

000 001 002 003 004 005 ADA CACHE: ADAPTIVE CACHING AND CONTEXT 006 AUGMENTATION FOR EFFICIENT LLM SERVING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 Retrieval-Augmented Generation (RAG) significantly enhances Large Language
027 Models by integrating external knowledge sources, but at the cost of substantial
028 computational overhead from extended input sequences. Current RAG systems
029 exhibit two fundamental inefficiencies: redundant processing of frequently
030 retrieved text chunks across multiple queries, and uniform deep retrieval that
031 over-provisions context regardless of query complexity. We present AdaCache,
032 an adaptive caching framework that addresses these limitations through dual op-
033 timization strategies. First, we introduce a cache-aware partial recomputation
034 mechanism that profiles attention patterns to construct selective cache variants,
035 enabling flexible reuse while preserving cross-chunk dependencies. Second, we
036 develop adaptive context augmentation that dynamically determines optimal re-
037 trieval depth via lightweight confidence estimation, avoiding unnecessary over-
038 head on simple queries. Comprehensive experiments across diverse datasets and
039 LLMs demonstrate that AdaCache delivers substantial improvements in Time-To-
040 First-Token compared to state-of-the-art RAG caching systems, while preserving
041 generation quality.
042
043
044
045
046
047
048
049

1 INTRODUCTION

050 Large Language Models (LLMs) have become ubiquitous across diverse applications, from con-
051 versational chatbots and personal assistants to specialized systems handling question answering,
052 document summarization, and machine translation (Achiam et al., 2023; Hurst et al., 2024; Guo
053 et al., 2025; Yang et al., 2025). Despite their impressive capabilities, LLMs suffer from hallucina-
054 tion issues and knowledge limitations, particularly when dealing with domain-specific or up-to-date
055 information. Retrieval-augmented generation (RAG) (Ram et al., 2023; Siriwardhana et al., 2023;
056 Jiang et al., 2023) has emerged as a powerful paradigm to bridge this gap. By incorporating external
057 knowledge bases, such as Wikipedia (Cohere, 2023) or domain-specific corpora, it retrieves relevant
058 contextual information to enrich user queries. This approach has demonstrated remarkable success
059 in improving generation quality, while enabling general-purpose LLMs to tackle specialized domain
060 problems without costly fine-tuning.
061
062

063 Despite these benefits, RAG introduces significant system-level challenges. The injection of re-
064 trieval text chunks substantially increases the length of input prompts, leading to proportionally
065 higher computation and memory requirements during the LLM inference. For instance, while a raw
066 user query typically contains fewer than 200 tokens, augmenting it with retrieved context can push
067 the sequence length beyond 2,000 tokens, leading to more than a 10 \times increase in computational and
068 memory overhead. This dramatic expansion significantly degrades Time-To-First-Token (TTFT)
069 and system throughput, ultimately compromising user experience. The key objective is to achieve
070 the best of both worlds: harnessing RAG’s quality improvements while preserving computational
071 efficiency.
072
073

074 Our observation reveals two major inefficiencies in current RAG systems. The first is cross-query
075 context overlap, where identical text chunks from the external knowledge base are repeatedly re-
076 trieval across multiple user queries, and a small fraction of text chunks dominate the retrieval re-
077 quests. As shown in Fig. 1a, we observe power-law distributions in text chunks popularity on the
078 MMLU dataset (Hendrycks et al., 2020), where the most frequently accessed 10% of text chunks
079

Figure 1: Retrieval pattern on different datasets.

Figure 2: Distribution of minimum top-k retrieval requirements for correct responses using Llama3-8B-Instruct model on different datasets.

satisfy 80% of all questions under top-1 retrieval¹. This skewed access pattern indicates substantial redundant computation during LLM inference, as the same contextual information is processed repeatedly for different user queries. The second inefficiency stems from over-allocation of context within individual queries, regardless of their complexity. Although LLMs consistently benefit from expanded contextual information, accuracy improvements follow a pattern of diminishing marginal utility with additional retrieved text chunks. We validate this intuition using Llama3-8B-Instruct (Dubey et al., 2024b) on MMLU, SuperGPQA (Du et al., 2025), and TriviaQA (Joshi et al., 2017) datasets, as shown in Fig. 2. By analyzing minimal knowledge requirements for accurate model predictions, we observe that over 60% of queries require only minimal context, whereas only approximately 3% need top-8 retrieval. This distribution highlights a critical inefficiency: static deep retrieval incurs unnecessary computational costs on simple queries while potentially degrading accuracy through contextual noise. These findings illuminate a fundamental optimization challenge in the RAG system: **How can we achieve both computational efficiency and performance gains simultaneously?**

Caching represents a promising solution to address computational redundancy in RAG systems by reusing previously computed representations (*i.e.*, KV cache). Recent advances, including vLLM (Kwon et al., 2023), SGLang (Zheng et al., 2024), and RAGCache (Jin et al., 2024), employ prefix caching to store key-value representations of processed text chunks. While maintaining generation quality equivalent to full recomputation, these methods require exact sequence matching, leading to poor hit rates with longer contexts and positional variations. Independent chunk caching approaches attempt more flexible strategies. PromptCache (Gim et al., 2024) achieves higher efficiency through independent chunk caching but sacrifices accuracy by ignoring cross-chunk attention. CacheBlend (Yao et al., 2025) partially restores cross-chunk attention via selective recomputation, yet applies uniform recomputation ratios across all chunks without considering the heterogeneous attention characteristics across different chunks. Furthermore, all prior work assumes static top-k re-

¹For top-2 and top-3 retrieval, we treat each unique combination of retrieved text chunks as a distinct context unit for cumulative distribution analysis.

108 retrieval, missing query-adaptive optimization opportunities that could enable simultaneous efficiency
 109 and accuracy improvements.
 110

111 In this paper, we present an adaptive caching framework that addresses both computational redundancy
 112 and contextual over-provisioning in RAG systems through two complementary mechanisms.
 113 We first design a cache-aware partial recomputation method that profiles attention patterns to construct
 114 multiple cache variants per text chunk, selecting minimal recomputation strategies during reuse.
 115 Then, we introduce an adaptive context augmentation strategy that incrementally expands retrieval depth
 116 using lightweight confidence estimation to determine optimal context length for each user query.
 117 Evaluation across multiple models and datasets shows that we achieve 1.4x~5.0x TTFT reduction over state-of-the-art RAG caching systems while maintaining accuracy.
 118
 119

120 2 BACKGROUND AND RELATED WORK

121 Autoregressive Transformers execute inference in two distinct phases. In the prefill phase, the model
 122 processes the entire input sequence, performing self-attention across all tokens and materializing
 123 per-layer KV caches. In the subsequent decode phase, tokens are generated step by step while
 124 attending to this cached state. By reusing the stored projections of preceding tokens, the KV cache
 125 eliminates redundant recomputation of the prefix and enables efficient autoregressive generation.
 126
 127

128 RAG extends this pipeline by incorporating external evidence. A retriever encodes the user query,
 129 searches a corpus, and returns the top- k passages (Ram et al., 2023; Siriwardhana et al., 2023; Jiang
 130 et al., 2023). The generator concatenates the query and retrieved passages, tokenizes the combined
 131 sequence, and applies the same prefill–decode process: prefill constructs KV entries for all tokens,
 132 and decode reuses them to produce the answer. However, concatenation markedly lengthens the
 133 prompt, increasing both attention cost and KV overhead in proportion to sequence length.
 134

135 As a result, prefill dominates serving latency, raising TTFT and reducing throughput under load.
 136 Moreover, much of the additional computation is not essential for factual grounding, such as interactions
 137 among irrelevant passages or regions with low query attention. The fundamental bottleneck is thus the cost of full prefill and KV materialization over long contexts, motivating mechanisms that
 138 preserve only query–evidence interactions while avoiding redundant computation.
 139

140 **General LLM Inference Systems.** vLLM (Kwon et al., 2023) accelerates generic serving via Page-
 141 dAttention with block-wise KV paging and sharing; Orca (Yu et al., 2022) scales distributed decoding
 142 through iteration-level scheduling; prefill–decode disaggregation, as in DistServe (Zhong et al.,
 143 2024) and SplitWise (Patel et al., 2024), separates phases across GPUs to mitigate interference; and
 144 FlexGen (Sheng et al., 2023) expands effective capacity by aggregating memory and computation
 145 from the GPU, CPU, and disk. These approaches reduce phase contention and memory pressure but
 146 treat prompts as monolithic sequences, leaving them ill-suited to RAG’s retrieval-induced redundancy
 147 and leading to suboptimal performance.
 148

149 **Retrieval Optimization.** Sparse retrievers such as TF-IDF (Ramos et al., 2003) and BM25 (Robert-
 150 son et al., 2009) enable efficient lexical matching, while dense retrievers leverage learned embed-
 151 dings for higher recall at greater cost (Karpukhin et al., 2020). On top of these, rerankers refine
 152 first-stage results to improve precision with moderate overhead (Sun et al., 2023; Pradeep et al.,
 153 2023; Santhanam et al., 2021). These techniques focus on improving retrieval quality, whereas our
 154 method leaves the retrieved set unchanged and targets efficiency in post-retrieval processing.
 155

156 **Context Reusing.** Caching mechanisms amortize the prefill cost by reusing KV states. Prefix
 157 caching, as in SGLang (Zheng et al., 2024), CachedAttention (Yao et al., 2025), and RAGCache (Jin
 158 et al., 2024), achieves fidelity but relies on exact prefix matches, resulting in low hit rates under long
 159 and variable RAG prompts. To alleviate this limitation, independent chunk caching relaxes matching:
 160 PromptCache (Gim et al., 2024) caches blocks independently but discards cross-chunk attention,
 161 thereby compromising accuracy, while CacheBlend (Yao et al., 2025) reintroduces interactions via
 162 selective recomputation yet applies uniform ratios oblivious to heterogeneous attention patterns.
 163 Our approach addresses these gaps by incorporating attention-aware cache variants with minimal
 164 recomputation to preserve fidelity, and by employing confidence-guided, per-query adaptive ex-
 165 pansion. This design reduces redundant computation, lowers long-context overhead, and significantly
 166 improves both TTFT and throughput.
 167

162 3 ADACACHE
163
164

184
185 **Figure 3: The Overview of AdaCache.** It consists of two complementary modules. **Cache-aware**
186 **selective recomputation** (upper) maintains three hierarchical cache spaces: (1) Hard prefix cache
187 requires exact prefix matching and stores KV cache for all chunks along the matching path (solid
188 boxes), enabling direct reuse without recomputation; (2) Soft prefix cache matches only effective
189 prefix chunks requiring partial recomputation at ratio α , where solid boxes represent cached entries
190 while dashed boxes indicate prefix dependencies without storage; (3) Independent cache performs
191 chunk-level matching with higher recomputation ratio β . The top attention diagram shows selective
192 recomputation where 2 out of 6 tokens (blue solid blocks) are recomputed while the remaining 4
193 tokens reuse cached KV states. **Adaptive context augmentation** (lower) incrementally expands
194 prompts by adding one text chunk at a time, evaluating confidence after each addition using a
195 composite metric combining average KL divergence across the last few layers and output entropy,
196 terminating when sufficient confidence is achieved or maximum context is reached.

197 3.1 CACHE-AWARE SELECTIVE RECOMPUTATION
198

199 **Attention Analysis.** We begin by analyzing chunk-level attention patterns to understand inter-
200 chunk dependencies in RAG contexts. The augmented prompt is segmented into discrete chunks:
201 *[system prompt, text chunk 1, ..., text chunk k, query]*, and we aggregate attention weights of each
202 layer into chunk granularity. Fig. 4 demonstrates two distinct attention distributions across model
203 depth during Qwen3-8B model inference². Early layers (1-18) show localized patterns where each
204 chunk primarily attends to its predecessor, while deeper layers (19-36) exhibit attention sink phe-
205 nomena, with certain chunks capturing most attention from subsequent chunks. This pattern reveals
206 that only a subset of chunks serves as effective prefixes, enabling joint caching of partial prefix
207 sequences to restore cross-chunk dependencies lost in independent chunk caching.

208 **Hierarchical Cache.** Based on the observed attention patterns, we establish a three-tier cache hi-
209 erarchy that systematically balances cache utilization efficiency against generation quality. *Hard*
210 *Prefix Cache* requires exact prefix sequence matching, making it the most restrictive but accuracy-
211 preserving tier. Due to the causal attention mask in autoregressive inference, exact prefix matches
212 guarantee computational equivalence to full recomputation, thereby preserving perfect generation

213
214 ²We validated these chunk-level attention patterns across Llama3-8B-Instruct, Qwen3-4B, and Qwen3-8B
215 models on MMLU, TriviaQA, and SuperGPQA datasets, observing consistent behaviors, though the specific
chunk positions serving as attention sinks vary across different contexts.

Figure 4: Chunk-level attention patterns during Qwen3-8B model inference with Top-8 retrieval. The first and last columns in each subplot correspond to the system prompt and user query, respectively. Layers 1-18 exhibit localized attention where chunks predominantly focus on their immediate predecessors with sparse attention to distant chunks. In layers 19-36, an attention sink phenomenon emerges where the 3rd chunk captures the majority of attention from subsequent chunks.

quality when cache hits occur. However, this strict requirement significantly constrains cache utilization. *Soft Prefix Cache* relaxes the matching constraint to effective prefix matching, where only the sink chunk or predecessor chunk needs to match for cache reuse. This design leverages our attention analysis findings: since attention primarily flows from these key chunks, partial prefix matching can maintain most cross-chunk dependencies. *Independent Cache* provides the fallback mechanism when prefix matching fails entirely. Individual text chunks are precomputed and stored independently without prefix dependencies. It maximizes cache hit rates but poses the greatest risk for accuracy preservation, as cross-chunk attention dependencies must be reconstructed during LLM inference.

Cache Reusing and Recomputation. Building on previous work (Yao et al., 2025), only a subset of tokens within each chunk exhibit significant cross-chunk attention, leading to substantial KV states deviations compared to those in the independent cache. Critically, this sparsity pattern exhibits layer-wise consistency: tokens with the highest KV deviations in one layer are likely to have the highest deviations in subsequent layers. This insight enables efficient selective recomputation by identifying attention-critical tokens through first-layer analysis and applying the same selection across all layers. We determine recomputation candidates by analyzing cross-chunk attention ratios in the model’s initial layer, selecting tokens with the highest proportion of cross-chunk attention weights.

Rather than a uniform recomputation across all chunks in context, we adapt the recomputation ratio based on available cache matches. The KV states of each chunk may have multiple cached variants stored under different prefix contexts. We retrieve from cache spaces in a hierarchical order with progressively relaxed matching constraints.

We first query the hard prefix cache for exact matches, where any chunks along the matched prefix path can be directly reused without recomputation. When exact matching fails, we examine the soft prefix cache for effective prefix alignment. Note that soft prefix chunks serve only as cache key identifiers without maintaining separate cache entries. Successful soft matching requires recomputing α fraction of tokens to restore global cross-chunk attention³. If no cached KV states exist in

³In the first half of model layers, effective prefixes correspond to predecessor chunks, while in the second half, they correspond to both sink chunks and predecessor chunks. We identify sink chunk positions by analyzing attention matrices at transition layers: chunks before the sink chunk require predecessor-based matching, while chunks after the sink chunk use both sink chunks and predecessor chunks as their effective prefixes. Including predecessor chunks prevents cumulative errors that would arise from inconsistency with the predecessor-based matching used in the first half of layers.

the soft prefix cache space, we turn to the independent cache with recomputation ratio β ($\beta > \alpha$) to reconstruct discarded cross-chunk dependencies. This cache reuse approach achieves an optimal efficiency-accuracy trade-off through adaptive token recomputation that responds to varying prefix match conditions: exact, partial, or absent.

3.2 ADAPTIVE CONTEXT AUGMENTATION

Algorithm 1 presents the process of adaptive context augmentation (ACA) with cache-aware recomputation. Rather than concatenating all top- k retrieved text chunks into the user prompt simultaneously, we employ an incremental augmentation strategy that progressively incorporates one chunk at a time until reaching the k -th chunk or achieving sufficient confidence. While this approach necessitates multiple forward passes for the same query, it eliminates redundant context computation through strategic caching. At each iteration, we only recompute the KV states for the newly added chunk, storing them in the hard prefix cache space for reuse in subsequent context augmentation. This ensures that all previously processed chunks maintain cache hits, dramatically reducing computational overhead. Importantly, ACA does not introduce any additional retrieval overhead. The top- k retrieval step is executed once per query, and the augmentation loop then operates solely within the prefill phase using the already-retrieved text chunks.

To decide whether augmentation should terminate, we employ a composite confidence metric combining two complementary uncertainty measures. First, we compute the average KL divergence between the logits of the last l layers and the final layer, capturing internal reasoning consistency. If the model can accurately infer the answer from the current context, its logit distribution should converge early across layers. Second, we calculate the entropy of the final token distribution, reflecting output uncertainty. We normalize both the average KL divergence and entropy to $[0, 1]$, then compute a weighted confidence score, with weights determined through optimization on the validation set. This dual-metric balances stability with predictive certainty, providing a more robust confidence estimate. Notably, the confidence metric is computationally lightweight. In practice, AdaCache computes logits only for the last 4 layers and for the final token rather than the full context, which keeps the overhead negligible at less than 1% of the prefill cost.

ACA reduces computational and memory demands by avoiding excessive context allocation for simple queries. Given k retrieved text chunks of length l_c tokens each, a query of length l_q tokens, and early termination at step t , ACA processes at most $t \cdot (l_c + l_q)$ tokens. It yields substantial savings

Figure 5: Comparison of Time-to-First-Token (TTFT) and generation quality between AdaCache and baseline methods across six datasets and three models.

in computation and memory compared to static context augmentation, which requires processing $k \cdot l_c + l_q$ tokens⁴.

4 EVALUATION

4.1 EVALUATION METHODOLOGY

Models and Hardware Settings. We evaluate AdaCache using *Llama-3-8B-Instruct* (Dubey et al., 2024a), *Qwen3-4B*, and *Qwen3-8B* (Yang et al., 2025) models. Experiments are conducted

⁴Retrieved text chunks are typically longer than queries, with 512 tokens being a common chunk size while queries usually contain fewer than 128 tokens. For example, with top-6 retrieval, static context augmentation processes 3,200 tokens per query during the prefill phase. In contrast, given the empirical expectation of $t = 2$ text chunks required across the dataset, ACA processes only 1,280 tokens, achieving 2.5x reduction in computational cost.

378 on a server equipped with 128 CPU cores ($2 \times$ Intel Xeon Gold 6530), 512 GB of host memory, and
 379 NVIDIA RTX 6000 Ada GPU with 48 GB memory. Data transfers between the CPU and GPU are
 380 carried out over the PCIe 4.0 \times 16 interface.
 381

382 **Corpus and Datasets.** We use the Wikipedia dataset⁵ as our knowledge base. Prior to embedding,
 383 all documents are segmented into chunks of size 512 tokens. Each chunk is then encoded using the
 384 *e5-base-v2* embedding model. For vector search, we leverage the FAISS library to construct an
 385 inverted file (IVF) index with 1024 clusters, and set the default top-k retrieval to 6. AdaCache
 386 is evaluated on several rigorous benchmark datasets, including MMLU (Hendrycks et al., 2020),
 387 MMLU-Pro (Wang et al., 2024), SuperGPQA (Du et al., 2025), TriviaQA (Joshi et al., 2017), 2Wiki-
 388 MultihopQA (Ho et al., 2020), and HotpotQA (Yang et al., 2018), which span general knowledge,
 389 open-domain reading comprehension, and advanced reasoning.
 390

391 **Baselines.** We compare AdaCache with three baselines: *(i) Full Recomputation*, where the raw
 392 text is fed into the LLM and the KV cache for all tokens is computed during prefill; *(ii) Prefix*
 393 *Cache* (Jin et al., 2024), which leverages SGLang (Zheng et al., 2024) to identify frequently used
 394 prefix chunks and persist their KV caches in RAM and SSD, while non-prefix tokens are still com-
 395 puted during prefill. For fairness, we optimistically assume no delay when loading from RAM/SSD
 396 to GPU, which favors this scheme relative to real deployments; and *(iii) Selective Recomputation*,
 397 which adopts CacheBlend (Yao et al., 2025) to reuse precomputed KV caches of all chunks, while
 398 selectively recomputing in each layer a small subset of high-deviation tokens to restore cross-chunk
 399 attention.
 400

401 **Metrics.** We evaluate models on both accuracy and responsiveness. Accuracy is measured by
 402 *Exact Match (EM)*, the fraction of predictions that exactly match a normalized reference answer.
 403 Responsiveness is measured by *Time-To-First-Token (TTFT)*, the wall-clock latency from request
 404 submission to the emission of the first output token. We report results across repeated runs under
 405 controlled hardware and inference settings.
 406

4.2 EXPERIMENTAL RESULTS

407 Naive RAG systems recompute KV caches for every new request and its retrieved context. Ada-
 408 Cache achieves substantial TTFT reductions of $3.12 \times$ on average and up to $6.02 \times$ compared to full
 409 recomputation while preserving nearly identical generation quality. The performance gains derive
 410 from AdaCache’s dual optimization strategy, which simultaneously eliminates cross-request compu-
 411 tational redundancy in overlapping contexts while preventing unnecessary context augmentation for
 412 simple queries. Notably, AdaCache occasionally surpasses full recomputation in prediction accu-
 413 racy, as excessive contextual information can introduce noise that degrades model reasoning. Guided
 414 by model output confidence, AdaCache ensures that the minimal sufficient context contributes to the
 415 generation process.
 416

417 AdaCache demonstrates $2.69 \times$ average and up to $5.0 \times$ performance improvements over prefix
 418 caching. While prefix caching eliminates redundant computation of overlapping prefixes and main-
 419 tains identical generation quality to full recomputation, exact prefix matching limits its effectiveness
 420 with longer contexts or dynamic positioning of retrieved chunks. AdaCache addresses these limita-
 421 tions with a hierarchical cache architecture (*i.e.*, hard prefix cache, soft prefix cache, and independent
 422 caches), enabling more flexible cache reuse.
 423

424 CacheBlend leverages independent caching to achieve substantial improvements in cache hit rates,
 425 employing selective recomputation to maintain cross-chunk attention and preserve generation qual-
 426 ity. In comparison, AdaCache delivers $1.32 \times$ on average and up to $2.34 \times$ TTFT improvements over
 427 CacheBlend with marginally superior generation quality. AdaCache analyzes inter-chunk attention
 428 patterns across layers and constructs soft prefix caches, enabling flexible hierarchical caching that
 429 reduces token-level recomputation and decreases TTFT. Additionally, adaptive context selection re-
 duces computational waste from non-contributory text chunks.
 430

⁵We use the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset on Hugging Face, which contains cleaned articles from the official Wikipedia dumps. Each subset corresponds to one language and consists of a single training split with markdown and references removed. In our experiments, we adopt the English subset released on 2023-11-01.

Figure 6: TTFT comparison of caching strategies combined with and without ACA across different datasets and models.

Figure 7: The context length distribution determined by adaptive context augmentation across different datasets and models.

Ablation Study. To isolate the performance contributions of cache-aware selective recomputation and adaptive context augmentation (ACA), we compare four configurations: Prefix Caching combined with ACA, CacheBlend combined with ACA, AdaCache without ACA, and the full AdaCache system (Fig. 6). ACA integrates smoothly with different caching mechanisms, and when applied to Prefix Caching or CacheBlend, it consistently reduces TTFT across datasets and models, delivering average speedups of $1.65\times$ and $1.22\times$, respectively.

The full AdaCache system retains substantial performance advantages over ACA-enhanced baselines, achieving average speedups of $1.76\times$ over Prefix Caching and $1.23\times$ over CacheBlend. Notably, cache-aware selective recomputation alone occasionally outperforms even ACA-enhanced baselines. These results demonstrate the effectiveness of our hierarchical caching design and its tight integration with ACA.

Context Length Distribution. To better understand the performance improvements of Adaptive Context Augmentation (ACA), we analyze the distribution of context lengths identified by ACA during model inference. As shown in Fig. 7, a consistent pattern emerges across all three models and four datasets: the majority of queries require minimal context augmentation, while queries requiring longer contexts become increasingly rare. The sharp spike at maximum length includes queries that remain unanswerable even when provided with the complete top-6 retrieved text chunks, indicating persistently low confidence throughout the ACA process.

The performance gains from ACA correlate strongly with this distribution pattern. Datasets exhibiting more pronounced head-heavy distributions with smaller tail proportions yield greater improvements. MMLU and TriviaQA demonstrate more skewed distributions compared to MMLU-Pro and SuperGPQA, with correspondingly higher relative performance gains. Specifically, AdaCache achieves $1.95\times$ and $1.62\times$ average TTFT reduction over CacheBlend on MMLU and TriviaQA,

Figure 8: Comparison of TTFT between AdaCache and baseline methods across different top-k retrieval.

respectively, across three models, compared to more modest improvements of $1.25\times$ and $1.14\times$ on MMLU-Pro and SuperGPQA respectively.

Performance Across top-k Retrieval Settings. Fig. 8 demonstrates the performance comparison between AdaCache, CacheBlend, Prefix Caching, and Full Recomputation across varying top-k retrieval configurations⁶. At top-2 retrieval, the performance gap between Prefix Caching, CacheBlend, and AdaCache remains modest. Prefix Caching achieves a substantial TTFT reduction compared to Full Recomputation due to relatively high cache hit rates in short context scenarios.

However, as context expands, a clear performance divergence emerges. Prefix Caching suffers dramatic degradation, with TTFT improvements declining from an average of $1.76\times$ at top-2 to merely $1.13\times$ at top-8 retrieval, reflecting the fundamental limitation of strict prefix matching in long context scenarios. In contrast, AdaCache exhibits superior context scalability, with performance gains improving from an average of $2.93\times$ to $4.67\times$ over full recomputation. While CacheBlend’s independent caching strategy substantially improves cache hit rates for long contexts compared to Prefix Caching, AdaCache achieves fundamentally better context scalability by combining hierarchical caching with adaptive context augmentation.

5 CONCLUSION

We present AdaCache, a comprehensive framework that addresses fundamental computational inefficiencies in RAG systems through dual optimization strategies: cache-aware partial recomputation that profiles attention patterns to construct selective cache variants, and adaptive context augmentation that dynamically determines optimal retrieval depth via lightweight confidence estimation. Our approach tackles two key inefficiencies observed in current RAG systems: the power-law distribution of context reuse across queries, where 10% of chunks satisfy 80% of retrieval requests, and the over-allocation of context, where 60% of queries require only minimal retrieval. Comprehensive evaluation demonstrates that AdaCache achieves $1.4\times\sim 5.0\times$ TTFT reduction over state-of-the-art RAG caching systems while maintaining generation quality. Notably, our adaptive context augmentation enables seamless integration with existing caching strategies while exhibiting superior context scalability.

⁶For AdaCache, top-k refers to the maximum available context length during adaptive context augmentation.

540
541 ETHICS STATEMENT

542 Our work adheres to the ICLR Code of Ethics. Our research does not involve human subjects,
 543 sensitive personal data, or any identifiable information. All datasets used in our experiments are
 544 publicly available and widely adopted in prior literature. We strictly followed the terms of use of
 545 these datasets and ensured that no proprietary or private information was accessed or disclosed.
 546 The methods developed are intended purely for academic research and are not designed to produce
 547 harmful applications. We are committed to promoting fairness, transparency, and reproducibility in
 548 machine learning research, and we release our results in compliance with community standards of
 549 research integrity.

550
551 REPRODUCIBILITY STATEMENT

552 We provide full details to support reproducibility. The AdaCache framework, including cache-
 553 aware recomputation and adaptive context augmentation, is specified in Section 3 with pseudocode
 554 and design assumptions. Experimental settings, datasets, preprocessing, evaluation metrics, and
 555 baseline configurations are described in Section 4. Model architectures, and hardware settings are
 556 reported to allow replication of latency and throughput measurements.

557
558 THE USE OF LARGE LANGUAGE MODELS (LLMs)

559 We used large language models as the general-purpose assistive tool during the preparation of this
 560 paper. Its contributions were limited to improving grammar, polishing wording, and suggesting
 561 alternative phrasings for clarity and conciseness. The research ideas, methodological design, exper-
 562 imental implementation, analysis, and final interpretations were entirely conceived and executed by
 563 the authors.

564 LLMs were not used for generating novel research content, fabricating facts, or conducting scientific
 565 reasoning. All technical descriptions, results, and conclusions presented in the paper are the sole
 566 responsibility of the authors.

567
568 REFERENCES

569
570
571 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 572 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 573 report. *arXiv preprint arXiv:2303.08774*, 2023.

574
575 Cohere. Wikipedia 22-12 en embeddings dataset. <https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings>, 2023. Accessed: 2025-09-13.

576
577 Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
 578 Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
 579 disciplines. *arXiv preprint arXiv:2502.14739*, 2025.

580
581 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 582 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 583 *arXiv e-prints*, pp. arXiv–2407, 2024a.

584
585 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 586 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 587 *arXiv e-prints*, pp. arXiv–2407, 2024b.

588
589 In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
 590 cache: Modular attention reuse for low-latency inference. *Proceedings of Machine Learning and*
 591 *Systems*, 6:325–338, 2024.

592
593 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 594 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 595 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

594 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 595 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 596 *arXiv:2009.03300*, 2020.

597

598 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 599 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th Interna-*
 600 *tional Conference on Computational Linguistics*, pp. 6609–6625, 2020.

601

602 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 603 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 604 *arXiv:2410.21276*, 2024.

605

606 Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 607 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In *Proceedings of the*
 608 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, 2023.

609

610 Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
 611 Ragcache: Efficient knowledge caching for retrieval-augmented generation. *arXiv preprint*
 612 *arXiv:2404.12457*, 2024.

613

614 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 615 supervised challenge dataset for reading comprehension. In *Proceedings of the 55th Annual Meet-
 616 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611,
 617 2017.

618

619 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 620 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*
 621 *(1)*, pp. 6769–6781, 2020.

622

623 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 624 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 625 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 626 ciples*, pp. 611–626, 2023.

627

628 Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ri-
 629 cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In *2024*
 630 *ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)*, pp. 118–
 631 132. IEEE, 2024.

632

633 Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust zero-
 634 shot listwise reranking is a breeze! *arXiv preprint arXiv:2312.02724*, 2023.

635

636 Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
 637 Yoav Shoham. In-context retrieval-augmented language models. *Transactions of the Association*
 638 *for Computational Linguistics*, 11:1316–1331, 2023.

639

640 Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In *Proceedings of*
 641 *the first instructional conference on machine learning*, volume 242, pp. 29–48. New Jersey, USA,
 642 2003.

643

644 Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
 645 yond. *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009.

646

647 Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
 648 Colbertv2: Effective and efficient retrieval via lightweight late interaction. *arXiv preprint*
 649 *arXiv:2112.01488*, 2021.

650

651 Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
 652 Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
 653 large language models with a single gpu. In *International Conference on Machine Learning*, pp.
 654 31094–31116. PMLR, 2023.

648 Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
 649 Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
 650 models for open domain question answering. *Transactions of the Association for Computational
 651 Linguistics*, 11:1–17, 2023.

652 Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
 653 and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
 654 agents. *arXiv preprint arXiv:2304.09542*, 2023.

655 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 656 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 657 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 658 37:95266–95290, 2024.

659 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 660 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 661 arXiv:2505.09388*, 2025.

662 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 663 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 664 answering. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 665 2018.

666 Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
 667 Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with cached
 668 knowledge fusion. In *Proceedings of the Twentieth European Conference on Computer Systems*,
 669 pp. 94–109, 2025.

670 Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
 671 distributed serving system for {Transformer-Based} generative models. In *16th USENIX Symposium
 672 on Operating Systems Design and Implementation (OSDI 22)*, pp. 521–538, 2022.

673 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 674 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
 675 structured language model programs. *Advances in neural information processing systems*, 37:
 676 62557–62583, 2024.

677 Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
 678 Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
 679 model serving. In *18th USENIX Symposium on Operating Systems Design and Implementation
 (OSDI 24)*, pp. 193–210, 2024.

680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701