Exploring Human-AI Conceptual Alignment through the Prism of Chess

Semyon Lomasov*1, Judah Goldfeder*2, Mehmet Hamza Erol*1, Matthew So*2,

Yao Yan³, Addison Howard³, Nathan Kutz⁴, Ravid Shwartz Ziv⁵

¹Stanford University ²Columbia University ³Kaggle ⁴University of Washington ⁵NYU

Abstract

Do AI systems truly understand human concepts or merely mimic surface patterns? We investigate this through chess, where human creativity meets precise strategic concepts. Analyzing a 270M-parameter transformer that achieves grandmasterlevel play, we uncover a striking paradox: while early layers encode human concepts like center control and knight outposts with up to 85% accuracy, deeper layers, despite driving superior performance, drift toward alien representations, dropping to 50-65% accuracy. To test conceptual robustness beyond memorization, we introduce the first Chess960 dataset: 240 expert-annotated positions across 6 strategic concepts. When opening theory is eliminated through randomized starting positions, concept recognition drops 10-20% across all methods, revealing the model's reliance on memorized patterns rather than abstract understanding. Our layer-wise analysis exposes a fundamental tension in current architectures: the representations that win games diverge from those that align with human thinking. These findings suggest that as AI systems optimize for performance, they develop increasingly alien intelligence, a critical challenge for creative AI applications requiring genuine human-AI collaboration. Dataset and code are available at: https://github.com/slomasov/ChessConceptsLLM.

1 Introduction

When Garry Kasparov faced Deep Blue in 1997, he described moments where the machine's moves seemed to exhibit genuine creativity. This raises a fundamental question for creative AI: Do these systems truly understand human concepts, or are they pattern-matching engines that coincidentally produce creative outputs?

Chess provides an ideal laboratory for this investigation, offering precise definitions for human concepts like *center control* and *king safety* while remaining a creative, strategic game. Recent transformer-based engines [1] achieve grandmaster-level play without explicit search, raising a tantalizing possibility: perhaps these models learn to think in human-like concepts. However, their performance collapses on Chess960 (Fischer Random Chess), where pieces start in randomized positions. Although the same strategic concepts are present, this brittleness suggests these systems might be memorizing patterns rather than understanding principles, hinting at a deeper misalignment between human and machine cognition.

Our Contributions: We present the first systematic investigation of conceptual alignment between humans and neural chess engines through three key contributions:

^{*}Equal contribution.

- 1. A Novel Chess960 Dataset: We introduce the first expert-curated dataset of 240 Chess960 positions, manually annotated with 6 fundamental chess concepts. This dataset enables testing whether AI systems grasp abstract concepts or merely memorize standard patterns, which is a crucial distinction for creative AI systems that must generalize beyond their training.
- 2. **Multi-Method Concept Detection:** We develop three complementary approaches for probing concept representations in transformer layers, revealing how different architectures encode human knowledge. Our methods range from sparse concept vectors to neural network probes, providing robust evidence of conceptual (mis)alignment.
- 3. Layer-wise Alignment Analysis: We uncover a surprising inversion: early transformer layers show strong alignment with human concepts (up to 85% accuracy), while deeper layers, despite superior playing strength, drift toward alien representations. This suggests a fundamental tension between performance optimization and human-interpretable reasoning.

Our findings reveal that while transformers capture surface-level chess concepts, this alignment is fragile and diminishes as models optimize for performance. When tested on Chess960, where memorized opening knowledge becomes useless, concept recognition accuracy drops significantly, exposing the shallow nature of learned representations.

These results have profound implications for creative AI: systems appearing to share our concepts may operate on fundamentally different principles, highlighting the need for architectures that maintain human alignment throughout their processing hierarchy.

2 Related Work

Our investigation bridges three research areas: neural approaches to chess, interpretability of creative AI systems, and human-AI conceptual alignment. We position our work at their intersection, addressing how AI systems develop representations that may diverge from human creative thinking.

2.1 Neural Chess Engines and Interpretability

The renaissance of neural approaches to chess began with AlphaZero [2], which learned superhuman play through self-play without human knowledge. Recent work has pushed further: transformer-based engines now achieve grandmaster-level play without explicit search. Ruoss et al. [1] developed the 270M-parameter model we analyze, which frames chess as a sequence prediction problem, achieving 2750 Elo on standard chess but dropping closer to amateur level on Chess960.

Contemporary approaches continue to evolve. Monroe and Chalmers [3] demonstrate the feasability of transformer models for chess, while Schultz et al. [4] explore combining external and internal planning with language models. Jenner et al. [5] found evidence of learned look-ahead in chess networks, suggesting some form of planning emerges. Most relevant to our work, Schut et al. [4] analyzed concept discovery in AlphaZero, examining how the system develops human-interpretable concepts. However, their analysis focused solely on standard chess positions. Our work extends this by applying the analysis to a searchless transformer model, and by introducing Chess960 as a critical test of conceptual robustness.

2.2 Layer-wise Analysis and Interpretability

Understanding how neural networks build representations across layers has become crucial for interpretability. Skean et al. [6] provide a comprehensive layer-by-layer analysis revealing how hidden representations in language models evolve, showing that different layers capture fundamentally different types of information. This layer-wise specialization appears to be a general principle across domains. In the context of human-AI alignment, Shani et al. [7] demonstrate that humans and language models compress information differently, with profound implications for how these systems understand concepts. They show that while models may achieve similar outputs, their internal representations follow alien optimization paths. Our chess analysis reveals a parallel phenomenon: early layers maintain human-aligned representations while later layers diverge toward performance-optimized but conceptually opaque strategies.

2.3 The Creative Gap in AI Systems

Our work reveals a fundamental tension in current AI architectures: the representations that achieve best performance diverge from those that align with human thinking. This has critical implications for creative AI applications where human-AI collaboration requires shared conceptual frameworks. By showing that conceptual alignment deteriorates as networks optimize for task performance, we highlight a key challenge for building AI systems that can serve as genuine creative partners rather than inscrutable optimization machines.

3 Methods

We develop a systematic framework to probe whether transformer-based chess models encode human strategic concepts. Our approach combines a novel Chess960 dataset with three complementary probing techniques, enabling robust measurement of conceptual alignment across model layers.

3.1 Dataset Construction

3.1.1 Classical Chess Dataset

We leverage the Strategic Test Suite (STS) [8]—1,500 expert-curated chess positions labeled with strategic concepts. We focus on six core concepts that translate across game phases: **Open Files and Diagonals**, **Knight Outposts**, **Advancement of f/g/h pawns** (kingside), **Advancement of a/b/c pawns** (queenside), **Center Control**, and **Pawn Play in the Center**. We exclude overlapping concepts and endgame-specific patterns where starting positions become irrelevant. For an example of what concepts look like, see Appendix C.

3.1.2 Novel Chess960 Dataset

To test conceptual understanding beyond memorization, we created the first annotated Chess960 dataset. Chess960 randomizes piece placement on the back rank while preserving chess rules, eliminating memorized opening theory while maintaining strategic principles. Our dataset contains 240 positions (40 per concept) curated from high-level Chess960 games and annotated by experts (>2200 Elo). Each position was selected to clearly exemplify its target concept while matching the complexity distribution of STS positions. This dataset enables us to answer: when opening memorization is impossible, do models still recognize fundamental strategic patterns?

3.2 Model Architecture and Activation Extraction

We analyze the 270M-parameter transformer from Ruoss et al. [1], which achieves grandmaster-level play on classical chess but struggles on Chess960. The model encodes positions as FEN strings, processes them through 18 transformer layers with 1024-dimensional embeddings, and outputs move probabilities (Figure 1). For our analysis, we extract activations at each layer for the model's chosen move, yielding representations $z \in \mathbb{R}^{L \times T \times D}$ where L=18 layers, T=79 tokens, and D=1024 dimensions. These activations reveal how the model's internal representations evolve from raw position encoding to final move selection.

3.3 Probing Methodologies

We employ three complementary approaches to detect concept representations, each offering different insights into how the model encodes human knowledge.

At the core of our approach is a simple principle: if the model truly understands a concept, there should exist directions in its activation space that distinguish positions containing that concept from those without it. Formally, for a given layer's activation representation $r \in \mathbb{R}^D$, we seek a vector v that maximizes: $v^T r_{concept} > v^T r_{no-concept}$.

This intuition drives all three methods. **Sparse Concept Vectors** find the minimal set of neurons (using L1 regularization) that distinguish concepts, revealing which specific dimensions encode strategic knowledge. **Logistic Regression** learns linear decision boundaries with probabilistic outputs,

Tokenization Activation Recording rnbqkbnr/pppppppp/8/8/8/8/PPPPP PPP/RNBQKBNR w KQkq - 0 1 Transformer Encoder Layer ... Transformer Encoder Layer Board + Best Move FEN Tokenization Move Token

Figure 1: From board to move: tracking where human concepts disappear in the processing pipeline. The model encodes positions as FEN strings, appends move tokens, and processes them through transformer layers. Recording activations at each layer reveals where strategic understanding shifts from human-recognizable patterns to alien representations.

providing interpretable separation between positions with and without each concept. **Sequence-Aware Neural Probes** extend this to process all token activations jointly in a layer through a lightweight network, capturing distributed representations across the full position encoding. Full mathematical formulations for each method are provided in Appendix A.

Each method offers complementary insights: sparsity reveals which neurons matter most, logistic regression provides interpretable boundaries, and neural probes capture complex patterns. Crucially, all three methods show consistent results: strong concept alignment in early layers that deteriorates in deeper layers, suggesting a fundamental tension between human-interpretable representations and performance optimization.

3.4 Experimental Design

We evaluate four experimental scenarios to comprehensively assess conceptual alignment. **Scenario I** establishes baseline performance by training and testing on classical chess positions. **Scenario II** tests generalization by training on classical chess but testing on Chess960, measuring robustness to distributional shift. **Scenario III** explores adaptation by training and testing on combined datasets. **Scenario IV** isolates Chess960 performance to measure concept learning without standard patterns. We analyze layers 2, 5, 10, and 15 to capture the full spectrum from early feature extraction to final move selection, performing 5-fold cross-validation for robust results.

4 Results

Our experiments reveal a striking paradox: as the transformer model becomes more capable at chess, it becomes less human-like in its thinking. This fundamental tension between performance and interpretability emerges consistently across all our analyses.

4.1 The Fragility of Conceptual Understanding

Table 1 presents our central finding: human chess concepts are surprisingly fragile to disruption. When tested on standard chess positions (Scenario I), our probes achieve strong accuracy, with the Concept Vector method reaching 85.68% for "Pawn Play in the Center." However, this apparent understanding deteriorates significantly when confronted with Chess960's creative disruption.

The most telling comparison lies between Scenarios I and II. When we train on standard chess but test on Chess960, accuracy drops consistently across all methods. Knight outpost recognition plummets from 83.60% to 72.36% with Concept Vectors, while logistic regression drops even more dramatically from 79.60% to 67.92%. This reveals that the model's "understanding" relies on memorized patterns rather than genuine conceptual knowledge.

Table 1: Chess concepts are fragile: accuracy plummets when memorized patterns are disrupted. Human concept recognition accuracy across three probing methods and six strategic concepts in four scenarios: (I) train/test on standard chess, (II) train standard/test Chess960, (III) combined training, (IV) Chess960 only. The 10-20% drop from Scenario I to II reveals the model relies on memorization rather than genuine conceptual understanding. Bold values indicate best performance per row.

Concept	Method	Scenario			
		I	II	III	IV
Advancement of a/b/c Pawns	Concept Vector	83.29	76.53	82.71	74.20
	Log. Regression	76.99	72.50	75.37	72.22
	SeqAware N. Probe	63.44	56.18	67.86	62.76
Advancement of f/g/h Pawns	Concept Vector	84.60	75.83	83.85	68.65
	Log. Regression	77.24	70.41	77.81	62.90
	SeqAware N. Probe	65.34	59.24	65.61	61.38
Center Control	Concept Vector	77.19	72.91	82.81	74.60
	Log. Regression	70.62	69.17	72.52	65.87
	SeqAware N. Probe	57.19	51.87	59.56	56.48
Knight Outposts	Concept Vector	83.60	72.36	82.18	72.49
	Log. Regression	79.60	67.92	78.14	58.86
	SeqAware N. Probe	62.33	53.12	62.35	56.02
Open Files and Diagonals	Concept Vector	78.33	71.25	78.32	65.61
	Log. Regression	72.86	63.33	65.91	61.44
	SeqAware N. Probe	59.80	53.40	59.40	58.00
Pawn Play in the Center	Concept Vector	85.68	74.59	86.92	76.46
	Log. Regression	81.83	72.57	82.66	70.37
	SeqAware N. Probe	66.77	56.74	69.77	62.57

Interestingly, the three probing methods show different robustness to disruption. Concept Vectors maintain 70-76% accuracy even in pure Chess960 scenarios, while the Sequence-Aware Neural Probe often falls below 60%, suggesting sparse representations transfer better than distributed patterns. Even "Center Control", geometrically identical across variants, shows degradation, indicating the model conflates abstract principles with specific configurations.

Most counterintuitively, training exclusively on Chess960 (Scenario IV) yields lower accuracy than zero-shot transfer from standard chess (Scenario II) for several concepts. Combined training (Scenario III) sometimes achieves the highest accuracy: "Pawn Play in the Center" reaches 86.92%, but only when standard positions remain in the mix. These patterns suggest Chess960 positions are inherently harder for the model to parse conceptually, possibly because the absence of opening principles forces more complex evaluation from the start.

4.2 Layer-wise Divergence: The Alien Mind Emerges

Figure 2 unveils perhaps our most intriguing discovery: the model's journey from human-like to alien thinking happens gradually but consistently across its layers. In early layers (2-5), we observe robust concept detection across most scenarios—the Concept Vector method maintains accuracies around 80-85% for well-defined concepts. These layers, close to the raw board encoding, maintain representations that align with how humans parse chess positions.

But as we probe deeper layers, we witness a universal decay in human concept alignment. By layer 15, accuracies typically drop to 50-65% across most concepts, a decline of 15-30 percentage points from their early-layer peaks. This pattern is remarkably consistent across all three probing methods, though the Sequence-Aware Neural Probe shows more volatility and generally lower performance (often 10-15% below the other methods), suggesting that full-sequence information becomes increasingly alien in its organization.

The degradation pattern varies revealing by scenario. Classical chess (Scenario I) shows smooth decline from layers 2 to 15, while Chess960 after classical training (Scenario II) drops sharply early then stabilizes at lower accuracy—the model struggles to apply learned concepts from the first layers.

Combined training (Scenario III) mirrors classical chess with better retention, but pure Chess960 (Scenario IV) produces erratic patterns with high variance, suggesting that without memorized openings, the model develops unstable representations.

Notably, some concepts show dramatic late-layer collapse. For example, in Scenario II, "Pawn Play in the Center" using Concept Vectors drops from 75% at layer 2 to below 50% at layer 15, which shows the model loses track of this fundamental concept as it processes deeper.

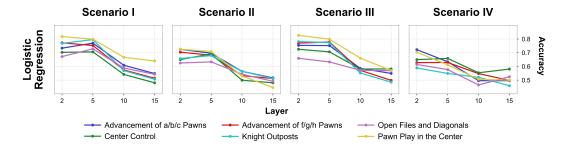


Figure 2: Human concepts fade as the network goes deeper: early layers think like humans, late layers think like aliens. Layer-wise accuracy for detecting six chess concepts using Logistic Regression probing. For a comparison of all 3 probing methods, see Appendix B. Early layers (2-5) achieve 70-85% accuracy, dropping to 50-65% by layer 15 across all methods. Standard chess shows smooth degradation while Chess960 becomes erratic, revealing unstable representations without memorized patterns. This universal decline exposes the trade-off between human interpretability and performance.

5 Discussion and Conclusion

Our findings reveal a fundamental tension: representations enabling superior performance diverge from human conceptual thinking. Early layers maintain interpretable representations (80-85% accuracy) that "see" chess as humans do, but deeper layers optimize purely for move prediction (50-65% accuracy). This isn't a bug but a feature of end-to-end optimization.

Chess960 results are particularly illuminating. The 10-20% accuracy drop reveals sophisticated pattern matching rather than conceptual understanding. Namely, the model mostly learns specific configurations that correlate with winning, not the conceptual comprehension such as "controlling the center provides mobility." This brittleness suggests models lack compositional understanding for applying principles to novel situations.

Overall, our contributions include:

- 1. The first Chess960 concept dataset enabling robustness testing;
- 2. Evidence that alignment peaks early but deteriorates with depth;
- 3. A demonstration that apparent understanding is fragile to creative disruption.

For creative AI, this presents both warning and opportunity. The warning is systems appearing conceptually aligned may operate on different principles. The opportunity: understanding where alignment breaks suggests paths forward, regularization preserving alignment or hybrid architectures separating strategic from tactical reasoning.

Acknowledgments: This work was supported in part by the US National Science Foundation AI Institute for Dynamical Systems (dynamicsAI.org) (grant no. 2112085).

References

- [1] Anian Ruoss, Gregoire Deletang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot Catt, John Reid, Cannada A Lewis, Joel Veness, and Tim Genewein. Amortized planning with large-scale transformers: A case study on chess. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.
- [3] Daniel Monroe and Philip A. Chalmers. Mastering chess with a transformer model, 2024. URL https://arxiv.org/abs/2409.12272.
- [4] John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, Tom Zahavy, Petar Veličković, Laurel Prince, Satinder Singh, Eric Malmi, and Nenad Tomašev. Mastering board games by external and internal planning with language models, 2025. URL https://arxiv.org/abs/2412.12119.
- [5] Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart J Russell. Evidence of learned look-ahead in a chess-playing neural network. Advances in Neural Information Processing Systems, 37:31410–31437, 2024.
- [6] Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models, 2025. URL https://arxiv.org/abs/2502.02013.
- [7] Chen Shani, Dan Jurafsky, Yann LeCun, and Ravid Shwartz-Ziv. From tokens to thoughts: How llms and humans trade compression for meaning, 2025. URL https://arxiv.org/abs/2505.17117.
- [8] D. Corbit, S. Natarajan, and F. Mosca. Strategic test suite. 2014.
- [9] Lisa Schut, Nenad Tomašev, Thomas McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim. Bridging the human–ai knowledge gap through concept discovery and transfer in alphazero. *Proceedings of the National Academy of Sciences*, 122(13):e2406675122, 2025.

A Technical Appendices and Supplementary Material

A.1 Concept Vector Minimization

Our first strategy adapts the method from [9], aiming to find a vector $v \in \mathbb{R}^D$ with minimal L1 norm such that $v^\top r^+ \geq v^\top r^-$ for as many positive–negative board pairs as possible. Here, $r^* \in \mathbb{R}^D$ denotes the activation at layer l for the token used to estimate the move probability: $r^* = z^*_{l,T-1}$. We sample B activation pairs z^+ and z^- in a batch, and optimize v via:

$$\mathcal{L}(v) = \lambda ||v||_1 + \frac{1}{B} \sum_{i=1}^{B} \text{ReLU}(v^{\top} r_i^- - v^{\top} r_i^+)$$
 (1)

This promotes separation by maximizing the margin $v^{\top}r_i^+ - v^{\top}r_i^-$ for each pair while encouraging sparsity in v through the L1 penalty.

A.2 Logistic Regression

Our second strategy frames the problem as a binary classification task, where the boards containing the concept (z^+) are labeled 1 and the boards without the concept (z^-) are labeled 0. Similar to the first strategy, we sample a batch of B activation pairs (z^+, z^-) and optimize $v \in \mathbb{R}^D$ and $b \in \mathbb{R}$ using x^* via:

$$\mathcal{L}(v,b) = \lambda \|(v,b)\|_1 - \frac{1}{2B} \sum_{i=1}^{B} \left[\log \sigma(v^{\top} r_i^+ + b) + \log(1 - \sigma(v^{\top} r_i^- + b)) \right]$$
 (2)

where σ is the sigmoid function. This loss encourages both sparsity in (v,b) and accurate discrimination between z^+ and z^- . The subsequent predictions are assigned label 1 if $\sigma(v^\top r + b) > 0.5$, and 0 otherwise.

A.3 All Sequence Neural Network

Our third strategy extends Logistic Regression by using the activations of all tokens in the sequence, $R^* = z_l^* \in \mathbb{R}^{T \times D}$, rather than only the move-token activation at layer l. We train a small neural network S to predict the presence of the concept from these activations. We use the objective:

$$\mathcal{L}(v_1, b_1, v_2, b_2) = \lambda \|(v_1, b_1, v_2, b_2)\|_1 - \frac{1}{2B} \sum_{i=1}^{B} \left[\log S(R_i^+) + \log(1 - S(R_i^-)) \right]$$
(3)

where $S: \mathbb{R}^{T \times D} \to [0, 1]$ is defined as:

$$S(R) = \sigma(v_2^\top \text{ReLU}(R^\top v_1 + b_1) + b_2)$$
(4)

with parameters $v_1 \in \mathbb{R}^T$, $b_1 \in \mathbb{R}^D$, $v_2 \in \mathbb{R}^D$, and $b_2 \in \mathbb{R}$. The network takes the activation sequence $s \in \mathbb{R}^{T \times D}$ and outputs a scalar probability. As before, we encourage sparsity in S through the L1 penalty while training it to discriminate between z^+ and z^- . Predictions are assigned label 1 if S(s) > 0.5, and 0 otherwise.

B Full Results

Here we share the full results from our analysis in Section 4.2. Results in Figure 3 show that the findings generalize across all three probing methods applied.

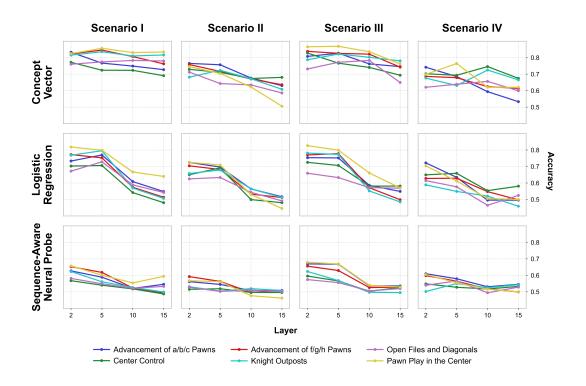


Figure 3: Full results of Figure 2, the overall trend supports the takeaway that the human concepts fade as the network goes deeper.

C Example Concepts

Here, we provide some example chess concepts from the STS dataset, to give readers the flavor of the concrete nature of these concepts.

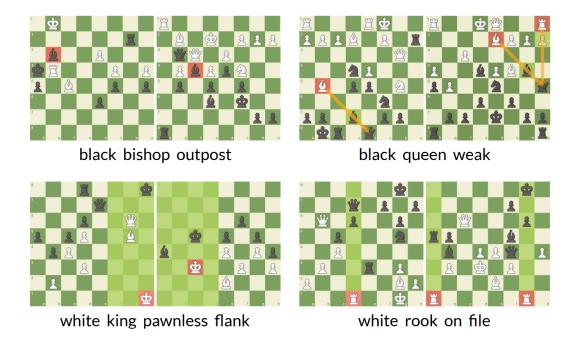


Figure 4: Examples of Human-Concept Categories. The top left illustrates a black bishop outpost, where a black bishop is anchored by pawns deep into the white position. The top right illustrates a black weak queen, where the queen is either directly under attack, or is pinned to a piece. On the bottom left, we have a white king located on a side of the board where neither player has any pawns, and on the bottom right, we illustrate a white rook on a semi-open file, where there is no white pawn opposing it.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claims and contributions, which align well with the paper's scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: We do not discuss this since we are limited to 6 pages.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: Our contributions are empirical (dataset + analyses). Equations define objectives only and are not presented as theorems

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The repository includes runnable scripts and configuration files, and the paper details datasets and methodology / formulations to enable end-to-end reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code and data resources are openly available, with detailed run commands and configuration files.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: While not every minor setting is listed in the text, the paper plus the repository together provide all information necessary to reproduce the main results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Experiments are fully described and readily reproducible. While error bars are not included, the consistently aligned outcomes across experiments (documented in the paper) support statistical significance.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: This is not provided.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes

Justification: Our work conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We reflect on human–AI conceptual alignment evidenced by early-layer agreement, erosion in deeper layers, and weak generalization to Chess960, and how these findings inform interpretability.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Justification: NA
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We credit the original creators of all datasets and LLMs and comply with their licenses.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Documentation accompanies the released code and data in the repo.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: NA

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs as significant, original, or non-standard components of our core methods.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.