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Abstract

Lower limb amputations and neuromuscular impairments severely restrict mobility, necessi-
tating advancements beyond conventional prosthetics. While motorized bionic limbs show
promise, their effectiveness depends on replicating the dynamic coordination of human move-
ment across diverse environments. In this paper, we introduce a model for human behavior in
the context of bionic prosthesis control. Our approach leverages motion capture and wearable
sensor data to learn the synergistic coupling of the lower limbs during locomotion, enabling
the prediction of the kinematic behavior of a missing limb during tasks such as walking,
climbing inclines, and stairs. We propose a multitasking, continually adaptive model that
anticipates and refines movements over time. At the core of our method is a technique called
"multitask prospective rehearsal," that anticipates and synthesizes future movements based
on the previous prediction and employs a corrective mechanism for subsequent predictions.
Our evolving architecture merges lightweight, task-specific modules on a shared backbone,
ensuring both specificity and scalability. We validate our model through experiments on
real-world human gait datasets, including transtibial amputees, across a wide range of
locomotion tasks. Results demonstrate that our approach consistently outperforms baseline
models, particularly in scenarios with distributional shifts, adversarial perturbations, and
noise.
Keywords: Human Behavior Modeling, Bionics, Multitask Rehearsal, Human-machine
Interaction

1 Introduction

Lower limb amputation and neuromuscular disorders detrimentally affect natural locomotion, compromising
individuals’ quality of life (Windrich et al., 2016). Those afflicted often depend on assistive technologies
like prosthetics or orthoses to regain daily mobility (Windrich et al., 2016). However, conventional passive
prosthetics often fall short in replicating natural gait during diverse activities, from basic transitions like
standing from a seated position to more dynamic actions like running or navigating slopes (Windrich et al.,
2016). The advent of powered prosthetics, equipped with integrated motors, promises a more naturalistic
gait. Nonetheless, this advancement requires a model capable of effectively approximating the complexities of
human gait synergy to accurately estimate the necessary motor commands. While finite-state machines are
adequate for rudimentary scenarios (Lawson, 2014; Chen et al., 2015), their construction becomes infeasible for
finer gait phase resolution or multiple locomotion tasks (Lawson et al., 2013). A promising alternative involves
leveraging models trained on able-bodied human demonstrations to intuitively infer amputee limb motion.
This methodology not only replicates gait’s inherent fluidity but also facilitates seamless transitions across
varying gaits, eliminating the need for rigid rules or heuristics. The learned gait models could be personalized
by training on a wide variety of human demonstrations, such that references with similar anthropomorphic
features as that of the physically impaired subject are included.

Recent studies attest to the efficacy of learning-based models in gait and prosthetic behavior estimation
(Dhir et al., 2018; Zabre-Gonzalez et al., 2021; Fang et al., 2020). However, most of these works have focused
on either a single locomotion task or jointly training multiple modes in the context of multi-locomotion
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Figure 1: Overview of the multitask prospective rehearsal-based training: In the pretraining phase, the
multi gait predictor model, f , is trained to forecast the desired joint profile yi from the history of sensor
states {Xi−T ...Xi}, while the prospective model g aims to predict the subsequent sensor state Xi+1 from Xi

and the target joint profiles yi. For prospective rehearsal, the multi gait model predictions ŷk are fed along
with the current sensor state Xk to the prospective model to project the next sensor state X̂k+1. Multi gait
predictor, f is then refined with this projected state, X̂k+1, k = 1...|Xval| − 1 against the actual future output
yk+1 ∈ Yval, to compensate the effect of its prediction errors.

scenarios. Furthermore, prior research has approached multitask learning from human demonstration as a
standard supervised learning task, which assumes independence across time. This oversight can cascade
predictive errors, deviating significantly from the original training distribution (Kumar et al., 2022; Ross &
Bagnell, 2010). Some approaches (Ross et al., 2011; Judah et al., 2014; Kelly et al., 2019) have addressed the
issue of state distribution shift by using a trained model to collect additional data and label them as the
model encounters new states, refining the model iteratively. However, these studies require having access to a
simulator, environment, or deployment of models in the real world for data collection to estimate the expert
action for the induced state. This may not be feasible or highly costly for multiple safety-critical scenarios,
e.g., human-centered robotics that might entail risks of imbalance and fall. Moreover, these approaches have
largely focused on single-task settings rather than continual multitask adaptation. The multifaceted dynamics
of human gait, which can shift based on varying terrains, speeds, fatigue levels, or specific locomotion tasks,
underscore the necessity for a model that fluidly adapts to these evolving conditions.

To achieve this objective, we present a multitask, continually adaptive gait synergy approximation model
tailored for various locomotion tasks, capable of adapting to evolving gait patterns and refining itself by
integrating the impact of prediction errors. Central to our method is what we call the “multitask prospective
rehearsal" (Figure 1) that prepares the model to anticipate and handle potential trajectories that may arise
from its predictions, creating a seamless connection between continual adaptation and the integration of
prediction errors for model refinement. Unlike conventional models that often rely on retrospective analysis
of movement, our method is designed to prospectively imagine and synthesize potential future locomotion
patterns. By synthesizing future states, the model is, in essence, creating its own new ’unseen’ data to
practice on, which could lead to better generalization when encountering actual new data. The model refines
its parameters incrementally as it updates itself with this enhanced data, negating the need for a simulator
or new training data.

We conduct a wide range of experiments in continual and joint learning settings with different model
architectures and backbones on three real-world gait datasets, including our own patient (transtibial amputee)
dataset. We establish that our model outperforms many baseline models with multiple benchmarks. Our
study is the first to approach multi-gait adaptation in bionic prostheses as an error-aware multitask continual
adaptation problem.

2 Related Work
Prosthetic behavior models. Conventional prosthetic behavior models primarily rely on state machines
that deterministically generate control commands based on finite states within a gait cycle. These models
segment the continuous gait cycle into discrete states (Lawson, 2014; Chen et al., 2015; Culver et al., 2023),
which fails to accurately replicate the smooth and continuous movement patterns typical of human walking.
To better model the fluidity of the gait cycle, learning-based regression methods (Dhir et al., 2018; Fang
et al., 2020; Zabre-Gonzalez et al., 2021; Dey & Schilling, 2022) have been utilized that directly predict the
joint motion commands from the sensor states of residual body movement. However, these models generally
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adopt a straightforward reactive strategy, learning the correlation between the residual states of the body and
the limb’s movements. Hence, these models often oversimplify the complex nature of human motor abilities,
which are inherently adaptable to various tasks, diverse environments, and evolving gait patterns.

Multitask adaptive learning. A principal challenge in multitask adaptive learning is the phenomenon
of catastrophic forgetting (McCloskey & Cohen, 1989; Robins, 1995; French, 1999), where newly acquired
knowledge can cause the loss of previously learned information. To combat this, continual learning strategies,
such as regularization-based methods, architectural strategies, and experience replay (ER)(Kirkpatrick et al.,
2017; Zenke et al., 2017; Smith et al., 2023) have been developed. Regularization-based methods like Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Synaptic Intelligence (SI) (Zenke et al., 2017)
introduce regularization terms to guide the model towards a parameter space optimized for low error across
both previous and new tasks. Architectural methods such as Progressive Neural Networks (PNNs) (Rusu
et al., 2016) expand the model’s structure by introducing task-specific parameters to sustain performance
across tasks. Rehearsal or replay methods, including Experience Replay (ER) (Robins, 1995; Luo & Li, 2020;
Li et al., 2023) and Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017), maintain a sample
of previous tasks to be revisited during new task training, reinforcing the model’s exposure to the old data
distribution. Rehearsal approaches have empirically proved to be the most effective among several approaches
developed (Merlin et al., 2022). However, these techniques have a retrospective nature and are meant for
treating data samples independently. In the context of bionic prosthetics, where predictive models interact
with a dynamic environment, anticipating the impact of predictions on subsequent data inputs is critical.

Model-based reinforcement learning (RL). Model-based RL focuses on developing a representation of
the environment by gathering data from interactions driven by a specific policy. This constructed model
of the environment facilitates a level of planning, enabling the estimation of potential outcomes for future
states (Mnih et al., 2013; Silver et al., 2016; Racanière et al., 2017; Nagabandi et al., 2018; Chua et al., 2018).
Typically, these methods rely on a reward signal and online interactions with the environment. With the
advent of offline reinforcement (Zhou et al., 2021; Yu et al., 2020) and model-based imitation learning (IL)
(Englert et al., 2013; Kidambi et al., 2021), access to the reward signals or online interactions can be bypassed
(Hu et al., 2022). Both model-based RL and IL, by internalizing environmental dynamics, enable an agent
to forecast outcomes and make informed decisions. Our approach is inspired by model-based RL; however,
we use it as a rehearsal strategy within a multitask continual learning setting to mitigate forgetting, adapt
to evolving tasks, and limit compounding errors—all without needing access to a reward signal or online
interactions.

3 Method

Let Xt = xt,1, . . . , xt,Nt
∈ Rd be a time series of sensor states (3D body and joint angles, angular velocities,

and linear accelerations) during a locomotion task t (such as level ground walking, ascending a ramp, or
climbing stairs) and let yt = yt,1, . . . , yt,Nt ∈ R be the corresponding desired kinematic profiles (knee or
ankle joint profiles) as demonstrated by a human. Our goal is a model f which robustly predicts the correct
kinematic profiles y from input features x, even under prediction errors in previous time steps, and adapts to
new tasks t while preserving performance on older tasks. To realize such a model, we integrate principles
from multitask adaptive learning with a prospective rehearsal approach inspired by model-based RL. Our
model builds upon three core features, which we describe in turn: 1) multitask learning via a synthesis of
shared learning mechanisms with task-specific adaptability, 2) continual adaptation with task rehearsal in the
facet of an evolving architecture to avoid catastrophic forgetting, and 3) a prospective model that imagines
and informs about potential deviations to provide robustness against prediction errors.

Multitask learning via generic and task-specific modules. A core challenge in multitask learning is to
exploit commonalities between the tasks while maintaining flexibility to account for the particularities of
every single task. Our approach is to compose the gait model f of two functions: a shared backbone fs across
tasks, followed by task-specific layers ft. The overall prediction for an input sample {xt,i−T ...xt,i} for task t
at time i is f(xt,i−T ...xt,i) = ft[fs(xt,i−T ...xt,i)]. This duality enables the model to distill common features
across all tasks and concurrently adapt to the unique aspects of individual tasks. We employ temporal
convolutions (Oord et al., 2016; Fang et al., 2020) to model the shared backbone due to their effectiveness in
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Figure 2: Summary of the overall approach. For each new task t, the data is split into a train (Xtrain
t , ytrain

t )
and validation (Xval

t , yval
t ) set. A task-specific layer ft is added to the shared backbone fs and trained to

predict the target joint profile ytrain
t . Concurrently, a prospective model for the task anticipates potential

inputs based on the current joint profiles. The rehearsal data Xrehearsal
t for all encountered tasks is generated

using the prospective model imagined inputs. As new tasks are introduced, both the shared backbone fs and
previously established task-specific layers are updated with this rehearsal data to facilitate continual learning.

handling temporal sequences. To tailor the model to specific tasks, we implement task-specific layers using a
two-layer feed-forward network, providing lightweight and efficient customization for each task.

Continual adaptation via evolving architecture and rehearsal. In (task) incremental adaptation, the
model is trained incrementally with one task at a time. Thus, the model does not require data from all the
tasks during training. When a new task t is encountered, a new task-specific prediction layer ft is created and
both ft and fs are trained using task-specific data. However, this method is prone to catastrophic forgetting
(French, 1999; McCloskey & Cohen, 1989), that is, the model forgets the previously trained tasks when it
learns a new task. To deal with the forgetting problem, we include samples from prior tasks in the training
(i.e., a ’rehearsal’ (van de Ven et al., 2020)). However, beyond prior rehearsal approaches, we do not merely
copy training data from prior tasks. Instead, we augment it, incorporating prediction errors from the current
model f using the following scheme.

Prospective model. A principal challenge in our scenario is that prediction errors at time step k may
negatively impact prediction performance at time step k + 1, such that samples are not identically and
independently distributed across time. In more detail, for the human demonstrations, we know that the
sensor state xt,k and desired kinematic profile yt,k is followed by the sensor state xt,k+1. However, if we
predict a slightly different kinematic profile ŷt,k = f(xt,k−T ...xt,k) ̸= yt,k, we will also observe a different
sensor state x̂t,k+1 ≠ xt,k+1 in the next time step, pushing us away from the training data distribution. Such
deviations can accumulate over time, which is a well-known phenomenon in imitation learning (Kumar et al.,
2022; Ross & Bagnell, 2010). In general, imitation learning is a helpful metaphor for our situation, as we also
wish to mimic the demonstration of human experts in a setting where independence over time does not hold.
However, past theory on imitation learning has usually assumed constant bounds on the error in every time
step. Such constant bounds are not realistic in our scenario with a continuous space. Unfortunately, if we
slightly relax the assumption of constant bounds to Lipschitz bounds, the deviation between desired time
series and predicted time series can grow exponentially, as we show in the following, simple theorem.

Theorem 1. Let x1, . . . , xN ∈ X be a time series from space X , equipped with metric d. Further, let
f : X → Y for some set Y, and let g : X ×Y → X . For any x′

1 ∈ X , we define the time series x′
1, . . . , x′

N via
the recursive equation x′

k+1 = g[x′
k, f(x′

k)].

Finally, assume that for all k ∈ {1, . . . , N − 1}, for all x ∈ X , and for some C ∈ R, the following
Lipschitz condition holds: d

(
g
[
x, f(x)

]
, xk+1

)
≤ C · d(x, xk). Then, a) we obtain the exponential bound
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d(x′
k, xk) ≤ Ck−1 · d(x′

1, x1), and b) this bound is tight, i.e. there exist some time series x1, . . . , xN , some f
and g, as well as some x′

1, such that the bound holds exactly.

Proof. We obtain a) via induction from d(x′
k+1, xk+1) = d

(
g[x′

k, f(x′
k)], xk+1

)
≤ C · d(x′

k, xk). Regarding
b), consider the one-dimensional example X = Y = R with metric d(x, x′) = |x − x′|, x1 = . . . = xN = 0,
f(x) = κ · x for some κ > 0, and g(x, y) = x + y. Then, the Lipschitz condition is fulfilled because
d
(
g[x, f(x)], xk+1

)
= |x + κ · x− 0| = |1 + κ| · |x− 0| = (1 + κ) · d(x, xk), that is, C = 1 + κ. Further, for any

x′
1 ∈ R, we obtain d(x′

k+1, xk+1) = |x′
k + κ · x′

k − 0| = (1 + κ) · |x′
k − 0| = C · d(x′

k, xk), such that the tight
bound follows via induction.

In this theorem, f is our prediction model mapping a sensor state xk to a target joint profile yk, and g
describes the dynamics of our system, mapping the current sensor state xk and joint profile yk to the next
sensor state xk+1. The theorem states that, even if our predictive model f is Lipschitz-bounded (i.e., it
exactly matches the training data and degrades gracefully beyond the training data), the deviation can grow
exponentially over time.

This observation motivates the key innovation of our work, namely a prospective rehearsal. More precisely,
we train a prospective model g to mimic the dynamics of the system with g(xk, yk) ≈ xk+1 and imagine
the subsequent inputs resulting from the predictions of f . We then add data tuples (x′

k+1, yk+1) with
x′

k+1 = g
(
xk, f(xk−T ...xk)

)
to our training data. These additional training data tuples take the prediction

errors of f into account and thus help f to counteract its own prediction errors. In our scenario, yk+1 is
the right target for the input x′

k+1 because yk+1 represents a target joint profile in a prosthetic limb. This
target profile should remain the same in the same gait phase, even if x′

k+1 slightly deviates from xk+1. In a
general scenario, other targets might be required. Theoretically speaking, our aim is to achieve a constant
bound d

(
g[xk, f(xk−T , ..., xk)], xk+1

)
≤ ϵ for small ϵ > 0, such that classical imitation learning theory applies

(Kumar et al., 2022; Ross & Bagnell, 2010) and an exponential deviation over time is avoided. We do so by
minimizing d

(
g[xk, yk], xk+1

)
explicitly in Eq. equation 1.

Summary of proposed approach. Our overall approach is shown in Algorithm 1 and Figures 1 and 2.
We add new tasks t one by one and split the training data for task t into a training and a validation set. We
train a newly evolved task-specific layer ft and the shared backbone fs to minimize the distance between
ft[fs(xt,k−T ...xt,k)] and yt,k, and, at the same time, we train the shared backbone fs and the old task layers
ft′ to minimize the distance between ft′ [fs(xt′,k−T ...xt′,k−1, x̂t′,k)] and yt′,k for the data in the rehearsal
buffer. The rehearsal buffer contains both the original validation samples xt′,k, and the prospective samples
x̂t′,k for a subsample Vt′ of the time steps k in the validation set. The prospective samples are generated via
a task-specific, prospective model gt′ as x̂t′,k = gt′

(
xt′,k−1, ft′ [fs(xt′,k−T −1...xt′,k−1)]

)
.

4 Experiments
Datasets and metrics. We use three real-world human gait experiments’ datasets. The first two, ENABL3S
and Embry (Hu et al., 2018; Embry et al., 2018), are publicly available from popular gait labs, with ENABL3S
providing approximately 5.2M training and 1.3M test samples from ten subjects across various locomotion
activities, and Embry offering 512K training and 104K test samples from ten subjects also covering a range
of movements. The third dataset is a novel collection from our lab, focusing on gait patterns of patients
(transtibial amputees), recorded with a 200 Hz infrared motion capture system using twelve cameras, and
includes activities like walking, stair ascent, and descent, with around 27K training and 11K testing samples.
Ethical clearance for these experiments was obtained from our institutional review board. This dataset, along
with the others, includes motion-related variables such as 3D angles of body joints and segments, velocities,
and accelerations. To evaluate the accuracy of the desired joint profiles, yk, we calculate the coefficient of
determination (R2), between the ground truth trajectories and model-based joint profiles.

Ablations. We assess the contribution of each component on overall performance. We explore both joint
and continual learning paradigms, comparing models with shared final layers against those with task-specific
final layers. Further, we consider both conventional and prospective rehearsal with each of the shared and
task-specific final layer variants. In joint training, the training data is either augmented with the multitask
prospective rehearsal from a validation set or simply with the original samples from the validation set
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Algorithm 1: Multitask Prospective Rehearsal-based Adaptive Model
Initialize the shared backbone fs.
for tasks t from 1, . . . , L do

Let the data for task t be (xt,1, yt,1), . . . , (xt,Nt
, yt,Nt

).
Use the first Mt steps as training data, the final Nt −Mt steps as validation data for some Mt < Nt.
Add a task-specific layer ft.
Train fs and f1, . . . , ft by minimizing the loss:

Lf =
Mt∑
k=1
∥yt,k − ft[fs(xk, ..., xk−T )]∥2

+
t−1∑
t′=1

∑
k∈Vt′

∥yt′,k − ft′ [fs(xt′,k, ..., xt′,k−T )]∥2 + ∥yt′,k − ft′ [fs(x̂t′,k, ..., x̂t′,k−T )]∥2

Train the prospective model gt for task t by minimizing the loss:

Lg =
Mt−1∑
k=1
∥xt,k+1 − gt(xt,k, yt,k)∥2

Update the rehearsal data for all tasks.
for task t′ from 1, . . . , t do

Vt′ ← subsample time steps k from Mt′ , . . . , Nt′ − 1.
for time step k ∈ Vt′ do

x̂t′,k = gt′
(
xt′,k−1, ft′ [fs(xt′,k−T −1, ..., xt′,k−1)]

)
Vt′ ← (x̂t′,k, yt′,k)

itself (conventional rehearsal). In all conditions, we used the same amount of training data to maintain
fairness. Augmentation with prospective rehearsal improved the performance of models with both shared
and task-specific final layers. Further, the results provide evidence that task-specific final layers help to
account for particularities among tasks. A comparison of performance in task-incremental learning yields
similar results. The results demonstrate that the choice of a combination of prospective rehearsal and an
evolving architecture, where task-specific final layers are integrated with a shared backbone, yields the best
performance across the board (Table 1A–B). All following experiments are performed with task-specific final
layers.

Figure 3: Comparison of prospective rehearsal with a conventional rehearsal in the face of distribution shift.
(Left) Training/test data distributions, their Jenson-Shannon (JS) distances, and R2 predictions on four
different tasks from the Embry dataset show the prospective rehearsal’s efficacy. (Right) A graph plots the
R2 difference between methods against JS distance, with a linear trendline indicating that the prospective
rehearsal’s benefits increase with greater distribution divergence.
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Table 1: Experimental results for (A) joint multitask learning using different prediction head architectures
and replays, (B) task incremental learning using different prediction head architectures and replays, (C)
different continual learning strategies – SI (Synaptic Intelligence), EWC (Elastic weight consolidation), PNN
(Progressive Neural Networks), GEM (Gradient episodic memory), ER (Experience Replay), and proposed
prospective replay, (D) data augmentation with Gaussian noise vs. prospective replay buffer. (LW=Level
walking, RA=Ramp ascent, RD=Ramp descent, SA=Stair ascent, SD=Stair descent, Spd=Speed in m/s,
Inc=Inclination in °)

Dataset ENABL3S Embry
et. al. 2018

Transtibial
amputees

Task LW RA RD SA SD Spd 0.8 0.8 0.8 1.0 1.0 1.0 1.2 1.2 1.2 LW SA SDInc -10 0 10 -10 0 10 -10 0 10
head replay (A) Joint multi-task learning

S conventional 0.83 0.87 0.89 0.91 0.86 0.86 0.88 0.91 0.91 0.94 0.94 0.85 0.93 0.93 0.79 0.79 0.89
prospective (ours) 0.89 0.91 0.92 0.93 0.88 0.88 0.92 0.92 0.93 0.96 0.94 0.89 0.96 0.94 0.93 0.72 0.90

T conventional 0.90 0.94 0.95 0.96 0.93 0.95 0.98 0.94 0.95 0.99 0.96 0.80 0.96 0.98 0.97 0.82 0.92
prospective (ours) 0.92 0.94 0.96 0.96 0.94 0.96 0.98 0.96 0.96 0.99 0.97 0.90 0.97 0.98 0.98 0.91 0.94

head replay (B) Task-incremental learning

S conventional 0.80 0.86 0.84 0.89 0.83 0.76 0.87 0.83 0.81 0.90 0.90 0.74 0.90 0.88 0.94 0.83 0.68
prospective (ours) 0.84 0.90 0.89 0.91 0.89 0.90 0.92 0.92 0.94 0.96 0.95 0.89 0.97 0.95 0.94 0.85 0.72

T conventional 0.88 0.93 0.93 0.94 0.92 0.92 0.98 0.93 0.94 0.98 0.97 0.87 0.97 0.97 0.97 0.91 0.91
prospective (ours) 0.91 0.95 0.95 0.97 0.94 0.96 0.98 0.95 0.97 0.99 0.97 0.91 0.97 0.98 0.98 0.91 0.92

(C) Continual learning strategies
SI 0.06 0.45 0.51 0.55 0.93 -0.38 0.33 0.59 0.26 0.40 0.83 0.34 0.66 0.97 0.37 0.31 0.92
EWC 0.13 0.31 0.55 0.52 0.92 0.04 0.33 0.65 0.08 0.54 0.92 0.53 0.77 0.96 -0.30 -0.57 0.85
PNN 0.90 0.91 0.94 0.93 0.91 0.85 0.97 0.96 0.88 0.97 0.96 0.87 0.96 0.98 0.68 0.82 0.79
GEM 0.76 0.91 0.92 0.95 0.93 0.88 0.97 0.93 0.90 0.97 0.96 0.84 0.97 0.97 0.82 0.80 0.86
ER 0.88 0.93 0.93 0.94 0.92 0.92 0.98 0.93 0.94 0.98 0.97 0.87 0.97 0.97 0.97 0.91 0.91
prospective (ours) 0.91 0.95 0.95 0.97 0.94 0.96 0.98 0.95 0.97 0.99 0.97 0.91 0.97 0.98 0.98 0.91 0.92
(D) Data augmentation
Gaussian noise inj. 0.88 0.93 0.93 0.94 0.91 0.90 0.97 0.94 0.91 0.97 0.96 0.81 0.97 0.97 0.92 0.83 0.88
prospective (ours) 0.91 0.95 0.95 0.97 0.94 0.96 0.98 0.95 0.97 0.99 0.97 0.91 0.97 0.98 0.98 0.91 0.92

Benchmarking continual learning strategies. In the continual learning paradigm, we compare our
approach against regularization strategies like SI and EWC, architectural strategies, PNNs, and state-of-
the-art replay-based strategies like GEM and the classic form of experience replay, which we refer to as
conventional rehearsal (Table 1C). We observe that prospective rehearsal performs best across the board,
indicating better task memory retention and generalization. In Table 1D, we compare data augmentation via
Gaussian noise injection to the proposed prospective rehearsal, with prospective rehearsal performing best
across the board. All results are statistically significant (see appendix).

Resilience to distribution shift. In some cases, we do not observe a significant improvement in the
performance of the prospective rehearsal over a conventional rehearsal. To explain these results, we inspect
the difference in R2 between the prospective and conventional rehearsal versus the Jenson-Shannon (JS)
distance (Endres & Schindelin, 2003) between training and test distributions (Figure 3). We observe that
the error difference positively correlates with JS distance. In other words, the advantage of the prospective
rehearsal becomes more pronounced the more training and test distribution deviate. This is in line with our
theoretical analysis: The more training and test distribution differ, the more prediction errors of f we expect,
which means that our proposed prospective rehearsal helps more. Since real-world prosthesis data is prone to
noise and variability from various exteroceptive and interoceptive factors (Prahm et al., 2019), being robust
to distribution shifts is an important requirement for this domain, and our approach performs well in this
regard.

Resilience to adversarial perturbations. To further assess the resilience of the prospective rehearsal
approach, we compare its outcomes to those without it in the face of adversarial perturbations. These
adversarial samples are created using the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014)
across diverse epsilon thresholds, τ . Notably, our prospective rehearsal technique surpasses the conventional
baseline across all evaluated FGSM attack intensities (Figure 4A). Furthermore, as the perturbation intensity
escalates, the performance disparity between the prospective and the conventional method widens, reinforcing
the superior adaptability of prospective rehearsal under scenarios where test data distribution deviates from
the training set. The results are statistically significant.
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Figure 4: A) Performance comparison of prospective and conventional rehearsal strategies across different
strengths, τ , of adversarial perturbations. B) Performance of linear and non-linear probing on downstream
locomotion task classification. Prospective rehearsal training performs best across the board. (C) Comparison
of the performance of continual models with conventional and prospective rehearsal for different levels of
input noise. Results are presented for models with task-specific final layers.

Probing downstream performance. We evaluate the representation capacity of models trained
with prospective rehearsal techniques versus those trained without it, focusing on a downstream chal-
lenge—classifying different types of locomotion. We employ both linear and nonlinear (MLP) probes to assess
the representation of the shared layers, denoted as fs(xt,k−T ...xt,k), from models with task-specific heads
aimed at classifying the task t. The findings indicate that prospective rehearsal yields significantly better task
classification performance than its conventional counterpart for both linear and nonlinear probes (Figure 4B).
This result underscores that the prospective model-based training confers an added benefit of robustness and
adaptability compared to conventional rehearsal.

Resilience to noise. Further, we analyze the robustness of our proposed model against perturbations to
the input signals during test time in the form of multivariate white Gaussian noise, N (0, Σ ∈ Rd×d). We
apply different levels of perturbation L, where L is defined as the ratio of the standard deviation of the
Gaussian noise to the standard deviation of the test inputs. Figure 4C shows the R2 of our proposed rehearsal
and a conventional rehearsal for five different tasks on the ENABL3S dataset. While performance generally
decreases with higher amounts of noise, the prospective rehearsal yields better R2 across the board.

Gait stability assessment with an exoskeleton. In a pilot study, able-bodied individuals walked with
an ankle exoskeleton (Figure 5 left) controlled by joint profiles predicted by the model with the prospective
rehearsal approach. Participants reported that the predictions felt timely, accurate, and in sync with their
residual body movements. To evaluate the stability of the model-based foot profiles, with and without the
prospective rehearsal approach, we measured the maximal Lyapunov exponent using the Eckmann method
(Eckmann et al., 1986). The Lyapunov exponent measures the rate of divergence of nearby trajectories in
a dynamical system, with lower values indicating higher stability. Our results showed that both the first
and second Lyapunov exponents were lower when using our proposed method, indicating more stable gait
trajectories (Figure 5 right).

5 Conclusion
Our research introduces a novel framework for bionic prostheses’ application, adept at handling multiple
locomotion tasks, adapting progressively, foreseeing movements, and refining. Central to our method, is
a novel prospective rehearsal training scheme that, through empirical studies on diverse datasets, reliably
outperforms standard techniques, particularly under challenging conditions of adversaries, distribution shifts,
noise, and task transfer. Notably, the prospective rehearsal approach is data-centric, hence, model-agnostic,
and can be applicable across various model architectures. While these results are promising, a limitation of
our study is the absence of comprehensive clinical trials, largely due to the rigorous and extensive ethical
approval process required for such research. Recognizing this, our future work is set to expand upon these
findings through more extensive trials, including clinical trials and in-home studies, to validate and refine our
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Figure 5: (Left) Snapshots from the experiments on a subject. Different motion conditions such as walking
at different speeds and inclines were tested on an instrumented treadmill with adjustable inclines (A–E).
Furthermore, ground walking on a level walkway with different motion maneuvers was also tested (F–N).
(Right) Stability comparison of foot kinematic profiles yielded using prospective and conventional rehearsals.
First λ1 and second λ2 Lyapunov exponents (lower is better), computed using the Eckmann method, indicate
that the foot kinematic profiles obtained using our proposed method exhibit greater stability compared to
those obtained without employing our method. Median Lyapunov exponent of the prospective rehearsal
method, (dotted line) is lower compared to conventional rehearsal (solid line).

model in everyday settings. This adaptable, robust system signals a significant leap forward for prosthetic gait
prediction in dynamic settings, offering improved quality of life for individuals with lower limb impairments.
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A Datasets

A.1 Public datasets

ENABL3S (Hu et al., 2018): This is a multi-gait kinematics dataset which consists of data from multiple
wearable sensors like inertial measurement units (IMU) and goniometers. The IMU sensor data comprises
time-series sequences of the 3D body angular velocities and 3D linear accelerations. The goniometer data
comprises the kinematic sequences of the sagittal angular positions of the knee and the ankle joint. Ten
subjects performed several gait trials for five locomotion modes – level-ground walking, stair ascent, stair
descent, and ambulating up and down an inclined walkway at 10 degrees. The training dataset consists of
a total of 5,248,902 samples (524,890 samples per subject on average) across five tasks. The test dataset
consists of 1,311,488 samples in total (131,149 test samples per subject on average).

Embry et. al. 2018 (Embry et al., 2018): This is a locomotion dataset collected from ten subjects walking
on an instrumented treadmill at varying speeds, inclines (upslopes) and declines (downslopes). The speed
values are measured in meters per second (m/s), while the incline values are measured in degrees (°). In the
context of inclines, a negative value represents a decline. Data collection was performed using a 10-camera
Vicon motion capture system, which captured detailed leg joint kinematics and kinetics. The final dataset
used for training consists of 511,920 samples in total (51,192 samples per subject) across the nine tasks. The
test dataset consists of 104,056 samples in total (10,406 samples per subject on average) across nine tasks.

A.2 Amputee dataset

Data acquisition: Each amputee subject participated in multiple locomotion trials involving various gait
modes, including self-selected normal and high-speed level walking, stair ascent, and stair descent. The
subjects’ full-body motions were captured at 200 Hz using an infrared-based motion capture system (Vicon
Motion Systems Ltd., UK) equipped with twelve cameras. To track the motion trajectories, retro-reflective
anatomical markers were attached to the bony landmarks of the amputees’ torso, pelvis, thigh, shank, and
residual foot. Additionally, non-anatomical markers were placed on the thigh and shank to ensure continuous
tracking of these segments in a three-dimensional space. In addition to the marker trajectories, the ground
reaction forces were recorded at a sampling rate of 1000 Hz using two force plates (9287A, Kistler Group,
Switzerland) to calculate joint moments during the locomotion tasks. The amputees performed multiple
locomotion tasks, including level-ground walking at comfortable and high speeds, stair ascent and descent.
For each trial, we considered the data from one gait cycle, which was defined by two consecutive heel contacts
and where the ground reaction forces were available. Gait events were detected using a force threshold and
foot marker positions with the assistance of the gait event detector in the Vicon Nexus software. The dataset
we collected includes raw motion capture marker trajectories from camera-based systems and ground reaction
force measurements from force plates, recorded from five transtibial amputees. The setup and experimental
sessions with amputees were conducted over a shorter time frame, in accordance with what was comfortable
for the participants and with their consent, in contrast to the more extensive sessions typical with able-bodied
subjects.

Dataset preparation: From the motion capture marker trajectories and ground reaction forces, we computed
various mechanical properties of their joints and limbs. Specifically, joint kinematics such as angles, velocities,
and accelerations were calculated, along with body kinematics that include the positioning and movement
of limbs. Additionally, the forces and torques acting on the joints were determined. This was done by
performing inverse kinematics and inverse dynamics within a scaled biomechanical model of the subjects,
using an open-source biomechanical modeling software, OpenSim (Delp et al., 2007). The training dataset
included roughly 5.5k samples for each subject, from various locomotion modes including level ground walking,
stair ascent, and stair descent. The test dataset featured approximately 2.2k samples per subject from these
different modes.
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B Additional Results

B.1 Model architecture

In Table 2, we show the results of using different architectures for the shared backbone fs. All models were
designed to have approximately the same number of parameters. Since TCN tends to perform best across
datasets, we opt for TCN as the backbone architecture in practice.

Dataset ENABL3S Embry
et. al. 2018

Transtibial
amputees

Task LW RA RD SA SD Spd 0.8 0.8 0.8 1.0 1.0 1.0 1.2 1.2 1.2 LW SA SDInc -10 0 10 -10 0 10 -10 0 10
Linear 0.68 0.89 0.89 0.90 0.83 0.04 0.15 0.51 0.04 0.12 0.55 0.13 0.11 0.55 0.39 0.64 0.68
MLP 0.67 0.91 0.91 0.91 0.86 -0.06 0.14 0.52 0.06 0.13 0.55 0.11 0.12 0.56 0.42 0.56 0.70
LSTM 0.88 0.94 0.94 0.96 0.93 0.86 0.97 0.95 0.83 0.96 0.96 0.82 0.95 0.97 0.41 0.59 0.64
Transformer 0.9 0.94 0.95 0.96 0.93 0.88 0.97 0.96 0.86 0.98 0.97 0.88 0.97 0.98 0.98 0.84 0.92
TCN 0.91 0.95 0.95 0.97 0.94 0.96 0.98 0.95 0.97 0.99 0.97 0.91 0.97 0.98 0.98 0.91 0.92

Table 2: Comparison of various shared module architectures on different locomotion conditions from three
datasets.

B.2 Model predictions

In Figure 6 (left), We show the model-based motion trajectories of a transtibial amputee subject’s hypothetical
ankle, as demonstrated by our multitask model using prospective rehearsal. The alignment between the
predicted and biological able-bodied limb motions suggests the model’s effectiveness in approximating gait
synergy across various lower limb joints and segments, aiming to replicate normal locomotion for impaired
patients. Figure 6 (right) presents analogous results for an able-bodied subject, using their own limb motion
as the target. The close match between model-based and natural limb motions further underscores the
model’s potential in generating movement signals for bionic limbs, offering hope for enhancing mobility in
individuals with lower-extremity disabilities.

In Figure 7 we show the example predictions from baseline models as compared to our approach. The
joint angular positions predicted by the baseline models (shared final layer model and EWC regularization)
showed frequent misalignments with sharp disagreements between the predicted and actual trajectories. In
a safety-critical scenario such as prosthesis control for locomotion assistance, such misalignments can be
very costly as they can lead to imbalance. On the other hand, predictions from our proposed model show a
higher degree of alignment with the ground truth (actual) trajectories, which is necessary to ensure smoother
locomotion using a prosthetic device controlled by these predictions.

B.3 Resilience to distribution shift

We show the effectiveness of our prospective rehearsal-based approach in dealing with distribution shifts
during test time from the lens of model predictions. Figure 8 illustrates the predictions of models trained with
conventional rehearsal and our prospective rehearsal for two scenarios—one with a low and the other with a
high distribution shift during test time. As anticipated, both models exhibit comparable performance when
the test and training distributions are similar (see the bottom of Figure 8). However, in the presence of a
distribution shift at test time, the model trained with conventional rehearsal shows a decline in performance,
while the prospective rehearsal-trained model sustains its predictive accuracy (see the top of Figure 8).

B.4 Stability against forgetting

We explore the ability to preserve the knowledge of previously learned tasks after learning new ones. Figure 9A
shows how the NRMSE values (lower is better) for each task develop when training subsequent tasks, both
for a shared final layer (top) and for a task-specific final layer (bottom). Both architectures preserve the
memory of the previous tasks, but the performance on old tasks slightly worsens for a shared final layer,
whereas it remains the same for task-specific final layers.
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Figure 6: Model-based kinematic profiles from our proposed rehearsal-based models. (Left) Motion trajectories
of a transtibial amputee subject’s hypothetical ankle, predicted by our model. The normative (target)
trajectories are computed from an able-bodied individual with anthropometric features and walking speed
similar to that of the amputee subject. (Right) Predicted motion trajectories of an able-bodied subject from
ENABL3S dataset for different locomotion modes. The target trajectories in this case are the subject’s own
limb motion. In both cases, the predicted trajectories are highly aligned with the target limb motion.

B.5 Statistical significance of results

A Wilcoxon-signed rank test revealed that the proposed rehearsal significantly outperforms conventional
rehearsal, both for shared as well as task-specific final layers (Figure 9B). Further, task-specific final layers
significantly outperform a shared final layer, irrespective of rehearsal strategy. This shows that both
the evolving architecture as well as the prospective rehearsal strongly contribute to the improvement in
performance using the proposed method. Our experiments also show that the proposed rehearsal significantly
outperforms many state-of-the-art continual learning strategies and data augmentation with Gaussian noise.

C Real-world Deployment of Models: Exoskeleton/Hardware Experiments

C.1 Experimental setup

The experimental setup for the real-world deployment of the proposed models is depicted in Figure 10.
Utilizing Inertial Measurement Units (IMUs) to monitor the user’s residual body motion, our model could
infer and predict the ankle-joint positions in real-time. These predictions were then employed as control inputs
for the ankle exoskeleton. The ankle exoskeleton, configured in position control mode, received foot angular
position predictions generated by the gait-predictive model to regulate its movements. The gait-predictive
model, trained and stored on a computer, produced joint position predictions corresponding to the movement
of the residual body. These predictions were transmitted through a CAN communication system to actuate
the ankle exoskeleton motor.

Besides the quantitative stability comparison of gait as reported in the main paper, we also analyzed data on
trunk posture during two experimental scenarios: one with the subjects walking using the model-predicted
ankle positions with the exoskeleton, and another where they walked without any assistance. We additionally
looked at the variability in trunk kinematics, which is another critical indicator of balanced gait (Rábago et al.,
2015). Figure 11 shows the lateral trunk angles in the case where a subject walked freely (blue) and when
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Figure 7: Baseline prediction examples. (Left) Examples of joint position trajectories for different locomotion
tasks predicted by a shared final layer model vs. task-specific final layer model. (Right) Examples of joint
position trajectories predicted by a task-specific final layer model with EWC regularization vs. task-specific
final layer model with prospective rehearsal. The black curve shows the ground truth trajectories.

Figure 8: (Left) Train and test distributions for two tasks from Embry et. al. dataset for a representative
subject. (Right) Predictions of model trained with conventional and prospective rehearsal.

the subject walked with the assisted powered exoskeleton, whose ankle-joint positions were predicted from
our model (red). Our findings revealed that the lateral trunk angles during assisted and unassisted walking
were comparable, suggesting that the exoskeleton, guided by our model’s predictions, did not necessitate any
compensatory movements from the subjects. This similarity implies that our model can effectively predict
control signals that facilitate a stable and comfortable walking experience.
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Figure 9: (A) Plot depicting NRMSE values for test tasks from Embry and ENABL3S datasets post-training,
with the X-axis for learned tasks, color for test tasks, and shading indicating standard error across subjects.
(B) (Left) Results of statistical significance tests comparing the performance of conventional and proposed
prospective rehearsal for shared and task-specific final layers. (Right) Comparison of performance of the
proposed prospective rehearsal with state-of-the-art continual learning strategies. Statistical significance was
assessed using the Wilcoxon-signed rank test with Bonferroni correction, ∗∗∗∗ : p < 1e− 4,∗∗∗ : p < 1e− 3,∗∗ :
p < 1e− 2.

Figure 10: Communication pipeline of the ankle exoskeleton is shown. The ankle exoskeleton is equipped
with a DC power inlet and a CAN communication inlet to interact with the main controller of the ankle
exoskeleton. First, the IMU sensor signals are received by the computer (PC) via the IMU base station.
The IMU signals are processed in real-time, and the trained model stored on the PC generates predictions
to control the ankle exoskeleton. The predictions are sent to actuate the ankle exoskeleton via the CAN
communication protocol to the main controller of the ankle exoskeleton, which in turn sends commands to
actuate the device’s motor.

D Baselines

D.1 Continual learning strategies

We compared our method to other continual learning strategies such as synaptic intelligence (SI) (Zenke
et al., 2017), elastic weight consolidation (EWC) (Kirkpatrick et al., 2017), experience replay (ER), and
gradient episodic memory (GEM)(Lopez-Paz & Ranzato, 2017).

SI is a regularization-based continual learning strategy aimed at overcoming catastrophic forgetting, which
is the tendency of neural networks to completely forget previously learned information upon learning new
data. SI achieves this by measuring the importance of synaptic parameters to past tasks and selectively
constraining the update of these important parameters when new tasks are learned. This method estimates a
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Figure 11: Lateral trunk angles when a subject walked freely (top) and when the subject walked with the
assisted powered exoskeleton, whose ankle-joint positions were predicted from our model (bottom).

“synaptic importance” score for each parameter of the neural network, based on how much a change in that
parameter would affect the total loss across all tasks learned so far. When new data is encountered, SI allows
the network to update primarily those parameters that are less important for the tasks learned previously,
thereby preserving the performance on those tasks.

EWC is another regularization-based continual learning strategy that addresses the problem of catastrophic
forgetting in neural networks. EWC works by calculating the importance of each parameter to the old
tasks and then applying a regularization term that penalizes changes to the most crucial parameters. The
’importance’ is quantified using the Fisher Information Matrix, which captures how sensitive the model’s
predictions are to changes in each parameter. When the model is trained on a new task, parameters important
for past tasks are kept relatively stable, while less important parameters are more free to change. This
method is inspired by principles of neuroplasticity in the human brain, where certain synaptic pathways are
consolidated and become less plastic after learning, preserving essential knowledge.

ER combats forgetting by intermittently retraining the model on a random subset of previously seen examples.
This approach mimics the way humans recall and reinforce knowledge over time by revisiting past experiences.
In practice, ER maintains a memory buffer that stores a collection of past data samples. During the training
of new tasks, the learning algorithm interleaves the new data with samples drawn from this memory buffer.
By doing so, the model is regularly reminded of the old tasks while it learns the new ones, which helps to
maintain its performance across all tasks. The process of experience replay is a simple yet effective way to
preserve old knowledge in the neural network without compromising the learning of new information.

GEM is a strategy designed to mitigate forgetting by leveraging experiences stored in a memory. GEM
maintains a subset of the data from previously encountered tasks in an episodic memory and uses this
stored data to guide the learning process for new tasks. When a new task is introduced, GEM compares
the gradients of the loss with respect to the current task and the gradients concerning the tasks stored in
memory. It then adjusts the update rule to ensure that the loss of the episodic memory does not increase,
effectively preventing the network from unlearning the previous tasks. This is achieved through a constrained
optimization problem that allows the model to learn the new task while not getting worse on the tasks stored
in memory.

PNN is an architectural approach to overcoming the challenges of catastrophic forgetting in machine learning,
particularly when dealing with sequential or multitask learning scenarios. By architecturally encapsulating
knowledge gained from previous tasks, PNNs enable the integration of new information without overwriting
what has been previously learned. This is achieved through the use of separate neural network columns for
each task, where each new column is connected to all previous ones via lateral connections. These connections
allow the networks to access previously learned features, making PNNs highly effective for tasks requiring the
retention and transfer of knowledge across different domains.

D.2 Adversarial perturbations

The Fast Gradient Sign Method (FGSM) attack used for crafting our adversarial perturbations is a method
for generating adversarial examples based on the gradients of the neural network. It perturbs an original input
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by adding noise that is determined by the sign of the input’s gradient with respect to the neural network’s
parameters. This method is designed to be quick and effective, typically requiring only one step to create an
adversarial example.

To elaborate, the FGSM takes the original input x, the target label y, and the model parameters θ, and then
it computes the gradient of the loss with respect to x. The noise is then generated by taking the sign of
this gradient and multiplying it by a small factor, τ , which controls the intensity of the perturbation. The
adversarial example is created by simply adding this perturbation to the original input:

x′ = x + τ · sign(∇xJ(θ, x, y))

where ∇xJ(θ, x, y) is the gradient of the model’s loss with respect to the input, θ represents the model’s
parameters, and τ is a small constant. FGSM can be used to reveal the vulnerabilities of a neural network
and is a common benchmark for evaluating the robustness of machine learning models against adversarial
attacks.

E Training and Hyperparameters

Training Hyperparameters Value
Optimizer SGD
Learning rate 1e-4
Momentum 0.9
Early stopping patience 10
Batch size 100
Training steps 130k (ENABL3) / 13k (Embry) / 1.3k (Amputees)
Max. rehearsal buffer size 3k
Task balancing yes

Table 3: Hyperparameters used to train our model

Rehearsal size To ensure a balanced comparison, we maintained an identical rehearsal size for the conventional
rehearsal, prospective rehearsal, and Gaussian noise augmentation approaches. This measure was taken
to avoid attributing any performance improvement to data volume inflation, which could result from
augmentation. By sampling an equivalent quantity of data for both conventional and prospective rehearsal,
we aimed to neutralize the potential impact of having more or less data on performance outcomes. The
hyperparameters employed for training the model are detailed in Table 3.
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