 and divided by 10 every 10K iterations. We set the mo-
mentum to 0.9 and weight decay to 0.0002. We run SGD for
40K iterations totally in the first stage. For data augmenta-
tion, we rotate the images in Multicue to 4 different angles
(0, 90, 180 and 270 degrees) and flip them at each angle, and
we also flip each image in the PASCAL dataset. Finally we
randomly crop 513×513 patches for training.

In the second training stage, we fix the edge branch and
pretrain EdgeStereo on FlyingThings3D or the fusion of the
FlyingThings3D and CityScapes datasets. The “poly” learn-
ing rate policy is adopted in which the current learning rate
equals to base lr× (1− iter

max iter )
power. It’s demonstrated in

[60,66] that such learning policy leads to better performance
for semantic segmentation and stereo matching tasks. We
also adopt SGD for optimization with a minibatch of 16
stereo pairs. We set the base learning rate to 0.01, power to
0.9, momentum to 0.9 and weight decay to 0.0001. We run

SGD for 200K iterations totally in the second stage. For data
augmentation, we adopt the random scaling, color shift and
contrast adjustment. The random scaling factor is between
0.5 and 2.0, the maximum color shift is set to 20 for each
channel and the contrast multiplier is between 0.8 and 1.2.
We randomly crop 513×321 patches for training.

In the third training stage, we pretrain the EdgeStereo
network using the same training data as the second stage.
Except the base learning rate is set to 0.002, other hyper-
parameters in the second stage are kept.

When finetuning on the KITTI datasets, we use the col-
laboratively pretrained (FlyingThings3D + CityScapes) model
from the third training stage. We set the maximum iteration
to 50K and base learning rate to 0.002. To prepare for KITTI
benchmark submissions, we prolong the second training stage
to 500K iterations, and adopt the whole training set in the
KITTI 2012 or 2015 dataset for finetuning. Since ground-
truth disparities are sparse in the KITTI training sets, invalid
pixels are neglected in the disparity regression loss.

When finetuning on the Middlebury dataset, we use the
Flyingthings3D pretrained model from the third training stage.
We collect 35 image pairs from the Middlebury 2003, 2005,
2006 and 2014 datasets for finetuning, and leave 15 image
pairs from the official Middlebury training set for validation.
We set the base learning rate to 0.002, the batch size to 16
and the maximum iterations to 10K. For submission, we use
all 50 image pairs from the training and validation sets and
finetune the pretrained model for 10K iterations.

The testing is conducted on a single Nvidia GTX 1080Ti
GPU. For evaluation on the FlyingThings3D test set, KITTI
validation sets and Middlebury dataset, the input sizes are
961×545, 1281×385 and 897×601 respectively. For KITTI
submissions, the input size is slightly enlarged to 1313×393
for better performance.

For ablation studies, we adopt the disparity estimation
sub-network in EdgeStereo as the baseline model, without
the incorporation of edge cues. The network structure of the
baseline model can be easily inferred from Table 1.

4.3 Ablation Studies

4.3.1 Ablation Study of Edge Cues

The first experiment in Table 2 demonstrates that incorporat-
ing edge cues significantly improves the accuracy of dispar-
ity estimation. As can be seen, when regularizing the base-
line model under the guidance of the edge-aware smooth-
ness loss, the 3-pixel error on the KITTI 2012 validation set
is reduced from 2.844% to 2.555%. After embedding the
edge features with fine-grained information, the error rate is
further reduced to 2.385%.

The second experiment in table 2 shows that the pro-
posed edge-aware smoothness loss is superior to other smooth-
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Table 2: Ablation study of edge cues and the comparison of different smoothness losses for stereo matching. For evaluation, we compute 3-pixel error (%) and EPE on the
FlyingThings3D test set (disparity < 192), KITTI 2012 and 2015 validation sets.

Model
FlyingThings3D KITTI 2012 val KITTI 2015 val
> 3 px EPE > 3 px EPE > 3 px EPE

1. Basic ablation study
Baseline model (without edge cues) 4.443 0.840 2.844 0.606 3.192 0.770
Baseline with edge-aware smoothness loss 4.103 0.788 2.555 0.568 3.011 0.754
Baseline with edge feature and edge-aware smoothness loss 3.940 0.751 2.385 0.555 2.839 0.729

2. Comparison of smoothness loss regularization
EdgeStereo with Charbonnier smoothness loss [60] 3.971 0.756 2.852 0.691 3.024 0.769
EdgeStereo with second-order gradient smoothness loss [67] 4.074 0.790 2.816 0.646 3.158 0.783
EdgeStereo (edge-aware smoothness loss) 3.940 0.751 2.385 0.555 2.839 0.729

Table 3: Ablation study of the residual pyramid. EPE on the FlyingThings3D test set
is only calculated for pixels whose ground-truth disparity < 192.

Model
FlyingThings3D KITTI 2012 val

EPE > 3 px EPE
no RP 0.830 2.484 0.611
RP 8 0.763 2.378 0.561
RP 4 0.740 2.289 0.542
RP 2 0.751 2.385 0.555
cascade 0.772 2.407 0.560

Table 4: Ablation study of the edge-aware smoothness loss intensity, which is con-
trolled by β in Eq. (2). Experiments are conducted on the KITTI 2012 validation set.

β 0 1 2 4 8
3-pixel error 2.569 2.367 2.289 2.337 2.341
EPE 0.620 0.556 0.542 0.546 0.552

ness regularization terms. We adopt two sophisticated edge-
preserving smoothness terms for comparison: 1) Charbon-
nier smoothness loss [60] Lsm = 1

N ∑i, j[ρs(di, j − di+1, j) +

ρs(di, j−di, j+1)], where ρs is implemented as the generalized
Charbonnier function [2]; 2) Second-order gradient smooth-
ness loss [67] Lsm = 1

N ∑i, j |∂ 2
x di, j|e−|∂

2
x Ii, j |+ |∂ 2

y di, j|e−|∂
2
y Ii, j |,

where ∂ 2I denotes the second-order image gradient. As can
be seen, the edge-aware smoothness loss is more semantic-
meaningful and can bring beneficial geometric constraints to
disparity estimation, hence achieving the best performance
on three datasets compared with other image gradient based
regularization terms. In addition, the edge-aware smooth-
ness loss can guide the multi-task learning in EdgeStereo
and help refine edge predictions, while other smoothness
regularization terms can not.

4.3.2 Ablation Study of the Residual Pyramid

To verify the effectiveness of our proposed residual pyra-
mid, we compare three networks containing different resid-
ual pyramids (RP 2, RP 4 and RP 8), with an EdgeStereo
model without the residual pyramid denoted as no RP, and
an EdgeStereo model with another cascaded network for re-
finement denoted as cascade. In no RP, the decoder con-
sists of 3 deconvolutional blocks and 1 convolutional layer
to produce a full-size disparity map. In cascade, similar to
iResNet [31], an additional network is cascaded on no RP
to predict full-size residual signals.

Table 5: Quantitative demonstrations of better edge predictions after multi-task learn-
ing. Experiments are conducted on the BSDS500 training, val and test sets.

Model
training val test

ODS OIS ODS OIS ODS OIS
Multicue-pretrained edge branch 0.328 0.368 0.332 0.373 0.340 0.373
Edge branch after multi-task learning 0.455 0.477 0.458 0.476 0.460 0.476

Table 6: Quantitative demonstrations of better disparity estimates near boundaries af-
ter incorporating edge cues. Experiments are conducted on the KITTI validation sets.

Model
KITTI 2012 val KITTI 2015 val

> 3 px EPE > 3 px EPE
Baseline model (without edge cues) 3.957 0.764 4.354 0.989
EdgeStereo 3.401 0.704 3.968 0.946

As listed in Table 3, three residual pyramids are all help-
ful for disparity estimation, because of the leveraged knowl-
edge from stereo geometry and geometric constraints. In
addition, compared with disparity refinement using another
cascaded network [31], the coarse-to-fine residual learning
mechanism alleviates the problem of over-fitting and achieves
better performance. The best performing RP 4 yields an er-
ror rate of 2.289% on the KITTI 2012 validation set and
an EPE of 0.740 on the FlyingThings3D test set, which is
adopted in the final EdgeStereo model.

4.3.3 Ablation Study of the Edge-aware Smoothness Loss
Intensity

In Eq. (2), the hyper-parameter β controls the intensity of
the edge-aware smoothness loss. As shown in Table 4, when
β is zero, the edge-aware smoothness loss is degraded to a
simple L1 regularization term, which will over-smooth dis-
parity maps; when β is large, the smoothness regularization
term is sensitive to noises in edge estimates, hence harm-
ing the performance of disparity estimation. The best setting
(β = 2) yields an error rate of 2.289% on the KITTI 2012
validation set, which is kept in the following experiments.
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Fig. 5: Qualitative demonstrations of better edge predictions after multi-task learning. From left: image in the KITTI 2015
training set, edge map from the Multicue-pretrained edge detection sub-network, edge map from EdgeStereo after multi-task
learning. Non-maximum suppression (NMS) is not adopted to thin detected edges.

Table 7: Comparison with other stereo matching methods on the FlyingThings3D test set.

Metric SGM[22] MC-CNN[64] DispNet[38] CRL[44] GC-Net[26] PSMNet[5] iResNet[31] SegStereo[60] Baseline EdgeStereo

Protocol 1
> 3 px 12.54 13.70 9.67 6.37 8.13 4.69 4.58 4.61 4.72 4.30
EPE 4.50 3.79 1.84 1.33 2.83 1.65 1.05 1.36 1.32 1.27

Protocol 2
> 3 px - - 9.31 5.97 7.73 4.14 4.40 4.27 4.40 3.96
EPE - - 1.70 1.21 2.15 0.98 0.95 0.91 0.82 0.74

Table 8: Comparison with other stereo matching methods in “Reflective Regions” on the KITTI stereo 2012 benchmark (March 5, 2019).

Metric SGM[22] MC-CNN[64] DispNet[38] GC-Net[26] Displets[19] PSMNet[5] iResNet[31] PDSNet[57] SegStereo[60] Baseline EdgeStereo
> 3 px 27.39 17.09 16.04 10.80 8.40 8.36 7.40 6.50 6.35 8.53 5.84
EPE 5.1 px 3.2 px 2.1 px 1.8 px 1.9 px 1.4 px 1.2 px 1.4 px 1.1 px 1.5 px 1.0 px

4.4 Effectiveness of Multi-task Learning

4.4.1 Stereo Matching Helps Edge Detection

EdgeStereo RP 4 is adopted for verification. We first train
the edge branch on Multicue, then fix it and train the dispar-
ity branch on FlyingThings3D, finally train two branches si-
multaneously on FlyingThings3D. We compare the Multicue-
pretrained edge detection sub-network with the edge branch
in EdgeStereo after multi-task learning.

Firstly we give quantitative demonstrations on the BSDS500
edge detection dataset. As shown in Table 5, ODS F-measures
and OIS F-measures on the BSDS500 training, validation
and test sets are all improved after multi-task learning, even
though the BSDS500 dataset is not used for pretraining and

the FlyingThings3D training set does not contain ground-
truth edge annotations during training.

Next we give qualitative demonstrations on the KITTI
stereo 2015 training set without edge annotations. As shown
in Fig. 5, after multi-task learning, edge predictions are sig-
nificantly refined and details are highlighted in the produced
edge maps, even though the model is not trained on KITTI
2015. Hence the mutual exploitation of stereo and edge in-
formation under the guidance of the edge-aware smoothness
loss is beneficial for edge detection task, proving the effec-
tiveness of the multi-task learning in our unified model.

4.4.2 Edge Detection Helps Stereo Matching

Several qualitative and quantitative demonstrations are al-
ready provided in Fig. 1 and Table 1. We further prove that
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disparity estimates near boundaries are more accurate after
incorporating edge cues. Considering edge annotations are
not provided in the KITTI stereo datasets, we treat the edge
predictions from the FlyingThings3D-pretrained EdgeStereo
model as boundaries for evaluation. As shown in Table 6, af-
ter incorporating edge cues, 3-pixel errors near boundaries
are reduced by 14.1% and 8.7% on the KITTI 2012 and
2015 validation sets respectively, compared with the base-
line model.

4.5 Comparison with Other Stereo Matching Methods

EdgeStereo RP 4 is adopted as the final EdgeStereo model,
with three outputs for training. Through experiments, the
loss weights λ 2

r ,λ
1
r ,λ

0
r for the disparity regression loss are

set to 0.6,0.8,1.0; the loss weights λ 2
sm,λ

1
sm,λ

0
sm for the edge-

aware smoothness loss are set to 0.06,0.08,0.1.

4.5.1 FlyingThings3D Results

We first compare EdgeStereo with several non-end-to-end
stereo matching methods, including SGM [22], MC-CNN
[64] and DRR [16]. Next we compare EdgeStereo with the
state-of-the-art end-to-end stereo matching networks, includ-
ing DispNetC [38], CRL [44], GC-Net [26], PSMNet [5],
iResNet [31] and SegStereo [60]. For comparison, we use
models made available by authors except GC-Net, while we
retrain GC-Net following the settings in their paper. As can
be seen in Table 7, EdgeStereo achieves the best perfor-
mance under two testing protocols.

4.5.2 KITTI 2012 Results

EdgeStereo is finetuned using all 194 training pairs, then
the testing results are submitted to the KITTI 2012 online
leaderboard. For evaluation, we use the percentage of er-
roneous pixels (> 2px, > 3px, > 4px, > 5px) and EPE in
non-occluded (Noc) and all (All) regions. The results are
shown in Table 9. As can be seen, by the time of the pa-
per submission, EdgeStereo outperforms all published stereo
matching methods in all evaluation metrics. We also finetune
the baseline model on the KITTI 2012 training set, then sub-
mit corresponding results to the benchmark. By leveraging
edge cues, EdgeStereo is obviously superior to the baseline
model, producing more reliable disparity estimates in de-
tailed structures, large occlusions and near boundaries.

We also compare EdgeStereo with state-of-the-art stereo
methods in “Reflective Regions” on the KITTI stereo 2012
benchmark. As shown in Table 8, EdgeStereo surpasses the
baseline model and other methods by a noteworthy margin,
especially the SegStereo [60] which utilizes foreground se-
mantic information, and the Displets [19] which resolves

stereo ambiguities using object knowledge. Hence incorpo-
rating semantic-meaningful edge information can provide
beneficial geometric knowledge for finding correspondences
in texture-less regions.

4.5.3 KITTI 2015 Results

We also submit the testing results to the KITTI 2015 on-
line leaderboard. For evaluation, we use the 3-pixel error of
background (D1-bg), foreground (D1-fg) and all pixels (D1-
all) in non-occluded and all regions. The results are shown
in Table 10. As can be seen, EdgeStereo achieves the best
performance compared with the baseline model and all pub-
lished stereo matching methods, meanwhile it is more ef-
ficient than the 3-D convolutional neural networks and cas-
caded structures. Fig. 6 gives qualitative results on the KITTI
test sets.

4.5.4 Middlebury 2014 Results

On the validation set (half size), the baseline model with-
out edge cues achieves a a 2-pixel error of 12.473% and an
EPE of 1.225, while EdgeStereo achieves a 2-pixel error of
11.540% and an EPE of 1.139, demonstrating the effective-
ness of incorporating edge cues for disparity learning.

Next we compare EdgeStereo with other methods on
the benchmark. Since the Middlebury dataset is too small,
among published end-to-end stereo networks, only iResNet
and PSMNet (ROB) report their results on this tiny dataset.
As can be seen from Table 11, EdgeStereo outperforms iRes-
Net and PSMNet by a noteworthy margin. However it per-
forms worse than the non-end-to-end method MC-CNN. On
the Middlebury benchmark, the top-performing methods are
non-end-to-end networks and some sophisticated hand en-
gineered methods rather than end-to-end stereo networks.
For non-end-to-end networks, training is conducted based
on pairs of image patches and the Middlebury training set
can provide sufficient training samples, hence their train-
ing processes are much more complete than end-to-end net-
works. The proposed EdgeStereo is an end-to-end architec-
ture with a large capacity of feature representation and con-
text characterization. Even if powerful data augmentations
are used during training, the Middlebury training set is too
small to fit the capacity of EdgeStereo. Hence we argue that
the powerfulness of EdgeStereo should be better evaluated
on datasets with larger scales.

4.6 Generalization Performance

4.6.1 Cross-domain Experiments

The generalization capability of an end-to-end disparity es-
timation network is important, since obtaining ground-truth
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Table 9: Comparison with other stereo matching methods on the KITTI stereo 2012 benchmark (March 1, 2019).

> 2px > 3px > 4px > 5px EPE
Noc All Noc All Noc All Noc All Noc

PSMNet [5] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 px
SegStereo[60] 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.5 px
iResNet [31] 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.5 px
GC-Net [26] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 px
PDSNet [57] 3.82 4.64 1.92 2.53 1.38 1.85 1.12 1.51 0.9 px
L-ResMatch [51] 3.64 5.06 2.27 3.40 1.76 2.67 1.50 2.26 0.7 px
SGM-Net [50] 3.60 5.15 2.29 3.50 1.83 2.80 1.60 2.36 0.7 px
Displets [19] 3.90 4.92 2.37 3.09 1.97 2.52 1.72 2.17 0.7 px
MC-CNN [64] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 0.7 px
DispNet [38] 7.38 8.11 4.11 4.65 2.77 3.20 2.05 2.39 0.9 px
SGM [22] 8.66 10.16 5.76 7.00 4.38 5.41 3.56 4.41 1.2 px
Baseline 2.91 3.55 1.81 2.27 1.29 1.61 1.07 1.25 0.5 px
EdgeStereo 2.32 2.88 1.46 1.83 1.07 1.34 0.83 1.04 0.4 px

Table 10: Comparison with other stereo matching methods on the KITTI stereo 2015 benchmark (March 1, 2019).

All Pixels Non-Occluded Pixels Runtime
D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

SegStereo[60] 1.88 4.07 2.25 1.76 3.70 2.08 0.6
PSMNet [5] 1.86 4.62 2.32 1.71 4.31 2.14 0.41
iResNet [31] 2.25 3.40 2.44 2.07 2.76 2.19 0.12
PDSNet [57] 2.29 4.05 2.58 2.09 3.68 2.36 0.5
CRL [44] 2.48 3.59 2.67 2.32 3.12 2.45 0.47
GC-Net [26] 2.21 6.16 2.87 2.02 5.58 2.61 0.9
LRCR [24] 2.55 5.42 3.03 2.23 4.19 2.55 49.2
DRR [16] 2.58 6.04 3.16 2.34 4.87 2.76 0.4
L-ResMatch [51] 2.72 6.95 3.42 2.35 5.74 2.91 48
Displets [19] 3.00 5.56 3.43 2.73 4.95 3.09 265
SGM-Net [50] 2.66 8.64 3.66 2.23 7.44 3.09 67
MC-CNN [64] 2.89 8.88 3.88 2.48 7.64 3.33 67
DispNet [38] 4.32 4.41 4.34 4.11 3.72 4.05 0.06
SGM [22] 5.06 13.00 6.38 4.43 11.68 5.62 0.11
Baseline 2.11 3.99 2.41 1.94 3.35 2.17 0.26
EdgeStereo 1.84 3.30 2.08 1.69 2.94 1.89 0.32

Table 11: Comparison with other stereo matching methods on the Middlebury benchmark (July 29, 2019).

MC-CNN-fst[64]
(Half)

SGM[22]
(Half)

iResNet[31]
(Half)

PSMNet ROB[5]
(Quarter)

EdgeStereo
(Full)

2-pixel error 9.47% 18.4% 22.9% 42.1% 18.7%

disparities using LiDAR is costly, and most real-world stereo
datasets are not large enough to train a model without over-
fitting. FlyingThings3D pretraining and collaborative pre-
training [59] (FlyingThings3D plus CityScapes) are the most
effective pretraining methods for end-to-end stereo networks,
which are adopted to compare the generalization performance
of state-of-the-art stereo matching methods. Firstly, we com-
pare FlyingThings3D pretrained models on the KITTI 2012
and 2015 training sets. We use publicly available models
(provided by authors) of DispNet, CRL, SegStereo and PSM-
Net for comparison and train iResNet on Flyingthings3D.
Secondly, we compare collaboratively pretrained (FlyingTh-
ings3D plus CityScapes) models on the KITTI 2012 and
Middlebury 2014 training sets. Since the collaborative pre-
training scheme is not used in the previously published meth-
ods, we pretrain all competitors (DispNet, CRL, SegStereo,
iResNet and PSMNet) following the same scheduling re-
ported in the original papers.

The results are shown in Table 12. As can be seen, Fly-
ingthings3D pretrained EdgeStereo model achieves compa-
rable generalization performance with DispNet and SegStereo,
meanwhile being significantly better than 3-D convolutional
networks (PSMNet). However, Flyingthings3D pretrained
EdgeStereo preforms slightly worse than CRL and iResNet
on KITTI training sets, since the capacity of our EdgeStereo
is much larger than CRL and iResNet, while the synthetic
Flyingthings3D dataset has a quite different domain with
real-world KITTI datasets (e.g. unreasonably large dispar-
ities) that EdgeStereo has learnt to adapt. When compar-
ing collaboratively pretrained models, where the real-world
Cityscapes dataset is used for pretraining, EdgeStereo achieves
comparable generalization performance with iResNet. In ad-
dition, EdgeStereo outperforms all other competitors on the
Middlebury benchmark, KITTI benchmarks and Flyingth-
ings3D test set, demonstrating the capability of our EdgeStereo
on different domains. Collaboratively pretrained EdgeStereo
achieves a 3-pixel error of 5.239% on the KITTI 2012 train-
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Fig. 6: Qualitative results on the KITTI 2012 and 2015 test sets. From left: left stereo image, disparity estimates, error map.

Table 12: The generalization performance of state-of-the-art end-to-end stereo matching methods. To compare generalization capability, FlyingThings3D-pretrained models are
evaluated on the KITTI 2012 and 2015 training sets, collaborative-pretrained (FlyingThings3D plus CityScapes) models are evaluated on the KITTI 2012 and Middlebury 2014
training sets.

Dataset and Metric DispNet CRL iResNet PSMNet SegStereo Baseline EdgeStereo
1. FlyingThings3D Pretrain

KITTI 2012 training
> 3 px 12.542 9.073 7.895 27.333 12.808 16.783 12.274
EPE 1.753 1.387 1.278 5.549 2.052 3.333 1.963

KITTI 2015 training
> 3 px 12.881 8.885 7.424 29.868 11.234 16.179 12.467
EPE 1.596 1.357 1.213 6.445 2.187 3.653 2.068

2. FlyingThings3D + CityScapes Pretrain

KITTI 2012 training
> 3 px 6.373 5.705 4.867 5.716 5.476 5.677 5.239
EPE 1.194 1.096 1.001 1.137 1.113 1.010 0.999

Middlebury (Half)
> 3 px 15.684 10.987 10.475 13.859 14.477 13.120 11.136
EPE 2.217 1.676 1.583 1.987 2.173 2.109 1.552

ing set, which is a promising result for practical use when
obtaining dense ground-truth disparities is costly. In addi-
tion, when pretrained and evaluated on datasets with dif-
ferent domains, EdgeStereo outperforms the baseline model
obviously after incorporating edge cues for multi-task learn-
ing.

4.6.2 Performance in Indoor Edgeless Scenarios

To further demonstrate that our proposed method also works
well in edgeless indoor scenarios, firstly we choose 10 edge-
less stereo pairs from the Middlebury training set 2 as a val-
idation set, next we compare the collaboratively pretrained
(FlyingThings3D plus CityScapes) EdgeStereo model and

2 Baby1 06, Baby2 06, Barn1 01, Barn2 01, Bull 01, Cloth1 06,
Poster 01, Sawtooth 01, Venus 01, Wood1 06

baseline model (without the edge detection branch) on this
validation set.

As can be seen from Table 13, the EdgeStereo model
achieves a satisfactory 3-pixel error of 2.252% on this chal-
lenging full-resolution Middlebury validation set, even if the
model is pretrained using unrealistic data (Flyingthings3D)
and outdoor data (Cityscapes). In addition, EdgeStereo out-
performs the baseline model on these edgeless scenarios af-
ter multi-task learning, demonstrating that the proposed model
would not suffer from the edge branch in these scenarios.
The qualitative demonstrations are given in Fig. 7. As can
be seen, the collaboratively pretrained EdgeStereo produces
consistent disparity estimations in edgeless scenarios.
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Fig. 7: Disparity estimations of the collaboratively pretrained EdgeStereo on the self-built Middlebury validation set (indoor
edgeless scenarios).

Table 13: Comparison between the collaboratively pretrained EdgeStereo and baseline on the self-built Middlebury validation set (indoor edgeless scenarios).

3-pixel error EPE
Baseline 2.742 0.622
EdgeStereo 2.252 0.570

Table 14: Comparison between our new work and the previous version [53].

KITTI2012 test KITTI2012 reflective regions KITTI2015 test Flyingthings3D
Previous [53] 1.73% 7.01% 2.59% 4.70%/0.99
New 1.46% 5.84% 2.08% 3.96%/0.74

4.7 Comparison with the Previous Version

Compared with our ACCV version [53]: (1) We change the
backbone from the ImageNet pretrained VGG16 to a more
powerful feature extractor ResNet50, and we also change
the encoder structure to a ResNet-like structure for better
intermediate representations; (2) We re-design the structure
of the residual pyramid and make it more effective, where
multi-scale features are used for binocular warping and cost
volume generation; (3) We refine multi-task learning mecha-
nism, where the edge-aware smoothness loss is enabled to be
propagated back to the disparity branch and edge branch si-
multaneously, then both the disparity map and edge map can
be optimized under the guidance of the edge-aware smooth-
ness loss. Consequently we obtain the most important con-
clusion in this paper: edge detection and stereo matching can
help each other based on our unified model.

In conclusion, we re-design the overall architecture where
all modules are proved to be more effective. Finally, we will
give some quantitative comparisons in Table 14. As can be
seen, the new architecture outperforms the original one on
all test sets and the challenging reflective regions.

5 Conclusion and Future Work

In this paper, we propose an effective multi-task learning
network EdgeStereo for stereo matching and edge detection.
To effectively incorporate edge cues into the disparity esti-
mation pipeline for multi-task learning, we design the edge
feature embedding and propose the edge-aware smoothness
loss. The experimental results show that the disparity esti-
mates in texture-less regions, large occlusions, detailed struc-
tures and near boundaries are significantly improved after
incorporating edge cues. Correspondingly, our EdgeStereo
achieves the best performance on the FlyingThings3D dataset,
meanwhile outperforming other published stereo matching

methods on the KITTI stereo 2012 and 2015 benchmarks.
EdgeStereo also ranks the first on the online leaderboard of
the KITTI 2012 “Reflective Regions” evaluation. In addi-
tion, we provide both qualitative and quantitative demon-
strations that edge predictions are improved after multi-task
learning, even if ground-truth edge annotations are not pro-
vided for training. Finally we prove that EdgeStereo has a
comparable generalization capability for disparity estima-
tion. In conclusion, stereo matching task and edge detection
task can promote each other through the geometric knowl-
edge learned from the multi-task interactions in EdgeStereo.

In future work, we intend to apply the multi-task learn-
ing mechanism of EdgeStereo to other dense matching ap-
plications, such as optical flow and multi-view reconstruc-
tion etc. In addition, we consider to explicitly model geo-
metric constraints from stereo matching for edge detection
to further improve the quality of edge predictions. Finally,
we consider to incorporate more tasks, such as semantic seg-
mentation and instance segmentation etc, into our unified
model. It will be a future direction to achieve an integrated
vision system with a clear and interpretable architecture.

Acknowledgements We would like to thank Guorun Yang for helpful
discussions and suggestions. This research is supported by the funding
from NSFC programs (61673269, 61273285, U1764264).

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detec-
tion and hierarchical image segmentation. TPAMI 33(5), 898–916
(2011)

2. Barron, J.T.: A more general robust loss function. arXiv preprint
arXiv:1701.03077 (2017)

3. Barron, J.T., Adams, A., Shih, Y., Hernández, C.: Fast bilateral-
space stereo for synthetic defocus. In: CVPR, pp. 4466–4474
(2015)

4. Canny, J.: A computational approach to edge detection. TPAMI
(6), 679–698 (1986)



EdgeStereo: An Effective Multi-Task Learning Network for Stereo Matching and Edge Detection 17

5. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In:
CVPR (2018)

6. Chen, Z., Sun, X., Wang, L., Yu, Y., Huang, C.: A deep visual
correspondence embedding model for stereo matching costs. In:
ICCV, pp. 972–980 (2015)

7. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: SegFlow: Joint learn-
ing for video object segmentation and optical flow. In: ICCV, pp.
686–695 (2017)

8. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M.,
Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes
dataset for semantic urban scene understanding. In: CVPR, pp.
3213–3223 (2016)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: CVPR, pp.
248–255 (2009)

10. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and
object boundaries. In: CVPR, vol. 2, pp. 1964–1971 (2006)

11. Dollár, P., Zitnick, C.L.: Fast edge detection using structured
forests. TPAMI 37(8), 1558–1570 (2015)

12. Dosovitskiy, A., Fischery, P., Ilg, E., HUsser, P.: Flownet: Learn-
ing optical flow with convolutional networks. In: ICCV, pp. 2758–
2766 (2015)

13. Garg, R., BG, V.K., Carneiro, G., Reid, I.: Unsupervised cnn for
single view depth estimation: Geometry to the rescue. In: ECCV,
pp. 740–756 (2016)

14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous
driving? the kitti vision benchmark suite. In: CVPR, pp. 3354–
3361 (2012)

15. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo
matching. In: ACCV, pp. 25–38 (2010)

16. Gidaris, S., Komodakis, N.: Detect, replace, refine: Deep struc-
tured prediction for pixel wise labeling. In: CVPR, pp. 5248–5257
(2017)

17. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular
depth estimation with left-right consistency. In: CVPR, pp. 6602–
6611 (2017)

18. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monoc-
ular depth estimation with left-right consistency. In: CVPR (2017)

19. Guney, F., Geiger, A.: Displets: Resolving stereo ambiguities us-
ing object knowledge. In: CVPR, pp. 4165–4175 (2015)

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: CVPR, pp. 770–778 (2016)

21. Heise, P., Jensen, B., Klose, S., Knoll, A.: Fast dense stereo cor-
respondences by binary locality sensitive hashing. In: ICRA, pp.
105–110 (2015)

22. Hirschmuller, H.: Accurate and efficient stereo processing by
semi-global matching and mutual information. In: CVPR, pp.
807–814 (2005)

23. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture
for fast feature embedding. In: ACMMM, pp. 675–678 (2014)

24. Jie, Z., Wang, P., Ling, Y., Zhao, B., Wei, Y., Feng, J., Liu, W.:
Left-right comparative recurrent model for stereo matching. In:
CVPR, pp. 3838–3846 (2018)

25. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7482–7491 (2018)

26. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy,
R.: End-to-end learning of geometry and context for deep stereo
regression. In: ICCV (2017)

27. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo match-
ing using belief propagation and a self-adapting dissimilarity mea-
sure. In: ICPR, vol. 3, pp. 15–18 (2006)

28. Knobelreiter, P., Reinbacher, C., Shekhovtsov, A., Pock, T.: End-
to-end training of hybrid cnn-crf models for stereo. In: CVPR, pp.
2339–2348 (2017)

29. Kolmogorov, V., Zabih, R.: Computing visual correspondence
with occlusions using graph cuts. In: ICCV, vol. 2, pp. 508–515
(2001)

30. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep
learning for monocular depth map prediction. In: CVPR, pp.
6647–6655 (2017)

31. Liang, Z., Feng, Y., Guo, Y., Liu, H.: Learning deep correspon-
dence through prior and posterior feature constancy. In: CVPR
(2018)

32. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convo-
lutional features for edge detection. In: CVPR, pp. 5872–5881
(2017)

33. Liu, Y., Lew, M.S.: Learning relaxed deep supervision for better
edge detection. In: CVPR, pp. 231–240 (2016)

34. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks
for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

35. Lu, C., Uchiyama, H., Thomas, D., Shimada, A., Taniguchi, R.i.:
Sparse cost volume for efficient stereo matching. Remote Sensing
10(11), 1844 (2018)

36. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for
stereo matching. In: CVPR, pp. 5695–5703 (2016)

37. Mao, J., Xiao, T.: What can help pedestrian detection? In: CVPR
(2017)

38. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovit-
skiy, A., Brox, T.: A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In: CVPR,
pp. 4040–4048 (2016)

39. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On
building an accurate stereo matching system on graphics hard-
ware. In: ICCVW, pp. 467–474 (2011)
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