
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADACACHE: ADAPTIVE CACHING AND CONTEXT
AUGMENTATION FOR EFFICIENT LLM SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) significantly enhances Large Language
Models by integrating external knowledge sources, but at the cost of substan-
tial computational overhead from extended input sequences. Current RAG sys-
tems exhibit two fundamental inefficiencies: redundant processing of frequently
retrieved text chunks across multiple queries, and uniform deep retrieval that
over-provisions context regardless of query complexity. We present AdaCache,
an adaptive caching framework that addresses these limitations through dual op-
timization strategies. First, we introduce a cache-aware partial recomputation
mechanism that profiles attention patterns to construct selective cache variants,
enabling flexible reuse while preserving cross-chunk dependencies. Second, we
develop adaptive context augmentation that dynamically determines optimal re-
trieval depth via lightweight confidence estimation, avoiding unnecessary over-
head on simple queries. Comprehensive experiments across diverse datasets and
LLMs demonstrate that AdaCache delivers substantial improvements in Time-To-
First-Token compared to state-of-the-art RAG caching systems, while preserving
generation quality.

1 INTRODUCTION

Large Language Models (LLMs) have become ubiquitous across diverse applications, from con-
versational chatbots and personal assistants to specialized systems handling question answering,
document summarization, and machine translation (Achiam et al., 2023; Hurst et al., 2024; Guo
et al., 2025; Yang et al., 2025). Despite their impressive capabilities, LLMs suffer from hallucina-
tion issues and knowledge limitations, particularly when dealing with domain-specific or up-to-date
information. Retrieval-augmented generation (RAG) (Ram et al., 2023; Siriwardhana et al., 2023;
Jiang et al., 2023) has emerged as a powerful paradigm to bridge this gap. By incorporating external
knowledge bases, such as Wikipedia (Cohere, 2023) or domain-specific corpora, it retrieves relevant
contextual information to enrich user queries. This approach has demonstrated remarkable success
in improving generation quality, while enabling general-purpose LLMs to tackle specialized domain
problems without costly fine-tuning.

Despite these benefits, RAG introduces significant system-level challenges. The injection of re-
trieved text chunks substantially increases the length of input prompts, leading to proportionally
higher computation and memory requirements during the LLM inference. For instance, while a raw
user query typically contains fewer than 200 tokens, augmenting it with retrieved context can push
the sequence length beyond 2,000 tokens, leading to more than a 10× increase in computational and
memory overhead. This dramatic expansion significantly degrades Time-To-First-Token (TTFT)
and system throughput, ultimately compromising user experience. The key objective is to achieve
the best of both worlds: harnessing RAG’s quality improvements while preserving computational
efficiency.

Our observation reveals two major inefficiencies in current RAG systems. The first is cross-query
context overlap, where identical text chunks from the external knowledge base are repeatedly re-
trieved across multiple user queries, and a small fraction of text chunks dominate the retrieval re-
quests. As shown in Fig. 1a, we observe power-law distributions in text chunks popularity on the
MMLU dataset (Hendrycks et al., 2020), where the most frequently accessed 10% of text chunks

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) MMLU. (b) TriviaQA. (c) NaturalQuestions-Open.

Figure 1: Retrieval pattern on different datasets.

Figure 2: Distribution of minimum top-k retrieval requirements for correct responses using Llama3-
8B-Instruct model on different datasets.

satisfy 80% of all questions under top-1 retrieval1. This skewed access pattern indicates substan-
tial redundant computation during LLM inference, as the same contextual information is processed
repeatedly for different user queries. The second inefficiency stems from over-allocation of con-
text within individual queries, regardless of their complexity. Although LLMs consistently bene-
fit from expanded contextual information, accuracy improvements follow a pattern of diminishing
marginal utility with additional retrieved text chunks. We validate this intuition using Llama3-8B-
Instruct (Dubey et al., 2024b) on MMLU, SuperGPQA (Du et al., 2025), and TriviaQA (Joshi et al.,
2017) datasets, as shown in Fig. 2. By analyzing minimal knowledge requirements for accurate
model predictions, we observe that over 60% of queries require only minimal context, whereas only
approximately 3% need top-8 retrieval. This distribution highlights a critical inefficiency: static
deep retrieval incurs unnecessary computational costs on simple queries while potentially degrading
accuracy through contextual noise. These findings illuminate a fundamental optimization challenge
in the RAG system: How can we achieve both computational efficiency and performance gains
simultaneously?

Caching represents a promising solution to address computational redundancy in RAG systems
by reusing previously computed representations (i.e., KV cache). Recent advances, including
vLLM (Kwon et al., 2023), SGLang (Zheng et al., 2024), and RAGCache (Jin et al., 2024), em-
ploy prefix caching to store key-value representations of processed text chunks. While maintaining
generation quality equivalent to full recomputation, these methods require exact sequence matching,
leading to poor hit rates with longer contexts and positional variations. Independent chunk caching
approaches attempt more flexible strategies. PromptCache (Gim et al., 2024) achieves higher effi-
ciency through independent chunk caching but sacrifices accuracy by ignoring cross-chunk attention.
CacheBlend (Yao et al., 2025) partially restores cross-chunk attention via selective recomputation,
yet applies uniform recomputation ratios across all chunks without considering the heterogeneous
attention characteristics across different chunks. Furthermore, all prior work assumes static top-k re-

1For top-2 and top-3 retrieval, we treat each unique combination of retrieved text chunks as a distinct context
unit for cumulative distribution analysis.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

trieval, missing query-adaptive optimization opportunities that could enable simultaneous efficiency
and accuracy improvements.

In this paper, we present an adaptive caching framework that addresses both computational redun-
dancy and contextual over-provisioning in RAG systems through two complementary mechanisms.
We first design a cache-aware partial recomputation method that profiles attention patterns to con-
struct multiple cache variants per text chunk, selecting minimal recomputation strategies during
reuse. Then, we introduce an adaptive context augmentation strategy that incrementally expands
retrieval depth using lightweight confidence estimation to determine optimal context length for each
user query. Evaluation across multiple models and datasets shows that we achieve 1.4x∼5.0x TTFT
reduction over state-of-the-art RAG caching systems while maintaining accuracy.

2 BACKGROUND AND RELATED WORK

Autoregressive Transformers execute inference in two distinct phases. In the prefill phase, the model
processes the entire input sequence, performing self-attention across all tokens and materializing
per-layer KV caches. In the subsequent decode phase, tokens are generated step by step while
attending to this cached state. By reusing the stored projections of preceding tokens, the KV cache
eliminates redundant recomputation of the prefix and enables efficient autoregressive generation.

RAG extends this pipeline by incorporating external evidence. A retriever encodes the user query,
searches a corpus, and returns the top-k passages (Ram et al., 2023; Siriwardhana et al., 2023; Jiang
et al., 2023). The generator concatenates the query and retrieved passages, tokenizes the combined
sequence, and applies the same prefill–decode process: prefill constructs KV entries for all tokens,
and decode reuses them to produce the answer. However, concatenation markedly lengthens the
prompt, increasing both attention cost and KV overhead in proportion to sequence length.

As a result, prefill dominates serving latency, raising TTFT and reducing throughput under load.
Moreover, much of the additional computation is not essential for factual grounding, such as inter-
actions among irrelevant passages or regions with low query attention. The fundamental bottleneck
is thus the cost of full prefill and KV materialization over long contexts, motivating mechanisms that
preserve only query–evidence interactions while avoiding redundant computation.

General LLM Inference Systems. vLLM (Kwon et al., 2023) accelerates generic serving via Page-
dAttention with block-wise KV paging and sharing; Orca (Yu et al., 2022) scales distributed decod-
ing through iteration-level scheduling; prefill–decode disaggregation, as in DistServe (Zhong et al.,
2024) and SplitWise (Patel et al., 2024), separates phases across GPUs to mitigate interference; and
FlexGen (Sheng et al., 2023) expands effective capacity by aggregating memory and computation
from the GPU, CPU, and disk. These approaches reduce phase contention and memory pressure but
treat prompts as monolithic sequences, leaving them ill-suited to RAG’s retrieval-induced redun-
dancy and leading to suboptimal performance.

Retrieval Optimization. Sparse retrievers such as TF–IDF (Ramos et al., 2003) and BM25 (Robert-
son et al., 2009) enable efficient lexical matching, while dense retrievers leverage learned embed-
dings for higher recall at greater cost (Karpukhin et al., 2020). On top of these, rerankers refine
first-stage results to improve precision with moderate overhead (Sun et al., 2023; Pradeep et al.,
2023; Santhanam et al., 2021). These techniques focus on improving retrieval quality, whereas our
method leaves the retrieved set unchanged and targets efficiency in post-retrieval processing.

Context Reusing. Caching mechanisms amortize the prefill cost by reusing KV states. Prefix
caching, as in SGLang (Zheng et al., 2024), CachedAttention (Yao et al., 2025), and RAGCache (Jin
et al., 2024), achieves fidelity but relies on exact prefix matches, resulting in low hit rates under long
and variable RAG prompts. To alleviate this limitation, independent chunk caching relaxes match-
ing: PromptCache (Gim et al., 2024) caches blocks independently but discards cross-chunk atten-
tion, thereby compromising accuracy, while CacheBlend (Yao et al., 2025) reintroduces interactions
via selective recomputation yet applies uniform ratios oblivious to heterogeneous attention patterns.
Our approach addresses these gaps by incorporating attention-aware cache variants with minimal
recomputation to preserve fidelity, and by employing confidence-guided, per-query adaptive expan-
sion. This design reduces redundant computation, lowers long-context overhead, and significantly
improves both TTFT and throughput.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 ADACACHE

S

C4 C1 C2 C6

C5C2 C3

Hard Prefix Cache Space Independent Cache Space

C1 C2 C3

C4 C5 C6

C7 C8 C9

C10 C11 C12

C3 C5 C2 C4

C6C4 C3

Soft Prefix Cache Space

C2 C1 C3

C5

KV Cache of
System Prompt

Text Chunk 1

KV Cache of
System Prompt

Text Chunk 2KV Cache of
Text Chunk 1

KV Cache of
System Prompt

Text Chunk 3KV Cache of
Text Chunk 1

KV Cache of
Text Chunk 2

KV Cache of
System Prompt

Text Chunk 4KV Cache of
Text Chunk 1

KV Cache of
Text Chunk 2

KV Cache of
Text Chunk 3

Query

Query

Query

Query

H!"# H!H!"$

𝐿!"# 𝐿!𝐿!"$

Average KL
Divergence

𝐾𝐿 = 1/𝑘'𝐷!"(𝐿#||𝐿$)

Entropy
𝐻 = −'𝑝$ log 𝑝$

Confidence Score

… …

… …

Logits

Hidden States

A
da

pt
iv

e
C

on
te

xt
 A

ug
m

en
ta

tio
n

C
ac

he
-a

w
ar

e
Se

le
ct

iv
e

R
ec

om
pu

ta
tio

n

Evaluate Confidence

Evaluate Confidence

Evaluate Confidence

Input Hidden States Q K Attention Matrix V Output Hidden States

…… ……

Without
Recomputation

Rcomputation
Ratio 𝜶

Rcomputation
Ratio 𝜷

Retrieval, Recompute,
and Store KV Cache

Evaluate Confidence

Retrieval, Recompute,
and Store KV Cache

Retrieval, Recompute,
and Store KV Cache

Retrieval, Recompute,
and Store KV Cache

Figure 3: The Overview of AdaCache. It consists of two complementary modules. Cache-aware
selective recomputation (upper) maintains three hierarchical cache spaces: (1) Hard prefix cache
requires exact prefix matching and stores KV cache for all chunks along the matching path (solid
boxes), enabling direct reuse without recomputation; (2) Soft prefix cache matches only effective
prefix chunks requiring partial recomputation at ratio α, where solid boxes represent cached entries
while dashed boxes indicate prefix dependencies without storage; (3) Independent cache performs
chunk-level matching with higher recomputation ratio β. The top attention diagram shows selective
recomputation where 2 out of 6 tokens (blue solid blocks) are recomputed while the remaining 4
tokens reuse cached KV states. Adaptive context augmentation (lower) incrementally expands
prompts by adding one text chunk at a time, evaluating confidence after each addition using a com-
posite metric combining average KL divergence across the last few layers and output entropy, ter-
minating when sufficient confidence is achieved or maximum context is reached.

3.1 CACHE-AWARE SELECTIVE RECOMPUTATION

Attention Analysis. We begin by analyzing chunk-level attention patterns to understand inter-
chunk dependencies in RAG contexts. The augmented prompt is segmented into discrete chunks:
[system prompt, text chunk 1, ..., text chunk k, query], and we aggregate attention weights of each
layer into chunk granularity. Fig. 4 demonstrates two distinct attention distributions across model
depth during Qwen3-8B model inference 2. Early layers (1-18) show localized patterns where each
chunk primarily attends to its predecessor, while deeper layers (19-36) exhibit attention sink phe-
nomena, with certain chunks capturing most attention from subsequent chunks. This pattern reveals
that only a subset of chunks serves as effective prefixes, enabling joint caching of partial prefix
sequences to restore cross-chunk dependencies lost in independent chunk caching.

Hierarchical Cache. Based on the observed attention patterns, we establish a three-tier cache hi-
erarchy that systematically balances cache utilization efficiency against generation quality. Hard
Prefix Cache requires exact prefix sequence matching, making it the most restrictive but accuracy-
preserving tier. Due to the causal attention mask in autoregressive inference, exact prefix matches
guarantee computational equivalence to full recomputation, thereby preserving perfect generation

2We validated these chunk-level attention patterns across Llama3-8B-Instruct, Qwen3-4B, and Qwen3-8B
models on MMLU, TriviaQA, and SuperGPQA datasets, observing consistent behaviors, though the specific
chunk positions serving as attention sinks vary across different contexts.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

C
hu

nk
 P

os
iti

on

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

C
hu

nk
 P

os
iti

on

Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

C
hu

nk
 P

os
iti

on

Layer 19 Layer 20 Layer 21 Layer 22 Layer 23 Layer 24 Layer 25 Layer 26 Layer 27

Chunk Position

C
hu

nk
 P

os
iti

on

Layer 28

Chunk Position

Layer 29

Chunk Position

Layer 30

Chunk Position

Layer 31

Chunk Position

Layer 32

Chunk Position

Layer 33

Chunk Position

Layer 34

Chunk Position

Layer 35

Chunk Position

Layer 36

0.00

0.25

0.50

0.75

1.00

A
tte

nt
io

n
W

ei
gh

t

Figure 4: Chunk-level attention patterns during Qwen3-8B model inference with Top-8 retrieval.
The first and last columns in each subplot correspond to the system prompt and user query, respec-
tively. Layers 1-18 exhibit localized attention where chunks predominantly focus on their immediate
predecessors with sparse attention to distant chunks. In layers 19-36, an attention sink phenomenon
emerges where the 3rd chunk captures the majority of attention from subsequent chunks.

quality when cache hits occur. However, this strict requirement significantly constrains cache uti-
lization. Soft Prefix Cache relaxes the matching constraint to effective prefix matching, where only
the sink chunk or predecessor chunk needs to match for cache reuse. This design leverages our
attention analysis findings: since attention primarily flows from these key chunks, partial prefix
matching can maintain most cross-chunk dependencies. Independent Cache provides the fallback
mechanism when prefix matching fails entirely. Individual text chunks are precomputed and stored
independently without prefix dependencies. It maximizes cache hit rates but poses the greatest risk
for accuracy preservation, as cross-chunk attention dependencies must be reconstructed during LLM
inference.

Cache Reusing and Recomputation. Building on previous work (Yao et al., 2025), only a sub-
set of tokens within each chunk exhibit significant cross-chunk attention, leading to substantial KV
states deviations compared to those in the independent cache. Critically, this sparsity pattern ex-
hibits layer-wise consistency: tokens with the highest KV deviations in one layer are likely to have
the highest deviations in subsequent layers. This insight enables efficient selective recomputation
by identifying attention-critical tokens through first-layer analysis and applying the same selection
across all layers. We determine recomputation candidates by analyzing cross-chunk attention ratios
in the model’s initial layer, selecting tokens with the highest proportion of cross-chunk attention
weights.

Rather than a uniform recomputation across all chunks in context, we adapt the recomputation ratio
based on available cache matches. The KV states of each chunk may have multiple cached variants
stored under different prefix contexts. We retrieve from cache spaces in a hierarchical order with
progressively relaxed matching constraints.

We first query the hard prefix cache for exact matches, where any chunks along the matched prefix
path can be directly reused without recomputation. When exact matching fails, we examine the soft
prefix cache for effective prefix alignment. Note that soft prefix chunks serve only as cache key
identifiers without maintaining separate cache entries. Successful soft matching requires recomput-
ing α fraction of tokens to restore global cross-chunk attention3. If no cached KV states exist in

3In the first half of model layers, effective prefixes correspond to predecessor chunks, while in the sec-
ond half, they correspond to both sink chunks and predecessor chunks. We identify sink chunk positions
by analyzing attention matrices at transition layers: chunks before the sink chunk require predecessor-based
matching, while chunks after the sink chunk use both sink chunks and predecessor chunks as their effective
prefixes. Including predecessor chunks prevents cumulative errors that would arise from inconsistency with the
predecessor-based matching used in the first half of layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Context Augmentation

Require: System prompt s, query q, retrieved text chunks [c1, . . . , ck], confidence threshold τ
1: for i = 1 to k do
2: p← s+ [c1, . . . , ci] + q ▷ Construct context-augmented prompt
3: for j = 1 to i− 1 do
4: Retrieve hash([c1, . . . , cj]) in Hard Prefix Cache ▷ Reuse KV states w/o recomputation
5: end for
6: if hash(effective prefix([c1, . . . , ci])) ∈ Soft Prefix Cache then
7: ρ← α ▷ Lower recomputation ratio for Soft Prefix Cache
8: else
9: ρ← β ▷ Higher recomputation ratio for Independent Cache

10: end if
11: T ← ρ fraction of tokens in ci ▷ Selected tokens with the highest cross-chunk attention
12: O ← Prefill(T) ▷ Generate logits for last l layers
13: conf← λ · K̂L(O1..l−1, Ol) + (1− λ) · Ĥ(Ol) ▷ Evaluate the confidence
14: if conf > τ then
15: Execute decoding ▷ Stop context augmentation
16: break
17: end if
18: Update KV states of ci with hash([c1, . . . , ci]) in Hard Prefix Cache
19: end for

the soft prefix cache space, we turn to the independent cache with recomputation ratio β (β > α)
to reconstruct discarded cross-chunk dependencies. This cache reuse approach achieves an optimal
efficiency-accuracy trade-off through adaptive token recomputation that responds to varying prefix
match conditions: exact, partial, or absent.

3.2 ADAPTIVE CONTEXT AUGMENTATION

Algorithm 1 presents the process of adaptive context augmentation (ACA) with cache-aware recom-
putation. Rather than concatenating all top-k retrieved text chunks into the user prompt simultane-
ously, we employ an incremental augmentation strategy that progressively incorporates one chunk
at a time until reaching the k-th chunk or achieving sufficient confidence. While this approach ne-
cessitates multiple forward passes for the same query, it eliminates redundant context computation
through strategic caching. At each iteration, we only recompute the KV states for the newly added
chunk, storing them in the hard prefix cache space for reuse in subsequent context augmentation.
This ensures that all previously processed chunks maintain cache hits, dramatically reducing compu-
tational overhead. Importantly, ACA does not introduce any additional retrieval overhead. The top-k
retrieval step is executed once per query, and the augmentation loop then operates solely within the
prefill phase using the already-retrieved text chunks.

To decide whether augmentation should terminate, we employ a composite confidence metric com-
bining two complementary uncertainty measures. First, we compute the average KL divergence
between the logits of the last l layers and the final layer, capturing internal reasoning consistency. If
the model can accurately infer the answer from the current context, its logit distribution should con-
verge early across layers. Second, we calculate the entropy of the final token distribution, reflecting
output uncertainty. We normalize both the average KL divergence and entropy to [0, 1], then com-
pute a weighted confidence score, with weights determined through optimization on the validation
set. This dual-metric balances stability with predictive certainty, providing a more robust confidence
estimate. Notably, the confidence metric is computationally lightweight. In practice, AdaCache
computes logits only for the last 4 layers and for the final token rather than the full context, which
keeps the overhead negligible at less than 1% of the prefill cost.

ACA reduces computational and memory demands by avoiding excessive context allocation for
simple queries. Given k retrieved text chunks of length lc tokens each, a query of length lq tokens,
and early termination at step t, ACA processes at most t·(lc+lq) tokens. It yields substantial savings

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
65

70

75

80
EM

M
M

L
U

Llama3-8B

Better

0.0 0.5 1.0 1.5 2.0
65

70

75

80

Qwen3-8B

Better

0.0 0.5 1.0 1.5 2.0
65

70

75

80

Qwen3-4B

Better

0.0 0.5 1.0 1.5 2.0
35

40

45

50

EM

M
M

L
U

-P
ro

Better

0.0 0.5 1.0 1.5 2.0
35

40

45

50

Better

0.0 0.5 1.0 1.5 2.0
35

40

45

50

Better

0.0 0.5 1.0 1.5 2.0
25

30

35

40

EM

su
pe

rG
PQ

A

Better

0.0 0.5 1.0 1.5 2.0
25

30

35

40

Better

0.0 0.5 1.0 1.5 2.0
25

30

35

40

Better

0.0 0.5 1.0 1.5 2.0
30

35

40

45

50

55

EM

Tr
iv

ia
Q

A

Better

0.0 0.5 1.0 1.5 2.0
30

35

40

45

50

55

Better

0.0 0.5 1.0 1.5 2.0
30

35

40

45

50

55

Better

0.0 0.5 1.0 1.5 2.0
25

30

35

40

45

50

EM

2W
ik

iM
ul

tih
op

Q
A

Better

0.0 0.5 1.0 1.5 2.0
25

30

35

40

45

50

Better

0.0 0.5 1.0 1.5 2.0
25

30

35

40

45

50

Better

0.0 0.5 1.0 1.5 2.0
TTFT (s)

25

30

35

40

45

50

EM

H
ot

po
tQ

A

Better

0.0 0.5 1.0 1.5 2.0
TTFT (s)

25

30

35

40

45

50

Better

0.0 0.5 1.0 1.5 2.0
TTFT (s)

25

30

35

40

45

50

Better

AdaCache (ours) CacheBlend Prefix Caching Full Recomputation

Figure 5: Comparison of Time-to-Tirst-Token (TTFT) and generation quality between AdaCache
and baseline methods across six datasets and three models.

in computation and memory compared to static context augmentation, which requires processing
k · lc + lq tokens 4.

4 EVALUATION

4.1 EVALUATION METHODOLOGY

Models and Hardware Settings. We evaluate AdaCache using Llama-3-8B-Instruct (Dubey
et al., 2024a), Qwen3-4B, and Qwen3-8B (Yang et al., 2025) models. Experiments are conducted

4Retrieved text chunks are typically longer than queries, with 512 tokens being a common chunk size while
queries usually contain fewer than 128 tokens. For example, with top-6 retrieval, static context augmentation
processes 3,200 tokens per query during the prefill phase. In contrast, given the empirical expectation of
t = 2 text chunks required across the dataset, ACA processes only 1,280 tokens, achieving 2.5x reduction in
computational cost.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

on a server equipped with 128 CPU cores (2×Intel Xeon Gold 6530), 512 GB of host memory, and
NVIDIA RTX 6000 Ada GPU with 48 GB memory. Data transfers between the CPU and GPU are
carried out over the PCIe 4.0×16 interface.

Corpus and Datasets. We use the Wikipedia dataset5 as our knowledge base. Prior to embedding,
all documents are segmented into chunks of size 512 tokens. Each chunk is then encoded using the
e5-base-v2 embedding model. For vector search, we leverage the FAISS library to construct an
inverted file (IVF) index with 1024 clusters, and set the default top-k retrieval to 6. AdaCache
is evaluated on several rigorous benchmark datasets, including MMLU (Hendrycks et al., 2020),
MMLU-Pro (Wang et al., 2024), SuperGPQA (Du et al., 2025), TriviaQA (Joshi et al., 2017), 2Wiki-
MultihopQA (Ho et al., 2020), and HotpotQA (Yang et al., 2018), which span general knowledge,
open-domain reading comprehension, and advanced reasoning.

Baselines. We compare AdaCache with three baselines: (i) Full Recomputation, where the raw
text is fed into the LLM and the KV cache for all tokens is computed during prefill; (ii) Prefix
Cache (Jin et al., 2024), which leverages SGLang (Zheng et al., 2024) to identify frequently used
prefix chunks and persist their KV caches in RAM and SSD, while non-prefix tokens are still com-
puted during prefill. For fairness, we optimistically assume no delay when loading from RAM/SSD
to GPU, which favors this scheme relative to real deployments; and (iii) Selective Recomputation,
which adopts CacheBlend (Yao et al., 2025) to reuse precomputed KV caches of all chunks, while
selectively recomputing in each layer a small subset of high-deviation tokens to restore cross-chunk
attention.

Metrics. We evaluate models on both accuracy and responsiveness. Accuracy is measured by
Exact Match (EM), the fraction of predictions that exactly match a normalized reference answer.
Responsiveness is measured by Time-To-First-Token (TTFT), the wall-clock latency from request
submission to the emission of the first output token. We report results across repeated runs under
controlled hardware and inference settings.

4.2 EXPERIMENTAL RESULTS

Naive RAG systems recompute KV caches for every new request and its retrieved context. Ada-
Cache achieves substantial TTFT reductions of 3.12× on average and up to 6.02× compared to full
recomputation while preserving nearly identical generation quality. The performance gains derive
from AdaCache’s dual optimization strategy, which simultaneously eliminates cross-request compu-
tational redundancy in overlapping contexts while preventing unnecessary context augmentation for
simple queries. Notably, AdaCache occasionally surpasses full recomputation in prediction accu-
racy, as excessive contextual information can introduce noise that degrades model reasoning. Guided
by model output confidence, AdaCache ensures that the minimal sufficient context contributes to the
generation process.

AdaCache demonstrates 2.69× average and up to 5.0× performance improvements over prefix
caching. While prefix caching eliminates redundant computation of overlapping prefixes and main-
tains identical generation quality to full recomputation, exact prefix matching limits its effectiveness
with longer contexts or dynamic positioning of retrieved chunks. AdaCache addresses these limita-
tions with a hierarchical cache architecture (i.e., hard prefix cache, soft prefix cache, and independent
caches), enabling more flexible cache reuse.

CacheBlend leverages independent caching to achieve substantial improvements in cache hit rates,
employing selective recomputation to maintain cross-chunk attention and preserve generation qual-
ity. In comparison, AdaCache delivers 1.32× on average and up to 2.34× TTFT improvements over
CacheBlend with marginally superior generation quality. AdaCache analyzes inter-chunk attention
patterns across layers and constructs soft prefix caches, enabling flexible hierarchical caching that
reduces token-level recomputation and decreases TTFT. Additionally, adaptive context selection re-
duces computational waste from non-contributory text chunks.

5We use the wikimedia/wikipedia dataset on Hugging Face, which contains cleaned articles from the
official Wikipedia dumps. Each subset corresponds to one language and consists of a single training split with
markdown and references removed. In our experiments, we adopt the English subset released on 2023-11-01.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MMLU MMLU-Pro SuperGPQA TriviaQA0.0

0.3

0.6

0.9

1.2

TT
FT

 (s
)

Prefix Caching + ACA
CacheBlend + ACA

AdaCache w/o ACA
AdaCache w/ ACA

(a) Qwen3-4B.

MMLU MMLU-Pro SuperGPQA TriviaQA0.0

0.4

0.8

1.2

1.6

TT
FT

 (s
)

Prefix Caching + ACA
CacheBlend + ACA

AdaCache w/o ACA
AdaCache w/ ACA

(b) Qwen3-8B.

Figure 6: TTFT comparison of caching strategies combined with and without ACA across different
datasets and models.

0 1 2 3 4 5 6
Number of Retrieved Text Chunks

0

10

20

30

40

50

60

Q
ue

ry
 P

ro
po

rti
on

 in
 D

at
as

et
 (%

) MMLU
MMLU-Pro
SuperGPQA
TriviaQA

(a) Llama3-8B-Instruct.

0 1 2 3 4 5 6
Number of Retrieved Text Chunks

0

10

20

30

40

50

60

Q
ue

ry
 P

ro
po

rti
on

 in
 D

at
as

et
 (%

) MMLU
MMLU-Pro
SuperGPQA
TriviaQA

(b) Qwen3-8B.

0 1 2 3 4 5 6
Number of Retrieved Text Chunks

0

20

40

60

Q
ue

ry
 P

ro
po

rti
on

 in
 D

at
as

et
 (%

) MMLU
MMLU-Pro
SuperGPQA
TriviaQA

(c) Qwen3-4B.

Figure 7: The context length distribution determined by adaptive context augmentation across dif-
ferent datasets and models.

Ablation Study. To isolate the performance contributions of cache-aware selective recomputation
and adaptive context augmentation (ACA), we compare four configurations: Prefix Caching com-
bined with ACA, CacheBlend combined with ACA, AdaCache without ACA, and the full AdaCache
system (Fig. 6). ACA integrates smoothly with different caching mechanisms, and when applied to
Prefix Caching or CacheBlend, it consistently reduces TTFT across datasets and models, delivering
average speedups of 1.65× and 1.22×, respectively.

The full AdaCache system retains substantial performance advantages over ACA-enhanced base-
lines, achieving average speedups of 1.76× over Prefix Caching and 1.23× over CacheBlend. No-
tably, cache-aware selective recomputation alone occasionally outperforms even ACA-enhanced
baselines. These results demonstrate the effectiveness of our hierarchical caching design and its
tight integration with ACA.

Context Length Distribution. To better understand the performance improvements of Adaptive
Context Augmentation (ACA), we analyze the distribution of context lengths identified by ACA
during model inference. As shown in Fig. 7, a consistent pattern emerges across all three models
and four datasets: the majority of queries require minimal context augmentation, while queries
requiring longer contexts become increasingly rare. The sharp spike at maximum length includes
queries that remain unanswerable even when provided with the complete top-6 retrieved text chunks,
indicating persistently low confidence throughout the ACA process.

The performance gains from ACA correlate strongly with this distribution pattern. Datasets exhibit-
ing more pronounced head-heavy distributions with smaller tail proportions yield greater improve-
ments. MMLU and TriviaQA demonstrate more skewed distributions compared to MMLU-Pro
and SuperGPQA, with correspondingly higher relative performance gains. Specifically, AdaCache
achieves 1.95× and 1.62× average TTFT reduction over CacheBlend on MMLU and TriviaQA,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

TT
FT

 (s
)

2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

2 4 6 8
Number of Retrieved Text Chunks

0.0

0.5

1.0

1.5

2.0

2.5

TT
FT

 (s
)

2 4 6 8
Number of Retrieved Text Chunks

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6 8
Number of Retrieved Text Chunks

0.0

0.5

1.0

1.5

2.0

2.5

Llama3-8B Qwen3-8B Qwen3-4B

M
M

L
U

Tr
iv

ia
Q

A

AdaCache (ours) CacheBlend Prefix Caching Full Recomputation

Figure 8: Comparison of TTFT between AdaCache and baseline methods across different top-k
retrieval.

respectively, across three models, compared to more modest improvements of 1.25× and 1.14× on
MMLU-Pro and SuperGPQA respectively.

Performance Across top-k Retrieval Settings. Fig. 8 demonstrates the performance compar-
ison between AdaCache, CacheBlend, Prefix Caching, and Full Recomputation across varying
top-k retrieval configurations6. At top-2 retrieval, the performance gap between Prefix Caching,
CacheBlend, and AdaCache remains modest. Prefix Caching achieves a substantial TTFT reduction
compared to Full Recomputation due to relatively high cache hit rates in short context scenarios.

However, as context expands, a clear performance divergence emerges. Prefix Caching suffers dra-
matic degradation, with TTFT improvements declining from an average of 1.76× at top-2 to merely
1.13× at top-8 retrieval, reflecting the fundamental limitation of strict prefix matching in long con-
text scenarios. In contrast, AdaCache exhibits superior context scalability, with performance gains
improving from an average of 2.93× to 4.67× over full recomputation. While CacheBlend’s inde-
pendent caching strategy substantially improves cache hit rates for long contexts compared to Prefix
Caching, AdaCache achieves fundamentally better context scalability by combining hierarchical
caching with adaptive context augmentation.

5 CONCLUSION

We present AdaCache, a comprehensive framework that addresses fundamental computational inef-
ficiencies in RAG systems through dual optimization strategies: cache-aware partial recomputation
that profiles attention patterns to construct selective cache variants, and adaptive context augmenta-
tion that dynamically determines optimal retrieval depth via lightweight confidence estimation. Our
approach tackles two key inefficiencies observed in current RAG systems: the power-law distribu-
tion of context reuse across queries, where 10% of chunks satisfy 80% of retrieval requests, and the
over-allocation of context, where 60% of queries require only minimal retrieval. Comprehensive
evaluation demonstrates that AdaCache achieves 1.4×∼5.0× TTFT reduction over state-of-the-art
RAG caching systems while maintaining generation quality. Notably, our adaptive context augmen-
tation enables seamless integration with existing caching strategies while exhibiting superior context
scalability.

6For AdaCache, top-k refers to the maximum available context length during adaptive context augmentation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. Our research does not involve human subjects,
sensitive personal data, or any identifiable information. All datasets used in our experiments are
publicly available and widely adopted in prior literature. We strictly followed the terms of use of
these datasets and ensured that no proprietary or private information was accessed or disclosed.
The methods developed are intended purely for academic research and are not designed to produce
harmful applications. We are committed to promoting fairness, transparency, and reproducibility in
machine learning research, and we release our results in compliance with community standards of
research integrity.

REPRODUCIBILITY STATEMENT

We provide full details to support reproducibility. The AdaCache framework, including cache-
aware recomputation and adaptive context augmentation, is specified in Section 3 with pseudocode
and design assumptions. Experimental settings, datasets, preprocessing, evaluation metrics, and
baseline configurations are described in Section 4. Model architectures, and hardware settings are
reported to allow replication of latency and throughput measurements.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as the general-purpose assistive tool during the preparation of this
paper. Its contributions were limited to improving grammar, polishing wording, and suggesting
alternative phrasings for clarity and conciseness. The research ideas, methodological design, exper-
imental implementation, analysis, and final interpretations were entirely conceived and executed by
the authors.

LLMs were not used for generating novel research content, fabricating facts, or conducting scientific
reasoning. All technical descriptions, results, and conclusions presented in the paper are the sole
responsibility of the authors.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Cohere. Wikipedia 22-12 en embeddings dataset. https://huggingface.co/datasets/
Cohere/wikipedia-22-12-en-embeddings, 2023. Accessed: 2025-09-13.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024a.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024b.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. Proceedings of Machine Learning and
Systems, 6:325–338, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11

https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings
https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6609–6625, 2020.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
Ragcache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–
132. IEEE, 2024.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust zero-
shot listwise reranking is a breeze! arXiv preprint arXiv:2312.02724, 2023.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceedings of
the first instructional conference on machine learning, volume 242, pp. 29–48. New Jersey, USA,
2003.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
Colbertv2: Effective and efficient retrieval via lightweight late interaction. arXiv preprint
arXiv:2112.01488, 2021.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with cached
knowledge fusion. In Proceedings of the Twentieth European Conference on Computer Systems,
pp. 94–109, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024.

13

	Introduction
	Background and Related Work
	AdaCache
	Cache-aware Selective Recomputation
	Adaptive Context Augmentation

	Evaluation
	Evaluation methodology
	Experimental results

	Conclusion

