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Abstract

The Boolean Satisfiability Problem (SAT) plays a crucial role in cryptanalysis,
enabling tasks like key recovery and distinguisher construction. Conflict-Driven
Clause Learning (CDCL) has emerged as the dominant paradigm in modern SAT
solving, and machine learning has been increasingly integrated with CDCL-based
SAT solvers to tackle complex cryptographic problems. However, the lack of
a unified evaluation framework, inconsistent input formats, and varying model-
ing approaches hinder fair comparison. Besides, cryptographic SAT instances
also differ structurally from standard SAT problems, and the absence of stan-
dardized datasets further complicates evaluation. To address these issues, we
introduce SAT4CryptoBench, the first comprehensive benchmark for assessing
machine learning–based solvers in cryptanalysis. SAT4CryptoBench provides
diverse SAT datasets in both Arithmetic Normal Form (ANF) and Conjunctive
Normal Form (CNF), spanning various algorithms, rounds, and key sizes. Our
framework evaluates three levels of machine learning integration: standalone dis-
tinguishers for instance classification, heuristic enhancement for guiding solving
strategies, and hyperparameter optimization for adapting to specific problem distri-
butions. Experiments demonstrate that ANF-based networks consistently achieve
superior performance over CNF-based networks in learning cryptographic features.
Nonetheless, current ML techniques struggle to generalize across algorithms and
instance sizes, with computational overhead potentially offsetting benefits on sim-
pler cases. Despite this, ML-driven optimization strategies notably improve solver
efficiency on cryptographic SAT instances. Besides, we propose BASIN, a bitwise
solver taking plaintext-ciphertext bitstrings as inputs. Crucially, its superior perfor-
mance on high-round problems highlights the importance of input modeling and
the advantage of direct input representations for complex cryptographic structures.

1 Introduction

The Boolean Satisfiability Problem (SAT) is a fundamental problem in computer science, offering a
powerful approach to express and analyze cryptographic problems. With the advent of Conflict-Driven
Clause Learning (CDCL), modern SAT solvers have demonstrated remarkable efficiency across
diverse application domains. It provides a natural bridge between cryptanalysis and advanced solving
techniques. By representing cryptographic challenges as SAT instances, researchers can leverage state-
of-the-art SAT solvers to tackle complex cryptographic problems[1, 2, 3]. This connection enables
cryptanalysis to benefit from efficient SAT-solving strategies and makes cryptographic challenges
more accessible to researchers from the algorithmic and machine-learning communities [4, 5, 6].
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However, benchmarking machine learning (ML) based SAT solvers on cryptographic instances
remains challenging. Existing solvers vary widely in input formats, modeling paradigms, and ML
component integrations, complicating direct comparison. Additionally, cryptographic SAT instances
often exhibit domain-specific structural properties, such as high symmetry and algebraic dependencies,
which distinguish them fundamentally from existing general SAT benchmarks. Furthermore, the
lack of standardized datasets and evaluations across different input formats hinders reproducible and
fair assessment of solver performance. These challenges highlight the pressing need for a unified
benchmark specifically designed for ML-based SAT solvers in cryptographic applications.

To address these challenges, we propose SATCryptoBench, a comprehensive benchmark for evaluat-
ing ML-based SAT solvers on a range of cryptographic problems. SATCryptoBench includes a large
collection of SAT datasets derived from various cryptographic algorithms, and generates datasets
designed to contain instances of multiple representations: Arithmetic Normal Form (ANF), Con-
junctive Normal Form (CNF), and the original plaintext-ciphertext bitstrings. These representations
serve two main purposes: (1) to enable systematic studies on how problem formulation affects solver
performance—for example, ANF is often more natural for expressing cryptographic structures; and
(2) to improve accessibility for the SAT solving community, where CNF remains the standard despite
its limitations in modeling cryptographic operations. Through this design, SATCryptoBench bridges
the gap between traditional cryptanalysis and modern SAT-solving techniques.

Then, in order to systematically analyse the performance of different ML-based solvers on SAT
instances of the encryption problem, SATCryptoBench classifies the solvers into three levels according
to the ML integration in the solving process:

• Standalone Distinguisher: Solvers that independently classify SAT instances (satisfiable or
unsatisfiable) or identify cryptographic properties without directly solving the SAT problem.

• Heuristic Enhancement: Solvers that incorporate machine learning to guide traditional heuristics.
• Hyperparameter Optimization: Solvers that utilize machine learning to optimize hyperparame-

ters, enabling heuristics to better adapt to specific cryptographic problem distributions, without
requiring knowledge of the solver’s internal structure.

Experiments are conducted to evaluate ML-based SAT solvers across the above three levels. For
Standalone Distinguisher, we assess 8 models on 6 cryptographic datasets, covering a range of rounds
and key sizes. For Heuristic Enhancement, we evaluate 10 ML-based solvers alongside their original
counterparts across 11 datasets, encompassing diverse cryptographic algorithms and instance scales.
For Hyperparameter Optimization, we compare the performance of three popular traditional solvers
under various hyperparameter optimization strategies on large-instance datasets. Furthermore, we
propose a bitwise solver, BASIN, which takes plaintext-ciphertext bitstrings as input and performs a
comparative evaluation of different input formulations for ML-based solvers. Our empirical analysis
highlights the following key findings:

1. ANF-based networks excel at capturing cryptographic features, achieving significantly higher
prediction accuracies compared to CNF-based approaches across our benchmark datasets.

2. ML models struggle to generalize across different cryptographic algorithms and instance sizes, and
the integration of ML components introduces computational overhead that can offset performance
improvements, particularly for less complex instances.

3. Different machine learning-based optimization strategies, despite their varying approaches, can all
significantly improve solver performance on cryptographic instances

4. The bitwise solver, BASIN, outperforms its ANF- and CNF-based counterparts on high-round
cryptographic instances, suggesting that direct input representations, such as plaintext-ciphertext
bitstrings, can more effectively capture the underlying cryptographic structures in complex settings.

2 Related Work

Learning-assisted heuristic solvers. Machine learning has shown significant potential in augmenting
SAT solvers by integrating data-driven heuristics [4, 5, 6]. Learning-assisted methods [7, 8] enhance
traditional CDCL-based solvers by embedding learned components into specific solving stages.
Among these, the most extensively studied area is branching heuristics [9, 10], where neural models
guide variable selection decisions. Beyond branching, machine learning has also been applied to
optimize variable initialization [11, 12], clause deletion [13], restart policies [14], and glue clause

2



𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥4 + 1 = 0
𝑥2𝑥4 + 𝑥1 + 𝑥3 = 0
𝑥1𝑥3 + 𝑥4 + 1 = 0

𝑥4𝑥3𝑥2𝑥1

ഥ𝑐2 ഥ𝑐1𝑐2 𝑐1ഥ𝑐3 𝑐3

𝑥2𝑥4𝑥1𝑥3𝑥1𝑥2𝑥4𝑥3𝑥1

𝑥1 ∨ ¬𝑥2 ∧ 𝑥1 ∨ 𝑥3 ∧ (¬𝑥1 ∨ 𝑥2 ∨ 𝑥4)
𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4 ∧ (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3)

𝑥1 𝑥2 𝑥3 𝑥4¬𝑥1 ¬𝑥3 ¬𝑥4¬𝑥2

𝑐2 𝑐3𝑐1 𝑐5𝑐4

(a)  ANF representation

(b)  LCG of CNF representation

𝑥1 𝑥2 𝑥3 𝑥4

𝑐2 𝑐3 𝑐4 𝑐5𝑐1

(c)  VCG of CNF representation

Figure 1: Graph representation. (a) ANF graph representation of the SAT instances. (b) Literal-Clause
Graph (LCG) of CNF representation. (c) Variable-Clause Graph (VCG) of CNF representation.

prediction [15, 16]. These approaches strategically leverage learned components while preserving
the robustness of classical solvers. However, most of these methods have not been evaluated on
large-scale cryptographic SAT datasets, and there remains a critical gap: the lack of a unified dataset
and evaluation framework for cryptographic SAT problems, which hinders systematic comparison of
learning-assisted methods in this important application domain. Our SAT4CryptoBench aims to fill
this gap by evaluating various learning-assisted solvers under a unified benchmark.

End-to-end neural solvers. Another major direction of applying machine learning to SAT solving is
the development of end-to-end neural solvers, which regard SAT solving as a prediction problem,
bypassing traditional solving pipelines. Early attempts used recursive neural networks to process CNF
formulas as sequences [17], which later evolved into more powerful graph neural network (GNN)-
based approaches capable of directly capturing formula structures through graph representations.
This line of work mainly focuses on satisfiability prediction [18, 19, 20, 21, 22], eliminating the
need for hand-crafted features used in earlier methods like SATzilla [23]. Additionally, to address
data scarcity, the community has introduced auxiliary tasks such as generating pseudo-industrial
instances [24, 25, 26]. Besides, Li et al. [27] propose a benchmark for evaluating GNN-based SAT
solving. However, existing works mainly target CNF-based networks and general SAT problems,
while cryptographic SAT instances often exhibit unique structures that are hard to efficiently represent
in CNF, leading to a scale explosion and loss of semantics. Recently, Zheng et al. [2] propose an
ANF-based end-to-end solver specifically designed for cryptographic SAT problems, highlighting the
growing interest in this field. These developments highlight the necessity and challenge of establishing
a systematic evaluation framework that supports both CNF-based and ANF-based end-to-end solvers
for cryptographic problems. To this end, our SAT4CryptoBench provides unified datasets in both
formats and enables comprehensive evaluation of neural solvers on cryptographic SAT instances.

SAT for Cryptography. SAT solving has become important in automated cryptanalysis. Nejati et
al. [1] introduce CDCL (Crypto), a framework that enhances CDCL solvers with domain-specific
cryptographic knowledge through programmatic callbacks. Similarly, Lafitte et al. [28] developed
CryptoSAT, an open-source framework that automates SAT-based analysis for cryptographic primi-
tives, simplifying the conversion of cryptographic algorithms into CNF formulas. Other SAT-based
cryptanalysis works include exploring differential trails in ARX ciphers [29] and developing auto-
mated search techniques for ciphers with S-boxes to achieve more accurate differential trails [30].
Additionally, an SAT-based automated search toolkit [3] has been applied to SHA-3. However, exist-
ing studies often focus on case studies or address only small components of specific cryptographic
problems, which limits consistent and meaningful cross-method evaluation. A unified framework for
systematically evaluating these approaches in cryptographic problem settings remains absent.

To address the challenges of evaluating diverse SAT-solving approaches in cryptographic problems,
particularly with the emergence of machine learning-based methods, we propose a comprehensive
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Figure 2: Overview of SAT4CryptoBench.

evaluation framework that standardizes the assessment of SAT solvers across different input formats
and problem structures specific to cryptographic applications.

3 Preliminaries

SAT problem & Cryptographic operation. The SAT problem plays an important role in computa-
tional complexity and cryptographic analysis. Cryptographic operations, such as those used in block
ciphers, hash functions, and public-key systems, are typically composed of Boolean functions that
can be expressed in terms of satisfiability constraints. Specifically, the algebraic structure of crypto-
graphic operations, such as XOR, AND, and modular addition, makes them suitable for translation
into satisfiability problems represented in forms like CNF or ANF. Please refer to Appendix B.1
for the detailed representations of common cryptographic operations. By reducing cryptographic
problems to SAT instances, researchers can leverage SAT solvers to tackle complex problems like
key recovery, collision finding, and differential analysis.

ANF & CNF graph representation. Graph representations of SAT problems, both in ANF and
CNF forms, provide powerful tools for visualization and analysis. In CNF, an SAT problem is
expressed as a conjunction of clauses, with each clause being a disjunction of literals. This naturally
maps to a bipartite graph, where one set of nodes represents variables and the other represents
clauses. Connections between these nodes indicate the presence of variables (or their negations) in the
clauses. This structure facilitates the use of graph-based algorithms for SAT solving and optimization.
Figures 1 (b) and (c) show two common graph representations of the CNF formula.

In contrast, the ANF representation, consisting of polynomial equations over GF(2), leads to a
different graph structure. In this case, according to [2], variables and monomials in the equations are
represented as nodes, with edges capturing the relationships defined by the equations. This graph
emphasizes higher-order interactions between variables, making it especially suitable for analyzing
cryptographic systems that involve multivariate polynomial equations. For instance, modular addition
in encryption schemes introduces quadratic terms, creating second-order dependencies in the ANF
graph. Figure 1 (a) illustrates the graph representation of the ANF formula. By combining these
graph representations, researchers can gain insights into the structure of cryptographic instances,
optimize SAT solver strategies, and develop novel algorithms for specific cryptographic problems.

4 Benchmark

The goal of SAT4CryptoBench is to provide a unified framework for evaluating ML-based SAT
solvers on cryptographic problems. In this section, based on the ML integration in the solving
process, we categorize these solvers into three levels and discuss the details of solvers at each level.
Furthermore, we systematically examine how different input representations, such as CNF, ANF, and
plaintext-ciphertext bitstrings, affect the solver’s performance. The overview is shown in Figure 2.

4



4.1 Standalone Distinguisher

The Standalone Distinguisher represents a data-driven approach that completely replaces traditional
SAT-solving algorithms with machine learning methods. These distinguishers use ML models to
directly predict the satisfiability of SAT instances or identify cryptographic properties from the input
without utilizing any conventional SAT solvers. This paradigm offers a fundamentally different
approach, where the entire solving process is replaced by a learned model, enabling rapid assessment
of SAT instances, which is particularly valuable for cryptographic analysis.

To evaluate the standalone distinguishers, we construct synthetic datasets based on the Simon block
cipher. Each dataset is provided in both ANF and CNF formats, while also retaining the original
plaintext-ciphertext bitstrings, offering multiple representations of the same cryptographic problems.

We evaluate two categories of neural network architectures based on their input representations.
For the CNF-based neural network, the message-passing process is designed to iteratively refine
the embeddings of nodes (literals and clauses) by aggregating information from neighboring nodes.
Initially, the embeddings of literals and clauses are randomly initialized, denoted by hl and hc,
respectively. During the message-passing iterations, each clause node updates its embedding by
receiving messages from connected literal nodes. Taking the LCG representation of a CNF instance
as an example, at the k-th iteration of message passing, these hidden representations are updated as:

h(k)
c = UPD

(
AGGl∈N (c)

({
MLP

(
h
(k−1)
l

)})
, h(k−1)

c

)
h
(k)
l = UPD

(
AGGc∈N (l)

({
MLP

(
h(k−1)
c

)})
, h

(k−1)
¬l , h

(k−1)
l

) (1)

where N () denotes the set of the neighbor nodes. MLP denotes the multi-layer perception, UPD()
represents the update function, and AGG() represents the aggregation function.

For the ANF-based neural network, due to their tripartite graph representation, the message-passing
process is different from CNF-based networks. First, each clause node updates its embedding by
receiving messages from connected monomial nodes and its complementary clause:

L
(t)
l2c =Ll2l(M

T
l2lL

(t))

[C(t)
m,pos, C

(t)
m,neg] =MT

l2cLmsg(L
(t)
l2c)

(C(t+1)
pos , C

(t+1)
h,pos )←Cu,pos([C

(t)
h,pos, C

(t)
neg, C

(t)
m,pos])

(C(t+1)
pos , C

(t+1)
h,neg )←Cu,neg([C

(t)
h,neg, C

(t)
pos, C

(t)
m,neg])

(2)

where Ml2l is the sparse adjacency matrix defining connections between literals and monomials, and
Ml2c is the sparse adjacency matrix defining connections between literals and clauses. Ll2l, Lmsg are
MLPs that process incoming messages and Cu,pos, Cu,neg are update functions. Next, each literal
updates its embedding by receiving messages from associated clauses.

L
(t)
c2l =Ml2cCmsg([C

(t)
pos, C

(t)
neg]) (3)

L(t)
m =Ml2lLl2m(L

(t)
c2l) (4)

(L(t+1), L
(t+1)
h )←Lu([L

(t)
h , L(t)

m ]) (5)

where Ll2m, Cmsg are MLPs, and Lu denotes the update function for the literals’ embeddings.

4.2 Heuristic Enhancement

SAT4CryptoBench provides a systematic framework for evaluating CDCL SAT solvers that incorpo-
rate machine learning components to enhance traditional heuristic decision-making processes. Our
framework categorizes these hybrid approaches into two distinct integration patterns:

• Learnable Internal Modules: Solvers that incorporate learning components directly into their
core framework to guide heuristic decisions during the solving process without pre-training.

• Neural Network External Modules: Solvers that utilize separate neural networks trained before
the solving process, to enhance specific components of the solving process.
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Heuristic enhancement with learnable internal modules. This category includes ML-based
solvers that integrate learning-based components directly into their algorithmic framework. These
solvers enhance their heuristic decisions through embedded learning mechanisms, which dynamically
optimize various aspects of the solving process, such as variable selection, branching strategies,
clause learning, and restart policies. By incorporating learning mechanisms as fundamental elements
of the solving process, these solvers typically do not require pre-training but instead learn to adjust
relevant parameters during the solving process, thereby continuously adapting their behavior to the
unique characteristics of cryptographic problems. They also leverage domain-specific knowledge to
guide their decision-making, improving the efficiency of solving complex SAT instances.

Heuristic enhancement with learnable external modules. This category includes solvers that
leverage external neural network architectures to improve the solving process. Rather than incor-
porating learning components directly into the core algorithm, these solvers use neural networks
as independent modules that interact with the solver at key decision-making points. Pre-trained to
recognize complex patterns in cryptographic instances under specific distributions, these networks
can uncover structural features that traditional heuristics may overlook. The learned features enable
better branching and clause management, thereby improving overall solving efficiency.

Input Representation Impact and the BASIN Solver Most existing SAT solvers rely on CNF
as the standard input format. However, given the algebraic and bit-level structure of cryptographic
SAT instances, alternative representations—such as ANF or direct plaintext-ciphertext bitstring
inputs—may better capture their underlying semantics. To explore this, we examine how different
input formats affect solver effectiveness in cryptographic settings.

To this end, we propose BASIN, Bitwise Arithmetic Solver with Initialization by Neural network, a
bit-level solver architecture specifically designed for cryptographic SAT problems. BASIN belongs
to the method of heuristic enhancement, as it combines traditional enumeration with neural-guided
initialization to improve solving efficiency. It operates directly on plaintext-ciphertext bitstrings
and performs key recovery via guided bitwise search. To enhance initialization, it integrates an
improved version of CryptoANFNet, which processes ANF representations derived from input pairs
and predicts a likely key assignment. This prediction is used as the initial guess for enumeration,
enabling efficient search over the key space.

4.3 Hyperparameter Optimization

SAT4CryptoBench offers a comprehensive framework for hyperparameter optimization on crypto-
graphic datasets, aimed at systematically adjusting the hyperparameters of traditional SAT solvers
to improve their performance. These methods use machine learning-based optimization algorithms
to identify optimal parameter combinations that align with different cryptographic algorithms, fine-
tuning solvers’ hyperparameters for diverse cryptographic dataset distributions. The framework
enables systematic evaluation of hyperparameter optimization methods within broader comparative
studies of learning-based SAT solvers. Specifically, the framework comprises three key elements:

• Parameter Space: This element defines the optimization parameter space for the solvers, specify-
ing the parameters to be optimized and their respective ranges.

• Optimization Methods: This element involves the hyperparameter optimization technique se-
lection. The framework supports various methods, including black-box Bayesian optimization,
random search, and evolutionary algorithms, to identify the optimal hyperparameter configurations.

• Objective Function: The optimization objective function quantifies the performance of the solver
in addressing specific cryptographic SAT problems. Here, we select solving time as the objective
function, allowing for a clear assessment of the solver’s efficiency.

5 Experiment and Discussion

In this section, we conducted extensive experiments across multiple cryptographic algorithms and
solver configurations to thoroughly assess the effectiveness of different approaches, as well as the
impact of input representations. Detailed experimental settings, including dataset generation and
evaluation metrics, are provided in Appendix A.
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Table 1: Experimental Results on Simon Block Cipher

Method 3 Rounds 6 Rounds
8-bit 16-bit 32-bit 8-bit 16-bit 32-bit

GCN [32] (LCG) 50.5% 50.0% 50.0% 50.0% 50.0% 50.0%
GCN (VCG) 52.0% 52.0% 59.0% 55.5% 50.3% 51.3%
GIN [33] (LCG) 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
GIN (VCG) 50.0% 53.0% 58.0% 55.8% 51.5% 51.0%
GGNN [34] (LCG) 50.0% 51.0% 50.0% 52.3% 50.3% 50.0%
GGNN (VCG) 50.0% 53.5% 58.0% 54.8% 50.8% 50.0%
Neurosat [18] (LCG) 50.0% 50.5% 50.0% 50.3% 50.0% 50.0%
CryptoANFNet [2] 100% 99.5% 99.5% 70.0% 69.0% 67.3%

5.1 Datasets

We construct five types of datasets based on different cryptographic problems with both CNF and
ANF representations. CNF instances for MD4, SHA-1, and SHA-256 are generated using the SAT
encoding toolkit [31], and we generate datasets in both CNF and ANF representations for the Simon
cipher to offer complementary views. Additionally, we provide CNF datasets of a widely used but
anonymized cryptographic scheme, referred to as Cipher1, which is derived from real encrypted
data using a confidential, widely used block cipher, providing realistic SAT instances. To support
fine-grained analysis, we also define multiple difficulty levels by varying encryption rounds and block
sizes. The detailed construction process of the datasets is provided in Appendix B.2.

5.2 Evaluation of Standalone Distinguisher

We conducted experiments to assess the performance of various distinguisher methods on crypto-
graphic SAT instances. The evaluation included four popular CNF-based neural networks: GCN,
GIN, GGNN, and Neurosat, along with a recently proposed ANF-based network, CryptoANFNet [2].

Specifically, we present a comparative analysis of the methods’ performance in distinguishing between
SAT and UNSAT instance pairs across various Simon configurations. The datasets were derived from
the Simon block cipher, configured with encryption rounds of 3 and 6, and block lengths of 8, 16,
and 32 bits, resulting in six distinct dataset configurations. Each SAT-UNSAT instance pair in ANF
corresponds to a pair in CNF, and both are derived from the same plaintext-ciphertext pair. These
instance pairs were carefully constructed to ensure a representative sampling of the problem space.

We set the network settings based on [2, 27]. For the CNF-based networks, GCN, GIN, and GGNN
were evaluated using both Literal-Clause Graph and Variable-Clause Graph representations, while
Neurosat was evaluated using only the Literal-Clause Graph representation. For the ANF-based
network, CryptoANFNet was evaluated using SAT instances in ANF. This evaluation framework
offers comprehensive insights into the impact of graph representation on model performance.

From the experimental results in Table 1, we conclude that the utilization of ANF-based networks
for learning features of cryptographic SAT instances demonstrates significant advantages com-
pared to CNF-based networks. As evidenced by the results in Table 1, across all datasets, different
CNF-based models on two CNF-based representations show no significant impact on outcomes.
Under CNF-based representations, models are barely able to learn features from cryptographic
SAT datasets. In contrast, with ANF-based representations, ANF-based models achieve prediction
accuracies substantially higher than their CNF-based counterparts, even reaching prediction accura-
cies approaching 1 for Simon datasets with 3 rounds. These findings provide compelling evidence
supporting our conclusion and further details about CNF representation bottleneck are in Appendix C

5.3 Evaluation of Heuristic Enhancement

We conducted experiments to evaluate ML-based heuristic enhancement methods across two cat-
egories. The first category includes solvers with internal learnable modules, including Maple-
Painless [35], MapleSat [36], MapleSat-Crypto [1], and BMM-enhanced variants [37] (Glucose-

1The exact name is undisclosed for confidentiality reasons.
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Table 2: Average solving time (in seconds) of different SAT solvers with ML-based heuristic enhanced
modules and traditional solvers on cryptographic instances. * means the original solver in its publicly
available official implementation. Here, we show the 95% confidence interval.

Method Cipher
8

Cipher
9

Cipher
10

Cipher
11

Cipher
12 MD4 Simon

10-32-64
Simon

11-32-64
Simon

12-32-64 SHA-1 SHA
256

MaplePainless 1.07
± 0.01

2.97
± 0.27

21.21
± 2.21

69.40
± 7.19

390.22
± 46.50

1.430
± 0.035

22.00
± 2.20

77.10
± 7.49

445.31
± 50.86

53.89
± 7.05

153.32
± 23.17

MapleSat 0.27
± 0.03

1.02
± 0.12

12.94
± 1.29

63.12
± 9.06

381.22
± 15.94

1.435
± 0.013

26.46
± 5.13

73.85
± 10.2

440.02
± 18.77

75.92
± 13.07

111.52
± 14.41

MapleSat-BMM 0.38
± 0.04

1.16
± 0.13

12.17
± 1.51

51.29
± 5.44

390.84
± 45.89

0.084
± 0.001

14.83
± 1.83

41.57
± 5.05

460.57
± 55.87

41.75
± 4.86

120.78
± 18.31

MapleSat-Crypto 0.34
± 0.02

1.54
± 0.10

14.25
± 1.07

48.36
± 4.73

443.11
± 35.67

0.271
± 0.018

15.98
± 3.77

58.34
± 5.35

717.31
± 64.83

43.21
± 4.55

124.27
± 16.24

Glucose-BMM 0.21
± 0.02

1.28
± 0.12

24.56
± 5.80

98.74
± 14.31

1050.95
± 100.79

0.730
± 0.070

27.33
± 6.32

90.46
± 14.08

1388.51
± 180.96

80.96
± 14.33

5764.04
± 769.49

Glucose* 0.22
± 0.02

1.36
± 0.16

14.34
± 1.55

70.93
± 10.91

914.88
± 100.60

0.084
± 0.001

14.52
± 2.02

79.15
± 12.66

1434.34
± 190.33

53.25
± 8.71

2932.32
± 421.31

MapleCOMSPS
-BMM

0.28
± 0.03

1.87
± 0.26

35.32
± 4.10

126.20
± 15.32

1002.57
± 142.45

0.095
± 0.001

32.33
± 4.20

110.60
± 13.91

1248.37
± 213.52

146.34
± 20.30

336.59
± 47.52

MapleCOMSPS* 0.22
± 0.03

1.97
± 0.23

29.85
± 3.65

105.94
± 12.35

1061.95
± 130.22

0.102
± 0.001

28.77
± 3.42

125.78
± 13.28

1467.97
± 220.32

194.67
± 38.04

377.19
± 48.88

MapleLCMDist
-BMM

0.73
± 0.24

3.72
± 0.55

28.66
± 2.65

75.55
± 7.54

368.26
± 45.72

0.084
± 0.001

24.10
± 2.70

63.65
± 7.44

382.07
± 43.16

51.76
± 5.12

226.01
± 36.77

MapleLCMDist* 0.11
± 0.01

1.10
± 0.12

21.49
± 2.48

67.88
± 6.33

382.92
± 40.66

0.089
± 0.001

24.41
± 2.87

69.08
± 6.52

389.66
± 44.37

38.40
± 5.90

152.86
± 21.42

Kissat
(NeuroBack)

10.77
± 1.59

27.48
± 3.22

396.57
± 63.75

1536.74
± 238.28

2184.22
± 271.85

13.539
± 0.814

433.77
± 61.78

1728.98
± 263.36

3783.78
± 270.93

683.39
± 109.48

732.93
± 65.59

Kissat* 0.12
± 0.02

0.63
± 0.07

12.14
± 1.34

63.25
± 4.56

974.35
± 66.02

0.078
± 0.001

11.28
± 1.08

73.24
± 5.10

818.92
± 55.93

263.89
± 14.56

293.78
± 15.21

Neuro-Cadical 0.95
± 0.02

1.61
± 0.07

20.68
± 2.60

174.41
± 22.77

1931.95
± 301.49

1.114
± 0.020

20.68
± 2.85

173.05
± 33.01

1910.22
± 272.73

577.37
± 129.67

202.67
± 28.71

Cadical* 0.90
± 0.02

1.53
± 0.08

22.76
± 3.00

181.00
± 25.32

1976.53
± 293.76

0.864
± 0.015

16.07
± 2.16

173.71
± 25.21

1874.66
± 320.17

464.05
± 74.14

271.77
± 44.15

Minisat
(Graph-Q-Sat)

33.96
± 2.38

36.78
± 2.11

80.53
± 5.77

430.15
± 43.52

2437.76
± 286.59

0.083
± 0.001

70.77
± 5.25

183.71
± 19.39

1737.40
± 195.71

2992.97
± 307.96

2971.47
± 241.51

Minisat* 0.28
± 0.05

1.31
± 0.22

17.10
± 2.02

63.96
± 8.94

570.46
± 87.94

0.259
± 0.012

15.62
± 2.21

60.73
± 6.05

868.71
± 81.62

43.69
± 3.586

143.32
± 22.89

BMM, MapleCOMSPS-BMM, MapleSat-BMM, and MapleLCMDist-BMM). The second category
includes solvers with external learnable modules, such as NeuroBack [38] (based on kissat), Neuro-
Cadical [15] (based on Cadical), and Graph-Q-Sat [10] (based on Minisat). For both categories,
we used the publicly available official code and tested their average solving time per sample on the
dataset. For solvers in the second category, we used their pre-trained models for testing.

We evaluated these ML-based heuristic enhancement methods across datasets derived from five
different cryptographic algorithms: the block cipher Cipher mentioned in Section 5.1 with k rounds
and 32-bit key length, referred to as Cipher-k; the Simon block cipher [39] with k rounds, n-bit key
length and 2n-bit block size, denoted as Simon-n-2n; the Message Digest algorithm MD4 [40], the
Secure Hash Algorithm SHA-256 [41], and the Secure Hash Algorithm SHA-1 [42].

The experimental results are shown in Table 2. Notably, the effectiveness of internal learnable modules
varies with instance complexity and algorithm type. For simpler instances, traditional solvers without
ML-based heuristic enhancements outperform their enhanced counterparts. As instance complexity
increases, particularly in block cipher instances like Cipher-12 and Simon-12-32-64, solvers with
ML-based enhancements show substantial advantages. For example, MapleLCMDist-BMM solves
Cipher-12 in 368.26s, slightly outperforming its base version, MapleLCMDist, and significantly
outperforming other traditional solvers. Besides, BMM-enhanced variants, such as MapleSat-BMM
and MapleLCMDist-BMM, exhibit robust performance across different cryptographic families. The
performance advantage of BMM-enhanced solvers suggests that learned branching heuristics can
effectively capture and exploit structural patterns in cryptographic SAT instances.

In contrast, external learnable modules show mixed results. Neuro-Cadical performs similarly to its
base solver, Cadical, in simpler instances, but the overhead from external learning increases in more
complex cases. For example, Cadical outperforms Neuro-Cadical on Simon-12-32-64. NeuroBack
and Graph-Q-Sat show even greater overhead, especially on SHA-1 and SHA-256. A likely reason is
that their publicly available pre-trained models, such as NeuroBack, fail to generalize well from
their training sets to cryptographic problems, due to the latter’s structures and larger scale.
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Table 3: Performance comparison of SAT solvers with different hyperparameter optimization methods
on cryptographic instances. The results show average solving time in seconds, and we show the
95% confidence interval. For Kissat, the optimized parameters are (restartint,reduceint,decay). For
Cryptominisat, the optimized parameters are (gluehist,rstfirst,confbtwsimp). For MapleSAT, the
optimized parameters are (rnic,phase-saving,rnd-freq). The suffixes -H and -E denote HEBO and
EasyNAS optimization methods, respectively.

Solver Simon-12-32-64 Cipher-12 MD4 SHA-256 SHA-1

Kissat 818.92
± 55.93

974.35
± 66.02

0.078
± 0.001

293.78
± 15.21

263.89
± 14.56

Kissat-H 381.46
± 20.10

521.42
± 25.25

0.059
± 0.001

276.55
± 14.79

240.33
± 14.70

Kissat-E 595.47
± 30.67

583.55
± 27.69

0.062
± 0.001

278.85
± 14.92

243.86
± 13.05

Cryptominisat 3349.52
± 115.28

3212.63
± 114.04

0.076
± 0.001

745.24
± 54.18

227.27
± 9.59

Cryptominisat-H 3027.48
± 88.41

2894.72
± 116.02

0.026
± 0.001

615.73
± 50.08

187.46
± 10.21

Cryptominisat-E 3003.01
± 88.62

2845.21
± 115.53

0.024
± 0.001

553.11
± 40.25

185.29
± 9.83

MapleSAT 440.02
± 18.77

381.22
± 15.94

1.435
± 0.013

111.52
± 14.41

75.92
± 13.07

MapleSAT-H 378.14
± 15.73

304.67
± 12.97

0.425
± 0.007

87.47
± 6.91

60.42
± 5.42

MapleSAT-E 371.78
± 14.48

338.17
± 14.89

0.276
± 0.005

94.72
± 8.31

69.87
± 6.86

Overall, our results suggest that internal ML-based heuristic modules are the more promising
approach for improving solvers’ performance on complex cryptographic instances. The small
performance gap between ML-enhanced and traditional solvers on simpler instances under-
scores the need to balance ML benefits with its computational overhead. Adaptive methods that
activate ML components based on instance features may further enhance efficiency.

5.4 Evaluation of Hyperparameter Optimization

We conducted experiments to evaluate hyperparameter optimization strategies on cryptographic SAT
instances, focusing on three widely used SAT solvers and two advanced optimization methods across
diverse cryptographic algorithms.

SAT Solvers and Parameters. We employ three representative SAT solvers: Kissat [43], a state-
of-the-art CDCL solver; CryptoMiniSat [44], specifically designed for cryptographic problems; and
MapleSAT [36], known for its efficient branching heuristics. For each solver, we identified and
optimized the most time-critical hyperparameters that directly influence solving efficiency.

Optimization Methods We implement two distinct approaches to optimize the hyperparameters:
HEBO [45], a Heteroscedastic Evolutionary Bayesian Optimization method for black-box optimiza-
tion, and EasyNAS [46], an evolutionary algorithm-based optimization approach. These methods
were selected for their proven effectiveness in complex parameter spaces.

Cryptographic Datasets The evaluation framework includes five distinct cryptographic problems:
the Simon block cipher with 12 rounds and 64-bit block size Simon-12-32-64 [39], Cipher-12, the
Message Digest algorithm MD4 [40], the Secure Hash Algorithm SHA-256 [41], and the Secure
Hash Algorithm SHA-1 [42]. Each cryptographic algorithm dataset comprises 210 instances, with
10 instances allocated for the training set and 200 instances for the testing set. The hyperparameter
optimization was conducted using the training set, while performance evaluation was performed on
the separate test set to ensure unbiased assessment.

Table 3 presents solver performance across cryptographic datasets under different hyperparameter
optimization strategies. The results show that ML-based hyperparameter optimization, partic-
ularly HEBO, can significantly improve solver efficiency. For instance, Kissat achieved up to
62.5% reduction in solving time on the Cipher-12 dataset, and MapleSAT showed consistent gains
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Table 4: Performance comparison of the best methods under different input representations on Simon
cryptographic SAT instances. HO means the hyperparameter optimization. MVC is an external ML
method in WDSat that guides variable enumeration by solving a Minimal Vertex Cover problem.

Input Format Simon-10-32-64 Simon-11-32-64 Simon-12-32-64
Time (s) Method Time (s) Method Time (s) Method

CNF Representation 11.28 Kissat 41.57 MapleSat+BMM 371.78 MapleSat+HO-EasyNAS
ANF Representation 0.08 WDSat 23.60 WDSat+MVC 364.96 WDSat+MVC
Plaintext-Ciphertext bitstring 19.94 BASIN 37.30 BASIN 29.67 BASIN(ours)

across all datasets, with an 88.0% reduction on MD4. Cryptominisat also benefited substantially,
with HEBO and EasyNAS each outperforming the other on specific datasets. While HEBO generally
yielded better results, EasyNAS proved more effective in some block cipher settings, suggesting that
the effectiveness of optimization strategies can be solver- and problem-specific. We also observed
that block ciphers (e.g., Simon, Cipher-12) and hash functions (e.g., SHA-1, SHA-256) exhibited
distinct optimization patterns, with MD4 showing unique behavior due to its structural differences.

5.5 Evaluation of Input Representations

To investigate the impact of input representations on solver performance, we conducted comparative
experiments on Simon block cipher datasets of varying scales, using CNF, ANF, and plaintext-
ciphertext bitstrings as input formats. For the CNF representation, we evaluated all aforementioned
CNF-based solvers. For the ANF representation, we assessed WDSat [47], an ANF-based solver
designed for algebraic normal form instances. For the plaintext-ciphertext bitstring representation,
we evaluated our bitwise solver, BASIN, which performs key recovery through guided bitwise search.
Table 4 summarizes the comparison of the best-performing methods under each representation. More
comprehensive results for all ML-based solvers are provided in Appendix A.6.

As shown in Table 4, the bitwise solver BASIN achieves the best performance on higher-round
instances, significantly outperforming CNF-based and ANF-based methods. CNF solvers like Kissat
perform well on small instances but scale poorly. ANF better preserves algebraic structure, allowing
WDSat to outperform CNF methods on early rounds, though it struggles with deeper ones. In contrast,
the plaintext-ciphertext format enables BASIN to maintain efficiency on complex instances through
bit-level reasoning and neural-guided initialization. These findings highlight the strong influence
of input representation on solver performance, suggesting that direct input representations, such
as plaintext-ciphertext bitstrings, can more effectively capture the underlying cryptographic
structures in complex cases.

6 Conclusion

In this paper, we introduced SATCryptoBench, a benchmark for evaluating ML-assisted SAT solvers
on cryptographic problems. Our analysis shows that input representation significantly impacts solver
performance. ANF formats allow neural networks to better capture structural properties compared
to CNF. Solvers leveraging domain-specific inputs, such as bit-level encodings from plaintext-
ciphertext pairs, achieve superior efficiency on deep-round encryption tasks, highlighting the benefits
of customized input formats. Besides, internal ML-based heuristic modules also outperform external
guidance approaches in handling complex instances. Furthermore, hyperparameter tuning enhances
traditional CDCL solvers by better aligning them with cryptographic instance characteristics.

Nonetheless, challenges remain. ML models often struggle to generalize across algorithms and
instance scales, reflecting limitations in modeling cryptographic complexity. Besides, ML integration
incurs overhead that may outweigh its benefits on simpler tasks. These findings underscore the
need for specialized models for cryptographic structures. We hope SATCryptoBench will serve as a
standardized resource to advance research in ML-based SAT solving and cryptanalysis.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarize the contributions of this paper in both the abstract and the
concluding paragraph of the introduction. Each claimed contribution is supported by explicit
results presented within the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the dataset settings in Section 5.1 and introduced the setting
of each experiment subsection in Section 5. Besides, the detailed experimental settings are
in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the code and data with sufficient instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the dataset settings in Section 5.1 and introduced the setting
of each experiment subsection in Section 5. Besides, the detailed experimental settings are
in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We keep the same setting as the previous works.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the detailed experimental settings in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential impacts of the paper in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the assets used in the paper in Section 4 and Section 5.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided the dataset settings in Section 5.1 and the detailed experi-
mental settings are in Appendix A. Additionally, we provide detailed documentation on the
representation of cryptographic SAT instances for the new assets in Appendix B.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiment Setting

In this section, we provide a detailed description of our experimental methodology and settings.

A.1 Computational Resources

All experiments were conducted on a high-performance computing server equipped with Ascend
910B AI processors. Training and inference tasks for neural network components were executed
entirely on Ascend 910B GPUs using the PyTorch backend compiled for the Ascend platform. SAT
solving components ran on CPU with 192 physical cores in 64-bit aarch64 mode and NUMA-aware
scheduling. Each task was allocated a dedicated Ascend device and CPU NUMA node to avoid
inter-device contention.

A.2 Datasets

For all cryptographic algorithms, we generated 1000 pairs for the training set, 200 pairs for the
validation set, and 200 pairs for the test set. For Standalone Distinguisher evaluation, we generated
datasets containing both ANF and CNF representations of the Simon family with 3 and 6 rounds,
using block sizes of 8, 16, and 32 bits. For Heuristic Enhancement methods, we generated datasets
for the Simon family with 10-12 rounds using a block size of 32 bits. Additionally, we generated
datasets for Cipher-8 through Cipher-12, as well as MD4, SHA1, and SHA256. For Hyperparameter
Optimization experiments, we conducted tests on Simon-12-32-64, Cipher-12, MD4, SHA1, and
SHA256 datasets. To quantify the complexity of different cryptographic instances, we report the
average number of variables and clauses for each dataset in Table 5.

Table 5: Dataset size statistics used in our experiments. We report the average number of variables
(i.e., literals) and clauses.

Dataset Average #Variables Average #Clauses
Simon-3-8-16-CNF 120 392
Simon-3-8-16-ANF 16 24
Simon-3-16-32-CNF 240 784
Simon-3-16-32-ANF 32 48
Simon-3-32-64-CNF 360 1176
Simon-3-32-64-ANF 48 72
Simon-6-8-16-CNF 216 752
Simon-6-8-16-ANF 40 48
Simon-6-16-32-CNF 432 1504
Simon-6-16-32-ANF 80 96
Simon-6-32-64-CNF 648 2256
Simon-6-32-64-ANF 120 144
Cipher-8-CNF 608 4992
Cipher-9-CNF 672 5600
Cipher-10-CNF 736 6208
Cipher-11-CNF 800 6816
Cipher-12-CNF 864 7424
MD4-CNF 3504 37512
SHA-1-CNF 3968 119208
SHA-256-CNF 9070 151508
Simon-10-32-64-CNF 1376 4928
Simon-11-32-64-CNF 1504 5408
Simon-12-32-64-CNF 1632 5888
Simon-10-32-64-ANF 288 320
Simon-11-32-64-ANF 320 352
Simon-12-32-64-ANF 352 384

A.3 Standalone Distinguisher

For all neural networks, we conducted training on the training set and evaluated the prediction
accuracy on the test set. To ensure robust evaluation, we maintained strict separation between training
and test sets, with no overlapping instances.
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A.4 Heuristic Enhancement

We categorized Heuristic Enhancement methods into two classes based on their learning module inte-
gration approach. The first class comprises solvers with internal learnable modules that dynamically
adjust solving strategies during execution. For these methods, we conducted evaluations directly on
the test set (using only SAT instances) and measured the average solving time. We set a timeout
threshold of 5000 seconds, with instances exceeding this limit recorded as 5000 seconds in our
statistics. The second class consists of solvers requiring pre-trained external neural network modules.
For these methods, we first trained the neural networks on the training set and then evaluated their
performance on the test set (using only SAT instances), measuring the average solving time with the
same 5000-second timeout threshold.

A.5 Hyperparameter Optimization

In our hyperparameter optimization experiments, we employed optimization methods to search for
optimal parameters using the training set and evaluated the performance on the test set. For the Kissat
solver, we optimized three hyperparameters: restartint, reduceint, and decay. For Cryptominisat,
we focused on optimizing gluehist, rstfirst, and confbtwsimp. For MapleSat, we optimized rnic,
phase-saving, and rnd-freq. Table 6 provides the specific parameter settings corresponding to the
optimal combinations summarized in Table 3.

A.6 Input Representations

To assess the impact of different input representations on solver performance, we generated datasets
for CNF, ANF, and plaintext-ciphertext formats, and conducted comprehensive comparative ex-
periments, as detailed in Table 7. The results show significant differences in solver performance
depending on the input format. For example, plaintext-ciphertext input for our proposed BASIN
solver outperforms both CNF- and ANF-based solvers on high-round instances. These findings
underscore the importance of input representation in cryptographic SAT problem-solving.
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Table 6: The detailed hyperparameter settings in the experiments of the Hyperparameter Optimization.
For kissat, the optimized parameters are (restartint,reduceint,decay). For cryptominisat, the optimized
parameters are (gluehist,rstfirst,confbtwsimp). For maplesat, the optimized parameters are (rnic,phase-
saving,rnd-freq). -H and -E denote HEBO and EasyNAS optimization methods respectively.

Solver Simon-12-32-64 Cipher-12 MD4 SHA-256 SHA-1
Kissat (1,1000,50) (1,1000,50) (1,1000,50) (1,1000,50) (1,1000,50)
Kissat-H (36,3258,1) (42,3259,1) (5767,98402,171) (2,717,43) (1,1099,1)
Kissat-E (34,4258,2) (73,5693,1) (1790,20390,83) (1,627,36) (39,1944,6)

Cryptominisat (50,100,40000) (50,100,40000) (50,100,40000) (50,100,40000) (50,100,40000)
Cryptominisat-H (216,1633,99991) (60,188,39988) (232,1199,30976) (437,374,48867) (291,615,47226)
Cryptominisat-E (216,1624,98636) (73,288,39990) (390,1920,21406) (7,610,13156) (293,639,47268)

MapleSAT (1.5,0,0.02) (1.5,0,0.02) (1.5,0,0.02) (1.5,0,0.02) (1.5,0,0.02)
MapleSAT-H (1359.74,1,0.001) (2120.49,2,0) (1917.07,0,0.001) (410.39,0,0.009) (2640.45,0,0.003)
MapleSAT-E (1346.0,1,0.002) (1963.8,0,0.001) (2660.1,2,0.027) (459.3,0,0.010) (2558.2,0,0.005)

Table 7: Detailed performance comparison of the best methods under different input representations
on Simon cryptographic SAT instances. HO means the hyperparameter optimization. the default
baseline solvers using their publicly available official implementations. MVC is an external ML
method in WDSat that guides variable enumeration by solving a Minimal Vertex Cover problem.

Input Format Solver Method Dataset Solving Time(s)

CNF
Representation

Kissat

base Simon-10-32-64 11.28
base Simon-11-32-64 73.24
base Simon-12-32-64 818.92

NeuroBack Simon-10-32-64 433.77
NeuroBack Simon-11-32-64 1728.98
NeuroBack Simon-12-32-64 3783.78
HO-HEBO Simon-12-32-64 381.46

HO-EasyNAS Simon-12-32-64 595.47

MapleSat

base Simon-10-32-64 26.46
base Simon-11-32-64 73.85
base Simon-12-32-64 440.02

BMM Simon-10-32-64 14.83
BMM Simon-11-32-64 41.57
BMM Simon-12-32-64 460.57
Crypto Simon-10-32-64 15.98
Crypto Simon-11-32-64 58.34
Crypto Simon-12-32-64 717.31

HO-HEBO Simon-12-32-64 378.14
HO-EasyNAS Simon-12-32-64 371.78

MaplePainless
base Simon-10-32-64 22.00
base Simon-11-32-64 77.10
base Simon-12-32-64 445.31

Glucose

base Simon-10-32-64 14.52
base Simon-11-32-64 79.15
base Simon-12-32-64 1434.34

BMM Simon-10-32-64 27.33
BMM Simon-11-32-64 90.46
BMM Simon-12-32-64 1388.51
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CNF Representation

MapleCOMSPS

base Simon-10-32-64 28.77
base Simon-11-32-64 125.78
base Simon-12-32-64 1467.97

BMM Simon-10-32-64 32.33
BMM Simon-11-32-64 110.60
BMM Simon-12-32-64 1248.37

MapleLCMDist

base Simon-10-32-64 24.41
base Simon-11-32-64 69.08
base Simon-12-32-64 389.66

BMM Simon-10-32-64 24.10
BMM Simon-11-32-64 63.65
BMM Simon-12-32-64 382.07

Cadical

base Simon-10-32-64 16.07
base Simon-11-32-64 173.71
base Simon-12-32-64 1874.66

Neuro Cadical Simon-10-32-64 20.68
Neuro Cadical Simon-11-32-64 173.05
Neuro Cadical Simon-12-32-64 1910.22

Minisat

base Simon-10-32-64 15.62
base Simon-11-32-64 60.73
base Simon-12-32-64 868.71

Graph Q Sat Simon-10-32-64 70.77
Graph Q Sat Simon-11-32-64 183.71
Graph Q Sat Simon-12-32-64 1737.40

Cryptominisat
base Simon-12-32-64 3349.52

HO-HEBO Simon-12-32-64 3027.48
HO-EasyNAS Simon-12-32-64 3003.01

ANF Representation WDSat

base Simon-10-32-64 0.08
base Simon-11-32-64 23.70
base Simon-12-32-64 481.54

MVC Simon-10-32-64 0.08
MVC Simon-11-32-64 23.6
MVC Simon-12-32-64 364.96

Plaintext-Ciphertext
bitstring BASIN(ours)

base Simon-10-32-64 19.94
base Simon-11-32-64 37.30
base Simon-12-32-64 29.67

B Representation of Cryptographic SAT Instances

In this section, we present how cryptographic problems are modeled into datasets using CNF and
ANF representations. Appendix B.1 describes how common logical operations in cryptographic
algorithms are encoded as CNF and ANF formulas. Appendix B.2 further illustrates, taking the
Simon cipher as an example, how to construct SAT datasets in both CNF and ANF formats for
cryptographic problems.

B.1 Representation of Common Cryptographic Operations

ANF Representation of Common Cryptographic Operations. The following demonstrates the
conversion of five fundamental cryptographic operations into ANF:

• Circular Left Shift (≪): A circular left shift is represented by the equation: Y = X ≪ b, where
the result of shifting X = xk−1xk−2...x0 b positions to the left is: Y = yk−1yk−2...y0 with the
following relations:

yi + x(i+b) mod k = 0, for i = 0, 1, ..., k − 1 (6)
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• Circular Right Shift (≫): A circular right shift is represented by: Y = X ≫ b, where the result
of shifting X = xk−1xk−2...x0 b to the right is: Y = yk−1yk−2...y0 with the following relations:

yi + x(i−b+k) mod k = 0, for i = 0, 1, ..., k − 1 (7)

• Modular Addition with modulo 2k (⊞): The Modular addition operation between X =
xk−1xk−2...x0 and Y = yk−1yk−2...y0 is represented by: Z = X ⊞ Y . The addition is per-
formed modulo 2 and the relations are:

z0 + x0 + y0 = 0, c0 + x0y0 = 0

zi + xi + yi + ci−1 = 0, for i = 0, 1, ..., k − 1

ci + xici−1 + yici−1 + i = 0, for i = 1, ..., k − 2

(8)

• Bitwise XOR (⊕): The bitwise XOR operation between X = xk−1xk−2...x0 and Y =
yk−1yk−2...y0 is represented by: Z = X ⊕ Y where the result Z = zk−1zk−2...z0 with the
relations:

zi + xi + yi = 0, for i = 0, 1, ..., k − 1 (9)

• Bitwise AND (·): The bitwise AND operation between X = xk−1xk−2...x0 and Y =
yk−1yk−2...y0 is represented by: Z = X · Y where the result Z = zk−1zk−2...z0 with the
relations:

zi + xiyi = 0, for i = 0, 1, ..., k − 1 (10)

CNF Representation of Common Cryptographic Operations. The derivation of CNF expressions
for the fundamental cryptographic operations above follows, maintaining consistency with the
previously defined notation:

• Circular Left Shift (≪): The CNF representation of the circular left shift operation is:

(yi ∨ ¬x(i+b) mod k) ∧ (¬yi ∨ x(i+b) mod k)

, for i = 0, 1, ..., k − 1
(11)

• Circular Right Shift (≫): The CNF representation of the circular right shift operation is:

(yi ∨ ¬x(i−b+k) mod k) ∧ (¬yi ∨ x(i−b+k) mod k)

, for i = 0, 1, ..., k − 1
(12)

• Modular Addition with modulo 2k (⊞):
• Bitwise XOR (⊕): The CNF representation of the bitwise XOR operation is:

(¬zi ∨ yi ∨ xi) ∧ (zi ∨ ¬yi ∨ xi) ∧ (zi ∨ yi ∨ ¬xi)∧
(¬zi ∨ ¬yi ∨ ¬xi), for i = 0, 1, ..., k − 1

(13)

• Bitwise AND (·): The CNF representation of the bitwise AND operation is:

(zi ∨ ¬yi ∨ ¬xi) ∧ (¬zi ∨ yi) ∧ (¬zi ∨ xi)

, for i = 0, 1, ..., k − 1
(14)

B.2 ANF and CNF Formula of Simon

In this section, we showcase the data generation process of both CNF and ANF formula using the
Simon cipher as a concrete example. We begin with a concise description of the Simon encryption
algorithm, followed by a detailed exploration of its ANF & CNF generation logic. Then, we
demonstrate the conversion of the Simon encryption algorithm to SAT representations in both ANF
and CNF forms.

Simon Cipher Overview: Simon [39] is a lightweight block cipher family utilizing a Feistel structure
with variable block sizes, key sizes, and round numbers. The encryption process operates on two
state halves (Li, Ri), following these round transformations:

Li+1 = ((Li ≪ 1) · (Li ≪ 8))⊕ (Li ≪ 2)⊕Ri ⊕Kr

Ri+1 = Li
(15)
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where Kr represents the round key, ≪ denotes a left circular shift, · represents the bitwise AND
operation, and ⊕ denotes the bitwise XOR operation.

Notation: In the following explorations on ANF and CNF representations, we consider Simon
configurations with a 2n–bit block size implementing r encryption rounds and using an n-bit seed
key. Our analysis constructs symbolic equations from known plaintext-ciphertext pairs, where the
encryption key remains the unknown variable to be determined.

The core of Simon’s encryption algorithm lies in representing its round structure in ANF and CNF
forms. As shown in Equation 15, Simon’s round function consists of only three basic operations: circu-
lar left shift, bitwise XOR, and bitwise AND. Let Li = x0, x1, . . . , xn−1 and Ri = y0, y1, . . . , yn−1

denote the two halves of the round function’s input, where xi, yi ∈ {0, 1}. The round function
produces output (Li+1, Ri+1) with Li+1 = u0, u1, . . . , un−1 and Ri+1 = v0, v1, . . . , vn−1, where
ui, vi ∈ {0, 1}.
ANF formula for Simon’s round function: We can directly transform the Simon round function
into an ANF-based SAT instance following the conversion method outlined in Appendix B.1:

ui + xi+1 mod n · xi+8 mod n + xi+2 mod n + yi + ki = 0

vi + xi = 0
(16)

CNF formula for Simon’s round function: Unlike the ANF representation, the CNF representation
of Simon requires introducing intermediate variables for simplification. Let Ai

1 = (Li ≪ 1) ·(Li ≪

8), Ai
2 = Ai

1 ⊕ (Li ≪ 2), Ai
3 = Ai

2 ⊕Ri, where Ai
j = aj0, a

j
1, . . . , a

j
n−1. Then, the round function

of the Simon encryption algorithm can be transformed into the following set of CNF clauses:

(¬a1m ∨ xm+1 mod n) ∧ (¬a1m ∨ xm+8 mod n)∧
(a1m ∨ ¬xm+8 mod n ∨ ¬xm+1 mod n)

, for m = 0, 1, ..., n− 1

(17)

(¬a2m ∨ a1m ∨ xm+2 mod n) ∧ (a2m ∨ ¬a1m ∨ xm+2 mod n)∧
(a2m ∨ a1m ∨ ¬xm+2 mod n) ∧ (¬a2m ∨ ¬a1m ∨ ¬xm+2 mod n)

, for m = 0, 1, ..., n− 1

(18)

(¬a3m ∨ a2m ∨ ym) ∧ (a3m ∨ ¬a2m ∨ ym)∧
(a3m ∨ a2m ∨ ¬ym) ∧ (¬a3m ∨ ¬a2m ∨ ¬ym)

, for m = 0, 1, ..., n− 1

(19)

(¬um ∨ a3m ∨ km) ∧ (um ∨ ¬a3m ∨ km)∧
(um ∨ a3m ∨ ¬km) ∧ (¬um ∨ ¬a3m ∨ ¬km)

, for m = 0, 1, ..., n− 1

(20)

(vm ∨ ¬xm) ∧ (¬vm ∨ xm), , for m = 0, 1, ..., n− 1 (21)

C XOR operation bottleneck in CNF

Cryptographic algorithms often involve operations like XOR and modular addition with modulo 28,
making XOR operations common in SAT-based cryptanalysis. However, due to the differences in
logical properties between XOR and CNF, representing XOR operations in the Conjunctive Normal
Form (CNF) presents a significant bottleneck and makes the conversion computationally expensive.

CNF consists of a conjunction (AND) of clauses, where each clause is a disjunction (OR) of positive
and negative variables, called literals. The flexibility of the "AND" and "OR" constraints in CNF
enables efficient SAT-solving applications. A direct representation of an XOR clause involving k
literals, such as x1 ⊕ x2 ⊕ · · · ⊕ xk, typically requires a large number of OR clauses, as Fig 3(a)
shows. Without introducing intermediate variables, this conversion results in an exponential blow-up
in the number of required OR clauses, specifically on the order of 2k−1 − 1 OR clauses for a clause
involving k literals. This rapid increase in complexity makes direct XOR-to-CNF transformation
impractical for large k.
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XOR clause

𝑥1⊕𝑥2⊕𝑥3…⊕ 𝑥𝑘

𝑥1 ⊕𝑥2 𝑥3 ⊕𝑥4…⊕𝑥𝑘

𝑥1 ∧ 𝑥2 ¬𝑥1 ∧ ¬𝑥2 𝑥3⊕𝑥4…⊕𝑥𝑘

(𝑥1∧ 𝑥2) ∨ (¬𝑥1 ∧ ¬𝑥2) ⊕ 𝑥3 𝑥4 ⊕⋯⊕𝑥𝑘

𝑥1 ∧ 𝑥2 ∧ 𝑥3 ¬𝑥1 ∧ ¬𝑥2 ∧ 𝑥3

𝑥1 ∧ 𝑥2 ∧ ¬𝑥3¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3

𝑥4 ⊕⋯⊕𝑥𝑘

𝑥1 ∧ 𝑥2 ∧ …∧ 𝑥𝑘 ¬𝑥1 ∧ ¬𝑥2 ∧⋯∧ ¬𝑥𝑘

¬𝑥1 ∧ ¬𝑥2 ∧ ⋯∧ 𝑥𝑘𝑥1 ∧ 𝑥2 ∧ ⋯∧ ¬𝑥𝑘

𝑥1⊕𝑥2𝑦1 𝑥3⊕𝑥4…⊕𝑥𝑘

…

𝑥1 ∧ ¬𝑥2 ∧ …∧ 𝑥𝑘 ¬𝑥1 ∧ 𝑥2 ∧ ⋯∧ ¬𝑥𝑘

𝑥1 ∧ ¬𝑥2 ∧⋯∧ ¬𝑥𝑘 ¬𝑥1 ∧ ¬𝑥2 ∧ ⋯∧ 𝑥𝑘…

=1

=0

¬ ¬𝑥1 ∨ 𝑥2 ∨ …∨ ¬𝑥𝑘

¬𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑘
…

2𝑘−1 OR
clauses

𝑦1 ⊕𝑥3⊕𝑥4…⊕𝑥𝑘
¬𝑥1 ∨ 𝑥2 ∨ 𝑦1

𝑥1 ∨ ¬𝑥2 ∨ 𝑦1

𝑥1 ∨ 𝑥2 ∨ ¬𝑦1

¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑦1

𝑦1 ⊕𝑥3𝑦2 𝑥4⊕⋯⊕𝑥𝑘𝑥1, 𝑥2, 𝑦1

¬𝑥3 ∨ 𝑦1 ∨ 𝑦2

𝑥3 ∨ ¬𝑦1 ∨ 𝑦2

𝑥3 ∨ 𝑦1 ∨ ¬𝑦2

¬𝑥3 ∨ ¬𝑦1 ∨ ¬𝑦2

𝑦2 ⊕𝑥4⊕⋯⊕𝑥𝑘

𝑥4⊕⋯⊕𝑥𝑘𝑥3, 𝑦1, 𝑦2𝑥1, 𝑥2, 𝑦1

𝑥3, 𝑦1, 𝑦2 𝑥𝑘−1, 𝑦𝑘−3, 𝑦𝑘−2

𝑥𝑘 , 𝑥𝑘−2, 𝑦𝑘−1𝑥1, 𝑥2, 𝑦1
…

K-1 variables    4(k-1) 𝑂𝑅 clauses

(a) (b)

Figure 3: Two representations of an XOR clause involving k literals. The circles represent interme-
diate variables, rectangles represent clauses. (a) Direct representation of the XOR clause, where
different colors indicate that the clauses originate from different transformation steps. For an XOR
clause involving k literals, there exist a total of 2k different values of (x1, . . . , xk). When considering
the equation x1 ⊕ x2 ⊕ · · · ⊕ xk = 1, there are 2k−1 possible solutions. By finding all solutions to
the equation x1 ⊕ x2 ⊕ · · · ⊕ xk = 0 and negating them, we obtain a CNF consisting of 2k−1 OR
clauses. (b) Introduce intermediate variables, where variables and clauses of the same color come
from the same XOR clause. The additional variables (denoted y1, y2, . . . , yk−1) are used to transform
the XOR clause into 4(k − 1) OR clauses, involving k − 1 variables.
Another representation is to introduce intermediate variables that decompose the XOR operation into
simpler ternary XOR clauses as Fig 3(b) shows. By defining new variables such as y1 = x1 ⊕ x2,
y2 = y1 ⊕ x3, and so on, we reduce the XOR operation to a series of ternary XOR clauses. Each
ternary XOR clause typically requires 4 OR clauses, resulting in a much smaller number of OR
clauses—approximately 4(k − 1) compared to the direct conversion. However, this transformation
introduces numerous intermediate variables, still making the number of clauses and literals in SAT
samples under the cryptographic problem in CNF difficult to solve.

D Limitations

The primary limitation of this paper is its focus on problem formulation and empirical analysis,
without proposing concrete solutions. While the proposed benchmark and experiments reveal several
important insights—such as the superiority of ANF representations and the sensitivity of solver
performance to input formats—the study does not introduce or validate new solver architectures or
optimization methods that can directly overcome the current limitations of ML-enhanced solvers,
including poor generalization across algorithms and instance sizes, and the potential computational
overhead outweighing benefits on simpler problems. As such, this work is intended to serve as
a foundation to stimulate and guide future research, rather than providing complete solutions to
the identified challenges. Addressing these challenges will require furture efforts to develop more
adaptive, lightweight, and generalizable ML techniques, alongside deeper exploration of input
representation learning.

E Impact Statements

The introduction of SAT4CryptoBench offers significant positive societal impacts by standardizing
the evaluation of machine learning-based cryptanalysis tools, enhancing the development of robust
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cryptographic methods that can proactively identify vulnerabilities. This contributes to stronger
security protocols, safeguarding critical infrastructure and personal privacy. However, the research
also poses risks, as advanced cryptanalytic techniques could be misused by malicious actors, under-
mining cryptographic protections. Additionally, the computational complexity of these methods may
exacerbate disparities in cybersecurity capabilities, leaving less-resourced entities more vulnerable to
sophisticated attacks. Thus, while promoting security advancements, the tool also requires cautious
application to mitigate potential misuse.
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